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The design of multifunctional materials able to both selectively deliver a drug into cells in a 

targeted manner and display an enhanced propensity for biodegradation is an important goal. 

Here, graphene oxide (GO) is functionalized with the chemotactic peptide N-Formyl-

Methionyl-Leucyl-Phenylalanine (fMLP) known to interact with the formyl peptide receptor 

(FPR), which is expressed in different cancer cells, including cervical carcinoma cells. This 

study highlights the ability of GOfMLP for targeted drug delivery and cancer cell killing and 

the subsequent degradation capacity of the hybrid. Biodegradation is assessed by Raman 

spectroscopy and transmission electron microscopy (TEM). The results show that GOfMLP is 

susceptible to a faster myeloperoxidase (MPO) mediated degradation. The hybrid material, 

but not GO, is capable of inducing neutrophil degranulation with subsequent degradation, 

being the first study showing inducible neutrophil degradation by the nanomaterial itself with 

no prior activation of the cells. In addition, confocal imaging and flow cytometry using HeLa 

cells demonstrate that GOfMLP is able to deliver the chemotherapeutic agent doxorubicin 

faster into cells, inducing higher levels of apoptosis, when compared to non-functionalized 
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GO. Our results reveal that GOfMLP is a promising carrier able to efficiently deliver anti-

cancer drugs, being endowed with the ability to induce its own biodegradation.  

 

1. Introduction 

Novel drug delivery strategies for cancer therapy are receiving considerable attention.[1–3] In 

particular, the design of site-directed (targeted) drug delivery systems that can concentrate a 

higher amount of drug in the tumor area, inducing less side effects for healthy tissues, is at the 

forefront of research. Among targeted release systems, platforms with nano-sized dimensions 

have exhibited great potential in biomedical applications.[4–6] More specifically, graphene-

based materials (GBMs) have been extensively studied in this context.[7,8]  

Graphene is a single-layer sheet of sp2 hybridized carbon atoms with unique physical and 

chemical properties.[9] The large family of GBMs shares this planar structure but have 

differences in size, thickness and oxidation state.[10] Among them, GO is certainly the most 

studied for biological applications, particularly in drug and gene delivery.[11,12] This is not 

surprising taking into account its high dispersibility in water,[13] and its surface chemistry, 

which provides an excellent capability to graft a large number of substances such as metals, 

fluorescent probes or drugs, among others.[14] On the other hand, the possible persistence of 

GO in the body raises doubts regarding the successful use of GBMs in clinical practice. 

However, we and others have shown the degradation ability of carbon nanomaterials 

incubated with different peroxidases.[15–18] In addition, previous studies demonstrated in vivo 

degradation.[19] 

GO has also been evidenced as one of the most favorable GBMs to be used as a platform for 

cancer therapy.[20] Nevertheless, only a few works involve targeting ligands that recognize 

specific receptors on the tumor cell surface.[21,22] For instance, Sun et al.[23] covalently 

conjugated the B-cell specific antibody Rituxan (anti-CD20) to GO to selectively recognize 

and bind to B-cell lymphoma. Another example is the multi-functionalized GO synthesized by 
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Yang et al.[24] In this case, folic acid was used as the targeting ligand, and the results showed 

the potential of the hybrid to specifically transport the drug (i.e. doxorubicin) to SK3 cells. 

The peptide N-Formyl-Methionyl-Leucyl-Phenylalanine (fMLP)[25] is an important 

chemoattractant molecule, which interacts with the formyl peptide receptor (FPR), expressed 

on immune cells[26,27] and in different cancer cells, including cervical carcinoma cells.[28] 

Moreover, fMLP (in combination with cytochalasin B) has been used in previous studies on 

the degradation of carbon nanotubes and GBMs[29,30] due to its potential to activate 

neutrophils leading to degranulation and release of granule proteins such as myeloperoxidase 

(MPO).  

In the present study, with the aim to prepare a “smart”, targeted and biodegradable GO-based 

platform for drug delivery, we studied the effect of the functionalization of GO with the 

chemoattractant peptide fMLP. The hybrid obtained is a highly targeting nanomaterial able to 

efficiently deliver doxorubicin (DOX) in HeLa cancer cells and to self-stimulate the immune 

system to accelerate its biodegradation after its therapeutic action. We believe that the 

strategy described in this paper will be a reference for future studies of targeted drug delivery 

with translation in vivo. 

