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Abstract. We consider the classical problem of approximate joint diagonalization of matrices,
which can be cast as an optimization problem on the general linear group. We propose a versatile
Riemannian optimization framework for solving this problem – unifiying existing methods and cre-
ating new ones. We use two standard Riemannian metrics (left- and right-invariant metrics) having
opposite features regarding the structure of solutions and the model. We introduce the Riemannian
optimization tools (gradient, retraction, vector transport) in this context, for the two standard non-
degeneracy constraints (oblique and non-holonomic constraints). We also develop tools beyond the
classical Riemannian optimization framework to handle the non-Riemannian quotient manifold in-
duced by the non-holonomic constraint with the right-invariant metric. We illustrate our theoretical
developments with numerical experiments on both simulated data and a real electroencephalographic
recording.
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1. Introduction. Approximate joint diagonalization (AJD) is used to solve the
well known blind source separation (BSS) problem, with applications in a wide variety
of engineering fields such as communications, image processing, audio and biomedical
signals analysis (see the reference book [16]). In these applications we observe the set
{Ck} of K n× n symmetric matrices and we assume they are generated under model

Ck = AΛkA
T +Nk, 1 ≤ k ≤ K,

where A ∈ GLn (group of n × n invertible matrices) is the mixing matrix, Λk are
diagonal matrices corresponding to the statistics of the source process and Nk com-
prise estimation error and measurement noise. AJD aims at finding an approximate
joint diagonalizer B ∈ Rn×n of the matrices Ck defined as the matrix that minimizes
a criterion f measuring the degree of non-diagonality of the set {BCkBT }. In early
studies, e.g., [13, 14, 21], the joint diagonalizer B was assumed orthogonal after a
prewhitening step meant to orthogonalize the data. However, it is well known that
this induces irreversible errors and research has turned toward methods seeking B in
GLn. Thus, AJD can be expressed as an optimization problem over GLn

inf
B∈GLn

f(B). (1)

We refer to [7,11] for recent studies on suitable AJD criteria and to [5] for the identi-
fiability conditions. There are no analytical solutions to (1) for all standard AJD cost
functions. An iterative optimization process over GLn is needed in general and many
algorithms have been proposed in previous studies, see e.g., [1,4–7,11,30,32–34,36,38].

∗This work has been supported by the LabEx PERSYVAL-Lab (ANR-11-LABX-0025-01), funded
by the French program “Investissement d’avenir”, and the European Research Council, project
CHESS 2012-ERC-AdG-320684.
†Univ. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, 38000 Grenoble, France

(florent.bouchard@gipsa-lab.fr).
‡Univ. Grenoble Alpes, CNRS, Grenoble INP, LJK, 38000 Grenoble, France

1

mailto:florent.bouchard@gipsa-lab.fr


2 F. BOUCHARD, B. AFSARI, J. MALICK, M. CONGEDO

The solution B ∈ GLn is not unique: given any matrices P ∈ Pn (group of n × n
permutation matrices) and Σ ∈ D∗n (group of n× n non-singular diagonal matrices),
PΣB is a solution equivalent to B, therefore the set of AJD solutions is the whole
equivalence class

{PΣB : P ∈ Pn, Σ ∈ D∗n}. (2)

The permutation ambiguity is of no concern in practice, however the diagonal scaling
ambiguity strongly impacts the solution process. Since we can construct sequences
(Σi) of matrices in D∗n converging toward singular matrices, every equivalence class (2)
has limit points corresponding to degenerate solutions that must be avoided in prac-
tice. Hence, additional constraints on B are needed and various possibilities have
been considered in the litterature. A first choice is to fix the norm of the rows of B,
as for example with the oblique constraint [1, 11,34]. This constraint is expressed as:

ddiag(BBT ) = In (oblique constraint), (3)

where ddiag(·) cancels the off-diagonal elements of its argument and In denotes the
identity matrix. Another constraint that exploits the geometry of the equivalence class
is the non-holonmic constraint, introduced for BSS in [9] (see in particular [9, section
4] for a perspective on the terminology “non-holonomic”) and used for AJD in [5,6,38].
This constraint features the following equivalence class:

{ΣB : Σ ∈ D∗n} (non-holonomic constraint class). (4)

In contrast with the oblique constraint, using the non-holonomic constraint cancels
the action of the diagonal scaling in (2).

The goal of this paper is to propose a unified Riemannian optimization framework
rich enough to encompass all existing AJD models featuring different constraints and
objective functions. Riemannian optimization over GLn has already been considered
in the context of AJD and BSS in [1] with the Euclidean metric and in [5, 6, 8, 9, 36]
with the so-called right-invariant metric (which has a natural link with the model
of the AJD and BSS problems; see [8, 9] for details). In our previous work [11] we
have proposed a first Riemannian framework adapted to AJD and BSS. However, the
approach there is indirect as it uses the polar decomposition to construct surrogate
manifolds instead of working directly in the natural space GLn. This indirect approach
fails in particular to encompass the non-holonomic constraint.

In this paper, we develop a general and unified Riemannian optimization frame-
work for AJD constructed directly from GLn. Beyond the fresh viewpoint, the main
contributions of this work are the following:

• We propose to use for AJD the existing Riemannian exponential maps asso-
ciated with the left- and right-invariant metrics on GLn.

• We exploit for the first time in the context of AJD a left-invariant metric on
GLn, which is particularly attractive as it is invariant along the equivalence
classes (2). We also unify existing results for the right-invariant metric.

• We define the Riemannian submanifolds of GLn embedding the oblique con-
straint (3) for both the left- and right-invariant metrics.

• We extend the study of the non-holonomic constraint on three different as-
pects. First, for the left-invariant metric, we introduce a Riemannian quotient
manifold of GLn to embed it. Second, for the right-invariant metric, we pro-
pose basic optimization tools to treat the associated non-Riemannian quotient
manifold. Finally, we discuss the possibility to optimize criteria that are not
invariant by diagonal scaling.
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The outline of this paper is as follows: section 2 summarizes some concepts on
Riemannian geometry and optimization that we are going to use intensively in the
sequel. In section 3 we study the embedding of the oblique constraint (3) in Rieman-
nian submanifolds of GLn. In section 4 we focus on the non-holonomic constraint,
which deserves an original treatment going beyond standard Riemannian techniques.
Section 5 contains numerical experiments both on simulated data and real electroen-
cephalographic recordings.

