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Abstract

Satellite telemetry is an increasingly utilized technology in wildlife research, and current

devices can track individual animal movements at unprecedented spatial and temporal reso-

lutions. However, as we enter the golden age of satellite telemetry, we need an in-depth

understanding of the main technological, species-specific and environmental factors that

determine the success and failure of satellite tracking devices across species and habitats.

Here, we assess the relative influence of such factors on the ability of satellite telemetry

units to provide the expected amount and quality of data by analyzing data from over 3,000

devices deployed on 62 terrestrial species in 167 projects worldwide. We evaluate the suc-

cess rate in obtaining GPS fixes as well as in transferring these fixes to the user and we

evaluate failure rates. Average fix success and data transfer rates were high and were gen-

erally better predicted by species and unit characteristics, while environmental characteris-

tics influenced the variability of performance. However, 48% of the unit deployments ended

prematurely, half of them due to technical failure. Nonetheless, this study shows that the

performance of satellite telemetry applications has shown improvements over time, and

based on our findings, we provide further recommendations for both users and

manufacturers.

Introduction

Wildlife telemetry units equipped with satellite functionality offer an attractive set of functions

for remotely tracking individual animal movements across a large diversity of species [1,2].

Modern satellite telemetry devices allow for tracking movements at unprecedented temporal

and spatial scales, yielding large amounts of detailed information. Since the early 1990s, geolo-

cation satellite tags, largely relying on the Global Positioning System (GPS) satellite network,

have been used successfully to locate animals in wildlife research for a variety of purposes

[3,4], including the study of predator-prey interactions [5], foraging behavior [6], activity pat-

terns [7], movement patterns [8], migratory routes [9], habitat preferences [10], and other

aspects of animal behavior [11,12]. The scope of applications in research and conservation

continues to increase due to the addition of accelerometers, gyroscopes, magnetometers, cam-

eras and environmental sensors, as well as improvements in technology (e.g. increased battery

life, solar charging, increased memory storage) leading to significant reductions in the size and

Satellite telemetry in wildlife research
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Côte d’Or, the Fédération Départementale des
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weight of devices [2,13]. Wildlife satellite tracking is producing ‘big data’ and has been sug-

gested as a means to monitor environmental changes [2,14]. Its success is exemplified by the

increasing number of scientific studies published (see S1 Fig;[15]), the development of collabo-

rative e-infrastructures to aid with the management, analysis and sharing of large movement

data sets (e.g. Movebank, Eurodeer, WRAM, see also [16]), and new data analysis methods

being presented in the literature at rapid pace [17–19]. Indeed, Kays et al. claimed that we are

at the start of the golden age of animal tracking science [2].

Against this backdrop of rapid development, it is crucially important to understand the rel-

ative influence of various factors (e.g. environmental characteristics of the study area, species

traits, unit specifications, satellite constellation) on the performance of satellite telemetry

devices across species and habitats. Such factors can considerably reduce data volume and

quality [3,20–22], and their influence needs to be understood to identify where further

improvements can be made. Additionally, acquiring a sufficient number of devices to conduct

a scientifically robust project usually involves considerable financial investment and is logisti-

cally demanding, while equipping animals with satellite telemetry devices requires proper

expertise and careful ethical consideration with respect to animal welfare. Hence, it is of para-

mount importance to maximize the effectiveness of any deployed units.

In its simplest form, a satellite telemetry unit is a uniquely identifiable bio-logging tag con-

sisting of a satellite geolocation sensor in conjunction with the necessary components to pro-

cess, store and retrieve the geolocation data [23]. The general operation of satellite telemetry

units involves two main steps (Fig 1). The first step is fix acquisition: whereby according to a

pre-programmed (usually cyclic) schedule, the geolocation satellite tag scans the sky for satel-

lites, attempts to calculate the coordinates of its position on Earth, and records its coordinates

for that exact time (a process often referred to as ‘obtaining a fix’). The second step is retrieving

the data from the device or data transfer: whereby the results stored on the unit (i.e., unit loca-

tions and potentially additional information such as accelerometer data) are transferred to the

user.

Fix acquisition nowadays is almost exclusively done using the Global Positioning System

(GPS) and numerous studies have investigated the factors affecting the efficiency of satellite

telemetry devices in acquiring fixes, which include unit brand and antenna orientation

[24,25], fix attempt interval and frequency [26,27], species behavior [11,28], percent canopy

cover [29,30], vegetation cover type [31], satellite constellation [32], topography [33] and in

urban settings the density and height of buildings [34]. These factors can cause high variation

in the volume and quality (i.e. geographic accuracy) of fixes stored on the unit and can intro-

duce bias in the geographical spread of the obtained locations [35].

In contrast to research focusing on fix acquisition, far fewer studies have addressed the suc-

cess in transferring data from the unit to the user (e.g. [36]; see also S1 Table), despite the fact

that the data transfer rate can considerably impact the amount of data eventually available to

the user, especially in cases where the chances of recovering the unit from the field are small

[37]. The choice of data transfer method depends on the biology of study species, environmen-

tal characteristics of the study area [3], practical considerations (e.g. battery life, project bud-

get) and previous experiences, as well as the study objectives.

In addition to data loss during the two-step telemetry process, data are also lost when units

suffer premature technical failures (e.g. wear, production errors, memory storage or battery

malfunction, etc.), when the animal dies (e.g. natural causes, hunting or collision with vehi-

cles), or when animals succeed in removing the unit [21,22,37]. Despite the availability of a

number of data screening and processing techniques to deal with biased and missing locational

data [35,38,39], reduced data quality and volume can prevent units from providing adequate

data to answer specific research questions that were formulated based on the premise that
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greater amounts of high-quality data would be available. These limitations have led some

authors to urge for caution when opting for satellite telemetry in wildlife research [20].

The multitude of factors affecting the performance of satellite telemetry devices makes it

challenging to evaluate their efficiency in wildlife research. To our knowledge, few large-scale

evaluations of the overall efficiency of units across species and habitats have been conducted

(e.g. [22]; see also S1 Table), and we currently do not have a thorough understanding of how

reliable units are for providing the expected large volume of high-quality data under various

circumstances. Moreover, projects where the quantity or quality of gathered information is

inadequate are unlikely to produce any peer-reviewed publications and thus we expect the lit-

erature to be biased towards successful applications [22]. For example, Campbell et al. [40]

report that approximately 50% of studies involving satellite transmitters in Australasia

remained unpublished, partially due to insufficient data quality or quantity. Hence, an evalua-

tion based on literature review alone would likely lead to biased conclusions. Here, we use a

questionnaire approach to assess the performance of satellite telemetry units in terrestrial wild-

life research across the globe. Our specific objectives were to investigate the (i) fix acquisition

success, (ii) data transfer success, (iii) overall success rate of units in providing fixes to the user

(the combination of i and ii), and the proportion of deployments ending prematurely due to

(iv) technical malfunctioning or (v) other causes (see Materials and Methods). In addition, we

evaluate how the success rates are impacted by environmental, species and unit characteristics.