2. Results and discussion 

2.1. Synthesis and characterization 

Targeting ligands are often employed in nanomedicine, as the passive accumulation in the 

tumor area due to the enhanced permeability and retention effect does not guarantee specific 

uptake by tumor cells.[31] To improve cancer cell specific uptake of our nanocarrier, we have 

covalently attached the chemoattractant peptide fMLP to GO (GOfMLP). This peptide may 

target the cognate receptor, FPR on cancer cells. fMLP is also known to activate neutrophils, 

and may thereby serve to trigger the release of MPO.[29,30] Therefore, we hypothesized that the 

degradation ability of GOfMLP would be enhanced while also serving to direct the hybrid and 

its cargo to cancer cells. 
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The synthesis of GOfMLP was carried out using a GO, with lateral sizes in the range of 

600±300 nm,[12,32] as the starting material in a two-step protocol (Figure 1). The first step 

consisted on the formation of the GOTEG intermediate by the covalent functionalization of 

the surface of GO with 2,2′-(ethylenedioxy)bis(ethylamine) (diamino-TEG) in deionized 

water (Figure 1a).[33] In the second step, fMLP peptide was covalently anchored to the GO 

surface through the TEG free amino groups, via a carbodiimide-mediated amidation (Figure 

1b). 

Different techniques have been used to characterize the covalent functionalization of the GO 

surface with the peptide (Figure S1). The Kaiser test confirmed the presence of free amino 

groups on the GOTEG intermediate (268 µmol/g). After fMLP binding to GOTEG, the 

obtained Kaiser test value decreased, leaving 118 µmol/g of unreacted amino groups. In 

addition, thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR) 

spectroscopy and X-ray photoelectron spectroscopy (XPS) corroborated fMLP conjugation 

(Figure S1). Full organic fMLP started degrading at 220 ºC (Figure S1a). The 

thermogravimetric curve of GO resulted in a main weight loss that initiates around 200 ºC due 

to the decomposition of labile oxygenated moieties (Figure S1a).[12]  The curve obtained from 

GOfMLP showed an additional weight loss around 300 ºC (Figure S1a), indicating the 

presence of  different and more stable functional groups and bonds in the hybrid compared to 

GO (Figure S1a). The final weight losses obtained at 600 ºC for GO and GOfMLP are 43.6 % 

and 50.2 %, respectively, indicating for the latter the thermal degradation of the linked peptide 

moiety. FTIR spectra were also carried out (Figure S1b and S1c), and confirmed the existence 

of OH and NH2 (~3400 cm-1), CH2 (~3000 cm-1), C=O (~1700 cm-1), and C=C (~1600 cm-1) 

functional groups,[33] which are present in the structure of the three compounds. However, in 

the case of GOfMLP spectrum, the rise in the band assigned to C-N stretch (~1011 cm-1) 

demonstrated an increase in the number of amino groups in GOfMLP conjugate compared to 

GO or GOTEG. In addition, the FTIR spectrum of GOfMLP revealed a new peak compared 
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to the spectrum of GOTEG, due to the appearance of the characteristic amide stretching at 

~1650 cm-1,[23] verifying the amide bond formation between GOTEG and fMLP. Finally, 

Figure S1d and S1e show the results obtained from the XPS analysis. A slight increase in the 

value of sulfur content was observed in the case of GOfMLP (0.9 ± 0.09%) compared to non-

functionalized GO (0.71 ± 0.01%), confirming the presence of the peptide in the GOfMLP 

hybrid. The yield of the process was ~56%. 

2.2. In vitro biodegradability 

Although carbon nanomaterials have been postulated as being structurally persistent, various 

studies have recently demonstrated that peroxidases are able to catalyze the oxidative 

degradation of some nanostructures.[30,34,35] On the other hand, though a few articles have 

investigated both biodistribution and tumor targeting ability,[36] the nano-carrier 

biodegradation capacity has not been thoroughly investigated. Prior to any clinical trial, the 

fate of any nano-carrier and its eventual persistence in the body must be addressed.[37–39] 

Having conjugated fMLP to the surface of GO, the next objective of our work was to assess 

the biodegradation capacity of GOfMLP. For this purpose, we carried out the degradation 

experiments by incubating GOfMLP with human MPO, an enzyme that is found in high 

abundance in neutrophils and is secreted when these cells encounter pathogens.[40] The 

degradation reaction was carried out in phosphate buffer solution at 37 ºC for 24 h. The 

enzyme was replenished every 5 h and H2O2 was added every hour to maintain the same 

catalytic activity throughout the experiment.[15,30] Non-functionalized GO was used as the 

control to test the role of the peptide moiety in the biodegradation process. The first evidence 

of degradation was the change in the color intensity of both GO and GOfMLP suspensions 

after 24 h of incubation with the enzyme (Figure S2). The variation in the color of the 

dispersions has been previously reported as a clear sign of biodegradation.[29,41]   

Kagan et al.[29] demonstrated that the incubation of human MPO with carbon nanotubes, 

without H2O2, did not inactivate the enzyme. Therefore, we decided to analyze the interaction 
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of MPO with the surface of both GO and GOfMLP sheets by polyacrylamide gel 

electrophoresis (Figure S3). MPO was incubated with both nanomaterials separately at room 

temperature for 24 h before the electrophoresis. Densitometric analysis of the resulting gel 

bands was quantified by ImageJ software. The analysis showed a decrease in the intensity of 

the gel bands corresponding to the enzyme incubated with the GO and GOfMLP compared to 

the control (MPO alone). Values of 89.13 ± 4.75% and 85.85 ± 5.85% of band intensities 

were obtained for GO and GOfMLP, respectively, assuming 100% of band intensity for MPO 

alone used as control (a molecular weight ladder was also run for reference). This result 

pointed out that MPO binds both GO and GOfMLP, reducing the amount of protein migrating 

into the gel. 