2. Background on Riemannian geometry and AJD. We first recall the
notions of Riemannian optimization that we use in order to develop our framework
in section 2.1. We then describe GLn as a Riemannian manifold when endowed with
the left- and right-invariant metrics in section 2.2. Finally, in section 2.3 we define
the three AJD criteria that we use in our numerical experiments.

2.1. Riemannian optimization in a nutshell. This section contains a brief
introduction on the necessary ingredients for gradient based Riemannian optimization
on matrix manifolds. We refer to [2] for a complete coverage of this topic.

A smooth matrix manifold M admits a differentiable structure and every point
x ∈ M has a tangent space TxM. Such M is turned into a Riemannian manifold
by endowing it with a Riemannian metric 〈·, ·〉·, which is a smoothly varying inner
product on every tangent space TxM. The Riemannian manifold M equipped with
〈·, ·〉· is a curved space for which geodesics γ : R → M generalize the concept of
straight lines. A geodesic γ only depends on the choice of the initial point γ(0) =
x ∈M and initial direction γ̇(0) = ξ ∈ TxM, where γ̇ denotes the derivative of γ. It
is also possible to translate tangent vectors along a curve in M so that they remain
parallel with respect to the Riemannian metric by using parallel transport. Given
γ : R → M such that γ(0) = x ∈ M and γ̇(0) = ξ ∈ TxM, the parallel transport
t 7→ P (t) along γ with initial value P (0) = η ∈ TxM is the vector field such that P (t)
is the tangent vector in Tγ(t)M parallel to η.

Concerning Riemannian optimization, given an objective function f :M→ R, the
Riemannian gradient gradM f(x) of f at x ∈ M is defined through the Riemannian
metric as the unique tangent vector in TxM such that for all ξ ∈ TxM

〈gradM f(x), ξ〉x = D f(x)[ξ],

where D f(x)[ξ] is the directional derivative of f at x in the direction ξ. A descent
direction of a criterion f at x ∈M is a tangent vector ξ ∈ TxM such that

〈gradM f(x), ξ〉x < 0.

A new point on the manifold is then achieved by a retraction R on M, which is a
mapping from the tangent spaces back ontoM satisfying, for all x ∈M and ξ ∈ TxM,

Rx(0x) = x DRx(0x)[ξ] = ξ,

where 0x denotes the zero element of TxM. Every Riemannian manifoldM equipped
with a metric 〈·, ·〉· admits a natural retraction that arises from its geodesics: the
Riemannian exponential map, which is defined for all x ∈ M and ξ ∈ TxM as
expx(ξ) = γ(1), where γ is the geodesic such that γ(0) = x and γ̇(0) = ξ. The
Riemannian exponential map might however be complicated to find or too expensive
to compute. In such cases, an alternative retraction is preferable; see [2, 3]. The
basic Riemannian gradient descent algorithm, which simply takes − gradM f(xi) as a
descent direction, is

xi+1 = Rxi(−ti gradM f(xi)),



4 F. BOUCHARD, B. AFSARI, J. MALICK, M. CONGEDO

M

TxM
•x

η

ξ TRx(ξ)M

•
Rx(ξ)

T (x, ξ, η)

Fig. 1. Schematic illustration of vector transport on M.

where ti is the stepsize, which can for instance be computed with a linesearch; see [2,
chapter 4]. Finally, some optimization methods such as conjugate gradient or quasi-
Newton use information given by the descent direction of previous iterates in order
to obtain the new descent direction. To do so in the Riemannian framework we need
to be able to transport a tangent vector of a point in M into the tangent space of
another point. It can be achieved by using a vector transport T onM associated with
a retraction R, closely related to the concept of parallel transport. Given x ∈M and
ξ, η ∈ TxM, the vector transport T (x, ξ, η) transports the vector η in the tangent
space of Rx(ξ) as illustrated in figure 1.

2.2. GLn as a Riemannian manifold. All the results given in this section
can be found in [10, 27, 28, 35, 37]. The general linear group GLn is an open set in
Rn×n, thus its tangent space TBGLn at any point B can be identified as Rn×n, which
is denoted TBGLn ' Rn×n. We endow GLn either with the left- or right-invariant
metric, respectively defined for all B ∈ GLn, ξ, η ∈ TBGLn as

〈ξ, η〉`B = tr(B−1ξ(B−1η)T ) and 〈ξ, η〉rB = tr
(
ξB−1(ηB−1)T

)
. (5)

Complete geodesics, i.e., defined on the whole line R, can be found for both these
metrics. The geodesics γ` : R → GLn and γr : R → GLn of GLn equiped with the
left- and right-invariant metrics are defined for all B ∈ GLn and ξ ∈ TBGLn as

γ`(t) = B exp
(
t(B−1ξ)T

)
exp

(
t
(
B−1ξ − (B−1ξ)T

))
, (6)

and
γr(t) = exp

(
t
(
ξB−1 − (ξB−1)T

))
exp

(
t(ξB−1)T

)
B, (7)

where exp(·) denotes the matrix exponential. The corresponding Riemannian expo-
nential maps at B ∈ GLn are denoted exp`B : TBGLn → GLn and exprB : TBGLn →
GLn.

Let f : GLn → R be an objective function and gradE f(B) its Euclidean gradient
at B ∈ GLn. The Riemannian gradients grad` f(B) and gradr f(B) of f at B in GLn
equiped with the left- and right-invariant metrics are given by

grad` f(B) = BBT gradE f(B) and gradr f(B) = gradE f(B)BTB.

Finally, the vector transport on GLn can simply be defined by T (B, ξ, η) = η. How-
ever, it appears more natural to use the vector transports

T`(B, ξ, η) = exp`B(ξ)B−1η Tr(B, ξ, η) = ηB−1 exprB(ξ),

which preserve the left- and right-invariant metrics, respectively. Notice that the
scaling by B−1 helps in avoiding the boundary of GLn. We thus have all necessary
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tools for gradient based Riemannian optimization on GLn equipped with the left- or
right-invariant metrics as defined in (5).

2.3. AJD objective functions. In this section, we recall three standard AJD
objective functions to be minimized that we use in our numerical experiments along
with their Euclidean gradients, which are needed to obtain the Riemannian coun-
terparts. The first objective function that we consider is the classical least squares
criterion [13,14] based on the Frobenius distance, defined as

fF(B) =
∑
k

∥∥BCkBT − ddiag(BCkB
T )
∥∥2

F
, (8)

where ‖·‖F denotes the Frobenius norm and ddiag(·) cancel the off-diagonal elements
of its argument. Its Euclidean gradient gradE fF(B) at B ∈ GLn is given by

gradE fF(B) =
∑
k

4
[
BCkB

T − ddiag(BCkB
T )
]
BCk.

