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Dispersion truncation affects the phase behavior of bulk and confined fluids:

coexistence, adsorption and criticality

Alexander Schlaich1, a) and Benoit Coasne1, b)

Univ. Grenoble Alpes, CNRS, LIPhy, 38000 Grenoble, France

(Dated: December 6, 2018)

We present molecular simulations of bulk and confined Lennard–Jones fluids to asses the

effect of dispersion truncation through a simple spherical cutoff. The latter is well cor-

rected on a mean field level for bulk fluids if the cutoff distance is larger than about three

molecular diameters. In confinement, however, there is no general analytical treatment

and thus the truncated and shifted Lennard–Jones potential has to be employed, with dras-

tic consequences on the bulk critical temperature, vapor/liquid coexistence pressure and

surface tension. We show using Grand-Canonical Monte-Carlo simulations of nitrogen

adsorption in amorphous silica nanopores that the choice of the cutoff significantly modi-

fies the pressure at which capillary condensation occurs and compute the capillary critical

temperature in terms of a first order transition between an adsorbed film and filled pores.

a)Electronic mail: alexander.schlaich@univ-grenoble-alpes.fr
b)Electronic mail: benoit.coasne@univ-grenoble-alpes.fr

1



I. INTRODUCTION

Nanoporous materials are widely used in industry as adsorbents for filtration, separation and

catalysis, where understanding the thermodynamics and transport of the confined fluids is crucial.

Typically, fluids confined within nanometric pores (the size of a few molecular diameters) exhibit

properties that are significantly different from their bulk counterpart. In particular, surface forces

and the reduced dimensions of the system affect phase transitions due to capillary condensation,

freezing, etc. For obtaining microscopic insights on the confinement effects, computer simulations

have proven as helpful tool and shall be discussed in the present article in the context of predicting

the thermodynamics of the confined systems.

For a typical pair potential, the computational cost increases roughly as N2 with N being the

number of particles in a simulation.1 A tremendous reduction can be achieved by assuming that

the largest contribution to the potential and forces is due to the closest neighbors only. Then,

a spherical cutoff is typically applied. This means, that the pair potential φ(r) is set to zero

for r ≥ rcut, where rcut is the cutoff distance. In this article, we focus on the Lennard-Jones

(LJ) potential, which is probably the most widely studied intermolecular interaction potential in

computer simulations and performs realistically for small spherical and nonpolar molecules. It has

been employed since more than 50 years in order to study phase equilibria as well as interfacial

and transport properties.2–5 The LJ potential is given by

φ(r) = 4ε

[(
σ

r

)12
−
(

σ

r

)6
]
, (1)

where r is the distance between two interacting particles, ε is the interaction strength and σ deter-

mines the equilibrium separation. Equation (1) typically is truncated at a value rcut ≤ L/2, where

L is the (shortest) length of the simulation box. In a bulk liquid, and for sufficiently large values

of rcut, the pair correlation function can be assumed to be unity, g(r) = 1 for r > rcut. Integrating

Eq. (1) from rcut to ∞ leads to the so-called long-range tail corrections (LRC) for the energy U

and pressure P.1 Throughout this paper. we use reduced units in which the density is measured in

terms of the particle diameter σ as ρ̃ = (N/V )σ3, with N the number of particles in the volume

V . All energies are measured in terms of thermal energy kBT and, correspondingly, the reduced

temperature and pressure follow as T̃ = kBT/ε and P̃ = Pε/σ3. The LRC for the potential energy
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and pressure then read as

Ũlrc =
8
9

πρ̃
2
[

1
r̃9

cut
− 3

r̃3
cut

]
, (2)

P̃lrc =
32
9

πρ̃
2
[

1
r̃9

cut
− 3

2r̃3
cut

]
. (3)

Extensions of Eqs. (2) and (3) to non-isotropic systems can be made only for simplifying ge-

ometries, like a planar interface.6,7 Thus, in practice, when anisotropic heterogeneous systems are

simulated, the truncated and shifted LJ potential is employed,

φts(r) =

φ(r)−φ(rcut) if r ≤ rcut

0 if r > rcut.
(4)

The shift −φ(rcut) is necessary to ensure consistent thermodynamic behavior8 and a constant

chemical potential of the particles in the simulations.9,10

In this work, using Monte Carlo (MC) and molecular dynamics (MD) simulations, we study

in Section II the consequences of using Eq. (4) instead of Eq. (1) for bulk thermodynamic prop-

erties such as the critical temperature, liquid/vapor saturation pressure and surface tension, with

particular impact on the choice of rcut and confirm that the mean field relations given in Eqs. (2)

and (3) yield accurate predictions for the shift in the bulk critical temperature Tc, the vapor/liquid

saturation pressure Psat and the surface tension γ due to the cutoff. We then turn to the impact

of rcut on adsorption isotherms. Among porous solids with pores at the nanometer scale, silica-

based materials are one of the most common and nitrogen adsorption experiments at low temper-

ature are routinely used for the characterization of porous solids.11–17 We perform corresponding

Grand Canonical Monte Carlo (GCMC) simulations in Section III. In the latter, particles are ex-

changed with a virtual reservoir of ideal gas particles at pressure P = f/ϕ , with the fugacity

f = 1/(βΛ3)exp(β µ) that relates the chemical potential µ to P via the fugacity coefficient ϕ ,

