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Abstract

Prediction of the thermo-mechanical behavior of woven composites necessitates a

reliable knowledge of their inner structure. A sufficiently accurate description of

the fabric geometry could be obtained using X-ray computed microtomography

(µCT) at the mesoscopic scale. However, systematic construction of numerical

models from µCT remains a difficult task. To address this challenge, we propose

a variational segmentation approach which combines µCT with a prior geometric

model that is iteratively improved thanks to a heuristic optimization process. The

fidelity of the models with respect to the input µCT is evaluated using a measure

of similarity including both gray levels and local directions. Our method allowed

to build realistic numerical models of woven fabrics that preserve the prescribed

weaving pattern, and that are free of interpenetration, which makes them compat-

ible with further numerical simulations. Using our approach, models of complex

woven fabrics, but also of woven composites, could be consistently generated

from µCT and can serve as reference models, e.g. to analyze in situ tests by pro-
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viding numerical twins.
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1. Introduction

There is a growing interest in the use of textile reinforcement for advanced

composite applications: woven fabric composites offer a large improvement in

manufacturability, through-thickness mechanical properties and damage impact

resistance over their laminate counterparts [1]. However, because of their intricate5

architecture structure, the geometry of the reinforcement has a strong influence on

the mechanical properties of woven composites and must be taken into account.

The mesoscopic scale has emerged as the most relevant scale to include the

architectural details of the textile preform, and to simulate the behavior of woven

composites [2, 3]. It offers a good compromise between the description of the ma-10

terial internal details while keeping the computational costs acceptable. However,

the creation of representative numerical models at this scale remains challenging:

it supposes to be able to provide a reliable description of the geometry of the tows

and to generate a quality finite element mesh from this description [4, 5]. Various

modeling approaches have been proposed in the literature [6], which differ in the15

level of detail incorporated in the description of the reinforcement geometry.

Geometric approaches rely on an a priori knowledge of the weaving pattern

and idealize the shape of the tows [7, 8]. These approaches require minimal com-

putational effort but typically lead to unrealistic yarn cross sections for complex

fabrics. Improvements could be achieved by locally modifying the shape of the20

yarns based on observations on real fabrics [9, 10]. This step could be autom-

atized by adding a relaxation step: either by the application of the principle of

2



Figure 1: Illustration of the difficulty to define a definitive yarn contour: for a yarn (left), it depends

whether single fibers are included within the envelope; for merged yarns (right), the separation is

somewhat arbitrary.

minimum energy to the yarn paths [7], or by simulating the compaction of an ini-

tial model [11]. More involved approaches use a discrete representation of the

yarns [12–16] where the yarns are described as a set of macro-fibers and simu-

late the relaxation of the preform by explicitly considering the contacts between

these macro-fibers. These methods partially alleviate the limitations of the geo-5

metric models and allow to obtain yarn shapes closer to the reality of the mate-

rial [17, 18]. Yet, they remain inadequate to incorporate the variability of com-

plex woven architectures; they are still initially based on an idealized description

of the weaving pattern. Stochastic framework have been proposed to include the

spatial variability of the yarns paths into geometric models [19–21], but these10

approaches still need to be calibrated against a large amount of micrographic or

micro-tomographic data. One of the main shortcomings shared by all these virtual

approaches is the handling of the interpenetration between yarns. Depending on

the assumptions for the yarns geometry, these models could lead to inconsisten-

cies which could eventually impede the latter finite element (FE) mesh generation.15

It requires extra work to correct these interpenetrations: geometric models must

be post-processed before they can be meshed [11, 16, 19, 22].

An alternative approach to the generation of virtual models is to reconstruct

the textile preform from images of existing material, especially using 3D X-ray
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computed tomography (µCT). It allows to embrace the whole complexity of the

preform at once and naturally capture the variability of the architecture. Yet, the

difficulty of this approach is then to be able to label each yarns. The segmen-

tation process could be done manually for simple 2D preform [20, 23], but it

would require excessive manual intervention to be extended to more complex 3D5

architectures. Several attempts have been made to automatize the segmentation

process. Notably, the structure tensor of the image [24, 25] could be use to esti-

mate the local orientation of the yarns and to separate weft from warp. For simple

fabrics, it is sufficient to exploit this information alone [26], or combined with

other statistical descriptors [27, 28], to extract each yarn individually. However,10

for more complex cases, individual yarns still have to be separated and labeled:

a sole use of image-based information leads to topological inconsistencies [29].