This criterion is not invariant to diagonal scaling, i.e., we do not have fF(ΣB) = fF(B)
for all B ∈ GLn and Σ ∈ D∗n. To overcome this problem, some authors have proposed
modified versions of this criterion that are invariant to diagonal scaling of B [5,7]. In
this article we consider the objective function proposed in [5], which is defined as

f̃F(B) =
∑
k

∥∥Ck −B−1 ddiag(BCkB
T )B−T

∥∥2

F
. (9)

Its Euclidean gradient gradE f̃F(B) at B ∈ GLn is given by

gradE f̃F(B) =
∑
k

4
[
Qk(B) ddiag(BCkB

T )− ddiag(Qk(B))BCkB
T
]
B−T ,

where Qk(B) = (BBT )−1[BCkB
T −ddiag(BCkB

T )](BBT )−1. As explained in [5], it
is interesting to notice that criteria (8) and (9) are equal if B is orthogonal. An ad-
vantage of criterion (9) is that its domain of definition regarding matrices Ck remains
the set of symmetric matrices whereas they further have to be positive definite in the
modified version proposed in [7]. The last diagonality criterion that we consider is
the one based on the log-likelihood [30,31], defined as

fll(B) =
∑
k

log
det(ddiag(BCkB

T ))

det(BCkBT )
. (10)

Criterion (10) is only defined for symmetric positive definite matrices Ck and possesses
the diagonal scaling invariance property. Its Euclidean gradient gradE fll(B) at B ∈
GLn is given by

gradE fll(B) =
∑
k

2
[
ddiag(BCkB

T )−1 − (BCkB
T )−1

]
BCk.

3. Oblique constraint. In this section we formalize the necessary tools for
gradient-based Riemannian optimization over the submanifold of GLn resulting from
the oblique constraint (3), for both left- and right-invariant metrics defined in (5).
The oblique constraint (3) yields the submanifold of GLn (see [1]) defined as

Mo
n = {B ∈ GLn : ddiag(BBT ) = In},
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whose tangent space TBMo
n at B ∈Mo

n is

TBMo
n = {ξ ∈ Rn×n : ddiag(ξBT ) = 0}.

Mo
n is turned into a Riemannian submanifold of GLn by inheriting either the left- or

right-invariant metric. For all B ∈ Mo
n, we can define the orthogonal projection map

from the ambient space Rn×n onto TBMo
n according to the chosen metric, which is

then used to obtain the Riemannian gradient and vector transport. These projection
maps are given in propositions 3.1 and 3.2.

Proposition 3.1. The orthogonal projection map P o,`
B : Rn×n → TBMo

n at B ∈
Mo

n equipped with the left-invariant metric is, for all Z ∈ Rn×n,

P o,`
B (Z) = Z −BBTΛB, diag(Λ) =

(
BBT �BBT

)−1
diag(ZBT ),

where Λ ∈ Dn (set of diagonal matrices), diag(·) returns the vector containing the
diagonal elements of its argument and � denotes the Hadamard product.

Proof. First, we need to determine the normal space to TBMo
n according to the

left-invariant metric, which is defined as {η ∈ Rn×n : 〈ξ, η〉`B = 0, ∀ξ ∈ TBMo
n}. It is

{BBTΛB : Λ ∈ Dn}. Indeed, it has the correct dimension, which is n, and

〈ξ,BBTΛB〉`B = tr(ξBTΛ) = tr(ddiag(ξBT )Λ) = 0.

Thus, P o,`
B (Z) = Z −BBTΛB and ddiag(P o,`

B (Z)BT ) = 0 can be vectorized as

(BBT �BBT ) diag(Λ) = diag(ZBT ).

Since B ∈ GLn, BBT is positive definite and the Schur product theorem ensures that
BBT �BBT is invertible. This completes the proof. �

Proposition 3.2. The orthogonal projection map P o,r
B : Rn×n → TBMo

n at B ∈
Mo

n equipped with the right-invariant metric is, for all Z ∈ Rn×n,

P o,r
B (Z) = Z − ddiag(ZBT ) ddiag

(
(BBT )2

)−1
BBTB.

Proof. The normal space to TBMo
n according to the right-invariant metric is

{ΛBBTB : Λ ∈ Dn}. Indeed, its dimension is n and

〈ξ,ΛBBTB〉rB = tr(ξBTΛ) = tr(ddiag(ξBT )Λ) = 0.

Thus, we have P o,r
B (Z) = Z − ΛBBTB and solving ddiag(P o,r

B (Z)BT ) = 0 yields

Λ = ddiag(ZBT ) ddiag
(
(BBT )2

)−1
. �

It follows from [2, eq. (3.37)] that the Riemannian gradients grado,` f(B) and
grado,r f(B) of an objective function f at B ∈Mo

n endowed with the left- and right-
invariant metrics are given by

grado,` f(B) = P o,`
B (grad` f(B)) and grado,r f(B) = P o,r

B (gradr f(B)).

Proposition 3.3. Given a retraction R on GLn, a retraction on Mo
n is defined

for all B ∈Mo
n and ξ ∈ TBMo

n by

R o
B(ξ) = ddiag

(
RB(ξ)RB(ξ)T

)−1/2
RB(ξ).
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metric 〈·, ·〉`· 〈·, ·〉r·

projection
map

P o,`
B (Z) = Z −BBTΛB,

diag(Λ) = (BBT � BBT )−1 diag(ZBT )

P o,r
B (Z) = Z − ΛBBTB,

Λ = ddiag(ZBT ) ddiag((BBT )2)−1

gradient P o,`
B (grad` f(B)) P o,r

B (gradr f(B))

retraction R o,`
B (ξ) = Λ(exp`B(ξ)) exp`B(ξ) R o,r

B (ξ) = Λ(exprB(ξ)) exprB(ξ)

where Λ(X) = ddiag(XXT )−1/2

vector
transport

P o,`

R
o,`
B

(ξ)
(R o,`
B (ξ)B−1η) P o,r

R
o,r
B

(ξ)
(ηB−1R o,r

B (ξ))

Table 1
Summary of the necessary tools for Riemannian optimization on the oblique manifold Mo

n.

Proof. We need to show that R o
B(ξ) = B + ξ + o(‖ξ‖). Since RB(ξ) = B + ξ +

o(‖ξ‖), we have

ddiag(RB(ξ)RB(ξ)T ) = ddiag(BBT ) + 2 ddiag(ξBT ) + o(‖ξ‖).