β = 1/kBT is the reduced temperature and Λ the de Broglie wavelength. Obviously, ϕ = 1 for the

ideal gas, but in general ϕ = ϕ(P,T ), which we derive based on the LJ equation of state (EOS) in

Section II D. Finally, in Section IV we discuss the temperature Tcc below which capillary conden-

sation is observed in dependency of pore width and cutoff. We show that for a given rcut, Tcc(rcut)

is related to Tc(rcut), allowing to extrapolate to rcut→∞ in which case the full LJ potential Eq. (1)

is recovered. In Section V we summarize our results and draw conclusions which are also relevant

to the experimental analysis of adsorption isotherms.
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II. BULK FLUID PROPERTIES

A. Coexistence line & critical temperature

We perform Gibbs ensemble Monte Carlo (GEMC) simulations18,19 using MCCCS Towhee.20

In summary, GEMC simulations mimic two coexisting simulation boxes of volume V I +V II = V

consisting of NI +NII = N particles, respectively. While V I, V II, NI and NII fluctuate, N and V

are constant in the (NVT) ensemble employed. Three distinct types of trial moves are allowed for

a Monte Carlo step: particle displacement, volume rearrangement, and particle exchange.21 Our

GEMC simulations are performed for N = 1000 up to 1500 LJ particles, where V was adjusted

such that about 20% of the particles are in the vapor phase.

Figure 1 (A) shows the coexistence densities obtained from GEMC simulations for cutoff radii

rcut = 3σ ,4σ and 5σ (blue circles, red squares and green triangles, respectively). The coexistence

curves depend sensitively on rcut if the truncated and shifted potential given in Eq. (4) is used, as

has been noted at several places before in the past and current literature (see e.g. Refs.9,22–27). The

hollow black symbols included in Fig. 1 (A) show the corresponding results of the GEMC simula-

tions if the LJ potential Eq. (1) together with the tail corrections Eqs. (2) and (3) is employed. The

corresponding data points in Fig. 1 (A) including the LRC converge excellently for all studied val-

ues of rcut. We employ the Modified Benedict-Webb-Rubin equation of state (MBWR) by Johnson

et al.22,28 for the equation of state (EOS), P(ρ). Although a multitude of models has emerged over

time for the LJ EOS, see e.g. Ref.29 for a current overview, we decided to employ the MBWR

model from Johnson et al. because of its wide use in literature. Deviations for the saturating vapor

pressures Psat and vapor density ρ(P), which are the important quantities for our further analysis,

are small between different models.

The critical temperature and density are given by the saddle point,(
∂P
∂ρ

)
T

∣∣∣∣
Tc,ρc

=0 (5)

and
(

∂ 2P
∂ρ2

)
T

∣∣∣∣
Tc,ρc

=0, (6)

which we obtain numerically from the EOS, c.f. the solid black line in Fig. 1 (A), in perfect

agreement with our GEMC simulation data. For the truncated-shifted potential, we include the

tail correction given by Eq. (3) to the numerical solution of Eqs. (5) and (6), resulting in the solid

colored lines shown in Fig. 1 (A), which agree remarkably with the simulation data for rcut = 4σ
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Figure 1. Liquid/vapor coexistence curve and critical temperature. (A) Coexistence data for rcut = 3σ

(circles), 4σ (squares) and 5σ (triangles) for the truncated and shifted potential given in Eq. (4) (filled sym-

bols). Hollow symbols denote the corresponding simulation data if Eq. (1) with the LRC is employed. Solid

lines show the MWBR equation of state from Johnson et al.22 (black line) and the mean field corrections for

finite cutoff (colored lines). Colored hollow symbols and dashed lines show the rectilinear density as given

by the l.h.s. of Eq. (8). (B) Critical temperature for the LJ fluid determined from our simulations using the

truncated and shifted potential (purple diamonds) and using the LRC (orange diamonds). Empty triangles

denote simulation results from Panagiotopoulos.23 Horizontal black line shows the value T̃c = 1.313 of the

MWBR EOS, dashed orange line T ? = 1.298 resulting from the hyperscaling relation of the surface ten-

sion discussed below. Dash dotted line represents the MWBR mean field prediction. Right axis shows the

temperature for the LJ parameters of nitrogen for comparison. Inset: Fits of Eq. (7) to the simulation data

using the Ising critical exponent βc = 0.32 for the cut and shifted potential (solid lines, filled symbols) and

the LRC (dashed lines, hollow symbols). Color encoding is the same as in (A).

and 5σ . However, for rcut = 3σ , the data slightly deviate due to the breakdown of the mean field

assumption g(r) = 1 for r > rcut when such a small cutoff is used.