This is for example the case when two yarns of the same direction merge into a

single entity (see e.g. Fig. 1), or when the structure tensor could not be calculated

accurately. To disambiguate these cases, it is therefore necessary to reintroduce a15

posteriori an approximate knowledge about the size of the yarn sections or about

the weaving pattern. Yet, heuristics developed to arbitrarily separate the connected

entities will not necessarily ensure to obtain a topologically correct model, even

using ad hoc approaches (see e.g. [29]). This caveat illustrates the difficulty to

conciliate image-based data with a continuous description of the yarns geometry.20

A promising approach was recently proposed by Mazars et al. [30] to overcome

this obstacle: it consists in combining a priori geometric informations within an

image-based approach. In a first step, a limited collection of yarn cross-sections is

contoured manually. These sections are then propagated using the gray level and

the local direction of the yarns. This approach extends the pursuit algorithm pro-25
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posed by [29] by introducing an initial manual step that guarantees a topologically

correct model.

A fully automatized image-based approach appears yet to be impracticable for

complex fabrics: it still needs to be guided by at least some prior knowledge of

the weaving pattern and by geometric assumptions. Our objective is to propose an5

image-based approach to construct realistic and topologically correct mesoscopic

models of woven fabrics. The main goal is to improve the robustness of existing

image-based methods by providing sufficient a priori information to prevent any

topological inconsistencies. We aim at combining the benefits of both geometric

approaches, i.e a smooth and continuous description of yarns with a prescribed10

weaving pattern, and image-based approaches, i.e. a more realistic description of

the cross-sections and of the fabric variability.

The principle of our approach and the required input data are first presented

in Sec. 2. Implementation details and the optimization framework will then be

discussed. The convergence and the sensitivity of our approach will be analysed15

using a simple example. Finally, our method is compared to other approaches and

its capabilities are illustrated with supplementary examples.

2. Variational segmentation: principle and input data

2.1. Principle

To ally the advantages of geometric and image-based approaches, we propose20

a variational segmentation method based on the combined use of a prior geometric

model and data retrieved from µCT images. The main idea here is to use an initial

geometric model, possibly coarse, as a starting point to be optimized with respect

to some parameters describing the yarns shape and position. The use of an ini-

5



tial geometric model will guarantee that the final segmentation contains the right

number of entities (i.e. yarns) and matches the prescribed weaving pattern. The

parameters describing the yarns geometry, i.e. their centroid position and their

cross-section, will be perturbated to optimize the resemblance of the geometric

model with respect to data derived from µCT. The resemblance between the im-5

proved geometric model and the µCT is quantified using a similarity measure E

defined as:

E = αEg + βEd − γEr (1)

where Eg measures the resemblance in term of gray level between the geo-

metric model and the µCT: it will ensure the envelope of the geometric model

will match the mask of the preform, i.e. the yarns will be located only where the10

µCT gray level corresponds to the textile preform; Ed quantifies the consistency

between the local directions retrieved from the µCT and the ones from the geo-

metric model: this will help to effectively separate the weft from the warp; the

last term Er acts as a regularization term: interpenetration between yarns will be

penalized, as well as unrealistic configurations, e.g. exaggerated yarn size. The15

three components of E could be weighted depending, for instance, on the quality

of the input data. Appropriate values of α, β, and γ could be determined to ensure

optimal convergence of the algorithm, as discussed in Section 5.1.

The necessary ingredients to compute the similarity measure, i.e. the prior

geometric model, and the information derived from µCT are illustrated in Fig. 220

and are further discussed below. The exact computation of Eg, Ed and Er are

detailed in Sec. 3
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Figure 2: Input data required for our approach: µCT used to define the binary mask of preform

(left), local directions of the yarns calculated using the structure tensor of the image (center), and

prior geometric model of the fabric (right).

2.2. Prior geometric model

The weave geometry is described as a set of yarns. Each yarn is represented

by its center path and by a finite collection of cross-sections along this path. The

cross-sections are defined in a two-dimensional plane orthogonal to the local tan-

gent of the center path. They are positioned at discrete points along the path.

The discretization of the path should be sufficient to allow a smooth description5

of cross-sections changes. It could be for example chosen as a function of the

local curvature. Depending on the shape of the yarns, the cross-sections could be

described by ellipses or by polygons to be able to describe non-convex shapes for

instance (cf. Fig. 3).

For simple weaves, realistic paths could be directly derived from the weaving10

pattern using geometric approaches. In the case of more complex patterns, it is

still possible to retrieve approximate description of the central paths (see e.g. [31?