From ddiag(BBT ) = In and ddiag(ξBT ) = 0, we obtain

ddiag(RB(ξ)RB(ξ)T ) = In + o(‖ξ‖).

Using this and RB(ξ) = B + ξ + o(‖ξ‖) completes the proof. �

Note that we choose to define the retraction R on GLn of proposition 3.3 as (i) the
exponential map exp` resulting from (6) when we endow Mo

n with the left-invariant
metric, and as (ii) expr resulting from (7) when endowing it with the right-invariant
one. The resulting retractions are denoted R o,` and R o,r respectively. Equation
(8.10) in [2] shows that the vector transports T o,` and T o,r onMo

n equipped with the
left- and right-invariant metrics can be defined for all B ∈Mo

n, ξ, η ∈ TBMo
n as

T o,`(B, ξ, η) = P o,`

R o,`
B (ξ)

(R o,`
B (ξ)B−1η) and T o,r(B, ξ, η) = P o,r

R o,r
B (ξ)

(ηB−1R o,r
B (ξ)).

To conclude this section, a summary of all the necessary tools for Riemannian op-
timization on the oblique manifold equipped with the left- and right-invariant metrics
is given in table 1. The extension to second-order Riemannian optimization meth-
ods is straightforward: to define the Riemannian Hessian we need the Levi-Civita
connection, which, in the case of the oblique manifold, is obtained by projecting the
Levi-Civita connection of GLn (given for instance in [10, 35, 37]) onto the tangent
space; see [2, proposition 5.3.2].

4. Non-holonomic constraint. In this section we focus on embedding the non-
holonomic constraint in a quotient manifold of GLn, denotedMnh

n . In section 4.1, we
specify standard geometrical objects in the quotient manifold and how this inherits a
Riemannian structure from an invariant Riemannian structure of GLn. In section 4.2,
we apply these results when GLn is endowed with the left-invariant metric, yielding
a proper Riemannian quotient manifold. In section 4.3, we discuss how we can still
optimize on the non-Riemannian quotient manifold Mnh

n when GLn is endowed with
the right-invariant metric. Finally, in section 4.4, we mention that we can exploit the
geometry of Mnh

n to minimize criteria that do not induce proper functions on Mnh
n .



8 F. BOUCHARD, B. AFSARI, J. MALICK, M. CONGEDO

4.1. Riemannian quotient manifold structure. The non-holonomic con-
straint yields Mnh

n = GLn/D∗n defined as

Mnh
n = {{ΣB : Σ ∈ D∗n} : B ∈ GLn},

which is a smooth quotient manifold of dimension n2−n [26, theorem 7.10]. To handle
the elements of this manifold, which are equivalence classes, the usual technique [2] is
to use the canonical projection π mapping the elements of GLn ontoMnh

n . Equivalence
classes are obtained through π as {ΣB : Σ ∈ D∗n} = π−1(π(B)) and each element
B ∈ Mnh

n can be represented by any matrix B ∈ GLn such that B = π(B). The
geometry and objects required for optimization on Mnh

n can be characterized by
representations at the matrix level. Note that from a numerical perspective it may
be necessary to select a particular representative (i.e., impose a diagonal scaling) in
order to avoid degenerate elements of each class.

The tangent space TBMnh
n of B = π(B) ∈ Mnh

n can be fully described by a
subspace of the tangent space of B. In particular, TBGLn ' Rn×n can be decomposed
into two complementary subspaces: the vertical and horizontal spaces [2]. The vertical
space is defined as the tangent space TBπ

−1(π(B)) of the equivalence class π−1(π(B))
at B. This subspace contains all the elements of TBGLn inducing a displacement along
π−1(π(B)). In the case of Mnh

n , the vertical space at B ∈ GLn is

VB = {∆B : ∆ ∈ Dn}.

The horizontal space HB at B is then defined as the orthogonal complement to VB in
TBGLn according to the chosen metric 〈·, ·〉· on GLn. The elements of HB , called hor-
izontal lifts, provide proper representations of the tangent vectors in TBMnh

n . Indeed,
for all Ξ ∈ TBMnh

n , there is a unique ξ ∈ HB such that Dπ(B)[ξ] = Ξ.
The horizontal space thus depends on the choice of the metric 〈·, ·〉· on GLn.

For Mnh
n to be a proper Riemannian quotient manifold, this metric must induce a

well-defined Riemannian metric on the quotient. To do so, the metric 〈·, ·〉· has to be
invariant along each equivalence class. In our case, we must have, for all B ∈ GLn,
Σ ∈ D∗n and ξ, η ∈ Rn×n

〈Σξ,Ση〉ΣB = 〈ξ, η〉B . (11)

Notice that the left-invariant metric satisfies (11) but the right-invariant one does not.
Geodesics (and thus Riemannian exponential maps) on Mnh

n can be obtained
through geodesics on GLn. Indeed, if γ(t) is a complete geodesic that stays horizontal
in GLn, i.e., if its derivative γ̇(t) is in Hγ(t), then π(γ(t)) is a complete geodesic on

Mnh
n [22, proposition 2.109]. Furthermore, from proposition 4.1.3 in [2], a retraction

R on GLn also induces a retraction onMnh
n if we have, for all B ∈ GLn, ξ ∈ HB and

Σ ∈ D∗n,
π(RB(ξ)) = π(RΣB(Σξ)). (12)

Concerning the vector transport, let P be the orthogonal projection map on the
horizontal space, R be a retraction on GLn satisfying (12) and T be a vector transport
on GLn associated with R. Given B = π(B) ∈ Mnh

n , Ξ, H ∈ TBMnh
n with horizontal

lifts ξ, η ∈ HB , a suitable vector transport Tnh(B,Ξ, H) on Mnh
n can be represented

by PRB(ξ)(T (B, ξ, η)), i.e.,

Tnh(B,Ξ, H) = Dπ(RB(ξ))[PRB(ξ)(T (B, ξ, η))].

Finally, a criterion f defined on GLn induces a well-defined criterion f̂ onMnh
n if

it is invariant along each equivalence class, i.e., if f(ΣB) = f(B) for all B ∈ GLn and



AJD WITH RIEMANNIAN OPTIMIZATION ON GLn 9

Σ ∈ D∗n. In this case, f̂ is the function such that f = f̂ ◦ π and the optimization of f

can be done by optimizing f̂ onMnh
n . The representation of the Riemannian gradient

of f̂ at B = π(B) ∈Mnh
n is simply the Riemannian gradient of f at B, which belongs

to HB [2, eq. (3.39)].