To investigate the changes in the structure and the morphology of the GOfMLP and GO 

sheets after incubation with MPO, TEM analysis at different time points was carried out. 

Figure 2 shows the morphology of GO and GOfMLP sheets after 24 h of incubation, in 

absence/presence of MPO. In the case of control samples, a homogeneous and regular sheet 

structure was found for both nanomaterials. In contrast, porous GO and GOfMLP sheets were 

observed when samples were incubated with MPO, in agreement with previous studies.[15,29,30] 

This result confirmed the degradation capacity of both GO and GOfMLP samples. It is 

noteworthy that after 24 h, only a partial degradation had taken place and the holes observed 

in the flakes were not uniformly distributed in all sheets. Indeed, after the incubation in the 

presence of MPO, two different sets of sheets were observed: (I) some sheets which have not 

been completely degraded, and other sheets (II) that clearly showed extensive damage on the 

surfaces due to degradation. 

Raman spectroscopy was also used to investigate the degradation process of the GO and 

GOfMLP structures (Figure 3). The main features in the Raman spectra of carbon materials 

are the so-called D and G bands, which correspond to disordered carbon and to the sp2 

tangential mode, respectively. The D band appears at ~1350 cm-1 and the G band arises at 



  

7 

 

~1600 cm-1.[42] Both bands are clearly visible in the average spectra from the control samples, 

which were incubated in the absence of MPO (Figure 3). However, it is known that both 

Raman features become less intense when the carbon nanomaterial undergoes degradation due 

to the progressive loss of the native structure.[29,30] The intensity of both D and G bands was 

significantly reduced in GO and GOfMLP, after 24 h of enzymatic reaction compared to the 

control samples. Nevertheless, the degradation of GO and GOfMLP is not uniformly 

distributed. As in the case of the TEM analysis for the morphological characterization, two 

classes of Raman spectra are displayed (Figure 3). The first series of spectra (I) were similar 

to the control ones, presenting well defined D and G bands, and corresponding to the sheets 

that were not degraded. On the other hand, in a second set of spectra (II) the intensity of the 

main peaks was drastically decreased, corresponding to the damaged sheets due to the 

oxidation/degradation of the nanomaterial. ID/IG intensities were also calculated from every 

average spectrum in order to quantify the number of defects (Figure S4). The GO average 

spectrum displayed an ID/IG of 0.66. However, the average spectrum corresponding to the D 

and the G band intensities from the degraded GOfMLP sample reached the baseline, 

suggesting a faster and more efficient degradation compared to GO. A conceivable 

explanation could be the possible better interaction of the fMLP moiety with the enzyme 

compared to the non-functionalized GO (Figure S3). The ID/IG value for both controls and 

non-degraded sheets, was 1.03 in all cases. The decrease in ID/IG in the case of the 24 h-

treated GO sample showed the formation of more amorphous carbon structures or sp2 non-

crystalline carbon phase. This latter degradation pathway could be due to a higher defect 

density as it has been previously reported.[15,42] 

2.3. Inducible neutrophil degradation 

To evaluate the biodegradation under physiological conditions, we isolated primary 

neutrophils from human donors. Cell viability of neutrophils exposed to GO and GOfMLP 

was determined using the Alamar blue assay. Both GO and GOfMLP displayed some toxicity 
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at 3 h of incubation with the cells, with 78% and 69% viability, respectively, at the highest 

concentration (Figure 4a). It is important to note, however, that neutrophils are programmed 

to undergo cell death, unlike transformed cell lines.[43] We then assessed for MPO release in 

GO and GOfMLP exposed cells by performing staining of the cells using FITC-conjugated 

MPO-specific antibodies.[29] Upon degranulation, MPO is released from the cells and can be 

detected following its attachment on the cell surface. Cells incubated with fMLP+cytochalasin 

B (CB) (known to cause degranulation) were included as a positive control. GOfMLP caused 

a clear increase in MPO expression corresponding to ~1.4 fold increase in fluorescence 

(Figure 4b). In the presence of fMLP+CB, we observed a 3 fold increase in fluorescence in 

comparison to the control. It is worth noting that we used 10 nM fMLP as a positive control 

while 50 μg·mL-1 of GOfMLP corresponds to approx. 50% of this amount of fMLP. This may 

explain the differences observed between GOfMLP and fMLP+CB. Moreover, once MPO is 

released, it is likely that at least some fraction is adsorbed onto the surface of the GOfMLP 

hybrid. Importantly, GO alone did not trigger any MPO expression. 