]), however it is much more involved. Yet, idealized description of the middle

lines could significantly deviate from the reality [32]: yarns could be shifted from

their theoretical position, or some yarns could even be missing. These discrep-15

ancies could potentially hinder the relaxation process. In this work, we chose to
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Figure 3: Geometric description of a yarn: each yarn is described by a center path and a collection

of cross-sections along this path (bottom left). The parameters of each cross-section depend on

the chosen geometric representation, i.e. elliptic or polygonal (right).

overcome this potential problem by retrieving the paths directly from µCT of the

materials. Some points were manually selected along the paths for each yarn us-

ing Fiji [33]. This preprocessing step was sped up by using dedicated macros and

by keeping the number of points minimal, only to ensure a correct initial topology.

The paths were then interpolated using B-splines to recover a continuous curve.

The number of cross-sections along the paths should be sufficient to accurately de-5

scribe possible section variations. Concerning the size of the initial cross-sections,

this choice is not crucial: as it will be shown in Sec. 5.1, the correct size of the

yarns is quickly recovered within the first iterations. In the following, we initialize

our geometric models with small elliptic cross-sections.

2.3. Binary mask of the preform10

The grayscale levels in the µCT images, as illustrated on the left side of Fig. 2,

represent the local density of matter. The corresponding histogram is shown in
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Figure 4: A slice of the µCT scan (left) with its corresponding gray level histogram (center).

Resulting binary masks of the preform for three threshold values (right).

Fig. 2.3 and appears almost bimodal: a simple threshold could be used to the

separate the yarns from the void. Binary masks obtained for three threshold values

– namely 60, 80 and 100 over an 8-bit dynamic – are depicted in Fig. 2.3. For the

lower value, background noise and µCT artifacts are still present within the mask,

which would be detrimental to the relaxation process. For threshold larger than

80, the envelope of the yarns is well captured and free of artifacts. The outline5

of the resulting mask is quite similar and should not influence the final result of

relaxation. The only visible difference is that the higher the threshold, the more the

intra-yarn porosity is segmented. To cope with the continuous nature of the yarns

in the geometric model, it is wiser to choose a moderate value of the threshold.

For this particular µCT, a threshold of 80 was selected.10

2.4. Local directions

The second information which is derived from the µCT is the local directions

of the yarns. It is classically computed using the structure tensor G [24, 25] de-

fined as:

G = ∇I · ∇IT (2)
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where ∇I is the grayscale gradient obtained with an optimal kernel for fiber mate-15

rials [34]. The local values of G are convoluted with a Gaussian kernel KΩ over a

neighborhood Ω to make it more robust against noise.

GΩ = KΩ ∗G (3)

For a given voxel, the local direction of the yarn corresponds to the direction of the

eigenvector of G with the smallest eigenvalue. An example of local directions is

depicted in Fig. 2 where vectors are colored depending on their orientation in the5

xy plane. It clearly shows that this direction calculation allows to separate the weft

from the warp. Convolution of GΩ over a larger domain Ω will certainly improve

the quality of the calculation inside the yarns. However, using a domain too large

will eventually lead to inaccurate estimations of the local direction between yarns,

as the Gaussian kernel will act as a diffusion kernel. In the following, we use a10

Gaussian kernel smaller than half the size of the yarns thickness.

3. Computation of the similarity measure E

To assess the resemblance of the geometric model, we need to calculate its

similarity E (cf. Eq. 1) with respect to the µCT. As the binary mask of the pre-

form and the local directions are naturally available as 3D images since they are15

derived from the µCT, this comparison would be facilitated if the geometric model

was also available as an image: it would allow to evaluate E discretely voxel by

voxel. Therefore, a prior step before effectively compute the similarity is that the

geometric model needs to be voxelized.
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Figure 5: Illustration of the geometric predicates required to perform the voxelization of yarns

segments: elliptic (left) and polygonal (right) cases.

3.1. Voxelization of the geometric model20

Each yarn is divided into segments, i.e. the intervals between two consecu-

tive points along the centerline. The corresponding cross-section boundaries are

resampled with a fixed number of points (pi and qi in Fig. 3.1). This allows to tes-

sellate the outer boundary of each segment as an oriented surface formed by the

facets (pi, pi+1, qi). For a given image resolution, the voxelization simply consists5

in determining if a voxel is inside or outside a particular segment of a yarn. In the

case of elliptic cross-sections, one only needs to check if a voxel is located on the

positive or negative half-space (with respect to the facet normal ~N, cf. Fig 3.1)

of each facet of a segment. If the voxel is on the negative side for every facet of

the envelope, it is inside the corresponding segment. For polygonal cross-section,10

the geometric predicate is a little bit more involved as the envelope could be non-

convex. In this case, one needs to check whether a voxel is inside one of the prism

(c j, pi, pi+1, c j+1, qi, qi+1) forming the segment.