From the simulation data shown in Fig. 1 (A) we determine the critical temperature T̃c from the

scaling law

ρ
l
sat−ρ

v
sat = B |T −Tc|βc , (7)

where ρ l
sat, ρv

sat are the liquid and vapor densities at coexistence, βc = 0.32 is the Ising critical

exponent and B is a fitting parameter. Fits of Eq. (7) to the simulation data are shown in the

inset of Fig. 1 (B) for the truncated and shifted potential (filled symbols and solid lines) and

using the LRC (empty symbols and dashed lines). As has been noted extensively in the literature,
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finite size effects become relevant especially as the temperature approaches Tc.24,27,30–34 The latter

studies report values in the range T̃c = 1.294− 1.326 with significant scatter if more data from

different groups are considered.29 The accurate determination of the critical parameters is not at

the heart of the current work, rather we want to discuss the influence of rcut on capillary criticality

below. Fitting of Eq. (7) to the simulation data gives values in the range T̃c = 1.29− 1.30 for

the simulations including the LRC, depending on which values are included in the fit (orange

diamonds in Fig. 1 (B)), in fair agreement with the literature. The orange dashed line shown in

Fig. 1 (B) indicates T̃c = 1.298 determined via the critical scaling of the surface tension to be

discussed below. We solve Eqs. (5) and (6) numerically resulting in T̃c = 1.313 and ρ̃c = 0.310

in perfect agreement with the values set by Johnson et al. when fitting the MWBR equations,22

shown as solid horizontal line in Fig. 1 (B). Simulations of this work using the truncated and

shifted potential are shown in Fig. 1 (B) as purple diamonds together with simulation data from

Panagiotopoulos (white triangles).23 The dash-dotted line in Fig. 1 (B) shows the corresponding

mean field correction to the MWBR model for the truncated and shifted LJ potential. Excellent

agreement with the simulation data is observed over the full cutoff range.

The critical density can be estimated using the rectilinear diameter

ρ l
sat +ρv

sat
2

= ρc +A(T −Tc) , (8)

where A is another fitting parameter. The rectilinear densities obtained from the GEMC simula-

tions in this work are shown as colored hollow symbols and the predictions of the MWBR equation

as dashed lines in Fig. 1 (A). The critical density is independent of rcut in our simulations within

the statistical uncertainty and in line with the MBWR mean field correction for a sufficiently large

cutoff, see Supplemental Figure S1. The mean field corrected EOS, however, underestimates ρc

for rcut . 3.5σ (see Supplemental Figure S1), whereas Tc is well predicted also for small rcut in

Fig. 1 (B). In other words, Tc, corresponds to the energy scale to bring a particle from the liquid to

the vapor phase (or vice versa) and is strongly affected by the missing tail energy, Eq. (2); ρc on

the other hand is dominated by short range correlations and thus turns out to be nearly independent

of rcut.
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Figure 2. Liquid/vapor saturation pressure. (A) Saturation pressure P̃sat as a function of the temperature.

The solid black line denotes the Antoine law, Eq. (10), with parameters taken from Kofke.31 Solid squares

denote results from direct MD simulations of liquid/vapor coexistence for rcut/σ = 3,4,5 and 6, respectively

(blue to purple symbols). Circles denote results from GEMC simulations, crosses include the long-range

correction Eq. (3). (B) Change of the saturation pressure for finite cutoff rcut, normalized to P?
sat using the

parameters obtained by Kofke31 for simulations including the long-range correction. Solid line denotes the

shift in the saturation pressure due to the missing long-range contribution in the mean field approximation,

Eq. (11). The inset shows the same data as in (a) but now also normalized to P?
sat

B. Liquid/vapor saturation pressure

As seen in the previous section, the choice of the cutoff rcut has drastic consequences on the

thermodynamic properties when using a truncated and shifted LJ potential. Considering pore

filling and capillary condensation, the precise knowledge of the liquid/vapor saturation pressure

Psat is of great importance. In this work, we evaluate the pressure from the configurations of the

GEMC simulations from the virial microscopic expression via the trace of the pressure tensor1

P̃ = Tr

[
T̃ ρ̃ +

1
3Ṽ ∑

i< j
F̃i j · r̃i j

]
, (9)

which we analyze separately in the vapor and the liquid volumes; equality of both pressures is also

a measure for proper equilibration of the simulations. The simulation data are shown in Fig. 2 (A)

and reveal a monotonous increase of P̃sat with increasing temperature and decreasing cutoff. We

additionally perform Molecular Dynamics (MD) simulations of the liquid-vapor interface in the

NV T ensemble with N = 3750 LJ particles (shown as squares in Fig. 2 (A)) in a cubic box of

length L̃ = 16. To exclude finite size effects, we checked for selected data points that simulations
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with N = 15000 and L̃ = 32 yield identical results. All MD simulations were carried out using

LAMMPS35 with a time-step t̃ = t
√

ε/(mσ2) = 0.9 · 10−4 and periodic boundary conditions.

The data obtained from GEMC and MD simulations agree excellently, thus strengthening that

our results are robust w.r.t. finite size effects. Compared to GEMC simulations, MD yields the

advantage of straight-forward parallelization and fast phase-space sampling for a LJ fluid. The

saturation pressure of the LJ fluid with LRC is well described by an Antoine law,

log P̃?
sat = A′− B′

C′+ T̃
(10)

where A′ = 3.31885 B′ = 7.31828 and C′ = 0.039433 are established fit parameters obtained by

Kofke,31 c.f. black line in Fig. 2 (A). The simulation data including the LRC (crosses in Fig. 2 (A))

agree well with Eq. (10) with significant deviations only for rcut = 3σ at low temperatures (see

inset of Fig. 2 (B)). Colored lines in Fig. 2 (A) and inset of (B) show the corresponding mean field

prediction following from Eq. (3),

P̃sat = P̃?
sat

(
1− 32

9
π

(
ρ̃sat

ρ̃?
sat

)2[ 1
r̃9

cut
− 3

2r̃3
cut

])
, (11)

where we have used ρ̃sat/ρ̃?
sat = 1 in good agreement with the simulation data shown in Supple-

mental Figure S1.