Our previous reports have demonstrated that neutrophils are capable of enzymatic degradation 

of various carbonaceous nanomaterials.[29,30,41,44] Indeed, we recently reported that neutrophils 

are capable of mediating biodegradation of GO upon ex vivo activation of the cells with 

fMLP+CB.[41] Here, freshly isolated primary human neutrophils were incubated with GO and 

GOfMLP in the absence of fMLP and CB. The samples were then subjected to Raman 

confocal microspectroscopic analysis. The results obtained showed that the characteristic 

feature of GO, i.e., the intensity of the D band (~1350 cm-1) and of the G peak band 

(~1590cm-1) remained unchanged at the indicated time points for non-functionalized GO 

(Figure 5a). Thus, the GO average spectrum displayed an ID/IG of ~1 similar to the control 

spectra. On the other hand, in the GOfMLP treated samples we observed that at 3 h and 6 h, 

the peak intensities were drastically reduced in comparison to control, suggesting 

biodegradation of GOfMLP (Figure 5b). Since fMLP has been used in previous studies on the 
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degradation of GBMs[29,30] due to its potential to activate neutrophils leading to degranulation 

and release of granule proteins such as MPO, the fMLP moiety anchored to the GO surface 

could be the responsible of the GOfMLP biodegradation due to a higher MPO secretion 

compared to the one of the GO exposed cells. Overall, these results showed that primary 

human neutrophils can rapidly degrade GOfMLP, which is in line with the observation that 

GOfMLP, but not GO, is capable of triggering MPO release in these cells.  

2.4. Drug loading/release studies 

After confirming the biodegradation capacity of our system, we decided to test the ability of 

GOfMLP as a nano-vehicle for drug delivery. DOX is a well-established anticancer drug[45] 

and the supramolecular stacking of this drug on carbon-based nanomaterials for biomedical 

applications has been extensively investigated (Table S1). In this context, we chose DOX 

mainly due to its easy adsorption onto GO surfaces via hydrogen bonding and electrostatic 

interactions, its efficacy in cancer treatment and its spectrophotometric and fluorescent 

properties, which allow its tracking and quantification by several spectroscopic techniques.  

A quantitative study was carried out to determine the drug loading on GO and GOfMLP. The 

physisorption of the drug was studied at different DOX:nanomaterial (DOX:NM) ratios, in 

order to find the maximum drug loading capacity whilst preventing drug wastage. GO and 

GOfMLP were dispersed in PBS (at 0.1 mg/mL) and then stirred in the presence of DOX at 4 

ºC for 24 h in the dark. Different DOX:NM ratios (mg:mg), from 0.25 to 2, were tested. The 

resulting complexes were collected and washed by centrifugation (4 ºC, 8000 rpm) until the 

supernatant was clear. The amount of unbound DOX in the solution was determined by high-

performance liquid chromatography (HPLC), measuring the absorbance at 483 nm. Figure S5 

displays the percentage of DOX bound to both GO and GOfMLP at different ratios. DOX:NM 

= 0.25 was deemed the best condition for preparing GO-DOX and GOfMLP-DOX 

conjugates. The DOX percentage was higher for GO than for GOfMLP. Indeed, the drug 

loading contents resulted in 0.18 mg of DOX per mg of GO and 0.09 mg of DOX per mg of 
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GOfMLP. These values are in agreement with other previously reported DOX loading 

contents for GO.[46] We believe that a possible steric hindrance, exerted by the peptide, and a 

less available surface in GOfMLP are the reasons for the decrease in the amount of bound 

DOX obtained for the peptide-based hybrid compared to non-functionalized GO. In fact, the 

crucial role of the GBM surface chemistry has been previously reported,[10] and it is crucial to 

control and characterize the functional groups which are present in each GBM to compare 

their behavior patterns, including as drug delivery systems. 

In order to ensure that DOX will be released from the nanomaterial platform once it is inside 

the cells, we carried out preliminary test tube experiments. The mechanism of release has 

been described as a pH-dependent decomplexation of DOX from GBMs due to the partial 

protonation/deprotonation of the six-membered daunosamine sugar.[37] In fact, this would be 

intracellularly crucial because the drug remains complexed to the nanomaterial until the 

conjugate enters into the endosome, where the pH is acidic, leading to the protonation of the 

amino groups. Subsequently, the interaction between DOX and the carrier is weakened and, 

consequently, the drug is released. The drug release profile of GO-DOX and GOfMLP-DOX 

was evaluated in PBS solutions at both physiological (pH=7.4) and acidic (pH=5.0) 

conditions (Figure S6). The samples were incubated at 37 ºC whilst stirring at 300 rpm and 

aliquots were taken at different time points to quantify the DOX release. According to the 

literature, a higher amount of DOX is released at an acidic pH compared to a neutral pH. The 

release in acidic conditions was ~3 times higher for GOfMLP, likely caused by a lower 

affinity of the drug for the surface of the peptide-modified GO and, in consequence, due to the 

characteristic and different GO and GOfMLP surface chemistries. Both platforms showed a 

bimodal release profile. Hence, an initial burst of the drug was observed within 1 h followed 

by the extended release segment liberating the drug over the following 23 h. A very slow 

release of the drug (~1-2% of the drug per day) was detected after a week (data not shown). It 
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is noteworthy that the gradual release of the drug could help in overcoming its toxic effects by 

avoiding unwanted DOX delivery before reaching the site of interest.  