Materials and methods

Data collection

To avoid a potential bias in published literature towards successful satellite telemetry studies,

we used a standardized questionnaire format (see S1 Questionnaire). We first used a short

Fig 1. Two-step satellite telemetry process. The general two-step operation of terrestrial satellite telemetry units, and the possible fix outcomes

of the process. The number of expected fixes equals the sum of successful, unsuccessful and not-retrieved fixes (see Materials and methods).

https://doi.org/10.1371/journal.pone.0216223.g001
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online form explaining the study, in which we invited researchers to submit their contact

details if they were interested in participating. We shared the form on conservation and ecol-

ogy related mailing lists, online wildlife and technology platforms, and via social networks for

scientists. We also mailed the invitation to contribute to personal contacts, authors of satellite

telemetry studies, and contributors to online animal movement databases. We then sent the

standardized data gathering questionnaire to those who had shown interest in participating.

The questionnaire was approved by the Ethics Committee of the College of Natural Sciences at

Bangor University (Ethical consent number: cns2015mh1).

The design of the questionnaire was guided by the general operation of satellite telemetry

(see Fig 1). In the two-step process of data collection in satellite telemetry, the first step is fix

acquisition. Nearly all recent, commercially available units for wildlife research use the GPS

satellite network for the purpose of obtaining fixes, although other methods exist (e.g. Argos

with Doppler-effect, Global Navigation Satellite System or GLONASS for short, see [3, 4]). The

geolocation tag picks up the radio signals from a number of satellites, calculates its distance

from each satellite, and then uses an algorithm to determine its position [23]. Each pro-

grammed fix attempt by the unit either succeeds or fails in obtaining a fix, and this result is

stored on an inbuilt memory device, the capacity and reliability of which are usually not limit-

ing the quantity of data acquired. The tag needs an unobstructed line-of-sight to at least four

satellites to obtain a reliable 3D fix, with fewer satellites leading to lower spatial accuracy of the

obtained coordinates [27,41]. The programmed fix attempt frequency itself can influence the

success of the fix attempts: if the time lag between fix attempts is short, the unit can reuse the

satellites’ ephemeris data, reducing the time and battery power needed to determine the next

location, and thus increasing the likelihood of success [26,27,42]. Additionally, factors such as

the spatial distribution of satellites in the sky and the distortion of the satellites’ radio signals

due to atmospheric effects can introduce imprecision in the obtained positions [41]. This

imprecision is measured as the geometric dilution of precision (DOP). The number of avail-

able satellites and the DOP for each fix attempt are usually—but not always—included in the

fix result information provided to the user by the unit or the manufacturer. The second step in

data collection is the transfer of the obtained locations from the unit to the user. Several

options for transferring data are available [3,4], including:

i. The store-on-board unit is retrieved from the field through recapturing animals or after the

unit drops off, and the user extracts the data using a physical connection between the unit

and a computer.

ii. A VHF or UHF transmitter on the unit enables the user to download the data remotely,

typically using a hand-held receiver from a relatively short distance. This method can be

used if animals can be approached closely enough and resources are available to visit the

area frequently.

iii. The unit is equipped with a GSM component and SMS messages containing the fix results

are sent to a server or sometimes directly to the user’s cellular phone. Although GSM cov-

erage is widespread, some wildlife species tend to roam in remote areas where coverage is

low (e.g. [43]).

iv. An additional satellite tag on the unit transmits the fix results to a commercial communica-

tion satellite network usually providing global or near-global coverage (e.g. Argos, Global-

Star, Iridium, Inmarsat).

Where the additional unit mass is not of concern, satellite telemetry units can be equipped

with an automated timed-release mechanism to avoid having to recapture the animal to
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retrieve the collar. Additionally, the units usually include traditional VHF transmitters for on-

the-ground triangulation or homing-in, as well as activity and environmental sensors that pro-

vide supplementary information [2]. This supplementary information is not usually included

in remote data transfer to reduce the size of the individual data packages to be transferred.

Standardized questionnaire

The questionnaire consisted of 27 questions, grouped according to the topic they addressed:

study area and animal characteristics, unit specifications, deployment details, unit costs, and

researcher opinion on data quality and quantity and the usefulness for their career, for conser-

vation, and for research. In line with Fig 1, we considered the number of expected fixes to be

the number of scheduled fix attempts that were initiated by the unit between the day of deploy-

ment and the moment the unit failed, the animal died or until the last data download. A fix

was considered successful when a scheduled fix attempt succeeded in obtaining the unit’s loca-

tion and the user subsequently managed to retrieve the time and coordinate information for

this fix from the unit. We considered a fix to be unsuccessful when a scheduled fix attempt

failed in obtaining the unit’s location, but the user still managed to subsequently retrieve the

available information for this attempt from the unit. Note that the available information for

unsuccessful fixes includes variables such as date, time and number of visible satellites, but

lacks coordinates. Fixes with obviously improbable coordinates were also counted as unsuc-

cessful. Any scheduled fix attempt for which no information was transferred to the user—

hence where it is unknown whether the unit succeeded or failed to obtain its location—was

considered a not-retrieved fix. We neglected the quality of individual fixes (DOP, 2D/3D) for

the purposes of this study, because the diversity of ways to measure the quality would have

increased the complexity of our questionnaire disproportionately (see Recommendations).

Although failure of memory devices themselves may hinder data acquisition, the specific issue

was not raised in any of the contributions to this study or similar studies [22], indicating that

the capacity and reliability of recent memory devices used in terrestrial satellite tracking appli-

cations are usually not limiting. We did not consider this factor in our questionnaire.

Unit performance and its covariates

We compiled a set of covariates that potentially influence the different measures of unit suc-

cess. Several of these covariates were derived directly from the questionnaire, while area-based

covariates were calculated from study area coordinates (see Table 1).

We used five measures to evaluate unit success. Three measured the success during differ-

ent parts of the actual satellite telemetry data gathering process (the success rates), while the

other two measured the rate of failures in deployments (failure rates).

Fix acquisition rate. The fix acquisition rate measures the proportion of transferred fix

attempts that was successful, regardless of the number of originally scheduled fix attempts. It

was calculated as successful / (successful + unsuccessful) fixes (see Fig 1).