4.2. Left-invariant metric. The left-invariant metric in (5) satisfies (11) and
therefore induces a proper Riemannian metric onMnh

n , which becomes a proper Rie-
mannian quotient manifold. To perform gradient-based Riemannian optimization,
it remains to define the horizontal space, the orthogonal projection map, a retrac-
tion and a vector transport. The horizontal space H`B and orthogonal projection map

P nh,`
B are given in proposition 4.1. Concerning the retraction, we can use the Rieman-

nian exponential map, simply represented by exp`B , associated to the the geodesics
on Mnh

n , which are given in proposition 4.2. Finally, given horizontal lifts ξ, η ∈ H`B ,

the vector transport on Mnh
n can be represented by P nh,`

exp`
B(ξ)

(exp`B(ξ)B−1η).

Proposition 4.1. The horizontal space H`B at B in GLn endowed with the left-
invariant metric is

H`B = {ξ ∈ Rn×n : ddiag
(
(BBT )−1ξBT

)
= 0}.

It follows that the orthogonal projection map at B from Rn×n onto H`B is

P nh,`
B (Z) = Z − ΛB, diag(Λ) =

(
(BBT )−1 �BBT

)−1
diag

(
(BBT )−1ZBT

)
,

where Λ ∈ Dn.

Proof. The set H`B is of dimension n2 − n and for all B ∈ GLn, ∆ ∈ Dn and
ξ ∈ Rn×n, we have

〈ξ,∆B〉`B = tr((BBT )−1ξBT∆) = tr(ddiag((BBT )−1ξBT )∆).

Thus, 〈ξ,∆B〉`B = 0 for all ∆ ∈ Dn if and only if ddiag((BBT )−1ξBT ) = 0. For

the orthogonal projection map, we know that P nh,`
B (Z) = Z − ΛB and equation

ddiag((BBT )−1P nh,`
B (Z)BT ) = 0 can be vectorized as(
(BBT )−1 �BBT

)
diag(Λ) = diag

(
(BBT )−1ZBT

)
.

Since B ∈ GLn, both BBT and (BBT )−1 are positive definite and the Schur product
theorem ensures that (BBT )−1 �BBT is invertible. This is enough to conclude. �

Proposition 4.2. For all B ∈ GLn and ξ ∈ H`B, γnh,` : R→Mnh
n defined as

γnh,`(t) = π(γ`(t)),

where γ` is defined in (6), are complete geodesics on Mnh
n .

Proof. The derivative of γ`(t) is given by

γ̇`(t) = B exp
(
t(B−1ξ)T

)
B−1ξ exp

(
t
(
B−1ξ − (B−1ξ)T

))
,

and it follows that for all t ∈ R

ddiag
(
(γ`(t)γ`(t)

T )−1γ̇`(t)γ`(t)
T
)

= ddiag
(
(BBT )−1ξBT

)
= 0.

Hence γ̇`(t) ∈ H`γ`(t) showing that the curve γ`(t) stays horizontal in GLn equipped

with the left-invariant metric. Since γ`(t) is a complete geodesic on GLn, it follows
from proposition 2.109 in [22] that π(γ`(t)) is a complete geodesic on Mnh

n . �
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As for the oblique manifold, the extension to second-order Riemannian optimiza-
tion methods on Mnh

n equipped with the left-invariant metric is straightforward. In-
deed, the representation of the Levi-Civita connection, used to define the Riemannian
Hessian, is obtained by projecting the Levi-Civita connection of GLn onto the hori-
zontal space; see [2, proposition 5.3.3].

4.3. Right-invariant metric. In this section we endow GLn with the right-
invariant metric in (5). Unfortunately, this metric does not satisfy (11) and thus does
not induce a well-defined Riemannian metric on the quotient manifold Mnh

n . Let f

be an objective function on GLn inducing a criterion f̂ onMnh
n ; we discuss here how

we can still define an optimization algorithm to minimize f̂ onMnh
n even though the

gradient of f̂ is not properly defined on the non-Riemannian quotient Mnh
n .

We start with noting that for all B ∈ GLn, we can derive the horizontal space HrB
to the vertical space VB according to the right-invariant metric and the associated
orthogonal projection map. They are both given in proposition 4.3. Notice that HrB
is also isomorphic to the tangent space Tπ(B)Mnh

n of π(B) ∈Mnh
n in this case.

Proposition 4.3. The horizontal space HrB at B in GLn endowed with the right-
invariant metric is

HrB = {ξ ∈ Rn×n : ddiag(ξB−1) = 0}.

It follows that the orthogonal projection map at B from Rn×n onto HrB is

P nh,r
B (Z) = Z − ddiag(ZB−1)B.

Proof. The set HrB is of dimension n2 − n and for all B ∈ GLn, ∆ ∈ Dn and
ξ ∈ Rn×n, we have

〈ξ,∆B〉rB = tr(ξB−1∆) = tr(ddiag(ξB−1)∆).

Thus, 〈ξ,∆B〉rB = 0 for all ∆ ∈ Dn if and only if ddiag(ξB−1) = 0. It remains to

determine the orthogonal projection map on HrB . We know that P nh,r
B (Z) = Z −ΛB

with Λ ∈ Dn and solving ddiag(P nh,r
B (Z)B−1) = 0 yields the result. �

We want to define a descent algorithm in order to optimize f̂ onMnh
n while GLn

is equipped with the right-invariant metric. We do this by adapting the Riemannian
gradient descent algorithm through the following steps:

• Descent direction: we exploit the Riemannian gradient gradr f(B) of f = f̂◦π
at B in GLn. It is an element of HrB as

ddiag(gradr f(B)B−1) = 0.

Since − gradr f(B) is a descent direction of f on GLn, the corresponding

tangent vector in Tπ(B)Mnh
n is a descent direction of f̂ on Mnh

n . Given
B ∈ GLn and Σ ∈ D∗n, direct computations show that the relation between
the gradients of f at B and ΣB is

gradr f(ΣB) = Σ−1 gradr f(B)B−1Σ2B. (13)

• Failure of retraction: the descent direction ξ = − gradr f(B) in HrB at B
does not correspond to the direction Σξ in HrΣB . Instead, ξ corresponds
to the vector Σ−1ξB−1Σ2B in HrΣB at ΣB. As a consequence, retracting
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ξ = − gradr f(B) with a retraction R on GLn satisfying (12) does not satisfy
the expected property on Mnh

n since

π(RΣB(− gradr f(ΣB))) 6= π(RB(− gradr f(B))).