2.5. In vitro cellular uptake studies 

The final goal of this work was to evaluate the ability of GOfMLP to specifically deliver 

DOX into cancer cells. To track and estimate the DOX release in vitro, we initially carried out 

confocal microscopy analyses. Free DOX can be easily observed via confocal microscopy 

exciting at 561 nm and recording at 600-660 nm. Although DOX adsorbed onto the GO 

surface is strongly quenched, free DOX molecules are visible in this range of wavelengths.[46] 

For this set of experiments, HeLa cells were incubated at the equivalent concentration of 

DOX (10 µM) using GO-DOX, GOfMLP-DOX and DOX alone as control. In cells treated 

with the drug alone, DOX was internalized after 8 h of incubation and localized mainly inside 

the nucleus (Figure 6). Free DOX treatment showed the highest intensity, due to its efficient 

internalization in cells in a short time. GO-DOX showed a negligible drug internalization, 

meanwhile a higher presence of DOX was recorded in the GOfMLP-DOX complex. Confocal 

microscopy was also used to estimate the quantity of DOX inside the nucleus. For this 

purpose, unstained HeLa cells were treated with the same amount of DOX (10 µM) in all 

formulations. DOX quantification was estimated after 8 h of incubation using FIJI software 

according to the literature (Figure 7).[47] 

The treatment with free DOX showed the highest internalization of the drug inside the 

nuclei, and this value was designated as 100% taking into account that there are no diffusion 

barriers regarding desorption from the graphene-based platform (Figure 7a). GOfMLP-DOX 

showed a significantly higher drug signal than GO-DOX (Figure 7b and c, respectively). 

Densitometric analysis of the images showed that GO and GOfMLP delivered 9  8% and 30 

 12% of the drug, respectively, into the nuclei compared to the DOX alone (100  27%) 

(Figure 7d). Overall, based on our confocal microscopy characterization, as expected, free 

DOX treatment is able to assure the maximum quantity of DOX in the nuclei. Meanwhile, the 
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GOfMLP-DOX is able to deliver three times more drug than GO-DOX. As mentioned before, 

DOX is a soluble drug that is rapidly internalized in HeLa cells. In the latter case, DOX 

release is determined by the desorption process of the drug molecules from the carbon 

nanomaterial surface. The interaction between DOX and the GO surface is stabilized mainly 

via electrostatic interactions and hydrogen bonding.[48] As observed in the release profiles 

(Figure S6), DOX desorption is negligible at neutral pH and is triggered in an acidic 

environment.[48] We think that most of the DOX is released inside of the lysosomes where the 

low pH turns on the drug desorption. Compared to non-functionalized GO, GOfMLP 

undoubtedly showed better DOX release features and this is most probably due to the peptide 

functionalization modifying its surface chemistry. The presence of the fMLP moiety on one 

side reduces the loading efficiency of the material (as seen in the drug loading values) but on 

the other hand may help to enhance the drug release profile in the adequate biological 

environment (Figure S6). In addition, fMLP can be recognized by the membrane FPR 

receptor in HeLa cells, probably enhancing the GOfMLP internalization in this cancerous cell 

line, making it an extremely interesting targeting carrier. Conjugation of DOX with a 

biospecific targeting graphene oxide slows down its release profile in vitro and could improve 

the pharmacokinetic behavior of the drug in future clinical trials. 

2.5. Cancer cell killing 

By functionalizing GO with the fMLP peptide, we were able not only to modify its 

physicochemical properties as a drug delivery system for DOX, but also its uptake by HeLa 

cells and the intracellular release of the drug. This change in the surface chemistry of the GO 

likely affects the efficiency and toxicity of the complex compared to the unmodified GO and 

the free drug. The cytotoxicity of both DOX loaded nano-carriers was evaluated through the 

degree of cell survival by flow cytometry using the standard assay with a violet fixable 

viability dye (FVD) and an annexin V-FITC assay for the detection of apoptotic cells. The 

analysis of cytotoxicity after 8 h of incubation with the nanomaterials showed that viability 
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was not significantly reduced by the treatments (Figure 8a). After 24 h of incubation, a dose-

response effect in the viability of cultured HeLa cells was observed (Figure 8c). 