The average normalized saturation pressure Psat/P?
sat for the different values rcut is shown in

Fig. 2 (B) together with the prediction from Eq. (11). The temperature-dependence shown in the

inset of Fig. 2 (B) reveals that deviations appear at low temperatures and with decreasing cutoff,

corresponding to the breakdown of the assumption g(r) = 1 for r > rcut. As discussed in detail in

the Supplemental Material, the relative error (P̃sat− P̃?
sat)/P̃?

sat is typically about 5% and, thus, by

all practical means negligible for the interpretation of adsorption isotherms to be discussed below.

Significant deviations of up to 20% appear, however, for rcut = 3σ at low temperatures, see the blue

data in the inset of Fig. 2 (B). Importantly, the overall agreement does not improve if an extended

Antoine law for Psat(T ) is used, see Supplemental Figure S2, strengthening the breakdown of the

mean field approximation for rcut . 3σ .

C. Surface tension

The liquid-vapor surface tension γ further characterizes the thermodynamic properties of

the fluid and becomes relevant for the analysis of phase coexistence in confinement to be dis-

cussed below. For the Lennard–Jones potential, γ has been studied extensively since more than
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four decades and it has soon been realized that tail corrections similar to Eq. (3) contribute

significantly.5,6,26,36–40 However, most studies report the surface tension explicitly taking into

account some tail correction, for which usually a flat interface with a tanh-shaped density profile

is assumed and the corresponding long range correction is added a posteriori. Note that this ap-

proach explicitly relies on the assumption that the densities ρl and ρv in the liquid and vapor phase

do not change significantly with rcut, in strong contrast with simulation data and the mean field

corrected EOS shown in Fig. 1 (A). In a general approach, the tail energy equivalent to Eq. (2)

due to the missing interactions behind a distance rcut must be taken into account on the fly in

simulations, and the explicit terms are available only in simple geometry.7 We thus consistently

use the truncated and shifted potential Eq. (4) in this work, allowing for interfaces of arbitrary

geometry.

From our MD simulations we extract the surface tension from the normal and tangential com-

ponents of the virial pressure Eq. (9),1

γ = 2(PN−PT) , (12)

where the factor 2 accounts for the fact that due to the use of periodic boundary conditions we

have two surfaces in our system and γ̃ = γσ2/ε . Simulation results γ̃(T̃ ,rcut) are summarized in

Fig. 3. Near the critical points one expects the surface tension to vanish as42

γ(T ) = γ0 (1−T/Tc)
2ν . (13)

A fit to all simulation data and using Tc(rcut) as determined in the previous section shown in

the inset of Fig. 3 (A) indeed yields the critical exponent of the correlation length ν = 0.63,

in perfect agreement with the three-dimensional lattice gas model.43–45 The convergence of the

simulation data onto Eq. (13), shown as solid lines in Fig. 3 (A), again justifies the use of the

mean field approximation in our transformation of the EOS to the truncated-shifted potential with

cutoff. We explicitly checked that the obtained surface tension does not depend on the system

size by doubling the lateral area to 2L̃ = 36 for rcut = 4σ , shown as red crosses in Fig. 3 (A).

We also include in Fig. 3 the data by Mecke et al.38 for rcut = 5σ and L̃ ≈ 12 as green crosses.

Their data point at T̃ = 1.15 is slightly off, suggesting that, when approaching the critical point

T̃c(rcut = 5σ) = 1.28, finite size effects might get important, which is consistent with the deviation

of our data for rcut = 3σ at high temperature (blue data in Fig. 3). Contrary, the strong deviation

from the scaling behavior Eq. (13) at low temperature for this small cutoff is attributed to a failure

of the mean field model as discussed above.
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Figure 3. Surface tension of the LJ liquid/vapor interface. (A) MD Simulation results (filled symbols)

using the truncated-shifted potential for various cutoff values. Simulations are performed in a box of size

L×L×2L with L/σ = 16. Red crosses show additional simulations for L/σ = 32 and rcut/σ = 4. Green

crosses denote simulations by Mecke et al. for rcut/σ = 4 in a box L×L×3L with L/σ ≈ 12.38 Inset shows

the hyperscaling relation Eq. (13) with the critical exponent ν = 0.63, solid line shows the slope 2ν = 1.26

as guide to the eye. Rescaling Eq. (13) with the cutoff-dependent critical temperature the colored solid lines

are obtained. Solid Black line extrapolates Tc = 1.313 to the full LJ potential from the EOS. (B) Simulated

surface tension including the long range correction Eq. (14). The critical temperature T ?
c = 1.298 was

fitted using ν = 0.63 (inset), the corresponding curve according to Eq. (20) is shown as dashed black lines

in (A) and (B). Dash-dotted lines denote fitting results of Mecke et al. with ν = 0.63 and Tc = 1.325 for

comparison.38 Black symbols denote reference data from the National Institute of Standards and Technology

using Transition Matrix Monte Carlo including long range LJ interactions via the lattice sum method and

with rigorous finite size scaling.41

For a classical van der Waals fluid the interfacial density profile on a mean field level has the

form ρ(z) = ρc−∆ρ tanh(z/(2ξ )), where ∆ρ = ρl−ρv and ξ is the interfacial thickness. Using

a tanh profile ρ(z) and the Kirkwood-Buff formula for the surface tension,46 Blokhuis et al. have

derived the long range contribution of the LJ potential assuming that ξ is independent of rcut,6