Data transfer rate. To evaluate the data transfer success, we calculated the data transfer

rate as (successful + unsuccessful fixes) / expected fixes (see Fig 1). To compare the data transfer

success of different transfer methods (GSM, VHF/UHF, satellite), we excluded projects where

additional fixes were downloaded from units with remote data transfer after recovering them

from the field: these additional fixes were not transferred using the remote transfer functional-

ity of the unit.

Overall fix success rate. The overall fix success rate reflects the proportion of scheduled

fix attempts that succeeded in obtaining a fix, and for which information was subsequently

successfully transferred to the user, either remotely or by physical connection. In contrast to
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the fix acquisition rate, it accounts for data loss during both the fix acquisition and the data

transfer processes and evaluates the proportion of scheduled fixes that were eventually avail-

able to the user. This also includes fixes that were downloaded from the unit after retrieval

from the field and therefore the Overall fix success rate is also influenced by the number of

retrieved units. We calculated it as successful / expected fixes (see Fig 1). In previous research,

the overall fix success rate is often referred to as the fix success rate or FSR [34,37,44], whereby

authors have either assured or assumed complete data transfer.

Deployment failure rate. The proportion of deployments that ended prematurely for any

given reason (animal-related, technical or unknown) is calculated as the deployment failure

rate.

Technical failure rate. The proportion of deployments ending prematurely exclusively

due to known technical issues (including failure of timed-release mechanism) is called the

technical failure rate and is a subset of the deployment failure rate.

Statistical analysis

All analyses were conducted in R version 3.4.3 [45]. To evaluate the relative importance of

covariates for the fix success and overall fix success rates, we used boosted beta regression

models [46]. The boosted beta regression approach combines the beta regression framework,

as a special case of the Generalized Additive Models for Location, Scale and Shape (GAMLSS)

class of regression models [47,48], with the gradient boosting framework. Beta regression is a

Table 1. Boosted beta regression covariates.

Name Description Type Level

Brand The manufacturer of the majority of units in the project Qualitative Unit

No. of units The number of units deployed in the project Quantitative Unit

Purchase date Weighted mean of the year of purchase of all units in the project Quantitative Unit

Time-to-fix Weighted mean of the maximum time units were allowed to obtain a fix Quantitative Unit

Transfer method The transfer method used by the majority of units in the project. Levels: GSM; Satellite; Store-on-board; VHF/

UHF.

Qualitative Unit

Burrowing/

Hibernating

Boolean indication of burrowing and/or hibernating individuals in the project Qualitative Species

Height (log-

transformed)

Natural log of the weighted mean of the species height across all individuals in the project Quantitative Species

Forest Cover

(quantitative)

Mean forest cover in the study area as derived from the GlobCover dataset using the coordinates provided in the

questionnaire.

Quantitative Environment

Forest cover

(qualitative)

Percentage of forest cover as indicated in the questionnaire. Levels: 0–25%; 26–50%; 51–75%; 76–100% Qualitative Environment

Forest type Type of forest in the study area as indicated in the questionnaire. Levels: No forest cover; Temperate evergreen;

Temperate deciduous; Temperate mixed; (Sub)Tropical evergreen; (Sub)Tropical deciduous; (Sub)Tropical

mixed.

Qualitative Environment

Forest density Density of forest in the study area as indicated in the questionnaire. Levels: No forest cover; Open understory &

sparse canopy cover; Dense understory & sparse canopy cover; Open understory & intermediate canopy cover;

Dense understory & inter-mediate canopy cover, Open understory & closed canopy; Dense understory & closed

canopy.

Qualitative Environment

Terrain ruggedness Terrain ruggedness as indicated in the questionnaire. Levels: Steep slopes and narrow valleys, flat areas and

gentle slopes are rare (< 20%); Steep slopes, interspersed with flat areas and/or gentle slopes; Mostly flat area

and/or gentle slopes, with occasional steep slopes (< 20%); Mostly flat area or gentle slopes (< 5% steep slopes).

Qualitative Topography

Terrain Ruggedness

Index

Mean Terrain Ruggedness Index across the study area, as derived from either SRTM or ASTER Digital Elevation

Models for the study area. This variable was used as a proxy for available view to the sky.

Quantitative Topography

Covariates used for the boosted beta regression on the fix acquisition rate and overall fix success rate of satellite telemetry units.

https://doi.org/10.1371/journal.pone.0216223.t001
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commonly used technique in the natural sciences to model a continuous response bounded

between 0 and 1, with essentially the same interpretation as logistic regression [46,49]. The

flexibility of the beta distribution allows for complex responses to be modelled, while the

GAMLSS class allows precise model specification as it enables the fitting of not only the condi-

tional mean, but also other parameters of the distribution of the response variable (location,

scale, and shape) as a function of explanatory variables and/or random effects [48]. Addition-

ally, where classical beta regression commonly uses maximum likelihood to optimize regres-

sion coefficients and requires the user to select variables based on model-selection criteria (e.g.

AIC; [50]), the boosted beta regression approach uses an algorithm called gamboostLSS [47].

The algorithm uses the gradient boosting framework to optimize the models for all distribu-

tion parameters (see [46,51]). The family of beta distributions, as implemented in the R pack-

age gamboostLSS [51–53], has two parameters: μ is the conditional mean, while φ is the

precision or overdispersion. The conditional variance of the outcome is then given as μ(1-μ)/(1
+φ). Essentially, boosted beta regression assesses the relative importance of covariates simulta-

neously on the mean (μ) and on the variability (in terms of overdispersion φ) of the dependent

variable by iteratively fitting simple regression functions of the effects of each covariate to the

negative gradient for μ and φ. Relative variable importance for the models of both parameters

is given as the percentage of boosting iterations in which a covariate was selected as the best fit

to the respective parameter of the outcome. When the algorithm is appropriately tuned, e.g.

via cross validation, it has the major added advantage of having an in-built mechanism for var-

iable selection [46,52]. We applied this approach in our study using the R package gam-

boostLSS version 1.2–1 [51]. All covariates described above were entered in the overall success

model (S2 Code), while the main data transfer method variable was excluded for the fix acqui-

sition rate model (S1 Code). We log-transformed the species height variable and included the

main brand used in each project as a random variable. Variable distributions are presented in

S2 Fig. We weighted each project by the number of telemetry units deployed in it.