Corroborating the internalization pattern observed by confocal microscopy, GO-DOX and 

GOfMLP-DOX affected cell survival less than DOX alone. Nevertheless, GOfMLP-DOX 

exhibited a significant 10% increase in toxicity compared to GO-DOX. These results were 

also confirmed by evaluating the number of apoptotic cells with annexin V-FITC.[49] The 

levels of phosphatidylserine (PS) detected were low in every treatment group at 8 h of 

incubation with a noticeable increase at 20 µM of DOX alone (Figure 8b).The annexin V 

staining results are in accordance with the faster internalization pattern of the soluble drug 

observed previously by confocal microscopy, compared with the DOX loaded onto the 

delivery platforms. After 24 h, all cells treated with free DOX are positive for annexin V 

staining while a dose response effect is observed in the groups treated with the DOX loaded 

nanomaterials (Figure 8d). Compared to non-functionalized GO, GOfMLP showed a 20% 

improvement in triggering apoptosis in HeLa cells. As the tumor cell killing is rather rapid, 

this anticancer action is likely compatible with the subsequent biodegradability that 

neutrophils or macrophages can exert following the recruitment and activation of these cells. 

In order to support the higher drug delivery to cancer HeLa cells by GOfMLP-DOX mediated 

by fMLP in this cell line, we investigated if the internalization mechanism for GOfMLP was 

favored by FPR receptor. For this set of experiments, we incubated HeLa cells with 

GOfMLP-DOX in the absence and in the presence of fMLP (0.5 mg/mL) and EDTA (10 µM) 

in order to saturate the receptor with the peptide and sequester the calcium with EDTA, 

inhibiting Ca2+ responses, and consequently the activity of kinase proteins involved in the 

mechanism.[50,51] After 24 h of incubation, we washed the cells and rinsed with fresh media. 

GOfMLP-DOX was able to efficiently deliver DOX into HeLa cells. Besides when excess of 

free peptide is present into the media doxorubicin is not delivered intracellularly (Figure S8). 

This finding suggests that DOX is scarcely released in cell culture media and that the 
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GOfMLP uptake mechanism is favored by FPR receptor. These data agree with different 

studies using graphene oxide-based platforms for DOX delivery in vitro, where it was 

observed a decrease of viability between 20-50% after exposure to drug concentrations 

around 20 µM for 24 h.[52–54] Nevertheless, we would like to underline the differences 

regarding the physicochemical characteristics of the carriers, their specific functionalization 

targeting different ligands on cell membranes or the differences in drug sensitivity according 

to the cell line used in the different studies. 

3. Conclusion 

In summary, we have prepared a GO-peptide adduct with both biodegradability and targeting 

drug delivery features. The resulting hybrid, GOfMLP, was well-characterized and its 

degradation capacity was confirmed by TEM and Raman. Hence, the hybrid, with sub-micron 

lateral dimensions, displayed biodegradability in vitro using human MPO as well as inducible 

degradation ex vivo upon incubation with human neutrophils. It should be noted that, the 

pharmacokinetics, the biodistribution and the drug delivery efficiency of other systems based 

on GO, with comparable size dimensions, have been previously reported in the literature.[55,56] 

It is also noteworthy that the addition of the peptide-based moiety to the GO surface did not 

interfere with the oxidation/degradation process. Moreover, GOfMLP was able to trigger 

neutrophil release of MPO with subsequent degradation, while this was not seen for GO. 

Previous studies have shown that GO may undergo neutrophil degradation when the cells are 

pre-activated.[41] However, this is the first study showing inducible neutrophil degradation by 

the nanomaterial itself (no prior activation of the cells). It is important to note that 

exaggerated neutrophil degranulation may lead to tissue damage.[57] Further work using 

relevant in models is needed to determine the safety profile of GOfMLP. Furthermore, 

GOfMLP loaded with doxorubicin was able to bind to the cell membrane, very likely through 

the FPR receptor, and to enhance drug internalization in the cancer cells compared to GO. The 

specific interaction between the material and the cells allowed a significant improvement in 
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different variables, such as faster recognition and internalization by the cells, more efficient 

release of the drug in subcellular acidic environment, a 3 fold increase in the drug delivered 

into the nucleus, and higher cytotoxic effects and apoptosis levels on the cells. Furthermore, 

the versatility of the synthetic strategy makes it possible to design tailored GO conjugates for 

other receptors of interest. Altogether, these results demonstrate that the prepared ad hoc 

functionalized GO is a powerful biodegradable platform for drug delivery.  Our results on 

targeting cancer cells in vitro, together with the rapid biodegradability, make GOfMLP a 

highly interesting candidate for future studies on cancer therapy. 

4. Experimental Section  

Materials: 1-Ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (EDC∙HCl), N- 

hydroxysuccinimide (NHS), diethylenetriaminepentaacetic acid (DTPA), DOX and 2,2′-

(ethylenedioxy)bis(ethylamine) (TEG) were purchased from Sigma Aldrich (Lyon, France). 

PBS (0.0067 M PO4 without calcium and magnesium) was purchased from LONZA 

(Strasbourg, France). Ultrapure water was prepared from a Milli-Q® Direct 8/10 System 

(Millipore). MPO derived from human neutrophils (Athens Research and Technology, 

Athens, Georgia, USA) with an activity of >200 U·mg-1. 