γ̃lrc = 12π(∆ρ)2
1∫

0

ds
∞∫

rcut

dr r−3(3s3− s)coth
(

sr
2ξ

)
. (14)

Values of the interfacial width ξ are obtained from the simulation data and shown in Supplemental

Fig. S3 (A). For rcut ≥ 4σ the width ξ moderately depends on rcut for T̃ < 1, consistent with the
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tail corrected surface tension γ̃ + γ̃lrc for our simulation data in Fig. 3 (B). Contrary, rcut = 3σ , ξ

differs by about 10% from the larger cutoffs and the corresponding surface tension in Fig. 3 (B)

does not converge to the data points for larger cutoff. We fix the critical exponent ν = 0.63 for

the tail corrected data with rcut ≥ 5σ to obtain the critical temperature T ?
c = 1.298 in the inset of

Fig. 3 (B), in excellent agreement with the GEMC simulation results using the critical exponent

of the order parameter in Fig. 1 (B). Whereas the precise value of Tc for a LJ fluid is still under

debate, the Ising critical exponents have been determined with high precision and we suggest that,

using a priori corrections7 with sufficient cutoffs, the estimated surface tension is reliable and

accurate and can thus actually be used to determine Tc with high precision. Note that we employ

the MWBR EOS to determine Tc(rcut), in good agreement with the simulation data in Fig. 1 (B)

and satisfactory convergence of the simulation data in Fig. 3 (B). Thus the parametrization of

the MWBR EOS using Tc = 1.313 yields reliable estimates Tc(rcut), although we here suggest a

critical temperature of T ?
c = 1.298. Using Tc one obtains a slightly higher exponent ν? = 0.65, see

Supplemental Fig. S3 (B), i.e., considering the uncertainty in Tc the analysis of the surface tension

scaling does not give reliable estimates for the critical exponent.

D. Fugacity coefficient of a LJ fluid

In grand-canonical Monte Carlo (GCMC) simulations, the chemical potential µ of a fictive

ideal gas reservoir is prescribed and particle exchange and translocation moves are performed

according to a Metropolis criterion. The reduced chemical potential µ̃ = µ/kBT is linked to the

fugacity via

µ̃ = ln f̃ + lnΛ̃
3, (15)

with the de Broglie length Λ = Λ̃σ =
√

h2/(2πmkBT ) and the fugacity is rescaled according to

f̃ = f ε/σ3. In general, the pressure P for an interacting system differs from f and one thus de-

fines the fugacity coefficient ϕ = f/P, where for ϕ = 1 the ideal gas law is recovered. Note that

the same correction must be applied in a volumetric adsorption measurement, where the adsorbed

amount is often calculated from an ideal gas law at measured pressure P.47 Typically, the den-

sity and pressure are assumed to be sufficiently low such that ϕ ≈ 1, yet the correction factor for

nitrogen adsorption at 77 K and close to Psat is about 5%, in line with the MWBR EOS and our sim-

ulation results discussed below.48 The use of the fugacity in common adsorption isotherms does

not have a major effect as increasing temperature at fixed pressure makes the ideal gas approxi-
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Figure 4. Fugacity coefficient of a LJ liquid. Simulation data for rcut = 4σ using (A) the LJ potential

Eq. (1) together with the LRC and (B) the truncated-shifted potential Eq. (4) obtained from GCMC sim-

ulations. Solid lines show the fugacity coefficient, determined using Eq. (16) and the MWBR equations.

Dashed lines denote the corresponding result from the virial expansion up to second order. Temperature in

brackets show physical units for the nitrogen parameters, c.f. Table I.

mation better. However, it is common practice to normalize the isotherms to the corresponding

saturation pressure. For increasing temperature, Psat increases (cf. Fig. 2 (A)) as well as the vapor

saturation density ρv (cf. Fig. 1 (A)), i.e., ϕ will depart from the ideal gas behavior at Psat for

increasing temperature.

The fugacity coefficient follows from the (inverse) equation of state ρ(P), which we determine

by numerical inversion of the MWBR equations, as

lnϕ =

P∫
0

{
1

ρkBT
− 1

P′

}
dP′ = B2P+O(P2), (16)

where in the last step we performed a virial expansion up to second order and B2 is the second

virial coefficient, see the Supplemental Material for details. For a LJ liquid, B2 can be evaluated

analytically in terms of modified Bessel functions,49 and we show in Supplemental Figure S4

that the second order virial EOS indeed describes ρ(P) accurately for the LJ gas at moderate

temperatures T̃ . 1. For practical purposes, the virial expansion yields the advantage that B2

can be measured straightforwardly both in experiments as well as in molecular simulations (see

Supplemental Figure S4 for a comparison). Yet, at temperatures close to Tc the difference amounts

to more than 10%, which is clearly not negligible.