Results

We combined information from 167 projects in 142 study areas across 42 countries and 6 con-

tinents (see Fig 2). The geographic distribution was uneven, with just over half of all study

areas located in Europe, 20% in Africa and less than 10% in each of the other continents. Proj-

ects ran between 2001 and 2017 and lasted on average 3.5 years, ranging between 60 days and

14.3 years. Across all projects, a total of 3,695 individuals of 62 terrestrial wildlife species were

equipped with 3,130 telemetry units of 16 brands. Most units were purchased between 2006

and 2015. Reptiles and (ground-dwelling) birds were tagged in four and two study areas

respectively, whereas small to large mammals were the study subjects in all other areas (see S2

Table). An analysis of all trends in the observed data is presented in S1 and S2 Texts.

Overall unit performance

In the average project, 93.6% (range: 23.4–100%) of the fix attempt information was trans-

ferred successfully from the units to the user, and 85.2% (7.5–100%) of these transferred fix

attempts had succeeded in calculating the unit’s position (i.e. obtaining a fix). Eventually, users

obtained on average 77.5% (6.7–100%) of the fixes that they could have expected to obtain dur-

ing the total time that units were deployed and functioning properly in the project. However,

25.2% (0–100%) of all unit deployments in an average project ended prematurely due to tech-

nical failure, irrespective of the unit’s price or purchase date. Additionally, about as many

deployments ended prematurely due to animal-related issues (e.g. mortality, unit removal) or
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for unknown reasons, such that 47.5% (0–100%) of all unit deployments in an average project

ended earlier than was planned.

Fix acquisition rate

The boosted beta regression model selected species height followed by the purchase date of the

units as the most important variables determining the mean fix acquisition rate (Table 2). The

model predicted the fix acquisition success to be higher for taller species, with the effect

Fig 2. Project distribution. The geographic distribution of all projects that provided information on the performance

of satellite telemetry units. Note that each red dot can comprise more than one project.

https://doi.org/10.1371/journal.pone.0216223.g002

Table 2. Selection frequencies of covariates for both the mean (μ) and variability (φ) parameters in the boosted

beta regression model for the fix acquisition rate.

Variable Selection frequency

μ φ
Height 22%

Purchase date 19%

Burrowing/Hibernating 15%

Time to fix 11% 20%

Forest density 11% 30%

Forest type 11%

Brand 7% 40%

Terrain ruggedness (qualitative) 4%

Terrain Ruggedness Index 10%

The higher the selection frequency, the more important the covariate is in predicting either the mean or the

variability of the fix acquisition rate.

https://doi.org/10.1371/journal.pone.0216223.t002
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leveling off with increasing height. Fix acquisition rate was also higher for more recently pur-

chased units, and for units with a longer maximum allowed time-to-fix (see Fig 3). Burrowing

Fig 3. Covariate partial effects on the mean Fix acquisition rate. Mean-centered partial effects of the most important variables predicting the mean (μ) fix acquisition

rate of satellite telemetry units (empirical confidence intervals in grey). Graphs are presented left-to-right in order of importance. Partial effects display the effect of the

variable while accounting for all other variables in the model. Forest type levels: NF = No forest cover; TE = Temperate evergreen; TD = Temperate deciduous;

TM = Temperate mixed; SE = (Sub)Tropical evergreen; SD = (Sub)Tropical deciduous; SM = (Sub)Tropical mixed.

https://doi.org/10.1371/journal.pone.0216223.g003
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or hibernating behavior reduced the fix acquisition rate. The main brand used in a project and

the qualitative environmental variables (forest type, forest density and terrain ruggedness)

were selected in less than 15% of the boosting iterations and lacked a consistent trend. How-

ever, the variability in fix acquisition rate was influenced strongly by the main brand used and

increased in dense forest environments and in intermediate to highly rugged terrain (see

Table 2 and S3 Fig). In contrast, a longer allowed time-to-fix decreased the variability.

Data transfer rate

In 11.6% of all projects (N = 167), multiple data transfer methods were used simultaneously.

In these cases, the main data transfer method per project was determined by simple majority.

In 15% of all projects, the majority of units were store-on-board units, where the data transfer

was entirely dependent upon the successful retrieval of the units from the field. All remaining

projects primarily used remote data download methods to transfer the information from the

units to the user. GSM was the main data transfer method in 40.1% of all projects, while 23.1%

mainly used satellite communication and 21.8% mainly VHF/UHF.

Note that the data transfer rate is based on data that were transferred remotely and data

that were downloaded from retrieved units. In 64 out of 125 projects in which data were trans-

ferred remotely, retrieved units provided additional fixes to the remotely transferred fixes. To

compare data transfer success between transfer methods, we needed to exclude those projects

to isolate the effects of the data retrieval method on the overall success rate. Thus, we selected

only projects where either all fixes were transferred via a physical connection (store-on-board

units), or all fixes were obtained through remote data download (see Materials and Methods).

Due to the reduced number of projects, some factor levels had insufficient sample sizes for a

boosted beta regression approach and we could not determine the relative importance of dif-

ferent factors affecting the transfer rate for each transfer method. However, the observed trend

in the data indicated that data transfer success using communication satellite systems was low-

est and most variable, while VHF/UHF was most effective in data transfer (see Fig 4).

Overall fix success rate

The overall fix success rate model was the same as the fix acquisition rate model, but with the

overall fix success rate as the dependent variable and the main data retrieval method added as

an explanatory variable. As a random factor, the main brand had the strongest effect on mean

overall success rate followed by the maximum allowed time-to-fix, while species and vegetation

characteristics were less important (Table 3). As with the fix acquisition rate, units allowing a

longer time-to-fix were predicted to yield higher overall fix success, as did taller, non-burrow-

ing or non-hibernating species. Forest density did not show a consistent effect, whereas a forest

Fig 4. Data transfer success. Data transfer rate per main transfer method used in the projects.

https://doi.org/10.1371/journal.pone.0216223.g004
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cover of over 75%, especially temperate evergreen forest, seemed to slightly reduce the overall

fix success rate (Fig 5). The variability of the overall fix success rate was mostly determined by

the unit brand and environmental characteristics (Table 3). Intermediate levels of forest cover

and a higher mean Terrain Ruggedness Index increased the variability of the overall fix success

rate, while forest type and density did not show consistent effects (S4 Fig). Variability was

reduced in projects with more recent units and with units allowing a longer time-to-fix. Of all

projects that reported an overall fix success rate (n = 144), 11.81% had an overall fix success

rate below 50%.

Failure rates

Of all unit deployments for which the cause of termination was reported (n = 2,124), 61.2%

were either successfully ongoing or ended as planned, while 18.9% ended due to technical mal-

functioning. Technical malfunctions (n = 401) were due to battery failures (51.4%), electronic

(36.2%) or mechanical problems (12.5%). Approximately 1 out of 10 unit deployments

(10.5%) ended for unknown or non-specified reasons, and a similar amount ended due to

either animal mortality (8.6%) or unit removal by the animal (0.9%; see Fig 6). Three out of the

2,214 deployments involved units that were equipped with solar-powered batteries and thus

theoretically less likely to experience premature power loss. Of all projects that reported the

deployment failure rate (n = 123), 38.2% had a failure rate of over 50%.