Synthesis of GOTEG: GOTEG was prepared via epoxide ring-opening reaction starting from 

GO.[33,58,59] Diamino-TEG (350 µL) was added to a 17 mL dispersion of GO (1 mg·mL-1).[32] 

The reaction mixture was homogenized and stirred for 3 days at room temperature. After 

centrifugation (5000 rpm, 25 min, 4 ºC), the precipitate was dispersed in H2O, sonicated in a 

water bath for a few minutes and centrifuged. This sequence was repeated until the pH of the 

supernatant was neutral. The functionalized GO was dialyzed against MilliQ water for 3 days 

and then lyophilized.  

Synthesis of fMLP: peptide was assembled using optimized Fmoc chemistry protocols with a 

multichannel peptide synthesizer.[60] Formyl group was coupled using formic acid manually 

with standard conditions (BOP reagent, HOBt, and diisopropylethylamine in 
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dimethylformamide). Side-chain deprotection and cleavage of the peptide from the solid 

support was performed by treatment with reagent K (88% TFA v/v, 2% Triisopropylsilane v/v, 

5% dithiothreitol w/v, 5% water v/v) for 150 min at 20°C. Peptide was purified by reversed-

phase HPLC (RP-HPLC) using a preparative HPLC system (Waters) on a Nucleosil C18 (1×30 

cm) column, (Macherey Nagel). The elution was achieved with a linear gradient of aqueous 

0.1% TFA (A) and 0.08% TFA in acetonitrile (B) at a flow rate of 6 mL·min-1 with UV 

detection at 230 nm. The purity of the peptide was controlled by analytical RP-HPLC on a 

Waters instrument (Waters Alliance) with a Nucleosil C18 5 µm column (150×4.6 mm) using 

a linear gradient of 0.1% TFA in water and acetonitrile containing 0.08% TFA at a flow rate of 

1.2 mL·min-1. The integrity of the peptide was assessed by LC/MS using a Thermo Finigan 

LCQ. Molecular weight calculated/observed: 437/437.8d (Figure S7). 

Synthesis of GOfMLP: to activate the carboxyl groups of fMLP, EDC∙HCl (370 µg, 1.2 eq) 

was added to 700 µg (1 eq) of fMLP, previously solubilized in DMF (5 mL). The mixture was 

stirred at 0 ºC for 30-40 min. Then, 276 µg (1.5 eq) of NHS were added to the mixture and 

this mixture was stirred for 45 min. Finally, 5 mg of GOTEG were added and the mixture was 

stirred at room temperature overnight. After washing the reaction mixture with DMF (3×20 

mL) by filtering it on a polytetrafluoroethylene omnipore membrane filter with 0.45 µm pore 

size, the solvent was exchanged with MilliQ water (5×20 mL), thus obtaining GOfMLP in 

aqueous dispersion.  

Characterization of GO, fMLP and GOfMLP: thermogravimetric analyses of the three 

samples were performed using TGA1 (Mettler Toledo) apparatus from 30 ºC to 800 ºC with a 

ramp of 10 ºC·min-1 under N2 using a flow rate of 50 mL·min-1 and platinum pans. FTIR 

spectroscopy spectra were measured on a Perkin Elmer Spectrum One ATR-FT-IR 

spectrometer. KBr pellets were prepared for each of the three samples. Finally, X-ray 

photoelectron spectroscopy analyses were carried out using a Thermo Scientific KAlpha X-

ray photoelectron spectrometer equipped with an aluminium X-ray source (energy 1.4866 
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keV) and working at pressure of 10−8−10−9 mbar in the main chamber. Three different 

locations of each sample were analyzed. The averages and the standard deviations were 

calculated from the three different scans that were carried out in each sample (GO, fMLP and 

GOfMLP). 

Degradation of GO and GOfMLP by MPO/H2O2: following the protocol of Kurapati et al.,[15] 

mixtures of 160 µg of each nanomaterial and 100 µg of MPO were dispersed in 1 mL of 50 

mM phosphate buffer containing 140 mM NaCl and 100 µM DTPA. H2O2 was added at a 

dose of 200 µM·h-1 for 5 h. MPO was replenished every 5 h and the mixture was incubated at 

37 ºC for 24 h. The control experiments were carried out following the same protocol but with 

adding only H2O2. 

Transmission electron microscopy: six µL of each suspension of GO and GOfMLP were 

dropped on a carbon coated copper grid and dried for 30 min under a lamp. The grids were 

then washed with MilliQ water for 30 min and dried for 24 h before the analysis. All the 

samples were analyzed by a Hitachi H7500 microscope (Tokyo, Japan).  

Raman spectroscopy: ten µL of each suspension of GO and GOfMLP were dropped on silicon 

substrates and dried for 24 h before the analysis. Raman spectra were acquired by using a 

Renishaw inVia microscope equipped with 532 nm laser. A 100× objective lens was employed, 

and the laser power and the exposure time were 1% and 10 s, respectively, in all the 

experiments. All the samples were prepared in the same manner, from the same aliquots, and 

using the same Raman conditions, meaning that the differences between non-degraded (I) and 

degraded (II) set of spectra cannot be due to differences in the concentration, but due to partial 

degradation of both GO and GOfMLP. Different areas of the sample were tested and at least 10 

different spectra were used to represent the average spectra showed in this paper.  