Figure 4 shows the fugacity coefficients for various temperatures and a selected cutoff rcut = 4σ
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obtained from GCMC simulations using LAMMPS (A) with the LRC and (B) using the cut and

shifted potential, respectively. A cubic simulation box of length L̃ = 26.6 was chosen, correspond-

ing to up to 8200 particles. We checked that our results are not subject to finite size effects by

running selected simulations at box length 2L̃. Solid lines in Fig. 4 are obtained from the MBWR

equation of state via Eq. (16), while dashed lines result from the virial expansion up to second

order with the analytical virial coefficient. In all cases, the simulation data are perfectly described

by the MWBR parameters, whereas with increasing temperature higher order terms in the virial

expansion have to be included. One expects the virial expansion to improve with increasing tem-

perature, but we plot in Fig. 4 the fugacity coefficient vs. the vapor/liquid saturation pressure,

which according to Eq. (10) increases exponentially with temperature, and thus leads to stronger

deviations from the ideal gas behavior with increasing temperature.

III. ADSORPTION ISOTHERMS

Having assessed the bulk properties of a LJ liquid, we now study the adsorption of a LJ fluid

in an amorphous slit pore. In detail, we consider N2 at 77K, like is commonly used for the

characterization of porous solids.11–17 A computational model of amorphous silica was obtained

by quenching from cristobalite as described in Ref.50, see Fig. 5 (A). A finite slit pore of width

H is obtained by expanding the cubic unit cell of length a = 38.5Å in the z-direction such that

Lz = a+(H +2σN2/O), where we account for the finite size of nitrogen such that for H & 0 a N2

molecule fits into the slab, see Fig. 5 (B). The unit cell was replicated three times in the x-direction

and a reservoir of length 100Å was added on both sides, see Fig. 5 (C). Periodic boundary condi-

tions in all directions are used and for rcut = 5σ the system also was replicated in y-direction in

order to exclude interactions with periodic images. Molecular nitrogen is modeled as a single LJ

sphere with parameters σ = 3.75Å and ε/kB = 95.2K.51 The Lennard-Jones parameters for the

oxygen atoms of the silica substrate are σOO = 2.7Å and εOO/kBT = 230K, and following pre-

vious simulations of nitrogen adsorption in silica pores, we neglect interactions with silicon and

hydrogen atoms of the substrate because of the low polarizability.52 The cross-parameters for the

interaction between the nitrogen molecules and the oxygen atoms of the pores were determined

using the Lorentz-Berthelot mixing rules as σN2/O = 3.225Å and ε/kB = 147.97K (Table I). We

have previously shown that this LJ model can be used successfully for capturing the global ex-

perimental behavior upon adsorption and desorption in silica nanopores.53 All simulations were
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performed for at least 106 MC steps per nitrogen molecule of which 10% were discarded as equi-

libration. To minimize boundary effects of the finite-sized pores, the adsorbed amount Γ has been

determined only in the central pore region of length a, c.f. Fig. 5.

A

B

C 3a

a

a

H

10nm H

Lz

Figure 5. GCMC simulations. (A) Molecular model of amorphous silica as obtained by quenching from

cristobalite.50 In our simulations, only oxygen atoms (orange spheres) interact with molecular nitrogen,

shown as blue spheres in (C). (B) A slit pore of width H is obtained by extending the periodic box in the

z-direction according to Lz = a+(H + 2σN2/O). (C) Typical molecular configuration obtained by means

of Grand Canonical Monte Carlo simulations at the onset of capillary condensation for N2 (blue spheres)

adsorbed at T = 77K and P= 0.7Psat in a finite silica slit pore of width H = 1.2nm with an external reservoir

of length 10nm on each side.

In Figure 6 we report the adsorption/desorption isotherms for three cutoff values rcut = 3,4 and

5σ and three pore widths H = 1.2,2.2 and 3.2nm. In all figures, the adsorbed amount Γ has been

normalized to the number of molecules in the central filled pore at Psat(T ), Γ0, and plotted vs. the

reduced pressure P/Psat(T ). Considering only the data for T̃ = 0.81 (blue data in Fig. 6), which

corresponds to T = 77K in our simulations of nitrogen adsorption, the obtained isotherms conform

to the typical behavior observed in experiments of adsorption/condensation in nanopores: the

adsorbed amount increases continuously in the multilayer adsorption regime until an irreversible

jump occurs because of capillary condensation and evaporation of the fluid within the pore. Once
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Table I. Lennard–Jones interaction parameters. Nitrogen moleculesb and the oxygen atoms of the silica

substrateb are modeled as LJ spheres, while cross terms stem from the Lorentz-Berthelot mixing rule.

σN2/N2 3.75Å

εN2/N2 kB ·95.2K

σN2/O 3.225Å

εN2/O kB ·147.97K

a Parameters from Ref.51

b Parameters from Ref.52
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Figure 6. Truncation effect on adsorption isotherms. Adsorption isotherms of nitrogen in silica

nanopores are shown as empty symbols, desorption isotherms as filled symbols for H = 1.2nm (A)-(C),

2.2,nm (D)-(F) and 3.2nm (G)-(I). Columns show data for different values rcut. Solid lines denote fits of

Eq. (18) to the desorption data, dashed lines to adsorption. Colors denote the temperature normalized to

the bulk critical point Tc(rcut), corresponding values for the nitrogen parameters are given in brackets for

clarity.

the pore is filled, the adsorbed amount changes only slightly upon increasing the pressure due

to the small compressibility of liquid nitrogen. With increasing pore width (top to bottom) and

increasing cutoff (left to right), the simulation data reveal a pronounced hysteresis loop in Fig. 6.