• Pseudo-retraction: in order to define a proper algorithm onMnh
n , i.e., which

does not depend on the choice of the representative B of an equivalence class,
we need to define an operator R̃B : HrB → GLn such that

π(R̃B(ξ)) = π(R̃ΣB(Σ−1ξB−1Σ2B)),

for all B ∈ GLn, ξ ∈ HrB and Σ ∈ D∗n. This property indeed ensures that
the different representatives of an equivalence class inMnh

n all yield the same
equivalence class. In this work, we propose to use the pseudo-retraction de-
fined, for all B ∈ GLn, ξ ∈ HrB , as

R̃B(ξ) = exp(Λ(B)ξB−1Λ(B)−1 − (ξB−1)T ) exp((ξB−1)T )B,

where Λ(B) = ddiag(BBT ). From direct computations, we obtain that the

chosen operator R̃ satisfies

R̃ΣB(Σ−1ξB−1Σ2B) = ΣR̃B(ξ),

showing that it possesses the adequate property. However, R̃ does not define
a retraction on GLn: it satisfies R̃B(0) = B but D R̃B(0)[ξ] 6= ξ. Instead, we
have

D R̃B(0)[ξ] = Λ(B)ξB−1Λ(B)−1B.

Further notice that R̃B coincides with the Riemannian exponential map exprB
for B such that ddiag(BBT ) = In.

• Algorithm: in view of the above developments, given Bi = π(Bi) inMnh
n , we

propose the pseudo-Riemannian gradient descent iteration of the criterion f̂
on Mnh

n (induced by f = f̂ ◦ π on GLn) defined by

Bi+1 = π(R̃Bi(−ti gradr f(Bi))).

To extend this algorithm in order to handle more sophisticated descent directions
(such as the ones used in conjugate gradient or quasi-Newton methods), we need to
be able to use descent directions of previous iterates. Thus, we need a pseudo-vector
transport operator T̃ on GLn associated with the pseudo-retraction R̃. This pseudo-
transport must ensure that, for all the representatives of an equivalence class inMnh

n ,
the obtained descent directions yield the same equivalence class. Given B ∈ GLn,
ξ, η ∈ HrB , the purpose of T̃ (B, ξ, η) is to transport η from HrB into Hr

R̃B(ξ)
. We

know from (13) that, given Σ ∈ D∗n, ξ and η at B correspond to Σ−1ξB−1Σ2B and

Σ−1ηB−1Σ2B at ΣB. Further recall that R̃ΣB(Σ−1ξB−1Σ2B) = ΣR̃B(ξ). It follows

that to ensure the sought invariance property, T̃ (ΣB,Σ−1ξB−1Σ2B,Σ−1ηB−1Σ2B)

should be the vector inHr
ΣR̃B(ξ)

corresponding to T̃ (B, ξ, η) inHr
R̃B(ξ)

. This translates

into condition

T̃ (ΣB,Σ−1ξB−1Σ2B,Σ−1ηB−1Σ2B) = Σ−1T̃ (B, ξ, η)R̃B(ξ)−1Σ2R̃B(ξ).
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metric 〈·, ·〉`· 〈·, ·〉r·

projection
map

P nh,`
B (Z) = Z − ΛB,

diag(Λ) = ((BBT )−1 � BBT )−1 diag(ZBT )

P nh,r
B (Z) = Z − ΛB,

Λ = ddiag(ZB−1)

gradient grad` f(B) gradr f(B)

retraction exp`B(ξ)

R̃B(ξ) = X exp((ξB−1)T )B,

X = exp(ΛξB−1Λ−1 − (ξB−1)T ),

Λ = ddiag(BBT )

vector
transport

P nh,`

exp`
B
(ξ)

(exp`B(ξ)B−1η) P nh,r

R̃B(ξ)
(η(BTB)−1R̃B(ξ)T R̃B(ξ))

Table 2
Summary of the necessary tools for optimization with the non-holonomic constraint.

GLn

π−1(π(B))

TBGLn
VB

HaB

grada f(B)

gradnh,a f(B)

•B

Fig. 2. Schematic illustration of the correction on the Riemannian gradient for an unproperly
defined function f on Mnh

n . When f is not invariant along the equivalence class π−1(π(B)), we
cancel out the action of the diagonal scaling by projecting grada f(B) onto HaB. The script ’a’ stands
for ’r’ or ’`’ corresponding to the right- and left-invariant metrics, respectively.

A suitable pseudo-vector transport T̃ is defined for all B ∈ GLn, ξ, η ∈ HrB as

T̃ (B, ξ, η) = P nh,r

R̃B(ξ)
(η(BTB)−1R̃B(ξ)T R̃B(ξ)).

To conclude this section, a summary of all the necessary tools for optimization on
Mnh

n while GLn is equipped with the left- and right-invariant metrics is given in
table 2.

4.4. Unproperly defined criteria. In this section, we briefly discuss how to
exploit the geometry of Mnh

n to minimize an approximate joint diagonalization cri-
terion f that is not invariant along equivalence classes, like for example the least
squares criterion (8). A criterion f that changes along equivalence classes does not
fully capture the approximate joint diagonalization problem, and in practice it might
yield degenerate solutions when the optimization is conducted directly on GLn. For
instance, the null matrix 0, which is a limit point to every equivalence class, is a trivial
solution to the optimization problem with criterion (8).

However, these mismodeled functions have some merits: for instance, (8) is simple
to compute, is defined for any set {Ck} and is widely used. To avoid degenerate
solutions that such functions might produce, we take into account prior knowledge
provided by the geometrical structure to compensate the mismodeling of criterion
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metric 〈·, ·〉`· 〈·, ·〉r·

projection
map

P nh,`
B (Z) = Z − ΛB,

diag(Λ) = ((BBT )−1 � BBT )−1 diag(ZBT )

P nh,r
B (Z) = Z − ΛB,

Λ = ddiag(ZB−1)

corrected
gradient

P nh,`
B (grad` f(B)) P nh,r

B (gradr f(B))

retraction exp`B(ξ) exprB(ξ)

corrected
vector

transport

P nh,`

exp`
B
(ξ)

(exp`B(ξ)B−1η) P nh,r
expr

B
(ξ)

(ηB−1 exprB(ξ))

Table 3
Summary of the necessary tools for optimization of criteria that do not induce functions on

Mnh
n with the non-holonomic constraint.

f . Following the approach of [9], rather than changing the search space, we perform
the minimization in the total manifold GLn, however a correction is applied on the
Riemannian gradient in order to cancel out the influence of the diagonal scaling.