Scientific outputs

Some terrestrial wildlife projects publish a considerable number of scientific papers and good

examples of collaborative cross-project publications exists [54–56]. However, our results indi-

cate that the scientific output for the projects in this study was generally low. Of all the projects

that reported on scientific output (n = 68), 62.9% declared that no peer-reviewed papers had

been published from the obtained data, while 17.2% published just one paper. However, 80.9%

of the studies reported that they were gathering additional data or waiting for external factors

to allow for publication. We also found that the data loss resulting from low success rates and

high unit failure rates sometimes led to reduced scientific output of the project: 10.3% of the

researchers indicated the lack of sufficient data quantity or quality as a reason for the low

Table 3. Selection frequencies of covariates for both the mean (μ) and variability (φ) parameters in the boosted

beta regression model for the overall fix success rate.

Variable Selection frequency

μ φ
Brand 43% 20%

Time-to-fix 19% 10%

Height 10%

Burrowing/Hibernating 10%

Forest Density 10% 10%

Forest type 5% 20%

Forest cover (qualitative) 5%

Forest cover (GlobCov) 20%

Purchase date 10%

Terrain Ruggedness Index 10%

The higher the selection frequency, the more important the covariate is in predicting either the mean or the

variability of the fix acquisition rate.

https://doi.org/10.1371/journal.pone.0216223.t003
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number of publications arising from the study. Almost half of all projects produced at least

one publication that was not peer-reviewed (47.8%). Organizing, managing and sharing

Fig 5. Covariate partial effects on the mean Overall fix success rate. Mean-centered partial effects of the most important variables predicting the mean (μ) overall fix

success rate of satellite telemetry units (empirical confidence intervals in grey). Graphs are presented left-to-right in order of importance. Partial effects display the

effect of the variable while accounting for all other variables in the model. Forest type levels: NF = No forest cover; TE = Temperate evergreen; TD = Temperate

deciduous; TM = Temperate mixed; SE = (Sub)Tropical evergreen; SD = (Sub)Tropical deciduous; SM = (Sub)Tropical mixed.

https://doi.org/10.1371/journal.pone.0216223.g005

Satellite telemetry in wildlife research

PLOS ONE | https://doi.org/10.1371/journal.pone.0216223 May 9, 2019 14 / 26

https://doi.org/10.1371/journal.pone.0216223.g005
https://doi.org/10.1371/journal.pone.0216223


information is increasingly done online through e-infrastructures, the most well-known exam-

ple of which is arguably Movebank. Of all 167 projects in our study, 112 (67%) reported on

whether their data were uploaded to Movebank. Of these, 79.5% did not upload their data, pri-

marily because researchers did not know of this online data system (36.4%) or were not famil-

iar with its uses (23.4%).

Discussion

In the global context of the rise of satellite tracking in wildlife research, there is a need to care-

fully evaluate the technique globally across species and habitats. Our analyses revealed that the

average performance of satellite telemetry in terrestrial wildlife research has improved over the

last 15 years, but still presents considerable opportunities for improvements, notably in fix

acquisition and failure rates. We found that performance is more strongly influenced by unit

and species characteristics than environmental conditions in a study area, but that environ-

mental conditions increased the variability, influencing the technique’s effectiveness in various

ways.

Fix acquisition rate

Our average fix acquisition rate (85%) was above average in comparison with the range of 46–

99% reported by Frair et al. [35] for a series of studies conducted between 2001 and 2010, and

with the average of 66% reported by Matthews et al. [22] across 24 Australian studies on several

mammal species between 2005 and 2011. However, the range in fix acquisition rate in our

study was 7.5–100%, showing that the variability of fix acquisition rates generally remains very

high. Our boosted beta regression analysis suggested that fix acquisition rate is highest for tal-

ler-standing species and recently purchased units with a long time-to-fix. Probably due to

improved sensor technology and increased GPS satellite coverage, fix acquisition rate was

Fig 6. Causes for premature ending of deployments. Proportion of reported deployments ending prematurely due to various unit or animal-related factors.

https://doi.org/10.1371/journal.pone.0216223.g006

Satellite telemetry in wildlife research

PLOS ONE | https://doi.org/10.1371/journal.pone.0216223 May 9, 2019 15 / 26

https://doi.org/10.1371/journal.pone.0216223.g006
https://doi.org/10.1371/journal.pone.0216223


higher in more recent telemetry units. For example, in 2011, the GPS network was expanded

from a 24 to a 27-slot satellite constellation, which improved coverage in most parts of the

world [57]. An increased fix acquisition rate for taller species intuitively makes sense because

the units’ satellite view is generally less obstructed by understory vegetation (e.g. [58]). Addi-

tionally, the larger size of units for tall species allows for larger antenna structures, which

improves unit performance. Generally, environmental variables (e.g. forest type, density,

cover, and terrain ruggedness) do not seem to consistently influence the fix acquisition rate in

a specific direction. While a longer maximum allowed time-to-fix and younger units were pre-

dicted to reduce variability, high forest density and terrain ruggedness were predicted to

increase the variability of the fix acquisition rate in an area, indicating that under these circum-

stances, increasing the fix attempt frequency or number of units to account for expected data

loss may be a good strategy.

Data transfer rate

Not all fix attempt information that was successfully stored on the unit, was successfully trans-

ferred to the user. We could not directly compare data transfer rates between transfer methods,

but the observed trend was that data transfer was most effective in VHF/UHF units. Store-on-

board units and GSM units also performed well, whereas data transfer over communication

satellite systems had the lowest success rate and was most variable. Argos, Iridium, GlobalStar

and Inmarsat all claim global or near global coverage (Inmarsat and GlobalStar do not cover

polar regions, and GlobalStar’s coverage in sub-Saharan Africa only began in 2015), but satel-

lite-based data transfer suffers from the same limitations as geolocation satellite-based fix

acquisition and can be expected to vary as a result.

However, we are aware that study site access and species mobility characteristics may be the

main criteria influencing the choice and success of data retrieval system. In contrast to satel-

lite-based data transfer, researchers can more accurately evaluate and control the chances of

data transfer success using UHF and GSM, based on the presence of GSM sending towers and

knowledge of species behavior.