3.2. Grayscale similarity Eg

The first term Eg measures the similarity between the binary mask of the pre-15

form and the voxelized geometric model. For a given subdomain V , we determine
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the number Nm of non-matching voxels, i.e. voxels that belong to the binary mask

but not to the voxelized model, or voxels that belong to the complementary of the

binary mask and to the voxelized model. Eg is then defined as:

Eg = 1 −
Nm

|V |
(4)

where |V | is the number of voxels of V . It is worth noting that this definition is

conceptually similar to the Jaccard index or other overlap based metrics [35].

3.3. Direction similarity Ed5

The second term Ed measures the consistency between the local directions of

the yarns calculated using the structure tensor of the µCT and the direction of

each segment of the geometric model. For each voxel belonging to a yarn in the

geometric model, its centroid is projected onto the corresponding centerline (as

discussed in [36]); the local tangent at the projected vertex is then defined as the10

local direction of the voxel. For these voxels, we compare their direction with the

ones determined from the µCT. If the solid angle between these two vectors is less

than a certain value (θ = 15◦ in the following), we consider that the directions

agree. Ed is finally defined as the ratio between the number of voxels fulfilling

this condition and the total number of voxels belonging to the geometric model.15

3.4. Regularization and handling of interpenetrations

The benefit of the last term Er is twofold: it acts as a regularization term and

helps to avoid interpenetrations between yarns in the final segmentation and will

be defined as the sum of two contribution Er = Ep + Ei. First, the similarity score

is penalized if some geometric criteria are violated, e.g. if the length of the ellipse20

axis is outside a prescribed range, or if the aspect ratio of a cross-section is above
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a certain limit. These criteria are imposed as hard constraints by setting Ep to an

arbitrary large penalty value. The second utility of Er is to reduce the presence of

interpenetrations between yarns. During the voxelization of the geometric model,

each yarn is labeled individually. If two yarns are interpenetrated, a voxel could

be attributed multiple labels. An interpenetration ratio is defined as the ratio be-

tween the number of voxels belonging to multiple labels and the size of the current5

subdomain. Ei is directly given by this interpenetration ratio.

4. Optimization framework

The input data and the calculation of the similarity have been developed in the

previous sections. We can now look towards how to optimize the prior geometric

model by increasing its resemblance with the µCT. As already discussed above,10

the main idea is to perturbate the parameters describing the geometry of the yarns,

i.e. the position and the shape of the cross-sections to improve the resemblance of

the model. The number of parameters could grow rapidly, from a few 1,000 for

small models to over 100,000 for larger ones. Therefore, a global optimization ap-

proach seems unrealistic. Moreover, the objective function is not guaranteed to be15

smooth nor convex, and will probably exhibit multiple local extrema: a gradient-

based approach is not expected to be feasible. To overcome these difficulties, we

propose an optimization framework based on an iterative global-local approach

driven by a heuristic algorithm.

4.1. Iterative global-local approach20

The perturbation of a parameter will cause local modifications of the geomet-

ric model, but only over a limited domain, as each cross-section is shared by only

two segments. Thus, modifications of cross-sections that are separated by a few
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Figure 6: Schematic of the iterative global-local approach.

segments are independent. Then, for each segment, we consider a local sub-model

delimited by its bounding box enlarged by a sufficient size (cf. Fig 4, top right):

this extra buffer ensures that any geometric modification will be contained within

the sub-model. As the sub-models are constructed independently, they can be

easily processed in parallel. Yet, as a cross-section is shared by two consecutive

segments, it will be modified twice, i.e. in both segments sub-models. Race con-5

ditions could also occur if consecutive segments are processed simultaneously.

Thus, the process order of the sub-models is shuffled at each global iteration to

both minimize race conditions, and to avoid a geometric bias caused by a sys-

tematic evaluation order. When every sub-model has been processed, the global

geometric model is updated and a new collection of sub-models is built, as illus-10

trated in Fig 4. This procedure is iterated until a stationnary point is reached. The

convergence is monitored by following the evolution of both the global similarity

E, and each of its components (Eg, Ed and Er).
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4.2. Local heuristic optimization

Each sub-model is constructed around a segment, i.e. two cross-sections are

involved. For each cross-section, the parameters to be optimized are the position

of the centroid, for both elliptic and polygonal sections; for elliptic cross-sections

the other parameters are the semi-axis a and b, and the orientation θ (cf. Fig 3);

for polygonal sections the vertices pi of the contour are parametrized by their dis-5

tance ri from the centroid (cf. Fig 3). In total, for each cross-section, there are