More precisely, for the left- and right-invariant metrics in (5), the Riemannian
gradients grad` f(B) and gradr f(B) of f at B ∈ GLn both have a non zero component
on the vertical space VB . In order to neutralize the action of the diagonal scaling, we
use the technique of [5, 6, 9, 38] which consists in modifying the Riemannian gradient
by canceling the part in VB with the corresponding orthogonal projection. By doing
so, we remove the component of the gradient that induces a displacement along the
equivalence class π−1(π(B)); see the illustration in figure 2. The corrected Riemannian
gradients at B ∈ GLn are then defined as

gradnh,` f(B) = P nh,`
B (grad` f(B)) and gradnh,r f(B) = P nh,r

B (gradr f(B)).

Similarly, we also apply a correction on the vector transport to cancel the action of
the diagonal scaling. The corrected vector transports are given by

T nh,`(B, ξ, η) = P nh,`

exp`
B(ξ)

(exp`B(ξ)B−1η)

and T nh,r(B, ξ, η) = P nh,r
expr

B(ξ)(ηB
−1 exprB(ξ)).

Note that the corrected Riemannian gradients are still not invariant to the choice
of the representant B of an equivalence class π−1(π(B)) in the general case. Thus,
unlike in the previous sections, the optimization algorithms using these corrected
gradients are not defined on the quotientMnh

n but on GLn and depend on the chosen
representative of an equivalence class.

We conclude this section with a summary of all the necessary tools for opti-
mization of criteria that do not induce functions on Mnh

n with the non-holonomic
constraint in table 3.

5. Numerical illustrations. We conduct numerical experiments to illustrate
the applicability and versatility of our theoretical results. We construct AJD methods
by optimizing the criteria given in section 2.3 using the tools developped in sections 3
and 4. We first study the performance of AJD methods on simulated symmetric
positive definite matrices in section 5.1 and we then look at the results obtained on
an example of real electroencephalographic (EEG) data in section 5.2.
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IM-A (dB) ffdiag jadiag F-nh-r F̃ ll

σ = 100 −17.75± 1.92 −16.07± 1.28 −17.09± 1.86 −17.93± 1.89 −16.07± 1.28

σ = 1000 −23.16± 3.75 −19.82± 2.69 −22.44± 4.06 −23.45± 3.66 −19.82± 2.69

Table 4
Mean and standard deviation of the Moreau-Amari index over 500 trials of algorithms ffdiag [38]

and jadiag [30] and of the methods developed in this paper that gave the best results on these simulated

data. F̃ and ll correspond to the results obtained with all algorithms based on criteria (9) and (10)
respectively since they are identical once they have converged.

We denote the algorithms as follows: we first indicate the optimized cost function
with ‘F’, ‘F̃’ or ‘ll’ corresponding to (8), (9) or (10), respectively; we then indicate
the chosen constraint with ‘ob’ or ‘nh’ for the oblique and non-holonomic constraint;
finally we indicate whether we use the left- or right-invariant metrics with ‘`’ or ‘r’.
Optimization is performed with the Riemannian BFGS method proposed in [23] and
implemented in the manopt toolbox [12]. The stopping criterion for iterate Bi is

defined as ‖B−1
i−1Bi−In‖2

F/n and its tolerance is set to 10−12.

5.1. Simulated data. We simulate sets of K = 50 real valued n × n (with
n = 32) symmetric positive definite matrices Ck according to model

Ck = AΛkA
T +

1

σ
Ek∆kE

T
k , (14)

where matrices A and Ek are random matrices with independent and identically
distributed (i.i.d.) elements drawn from the standard normal distribution. Diagonal
matrices Λk and ∆k simulate signal and noise source energies and have i.i.d. elements
drawn from the chi-squared distribution with expectation 1. Free parameter σ defines
the expected signal to noise ratio of the data. In our experiments we consider σ =
1000, which corresponds to a very good signal to noise ratio, and σ = 100, for which
matrices are further from being jointly diagonalizable but a satisfying estimation of
A can still be obtained. Before performing AJD, we do a pre-whitening of matrices
Ck with the inverse square root of their arithmetic mean and initialize all algorithms
with the identity matrix.

We estimate the performance of algorithms by using a standard measure of accu-
racy for AJD (the so-called Moreau-Amari index [29])

IM-A(M) =
1

2n(n− 1)

n∑
p=1

∑n
q=1 |Mpq|

max
1≤q≤n

|Mpq|
+

∑n
q=1 |Mqp|

max
1≤q≤n

|Mqp|
− 2

 ,

where M = BA, with B the estimated joint diagonalizer and A the true mixing matrix
of the signal part in (14). Thus, IM-A is a measure in [0, 1] with zero indicating a
perfect recovering of the mixing process. In the following, the Moreau-Amari index
is reported in decibel (dB) computed with the formula 10 log(IM-A), thus, the lower
the index, the better.

We first compare the performance in terms of accuracy of the proposed algorithms
with two previously published ones: ffdiag [38], which minimizes the Frobenius crite-
rion (8) and exploits the non-holonomic constraint, and jadiag [30], which minimizes
the log-likelihood criterion (10). As shown in table 4, the results of the algorithms
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Fig. 3. Mean over 500 trials (dark) along with a few single trials (faded) of the Moreau-
Amari index obtained with proposed AJD algorithms on the simulated data following model (14) as
a function of the number of iterations. The signal to noise ratio parameter σ is 100 on the left
and 1000 on the right. From top to bottom, these results correspond to algorithms optimizing the
Frobenius, modified Frobenius and log-likelihood criteria (8), (9) and (10) respectively.

we have proposed based on the log-likelihood are identical to those obtained with
jadiag. Moreover, the performance of ffdiag is close to the one of proposed methods
exploiting the non-holonomic constraint and minimizing the Frobenius criterion and
of those optimizing the modified Frobenius criterion. These simulations show that
the generic geometrical approach developed in this work reaches the state of the art
of specific algorithms.

As illustrated in figure 3, for σ = 1000, F-ob-r often converges toward a good so-
lution, but it fails in 12% of cases. F-ob-` also misconverges in 4.2% of cases. It thus
appears that, on these simulated data, the left-invariant metric is more advantageous
than the right-invariant metric for the Frobenius criterion (8) when the oblique con-
straint is employed. On the other hand, the performance of the algorithms based on
the non-holonomic constraint is consistent. Their convergence in terms of iterations
is, however, usually slower. Thus, the correction applied to the descent direction pre-
sented in section 4.4 allows to obtain the best results with the Frobenius criterion (8)
on these data. The final results obtained with the methods minimizing the modified
Frobenius and log-likelihood criteria (9) and (10) do not depend on the choice of the
metric and constraint. On average, the convergence of the different algorithms is quite
similar for both criteria.