Overall fix success rate

Overall fix success rate was 78% across projects, meaning that studies should account for

receiving 22% fewer fixes than expected under a given fix acquisition frequency. Imperfect

overall success rates were generally due to issues with fix acquisition and unit failure, although

in specific situations (e.g. dense evergreen forest) data transfer may be the more important

reason.

Failure rates

Lost and failing units cause additional data loss beyond the loss occurring during the two-step

telemetry phase. In the average project, close to half of all units stopped working properly

sooner than expected (including animal-related failures), and about half of these (i.e. 25.2% of

all units) suffered a technical failure. In the early 2000s, Johnson et al. [20] reported a failure

rate of 69.2%, of which all were suspected to be due to technical issues, while Gau et al. [37],

Hebblewhite et al. [59], and Matthews et al. [22] experienced an overall deployment failure

rate of 53.3%, 47.0%, and 47.6% respectively, more comparable to the average in this study.

These numbers, as well as the observed trends as described in Fig 1.8 in S1 Text, suggest that

failure rates have improved over the last decade, but remain an important potential source of

data loss. Matthews et al. [22] also found that in 24% of all collars with timed-release mecha-

nism (drop-off), the mechanism failed to release the unit on the scheduled time, or at all. In
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the present study, 10.5% of all unit deployments ended for unknown reasons (i.e. the units

could not be retrieved from the field and were indeed ‘lost’). The average of collars reported as

lost by Matthews et al. [22] was 10%, while Gau et al. [37] reported 18.3% lost collars. Any

number of failing or lost units can result in considerable loss of data and investment

[21,22,37], and there are often concerns that lost units may cause harm to individuals if the

unit does not drop off automatically.

Some studies reported instances where telemetry units performed fix attempts much more

frequently than programmed in the schedule, resulting in a much higher number of fixes than

expected, and consequently a much shorter battery lifespan. Matthews et al. [22] also report

this, as well as units failing to store fix results during (part of) the deployment period. It is

unclear though whether the reported underperformance was due to environmental obstruc-

tion, limited storage capacity, data storage failure or data transfer issues. In our study, where

fix rates were investigated on a project level, we were not able to quantify the number of units

affected by such unintended shifts in duty cycle. Similarly, some projects involved flexible fix

acquisition schedules whereby fix frequencies varied depending on the activity level of the ani-

mal or the crossing of a ‘virtual fence’ in the landscape. We included only those projects where

the number of expected fixes could be accurately calculated or estimated.

Study limitations

We used a questionnaire to obtain information on the performance of satellite telemetry

devices, which had the clear advantage of avoiding a potential publication bias towards suc-

cessful studies. However, there are also some caveats to the approach. Firstly, the geographic

distribution of projects in our data set was biased towards European studies. We attribute this

distribution to the willingness to participate and the communication reach of the study’s pri-

mary authors (e.g. limited information from Asia and Latin America due to language barriers).

We recognize that the relatively low number of studies reported from North America in this

paper is not an accurate representation of the work that has been conducted in the region, and

we are aware of many published papers using satellite telemetry for wildlife research by univer-

sities and government agencies in North America [10,25,29,59–63]. This geographically

uneven distribution of studies might have influenced the representation of different brands

and our findings on the publication output of wildlife satellite telemetry studies. Similarly, the

inclusion of more studies in heavily forested regions (e.g. the Amazon) or very steep areas (e.g.

the Alps) could influence the importance of environmental parameters on the mean and the

variability of the success rates.

Secondly, the data used for the overall fix success rate model included projects where data

were downloaded both remotely and from retrieved units. The additional fixes downloaded

after retrieval can significantly add to the overall fix success rate of a project. This means that

the overall fix success rate was determined not just by the combined effect of the fix acquisition

rate and the data transfer success, but also by the number of retrieved units. However, separat-

ing the fixes transferred remotely from those downloaded after retrieval was not possible

because most researchers were not able to distinguish between these fixes in their final

datasets.

Finally, even though many researchers may appreciate some insight on which manufacturer

to buy from for a specific study, our study was not designed to evaluate the relative perfor-

mance of different brands of satellite devices. For a number of reasons, we cannot draw reliable

conclusions about the performance of individual brands. For example, we determined the

main brand of a project on the basis of simple majority, meaning that the use of multiple

brands within one project (which was the case in 12% of all projects) could confound the
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brand-specific effect. Also, the sample size (i.e. number of projects) for many brands was too

low for any statistically valid comparisons. This is especially important because different

brands were also used with varying frequency across years, and we found a substantial

improvement of success rates with increasing year of purchase. Thus, instead of incorrectly

treating main brand as an actual covariate, we chose to include it as a random variable in our

boosted beta regression models. Our main goal was not to compare brands, but to identify

environmental, species and technical variables that determine the units’ success rates. As a ran-

dom factor, the main brand influenced the average fix acquisition and overall success rates

(selection frequency of 7% and 43%, respectively), but also had the strongest impact on the var-

iability in success rates (40% and 20% selection frequency for fix acquisition and overall suc-

cess rates, respectively). In other words, predictions of mean success rates for each brand were

associated with high uncertainties. This unpredictability could come, for example, from the

rate of uptake of new technological advances throughout the years by different brands, or the

deployment of the same brand on species of different sizes across years. Overall, we cannot

give meaningful recommendations for choosing specific brands. Nevertheless, we can derive

several important recommendations from our results, both for researchers wishing to deploy

satellite telemetry devices, and for manufacturers of such devices.

Recommendations

The scope of possibilities and the detail of information that can be obtained from satellite

telemetry are major advantages of the technology for answering a range of ecological and con-

servation questions. However, given the considerable investment and the variability of the

effects that many aspects of study design have on the success rate, we recommend carefully

considering project objectives, study design, and budget constraints before investing in satel-

lite telemetry units [3,20]. Specifically, we present important considerations to guide potential

users in deciding if and which satellite telemetry units are useful to deploy in future studies.

For manufacturers, we recommend ways to actively contribute to the improvement of satellite

telemetry applications in wildlife research.

Recommendations for users

Plan for more units than necessary. We found that 10% of all units were lost, while close

to 20% suffered technical failures. When planning a project, we suggest budgeting for 10–20%

more units or animals than strictly necessary for the study, in accordance with previous sug-

gestions [22].