Conceptionally, the presence of condensation and hysteresis can be sketched directly by combining
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the classical Kelvin and Laplace equations,54 which shifts the vapor-liquid coexistence pressure

according to

Pv(µ)−Pl(µ) = kBT ρ ln
(

Psat

Pv

)
=

2γlv

H
. (17)

Here, Pv and Pl are the pressure in the vapor and the liquid phase, separated in confinement by a

curved interface, and γlv is the liquid-vapor surface tension of the adsorbate. Based on Eq. (17),

Derjaguin and Churaev have proposed a thermodynamic model describing both the formation of

an adsorbed film at the pore surface and capillary condensation–evaporation.55

Considering the simulation data for 77K (blue symbols in Fig. 6), the condensation/evaporation

pressures decrease inversely with the pore width H, as expected from Eq. (17) and the Derjaguin–

Churaev model.56 Noteworthy, the width of the hysteresis loop increases with H, but also with

the cutoff, which we attribute to the increased stability of the adsorbed film for increasing rcut.

Whether the adsorption isotherms are determined experimentally or theoretically from molecular

simulation, the data points must be fitted with analytical equations for the calculation of thermo-

dynamic properties by numerical integration or differentiation. Instead of relying on expressions

based on the underlying physical mechanisms like the Langmuir equation, the BET model or the

Derjaguin–Churaev expressions, we employ here a purely phenomenological fit which captures

the multilayer adsorption and capillary condensation according to

P(Γ) =
w1

1+ exp
(
−Γ−Γ1

∆Γ1

) +
w2

1+ exp
(
−Γ−Γ2

∆Γ2

) . (18)

Note that Eq. (18) phenomenologically interpolates between a BET isotherm and a saturation

at Γ1,2 � Γ like in a Langmuir model. Also note that Eq. (18) yields a Langmuir-like linear

adsorption regime for Γ→ 0, but with an offset P(Γ→ 0) > 0 that describes the simulation data

well for the strongly wetting system considered here. The latter is due to the fact that the silica-

nitrogen interaction is strong and thus a linear adsorption would be observed only at extremely

small pressures.

The fits of Eq. (18) to the simulation data are shown as solid lines in Fig. 6 and reveal a

drastic influence of rcut on the condensation/evaporation pressures as well as on the width of the

hysteresis loop. Generally, condensation appears at lower pressures for large cutoff: Increasing rcut

lowers the potential energy according to Eq. (2), and thus increases the relative energy difference

between the adsorbed film and the filled pore. Increasing the temperature in all cases results in a

transition from a discontinuous pore filling at temperature T < Tcc to a continuous filling at larger

16



temperatures T > Tcc, where Tcc is the capillary critical temperature and shall be discussed in the

next section. Note that for regular pores such as slits or cylinders, the equilibrium condensation

pressure is the one observed on the evaporation branch for wetting pores, whereas condensation

occurs in the metastable coexistence region between an adsorbed film and the filled pore due to

thermal fluctuations. The condensation pressures increase with the loss in energy due to the cutoff

and for our finite number of MC steps condensation on the adsorption branch is not observed for

rcut = 3σ at 77 K for the large pore H = 3.2nm in Fig. 6 (G), as expected from kinetic modeling

of the phase coexistence.57

IV. CAPILLARY (PSEUDO) CRITICALITY
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Figure 7. Influence of temperature and cutoff on pore filling. (A) Capillary condensation phase diagram

indicating whether pore filling is continuous (open circles) or not (filled circles). Continuity of pore filling

has been determined via the FHWM of the compressibility at the condensation pressure for rcut = 3, 4 and

5σ in (i)-(iii), respectively. Symbols indicate if a hysteresis loop is observed (x) or not (-). Dashed lines

show the corresponding bulk critical temperature Tc(rcut). Solid lines denote the shift of Tcc according to

Eq. (20). (B) Tcc as function of the inverse pore width. Solid line denotes the capillary shift of the critical

temperature according to Eq. (20) using the LJ potential with long-range correction, broken lines denote

the corresponding values Tcc(rcut) for the truncated and shifted potential. Filled symbols show Tcc, empty

symbols the disappearance temperature of the hysteresis loop, Tch. Right scale shows the temperature in

physical units for the nitrogen parameters. The inset shows the same data but for the relative change ∆Tc/Tc.
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Capillary condensation (CC) occurs due to cooperative interactions between adsorbed layers,

and thus depends on temperature and pore width. Whether capillary condensation in nanopores

constitutes a first order transition or not is still debated.58,59 Pore filling occurs at a temperature

Tcc, that is below the bulk critical temperature Tc. Above a critical temperate Tcc(H) < T < Tc,

capillary condensation is suppressed, i.e. pore filling becomes continuous and reversible, which

has been confirmed experimentally60,61, predicted by density functional theory62 and is consistent

with our simulation data in Fig. 6. Importantly, Tcc is in general different from the temperature

Tch at which the hysteresis disappears, i.e., capillary condensation still occurs but is reversible as

fluctuations are large enough to prevent the system from being trapped in metastable states.