5.2. Real electroencephalographic data. We test our AJD algorithms by
performing the BSS of an electroencephalographic (EEG) recording1 where the subject

1Data taken from subject 11 of a dataset concerning an experiment using the brain-computer
interface [17]. Signals were acquired with 16 electrodes and sampled at 512Hz. For analysis, they were
filtered in the band-pass 1-20Hz and down-sampled to 128Hz. Full details on data and preprocessing
can be found in [18].
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has to focus on a particular target among a set of displayed objects that randomly
flash in predefined sequences. These data comprise two classes (target and non-target)
depending on whether a given flash concerns the target or not. Such experiment is
a typical visual odd-ball paradigm where event-related potentials are evoked. To
perform the blind source separation of a set of mixed signals through AJD, the choice
of the matrices to be jointly diagonalized is crucial and significantly influences the
results; see e.g. [15] for an overview. In this work, we construct the set of matrices
following the method proposed in [20], which is adapted to the analysis of EEG signals
containing event-related potentials. We take the two covariance matrices of the means
of the signals of the two classes along with the 20 Fourier cospectra between 1-20Hz
with 1Hz resolution. We thus have a set of 22 matrices of size 16× 16 to diagonalize.

Compared to the previous example on simulated data, there is no ground truth
to validate and compare the obtained results. First, we perform a general pair-wise
comparison by means of the index

ĨM-A = (IM-A(BB̂−1) + IM-A(B̂B−1))/2,

which estimates the similarity between the results B and B̂ of two methods. ĨM-A is a
measure in [0, 1] with zero indicating equivalent solutions. The three following groups

contain methods that yielded identical within-group results (ĨM-A < −50 dB in all
pair-wise comparisons): (i) F-ob-` and F-ob-r; (ii) the four algorithms based on the
modified Frobenius criterion (9); (iii) the four algorithms based on the log-likelihood
function (10). The other results show that the indexes of F-nh-` compared to F-ob-`

and F-ob-r is −18.5 dB in both cases, while ĨM-A is comprised between −15.7 and
−14.7 dB for all remaining pair-wise comparisons of algorithms based on the Frobenius
and modified Frobenius criteria (8) and (9). Finally, the indexes ĨM-A between the
four log-likelihood algorithms and the others are in the range [−8.3,−8] dB. We can
thus distinguish five groups of solutions with this index: F-ob-` and F-ob-r; F-nh-`;
F-nh-r; the four modified Frobenius algorithms; the four log-likelihood algorithms.

Then, we examine the event-related potential sources obtained with the different
methods, which are shown in figure 4. Source s1, which is retrieved by all algorithms,
appears to be the most discriminative source between the two classes. It explains most
of the variance in the mean event-related potential of the target class and is located
near the visual cortex. Source s2, only found by methods based on the log-likelihood
criterion, is located around central electrode Cz and active in both conditions. Its
localization and its mean in the non-target condition are similar to those of source s4,
which is found by algorithms based on the modified Frobenius criterion and F-nh-r.
Source s4 seems to be decomposed into the two sources, s5 and s6, found by methods
F-ob-`, F-ob-r and F-nh-`. Finally, another plausible event-related potential source
appears to be s3, which is more frontal and obtained with all algorithms based on the
Frobenius and modified Frobenius criteria. We thus have obtained three groups of
solutions: those obtained by F-ob-`, F-ob-r and F-nh-` (s1,s3,s5,s6); those obtained
by F-nh-r and algorithms based on the modified Frobenius criterion (s1,s3,s4); and
those obtained by methods based on the log-likelihood (s1,s2).

5.3. Summary on numerical results. These preliminary numerical illustra-
tions lead us to several observations concerning our optimization framework for AJD.
First, solutions obtained with the modified Frobenius and log-likelihood criteria, which
share the diagonal scaling invariance property, appear not to be influenced by the
choice of the metric and constraint both on simulated and real EEG data. Simulated
data showed that the choice of the constraint can influence the optimization of the
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Fig. 4. Projection of the mean for each class (target - TA and non-target - NT) of six plausible
event-related potential sources retrieved by the algorithms on selected electrodes alongside their nor-
malized spatial distribution on the scalp. Source s1 is obtained with all algorithms; s2 is retrieved
with algorithms based on the log-likelihood; s3 is obtained with all methods relying on the Frobenius
and modified Frobenius criteria; s4 comes from algorithms optimizing the modified Frobenius crite-
rion and F-nh-r; s5 and s6 are retrieved with algorithms F-ob-`, F-ob-r and F-nh-`. We checked that
the values of spatial and temporal correlations of sources commonly obtained by different methods
are above 0.99.

Frobenius criterion and that the non-holonomic constraint seems more advantageous
in this case. On real data, the choice of the metric yields different results for the
Frobenius criterion with the non-holonomic constraint. However, these results may
be specific to the considered data and deserve further study before coming to con-
clusions on these applications. This is beyond the scope of this paper, which aim
is to present an unified optimization approach along with all necessary geometrical
ingredients.

6. Conclusions and perspectives. In this work we have developed a unified
Riemannian optimization framework for AJD constructed directly from the general
linear group and handling the two standard oblique and non-holonomic constraints.
As our formulation is general, it can be used with any AJD objective function (provid-
ing only its Euclidean gradient) and with a large panel of Riemannian gradient-based
optimization algorithms.

We have endowed the general linear group with two metrics (left- and right-
invariant), which have opposite interests and drawbacks. The left-invariant metric,
whose use is original in this context, suits well the structure of the AJD solution and
enabled us to define a proper Riemannian quotient manifold for the non-holonomic
constraint. On the other hand, the right-invariant metric has a natural link with
the structure of the AJD model, but leads to a non-Riemannian quotient manifold
for the non-holonomic constraint. We formalized previous works and developed new
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tools beyond Riemannian optimization to obtain algorithms properly defined on the
quotient.

This work opens perspectives of research, including mathematical questions on
optimization in this context (such as geodesical convexity of the considered AJD cri-
teria) and application or generalization to related problems (e.g., independent vector
analysis [24], joint independent subspace analysis [25], bilinear BSS [19]).
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