5 parameters for the elliptic case and n + 2 for a polygonal one, where n is the

number of vertices on the contour. Therefore, for each sub-model there are twice

this number of parameters to be optimized. Local optimization of the sub-models

are performed using a heuristic algorithm similar to a Monte-Carlo one. Every pa-10

rameter of the sub-model is examined sequentially, but in a random order. A trial

value is drawn from a uniform distribution in a prescribed range centered around

its current value. To assess the influence of this perturbation, the current sub-

model, i.e. the segment and its neighborhood, needs to be re-voxelized. The trial

similarity is then recalculated. If the similarity increases, the value of parameter15

is updated, otherwise, it is reverted to its previous value. This procedure is then

performed iteratively. Here, we do not attempt to reach an optimum during each

local optimization: only a few cycles are performed, typically 3–10. Practically,

this suffices to ensure a sensible improvement of the similarity without causing

extreme geometric variations which could be detrimental for other sub-models.20

5. Results and discussion

All the procedures discussed above, i.e. the voxelization of the geometric

model and of the sub-models, the computation of the similarity, and the pro-
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Figure 7: Typical result obtained using our segmentation approach: µCT of a multilayer woven

fabric (left) and corresponding optimized model (right).

posed optimization framework, have been implemented into an in-house code

using C++. Parallelization of the code has been managed using OpenMP direc-

tives. A typical result of our variational segmentation method is illustrated for a

multilayer fabric in Fig. 5. With respect to the original µCT of the preform, the

comparison is visually satisfying. For reference purpose, this computation ran in

less than 3 hours on a 6-core Xeon® E2563 workstation.5

This example will serve to analyze the convergence of our procedure, and to

provide a better insight on the role of each term of the similarity measure. The

sensitivity of our approach with respect to the quality of the input data, espe-

cially the resolution of the µCT, is investigated. Then, we use the same similarity

measure to compare quantitatively our results with segmentations obtained using10

more classical procedures. Finally, the capabilities of our approach is illustrated

through some supplementary examples of increasing complexity.
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5.1. Convergence analysis

The convergence of the algorithm mainly depends upon two factors: the shape

of the cross-sections (elliptic or polygonal), and the weights of the terms of E.

Empirically, we obtained the most efficient convergence by first using elliptical

cross-sections before switching to polygonal ones, and by adapting the values for

α, β and γ during the global iterations.5

The type of cross-section will evidently influence the final geometry of the

model, but it will also significantly affect the time to obtain this result. Polyg-

onal cross-sections allow to retrieve more complex shapes, as non-convex ones,

yet they necessitate to optimize a larger number of parameters: a global iteration

using polygonal cross-sections will necessitate 3 to 5× more CPU time than for10

elliptical ones. Practically, we rely on elliptic cross-sections for the first global it-

erations (up to iteration 50, cf. Fig. 9) as it allows to readily obtain a approximate

description of the yarns. Then, for the remaining iterations, we switch to a polyg-

onal description to refine the envelope. Elliptical cross-sections could be viewed

as a pre-processing step to the polygonal ones. Even if it was not explicitly tested,15

the same result should be obtained by using only polygonal cross-sections except

it will lead to longer CPU time. We could also anticipate problematic configura-

tions during the first iterations, as it is more involved to prescribe an acceptable

aspect ratio to yarns with polygons than with ellipses.

During the first iterations, we emphasize the importance of Eg over the other20

terms Ed and Er by initially setting α = 1 and β = 0 in Eq. 1 (γ is initially set to

a small value, γ � 1, so that γEi is negligible with respect to the others terms,

i.e. interpenetration is not penalized). Using elliptical cross-sections, it allows

to almost instantly retrieve the correct size of the yarns as illustrated on Fig. 8

17



Figure 8: Evolution of the yarns geometry during the optimization process for the model of Fig. 5.

For selected iterations, the yarns are colored over a slice of the input µCT.

(iteration 10) and on Fig. 9 where the maximal value of Eg is reached only after a25

few iterations. If the resemblance with the binary mask is almost optimal, weft and

warp could still be wrongly assigned and significant interpenetration is evidenced

(see Ei in Fig. 9). Therefore, during the subsequent iterations, we progressively

increment the value of β up to a prescribed value (here, β = 0.5) while keeping

α + β = 1. This will allow to separate effectively the weft from the warp. As5

shown in Fig. 9, the value of Ed increases linearly up to iteration 37, while the

value of Eg remains almost constant. To correct the remaining interpenetration,

we finally set γ ≈ 10 so that γEi ≈ αEg ≈ βEd, i.e. all three terms contribute

equally to E. As a consequence, Ei decreases significantly between iterations 37

and 50. The diminution of the interpenetration is also clearly visible on Fig. 810

(iteration 50) where the yarns are now well separated. A simultaneous decrease of