Use a higher-than-necessary fix rate. The average fix acquisition rate was 85%, while the

overall success rate was 78%. Whenever possible (i.e. when not restricted by study species size

and thus battery size), we recommend setting the fix frequency 15–25% higher than strictly

necessary for the study design. This will not compensate for data loss due to animal mortality

or unit failures but can counteract data loss that originates from species behavior, unit orienta-

tion or environmental factors temporarily obstructing satellite view. Additionally, if the study

design allows the fix interval to be sufficiently short, the fix acquisition rate could be increased

[26,27,42]. In order to save battery, a valuable approach could be to adopt a dynamic fix

attempt schedule where the fix frequency is adjusted depending on the animal’s activity levels

(as indicated by an accelerometer) or geographic location [13]. When using high-frequency or

dynamic schedules, it is important to be aware of their effects on future analysis, e.g. autocorre-

lation, trajectory regularity, etc. [64,65]. For example, for many types of analyses, having trajec-

tories with consistent fix intervals is as important, if not more so, than having trajectories with

a high temporal resolution.
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Report specifications and settings in publications. Satellite telemetry users should report

unit specifications and settings as well as fix acquisition and data transfer rates in scientific

publications or their supplementary materials. This will facilitate future comparisons between

species, environments, and settings for different research questions (e.g. home-range, dis-

persal, connectivity, etc.). Developing a fully-fledged metadata reporting standard is outside

the scope of this paper but would be very useful. The development of such a protocol should

be a collaborative effort between users, manufacturers and e-infrastructures.

Upload data and meta-data. Additionally, researchers could use existing collaborative e-

infrastructures to store and manage their data (e.g. Movebank, Eurodeer, and others; see

[2,16]). Importantly, meta-data on unit specifications and settings as described above should

be included in the upload, in as far as the database design allows for it. Online animal move-

ment databases usually have options to let users decide if, when and how contributed data can

be accessed by third parties.

Recommendations for manufacturers

Standardize data transferred to user. We encourage manufacturing companies to collab-

orate with scientists and practitioners to develop minimum standards for the data type and

format that is stored on the units and/or transferred to users. For example, some brands only

provide a record of successful fixes to the user, and do not inform the user about the fate of the

remaining fix attempts. However, it is useful for the user to know whether the remaining fix

attempts failed during fix acquisition or data transfer in order to evaluate the suitability of

either the unit settings or the data transfer method in a given study area [22]. Another example

is the variety of ways that the precision of the fix is measured. Many manufacturers provide

data on the number of satellites used for the fix, or the fix dimension (2D/3D). Some provide

data on Positional Dilution of Precision (PDOP), while others only report on the horizontal

component of PDOP (HDOP). Sometimes only horizontal error estimates are reported based

on undisclosed proprietary algorithms. Producing a standard reporting format for data origi-

nating from animal-borne devices would be beneficial for the management and analysis of

such data in collaborative e-infrastructures (e.g. Movebank, Eurodeer), and would increase the

efficacy of satellite telemetry for large-scale studies [16,40]. Additionally, it would increase the

feasibility of reviews such as this one. This standard reporting should streamline the data types

and units, and variable names and definitions according to a common vocabulary [16]. The

use of data standards has been endorsed by the International Biologging Society (https://www.

bio-logging.net/).

Focus on reducing technical failure rates. A unit’s reliability is at least as important as its

offer of additional functionality or superior performance. While animal mortality or tag

removal by the animal are hard to eliminate as a cause for premature termination, reducing

unit or data loss by avoiding technical failures (including drop-off mechanism) would poten-

tially present a considerable increase in the final data volume obtained. Thus, trying to

improve the technical reliability of satellite telemetry units in obtaining successful fixes and

transferring them to users, as well as ensuring that units withstand environmental and animal-

related impacts should be a major focus for manufacturers. Here, it may be noted that some-

times a unit with more basic but well-tested components is valued more than a unit with latest

cutting-edge technology but increased uncertainty about performance. To help reduce failure

rates, we encourage manufacturers to actively work with researchers on an easy-to-use and

standardized feedback mechanism for users to report success and failure rates. In cases where

the units cannot be sent back for diagnostics, knowing the circumstances of the failures could

help identify the underlying cause.
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Improve fix acquisition rate. While data transfer generally is less of an issue (except for

satellite-based data transfer), the average fix acquisition rate of 85% in our study leaves scope

for improvement. In the last decade, commercial satellite applications (e.g. hand-held GPS

devices and smartphones) have begun using both the GPS and its Russian counterpart, GLO-

NASS, while some already provide compatibility with Galileo, the European counterpart that

is set to reach operational completion by2020. The addition of the GLONASS and Galileo net-

works nearly triples the number of potential satellites available for geolocation, which results

in faster acquisition of more precise locations [66]. Using chipsets that provide access to multi-

ple systems could increase fix success rates in challenging settings. Another opportunity is the

recent development of miniaturized gyroscopes, accelerometers and digital compasses, which

allow for determining the location of a unit using Inertial Navigation System technology. An

Inertial Navigation System determines the location of an object relative to an initial location

without an external reference frame by using the velocity (measured by the accelerometer) and

attitude (measured by the gyroscope and compass) of the object [32]. The combination of

these sensors with GPS-based locations has opened up the possibility to determine the location

of a unit in-between fixes, and periodically update the accumulated location Inert Navigation

System error using the coordinates of successful GPS fixes [4,67–69]. Additionally, it allows for

detailed behavioral data to be gathered. The technique has tremendous potential for further

development.

Conclusion

As the golden age of animal tracking science takes off, frequent large-scale evaluations of the

techniques used, such as ours, are a necessity. We show that technological advances and prod-

uct improvements seem to have increased success rates over the years, but that there is still

considerable scope for improvement. Scientists, researchers and manufacturers are starting to

take advantage of the knowledge generated through field experiences and are working on ways

to efficiently deal with the generated data. This also means that we are gaining insights in how

to achieve further improvements. With this study, and in all our recommendations, we want

to highlight the exciting opportunity for closer collaboration between manufacturers, scientists

and wildlife managers to find creative ways to solve any current and future problems encoun-

tered. An interesting example is the ICARUS Initiative (International Cooperation for Animal

Research Using Space), a global animal observation system using satellite telemetry tags that

communicate with ground-based stations through hardware installed on the International

Space Station. Eventually, improved design and performance of satellite telemetry units will

reduce the impacts of the units on animal welfare, will allow researchers to do better science,

will increase the use of the technology across a broad spectrum of biological questions, and

will ultimately also lead to better conservation and management decisions.
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36. Cabrera JA, Molina E, González T, Armenteras D. Does Plan B work? Home range estimations from

stored on board and transmitted data sets produced by GPS-telemetry in the Colombian Amazon. Int J

Trop Biol. 2016; 64: 1441–1450.