To determine if CC occurs, we evaluate the dimensionless isothermal compressibility

κ̃T =− Γ

Γ0

(
∂ (Γ0/Γ)

∂ (P/P0)

)
T
, (19)

from a fit of Eq. (18) to the simulation data (lines in Fig. 4). In a true first-order transition, κ
−1
T

vanishes, in contrast to Eq. (18). However, also in experiments, the divergence of the compress-

ibility is usually not observed, which is often attributed to pore-size heterogeneity.61 We evaluate

the full width at half maximum (FWHM) of the compressibility peak to determine whether CC

takes place, i.e., whether the isotherm is discontinuous, or not. The FWHM changes by about an

order of magnitude between continuous and discontinuous filling (Supplemental Figure S6) and

thus provides a more rigorous definition as the numerical value of κ , see Supplemental Material

for details. The resulting CC phase diagram is shown in Fig. 7 (A) for all pore sizes, temperatures

and cutoff values considered. We also indicate by the orange symbols in Fig. 7 (A) the presence

of a hysteresis loop if the relative difference between the condensation and evaporation pressures

(i.e., the positions of the maxima in κT ) is larger than 2%. As expected, capillary condensation

occurs at temperatures lower than the corresponding bulk critical temperature Tc(rcut) determined

from the MWBR EOS, shown as dashed lines in Fig. 7 (A). For the smallest pore, filling is dis-

continuous irrespective of T , but the hysteresis vanishes with increasing temperature.

The shift ∆Tc = Tc−Tcc in the critical temperature is from finite size scaling arguments expected

to scale as ∆Tc/Tc ∼ (ξ/H)1/ν , where ξ ∼ σ is the correlation length of the density fluctuations

and ν is a critical exponent.63 Using density functional theory (DFT), Evans et al.62 derived a

relation
Tc−Tcc

Tc
≈ σ

H
(20)

which agrees with the scaling arguments by Nakanishi and Fisher for ν → 1.63 The DFT result
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given in Eq. (20) is shown in Fig. 7 (A) as solid line with the corresponding values Tc(rcut) de-

termined from the MWBR EOS, revealing excellent agreement except for the smallest pore. This

disagreement for the small pore is not unexpected as in the DFT calculations the fluid molecules

were treated as hard spheres and in such strong confinement correlation effects will become im-

portant.

The relevance of the choice of the cutoff becomes clear when the CC data are plotted vs. σ/H as

proposed by Eq. (20) in Fig. 7 (B). Let us first discuss the drastic shift ∆Tc due to the confinement

if the LJ potential with LRC is employed, black line in Fig. 7 (B). Using the nitrogen simulation

parameters (right temperature scale), the critical temperature reduces from its bulk value Tc =

125K to Tcc = 102K for the pore of width H = 1.2nm. The simulation data for finite cutoffs using

the truncated and shifted potential defined in Eq. (4) are shown as solid symbols, together with

corrected bulk temperature Tc(rcut) obtained from the MWBR EOS (broken lines in Fig. 7 (B)).

We also include in Fig. 7 (B) the temperature Tch at which the capillary hysteresis disappears as

empty symbols. The agreement of both Tch and Tcc with Eq. (20) is remarkable and reveals a shift

due to the cutoff ranging from about 3K for rcut = 5σ , 5K for rcut = 4σ to a value as large as 15K

for rcut = 3σ . Remarkably, all simulation data converge on the ∆Tc ∼ H−1 law, Eq. (20), as we

highlight in the inset of Fig. 7 (B).

V. CONCLUSIONS

The computational benefit of using a finite cutoff together with the truncated and shifted LJ po-

tential leads to significant changes in the phase diagram, and importantly the critical temperature,

even in bulk. Using mean field corrections, we have shown that the capillary critical temperature

is well described by the Tcc ∼ Tc(1−σ/H) law found in DFT calculations and experiments if the

consistent value Tc(rcut) is used. Care, however, has to been taken in the quantitative comparison

of adsorption isotherms: On the one hand, the chemical potential, and thus the fugacity f , deter-

mines the equilibrium condensation and are straightforwardly accessible both in simulations and

volumetric adsorption experiments. On the other hand, it is common practice to present the ad-

sorbed amount vs. the pressure P normalized to the vapor/liquid saturation pressure Psat, revealing

two possible pitfalls, both in experiments and simulation. First, the saturation pressure depends on

temperature, which for a simple fluid like nitrogen is well accounted for by Antoine’s equation,

and in simulations the pressure correction due to rcut has to be taken into account. Second, and
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more importantly, f and P are related via the fugacity coefficient ϕ . For nitrogen at 77 K typically

ϕ ≈ 1 is assumed, leading to systematic deviations close to Psat of about 5%. For higher tempera-

tures as used for the analysis of pore criticality, ϕ becomes non-negligible and is about 0.7 close to

Psat. It is therefore of utmost importance to precisely specify if fugacities or pressures are reported.

Summarizing, we have given a comprehensive guide on how to properly take into account

truncation effects in molecular simulations whenever the isotropic mean field corrections cannot be

applied on the fly, including critical temperature, saturation pressure, surface tension and fugacity

coefficient. This allowed us to quantify cutoff effects on modeling adsorption isotherms of fluids

in porous media. Performing simulations at different temperatures, we were able to rigorously

determine the capillary critical temperature Tcc based on the divergence of the compressibility

for a first order transition, which reveals a universal scaling of Tcc with the inverse pore width

independent of the detailed interaction parameters.
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