Eg is also evidenced, which is related to the use of elliptic cross-sections: as they

are not appropriate to capture the real shape of the yarns, the only way to avoid

interpenetration is by reducing the size of their cross-section. The result obtained

18



Figure 9: Evolution of the components of the similarity measure E during the optimization. The

vertical lines correspond to the snapshots depicted in Fig. 8.
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at iteration 50 represents the optimal model we could achieved by using only15

elliptic cross-sections and by minimizing the interpenetration ratio. As discussed

above, after iteration 50, we switch to polygonal cross-sections to further improve

the resemblance of the model. To speed up the process, we temporarily release

the interpenetration by letting γ � 1. This allows to better fit the envelope of the

yarns (see Fig. 8, iteration 62), as shown by the increase of Eg (from iteration 505

to 61), and with only a moderate increase of Ei. For the remaining iterations, γ is

set back to its previous value: the interpenetration ratio slowly decreases while Eg

and Ed remains constant. The use of polygonal cross-sections eventually permits

to obtain a model which both maximizes Eg and Ed while maintaining a minimal

interpenetration ratio, i.e. the final model is optimal with respect to our definition10

of E. It’s worth noting that in this work no explicit convergence criterion has been

used; the process is simply stopped after a limited number of iterations when the

evolution of Ei is small enough.

5.2. Sensitivity to input data

The example discussed in the previous section was extracted from a µCT with15

a resolution of 10 µm/voxel. Evidently, the quality of the result will depend on the

resolution and the dynamic of the initial µCT.

The resolution of the µCT should be sufficient to describe accurately the ge-

ometry of the yarns. For the kind of materials we are interested in, a resolution

up to 25 µm/voxel would be adequate. The gray levels of the yarns and of the20

rest of the material also need to be sufficiently separated to construct the binary

mask by using a simple threshold. In the case of a textile preform, this is eas-

ily achieved as shown in Sec. 2.3. For woven composites, i.e. when the preform

has been infiltrated with a matrix, it demands more attention to obtain a sufficient
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Figure 10: Influence of the µCT quality on the calculation of the local directions. Local directions

are rendered as colored glyphs depending on their orientation (top row) for a full resolution µCT

(left) and for the same µCT but with reduced quality (right). The corresponding models are shown

in the bottom row.

contrast between the yarns and the matrix. This could be problematic when the25

X-ray attenuation coefficients of the fibers and of the matrix are similar, e.g. in ce-

ramic matrix composites. However, with well-tuned µCT acquisition parameters

it is still possible to obtain the required contrast, as illustrated by the example in

Sec. 5.4.

The resolution and the dynamic of the µCT will also directly influence the cal-5

culation of the local directions. More precisely, the image should exhibit enough

texture to allow the computation of the structure tensor (cf. Sec. 2.4). In the case

of a textile fabric, the texture of the image is controlled by the fibers. However,

it is not mandatory to fully resolved each individual fiber to retain enough tex-

ture. The structure tensor could be calculated as long as an appreciable gradient is10

present within the yarns. For woven fabric composites, intra-yarn porosity could

suffice to create an acceptable texture.
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To better appreciate the sensitivity of our approach to the local directions,

we have compared two segmentations that only differ in the quality of the local

directions. The first one uses the local directions calculated with the fully resolved

µCT (10 µm/voxel). For the second one, we have downgraded the quality of the

µCT by averaging the gray levels over a neighborhood of 4 × 4 × 4 voxels. The

corresponding local directions are depicted in Fig. 10. It can be clearly seen that,5

in the latter case, the computed directions are noisier, especially where the wefts

and warps touch each other, which result in erroneous estimation of the local

directions. These discrepancies induce noticeable differences regarding the final

geometry, as illustrated on Fig. 10. To minimize the incompatibilities between

the wrongly estimated directions and those of the geometric model, the yarns are10

forced to locally reduce their cross-sections. It results in irregular cross-section

variation along the yarn paths. In the case of unreliable local directions, this

detrimental effect could be moderated by reducing the maximal value of β. The

weight of the local directions will be minimized with respect to the other terms.

Yet, the separation between weft and warp will solely rely on the penalization15

of the interpenetration. For this particular example, a resolution of at least 20

µm/voxel was necessary to obtain acceptable local directions.