37. Gau RJ, Mulders R, Ciarniello LM, Heard DC, Chetkiewicz C-LB, Boyce MS, et al. Uncontrolled field

performance of Televilt GPS-Simplex TM collars on grizzly bears in western and northern Canada. Wildl

Soc Bull. 2004; 32: 693–701. https://doi.org/10.2193/0091-7648(2004)032[0693:UFPOTG]2.0.CO;2

38. Laver PN, Powell RA, Alexander KA. Screening GPS telemetry data for locations having unacceptable

error. Ecol Inform. Elsevier B.V.; 2015; 27: 11–20. https://doi.org/10.1016/j.ecoinf.2015.02.001

39. Nielson RM, Manly BFJ, Mcdonald LL, Sawyer H, Mcdonald TL. Estimating habitat selection when GPS

fix success is less than 100%. Ecology. 2009; 90: 2956–2962. https://doi.org/10.1890/08-1562.1 PMID:

19886504

40. Campbell HA, Beyer HL, Dennis TE, Dwyer RG, Forester JD, Fukuda Y, et al. Finding our way: On the

sharing and reuse of animal telemetry data in Australasia. Sci Total Environ. 2015; 534: 79–84. https://

doi.org/10.1016/j.scitotenv.2015.01.089 PMID: 25669144

41. Al-Rabbany A. Introduction to GPS: the Global Positioning System. Norwood, Massachusetts, USA:

Artech House, Inc.; 2002.

42. Cain JW, Krausman PR, Jansen BD, Morgart JR. Influence of topography and GPS fix interval on GPS

collar performance. Wildl Soc Bull. 2005; 33: 926–934. https://doi.org/10.2193/0091-7648(2005)33

[926:IOTAGF]2.0.CO;2

Satellite telemetry in wildlife research

PLOS ONE | https://doi.org/10.1371/journal.pone.0216223 May 9, 2019 24 / 26

https://doi.org/10.2461/wbp.2010.6.9
https://doi.org/10.2461/wbp.2010.6.9
http://www.ncbi.nlm.nih.gov/pubmed/22003358
https://doi.org/10.1071/AM12021
https://doi.org/10.1071/AM12021
https://doi.org/10.1016/B978-0-12-809633-8.90089-X
https://doi.org/10.1111/j.1365-2664.2005.01010.x
https://doi.org/10.1111/j.1365-2664.2005.01010.x
https://doi.org/10.2193/2007-175
https://doi.org/10.1071/AM15034
https://doi.org/10.1002/wsb.524
https://doi.org/10.2193/2009-157
https://doi.org/10.2193/2006-493
https://doi.org/10.2193/0091-7648(2005)33[935:EOFCOG]2.0.CO;2
https://doi.org/10.1002/(SICI)1098-2345(1998)46:2<167::AID-AJP6>3.0.CO;2-U
https://doi.org/10.1002/(SICI)1098-2345(1998)46:2<167::AID-AJP6>3.0.CO;2-U
http://www.ncbi.nlm.nih.gov/pubmed/9773679
https://doi.org/10.1002/0471200719
https://doi.org/10.1111/j.1365-2664.2007.01286.x
https://doi.org/10.1111/j.1365-2664.2007.01286.x
https://doi.org/10.1371/journal.pone.0068496
https://doi.org/10.1371/journal.pone.0068496
http://www.ncbi.nlm.nih.gov/pubmed/23874645
https://doi.org/10.1098/rstb.2010.0084
http://www.ncbi.nlm.nih.gov/pubmed/20566496
https://doi.org/10.2193/0091-7648(2004)032[0693:UFPOTG]2.0.CO;2
https://doi.org/10.1016/j.ecoinf.2015.02.001
https://doi.org/10.1890/08-1562.1
http://www.ncbi.nlm.nih.gov/pubmed/19886504
https://doi.org/10.1016/j.scitotenv.2015.01.089
https://doi.org/10.1016/j.scitotenv.2015.01.089
http://www.ncbi.nlm.nih.gov/pubmed/25669144
https://doi.org/10.2193/0091-7648(2005)33[926:IOTAGF]2.0.CO;2
https://doi.org/10.2193/0091-7648(2005)33[926:IOTAGF]2.0.CO;2
https://doi.org/10.1371/journal.pone.0216223


43. Macedo L, Salvador CH, Moschen N, Monjeau A. Atlantic forest mammals cannot find cellphone cover-

age. Biol Conserv. 2018; 201–208. https://doi.org/10.1016/j.biocon.2018.02.018

44. Sager-Fradkin KA, Jenkins KJ, Hoffman RA, Happe PJ, Beecham JJ, Wright RG. Fix success and

accuracy of Global Positioning System collars in old-growth temperate coniferous forests. J Wildl Man-

age. 2007; 71: 1298–1308. https://doi.org/10.2193/2006-367

45. R Development Core Team. R: A language and environment for statistical computing [Internet]. Vienna,

Austria: R Foundation for Statistical Computing; 2015. Available: http://www.r-project.org

46. Schmid M, Wickler F, Maloney KO, Mitchell R, Fenske N, Mayr A. Boosted Beta Regression. PLoS

One. 2013;8. https://doi.org/10.1371/journal.pone.0061623 PMID: 23626706

47. Mayr A, Fenske N, Hofner B, Kneib T. Generalized additive models for location, scale and shape for

high dimensional data—a flexible approach based on boosting. J R Stat Soc. 2012; 61: 403–427.

https://doi.org/10.1111/j.1467-9876.2011.01033.x

48. Rigby RA, Stasinopoulos DM. Generalized additive models for location, scale and shape. Appl Stat.

2005; 54: 507–554.

49. Cribari-Neto F, Zeileis A. Beta regression in R. J Stat Softw. 2010; 34: 24. http://www.jstatsoft.org/v34/

i02/

50. Akaike H. A new look at the statistical model identification. IEEE Trans Automat Contr. 1974; 19: 716–

723. https://doi.org/10.1109/TAC.1974.1100705

51. Hofner B, Mayr A, Schmid M. gamboostLSS: Boosting methods for GAMLSS models, R package ver-

sion 1.2–2. [Internet]. 2016. Available: http://cran.r-project.org/package=gamboostLSS

52. Hofner B, Mayr A, Schmid M. gamboostLSS: An R package for model building and variable selection in

the GAMLSS framework. J Stat Softw. 2016; 74: 1–31. https://doi.org/10.18637/jss.v074.i01

53. Hofner B, Mayr A, Robinzonov N, Schmid M. Model-based boosting in R: A hands-on tutorial using the

R package mboost. Comput Stat. 2014; 29: 3–35. https://doi.org/10.1007/s00180-012-0382-5

54. Couriot O, Hewison AJM, Saïd S, Cagnacci F, Chamaillé-Jammes S, Linnell JDC, et al. Truly seden-
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