5.3. Comparison with other segmentation methods

Our variational segmentation approach lead to optimized models that are vi-

sually satisfying and optimal with respect to the definition of the similarity we20

have introduced. This same measure could also be used to assess the quality of

models obtained using other segmentation methods. It is thus possible to evaluate

the average “metric difference” (as introduced by [32]) between the initial µCT

and the various segmentations. In the following, we have restricted the compari-
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Figure 11: Resulting models for the µCT of Fig. 5 obtained using a geometric approach (left) and

a manual segmentation (right).

son with two other models obtained respectively by considering constant elliptic25

cross-sections and by manual segmentation of the µCT. The first model is similar

to those that could be constructed with a priori geometric approaches. The con-

stant elliptic cross-section is chosen as the average value of all the yarns within

the µCT. For the comparison to be fair, we haven’t used the theoretical yarn paths

but the ones we have determined manually (see Sec. 2.2). The second model is5

obtained by a manual segmentation of the µCT using Avizo 9.0 (FEI): each yarn is

contoured individually on 2D slices; these contours are then interpolated to gen-

erate the envelope. The corresponding models are illustrated on Fig. 11 and are to

be compared the one of Fig. 5.

However, a mere visual inspection is not sufficient to assess which model is10

the most similar to the µCT. Thus, the similarity E of each model is calculated

following the procedure described in Sec. 3. The corresponding values of Eg, Ed,

and Ei are reported in Tab. 1.

All three models achieve satisfying values of Eg and Ed, the main difference
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Eg Ed Ei

Geometric model 86.72% 89.20% 5.13%

Manual segmentation 85.83% 82.38% 0.53%

Our approach 86.90% 90.20% 0.01%

Table 1: Values of Eg, Ed and Ei for the models depicted in Fig 11 (geometric approach and

manual segmentation) and for the model obtained with our approach (Fig. 5).

concerns the value of Ei. More precisely, the geometric model with constant15

elliptic cross-sections and the one generated using our approach exhibit almost

identical values for Eg and Ed. For this particular example, the shape of the cross-

sections are close to ellipses, and their size variation are limited: a approximate

geometric model gives acceptable results regarding Eg alone. The values of Ed

are also almost equal since we have used the same prior yarn paths in both mod-5

els. Yet, the geometric model leads to a much higher interpenetration ratio (> 5%

vs. < 0.01%). This limitation is inherent in the use of elliptic cross-sections, as

already discussed in Sec. 5.1. This geometric model corresponds to the first state

of our model, i.e. before iteration 40, when only elliptic cross-sections are used,

and when penalization of the interpenetration is not yet taken into account. The10

small difference in Ei (5% for the geometric model vs. 2% to 4% before iteration

40 for our approach) could be related to the use of non-constant cross-sections in

our model. It’s worth recalling that a high interpenetration ratio could prevent the

generation of a consistent finite element mesh of the preform, and therefore, must

be avoided.15

The manual segmentation could be considered as the most representative model

with respect to the µCT, even if it is dependant of the operator. Surprisingly, the
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manual segmentation has the lowest value of Ed and Eg. A possible explanation

is that the number of manual 2D contours along the yarn paths was not suffi-

cient to capture accurately the variation of the cross-sections, as the envelope is

constructed by linearly interpolating consecutive contours. The higher value of Ei

could be related to the segmentation process which is performed yarn by yarn: it is

thus sensitive to the choices of the operator when delimiting the frontier between5

yarns touching each other, especially when working on 2D slices only.

5.4. Capability of our approach

As illustrated above, our approach allows generating realistic and consistent

models that are at least as good as manual segmentation, but also virtually free

of interpenetration. The optimization of the geometry is also automatic and ob-10

jective, which drastically reduces the manual processing time and eliminates the

dependency on the operator’s choices.

The preform used so far to discuss the implementation details and the conver-

gence was intentionally simple, and may not fully demonstrate the capabilities of

our approach. They are better illustrated by the following examples: the first one15

is an infiltrated oxide/oxide woven composite; the second one is extracted from a

woven CMC junction, as depicted on Fig. 12.

The first example demonstrates the possibility to successfully apply our ap-

proach to composites, as long as one can differentiate the yarns from the matrix.

As discussed previously, the contrast can be enhanced by selecting appropriate20

µCT acquisition parameters. An alternative approach to deal with insufficient

contrast could be to replace the binary mask with a probability map. By fitting

the gray level histogram with a Gaussian mixture model, one can attribute a prob-

ability to belong either to yarns or to matrix to each voxel. The potential of our
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Figure 12: Illustration of the capabilities of our appraoch. µCT (left) and corresponding segmented

model (right) for an infiltrated oxide/oxide composite (top) and for a fully woven CMC junction

(bottom).
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approach is more clearly evidenced with the last example.25

For this complex woven part, other segmentation methods would neither be

appropriate nor applicable. Even if it was possible to create an approximate model

from the weaving pattern [31], purely geometric approaches would not allow to

capture the cross-section variations, which are more significant here than in pre-

vious examples, nor the deviation from ideal paths due to shear between weft and5

warp during the forming process. This would require manual intervention and ad

hoc correction to modify the shape of the yarns depending on their position in the

junction [10]. Also, because of the size of the model, a complete manual seg-

mentation of this part would be tedious and would require several days of manual

processing.10

6. Conclusion and outlooks

A variational segmentation approach has been proposed to tackle the chal-

lenging task of constructing realistic models of woven fabrics from µCT. This

approach is based on both data extracted from µCT, and a prior geometric model.

As they are image-based, the generated models replicate the exact geometry of15

the yarns and inherently capture the variability of real materials. The concurrent

use of a geometric model permits to handle a description of the yarns consistent

with mesoscopic scale analysis, i.e. where each yarn is described individually.

It also ensures that the prescribed weaving pattern is preserved. Our approach

maximizes the resemblance between an initial geometric model and the µCT by20

iteratively improving a similarity measure thanks to a global-local heuristic op-

timization procedure. The similarity measure we introduced could be used to

systematically evaluate the fidelity of geometric models with respect to a given
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µCT; the metric difference between two models could also be computed using this

same measure.

The inherent variabilities of real woven fabrics are also naturally captured by

our approach. Therefore, the segmentation results could be used to generate statis-

tics about the shape of the yarns, and their relation to the weaving pattern. It could

be of prime interest to better assess the interplay between the weaving process5

and the compaction of the yarns. These geometric informations could also help

to detect weaving imperfections, or even missing yarns, by comparing our yarns

segmentation with a reference idealized model. The output geometric models are

topologically correct, and almost free of interpenetrations, which will greatly ease

their conversion to FE meshes for further numerical simulations. These models10

will provide reference numerical models as they are a high-fidelity replica of the

real material. These numerical twins would be of paramount importance, for ex-

ample, to fully analyze results of in situ tests, and to better understand the link

between the woven architecture and the damage initiation in CMC, see e.g. [30].

Our approach is almost fully automatic and versatile enough to tackle complex15

woven fabrics and composites: this allows to consider large CMC woven struc-

tural parts that couldn’t be addressed by other methods. Yet, our approach still

necessitates a preprocessing step to generate the prior geometric model. Even if

the required manual intervention could be significant (up to a few hours for the

largest part in Fig. 12), it remains much more tractable than for alternative ap-20

proaches, as only the center lines of the yarns are needed. A solution to fully

automatize our approach would be to initialize the prior model with the one of

a geometric approach. The requirements are that the center lines are sufficiently

close to the real ones for our approach to converge. This could be envisaged for
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simple weaves, but not yet for complex fabrics, at least from our point of view.25

The geometric models of complex textile structures (see e.g. [31]) appear to be

too idealized to be used in our approach, and would necessitate further develop-

ments to include some stochastic considerations [21]. We have also shown that

a minimal µCT resolution is required for the input data to be consistent with our

approach. It could be difficult to maintain a sufficient quality of the µCT when5

dealing with larger and more complex CMC parts. Experimental challenges will

undoubtedly arise to conciliate acceptable resolution and quality with structural

parts.

The ability to generate realistic FE models of CMC parts at the mesoscopic

scale opens exciting perspectives for the simulation of such materials. But more10

detailed models will also necessarily demand more computational power and ade-

quate numerical approaches. If full mesoscopic scale simulation is tempting, one

can ask whether it is desirable to include such an amount of microstructural de-

tails to obtain satisfying results. Therefore, it would be interesting to evaluate the

impact of the level of description of the microstructural details on the properties of15

such structures. The idea would be to find a compromise between the level of de-

scription and the computational burden for a given quantity of interest. This work

is currently under investigation for woven composites regarding elastic properties

and damage initiation.
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[29] C. Chapoullié, J.-P. Da Costa, M. Cataldi, G. L. Vignoles, C. Germain,

Orientation-guided two-scale approach for the segmentation and quantita-

tive description of woven bundles of fibers from three-dimensional tomo-

34

https://doi.org/10.1007/bfb0054735
https://doi.org/10.1007/bfb0054735
https://doi.org/10.1016/j.imavis.2005.09.010
https://doi.org/10.1016/j.imavis.2005.09.010
https://doi.org/10.1016/j.compstruct.2014.04.026
https://doi.org/10.1016/j.compositesa.2014.11.016
https://doi.org/10.1016/j.compositesa.2014.11.016
https://doi.org/10.1016/j.compstruct.2015.07.005
https://doi.org/10.1016/j.compstruct.2015.07.005


graphic images, Journal of Electronic Imaging 24 (6) (2015) 061113 (2015).

doi:10.1117/1.jei.24.6.061113.
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