Polyacrylamide gel electrophoresis: MPO was incubated with both nanomaterials separately at 

room temperature for 24 h. Then, Laemmli buffer was added to the mixture and the samples 
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were loaded on a Mini PROTEAN®TGXTM 10% precasted gel (BioRad). The electrophoresis 

was carried out under non-reducing conditions. MPO was used as a control. The gels were 

stained with Coomassie Brilliant Blue R250 and the resulting gel bands were analyzed by 

ImageJ software.[33]  

Neutrophil isolation: neutrophils were isolated from buffy coats of healthy human blood 

donors (Karolinska University Hospital, Stockholm, Sweden) as previously described.[43] The 

samples are completely anonymized and for this reason no specific ethical committee 

approval is required. Briefly, neutrophils were isolated from healthy donors by density 

gradient centrifugation at 423×g for 30 min using Lymphoprep™ (Axis Shield, Oslo, 

Norway) followed by gradient sedimentation in a 5% dextran solution and hypotonic lysis of 

residual erythrocytes. To study degradation, freshly isolated neutrophils (106 cells·mL-1) were 

incubated in phenol red-free RPMI-1640 culture medium (Sigma Aldrich) supplemented with 

2 mM L-glutamine, 100 U·mL-1 penicillin and 100 mg·mL-1 streptomycin without serum and 

incubated in 5% CO2 at 37°C with GO and GOfMLP at 50 µg·mL-1. Freshly isolated 

neutrophils were exposed with GO and GOfMLP at indicated concentrations. Before the 

neutrophils are collected at a specific time point, they were washed with sterile luke-warm 

PBS and centrifuged at 270×g. The cell pellet was collected and re-suspended in PBS and 

stored at -80 °C for further analysis. 

Cytotoxicity assessment: freshly isolated primary human neutrophils were seeded in 96-well 

plates in phenol red-free RPMI-1640 cell medium at a density of 106 cells·mL-1 and exposed 

to GO and GOfMLP at the indicated concentrations, or were maintained in cell medium alone 

(negative control) at 37 °C, in a humidified 5% CO2 incubator. Figure S9 shows the colloidal 

stability of both GO and GOfMLP in distilled water, PBS buffer and cell culture medium, as 

previously reported in the literature for related graphene-based materials.[61–63] Alamar Blue 

(AB) assay was performed for cytotoxicity assessment of the biodegradation samples.[64] AB 

dye was purchased from Thermo Scientific (Sweden). After the exposure period, the AB 
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assay was performed according to the manufacturer's instruction. Briefly, AB reagent (10% 

[v/v] solution) was added to each well. After 2 h of incubation at 37 °C, fluorescence was 

measured at the respective excitation and emission wavelength of 531 nm and 595 nm using a 

Tecan Infinite F200 plate reader. AB solution in the RPMI-1640 cell medium complete 

medium alone was included as blank. The experiment was performed with at least three 

biological replicates and two technical replicates for each concentration of GO and GOfMLP. 

Results were expressed as percentage cell viability versus control. To control for interference, 

the GO and GOfMLP degradation reaction mixture was maintained in cell-free medium and 

mixed with the AB dye; no interference was observed (data not shown). 

Neutrophil degranulation: GO and GOfMLP samples were assessed for the amount of MPO 

release, based on flow cytometric analysis. MPO was stained by fluorescein isothiocyanate 

(FITC)-labeled antibody according to the manufacturer’s instructions (Biolegend, San Diego, 

CA). Briefly, freshly isolated primary human neutrophils were seeded in phenol red-free 

RPMI-1640 cell medium at a density of 106 cells·mL-1 and exposed to GO and GOfMLP at 50 

μg·mL-1. As a positive control, cells were incubated with fMLP (10 nM) and cytochalasin B 

(5 μg·mL-1). All the samples were incubated with 20 µL FITC-conjugated MPO antibody for 

30 min in the dark at room temperature. Samples were analyzed using a BD LSRFortessa™ 

cell analyzer (BD Bioscience, CA). 

Confocal Raman analysis: Raman analysis was performed on samples drop-casted onto a 

glass slide and dried. Raman analysis was performed as previously described[17] using a 

confocal Raman microspectroscopy (WITec alpha300 system, Germany) with a laser of 532 

nm wavelength set at an integration time of 0.5 s and 600× magnification. The scan area for 

each sample was adjusted to 50×50 µm. For determination of the intensities of the D-band 

(second order double resonant mode activated by defects, ∼1354 cm-1) and G-band (tangential 

C–C stretching modes, ∼1582 cm-1). The spectrum of each sample is an average of 10.000 

spectra obtained from a scan size of 50 µm × 50 µm. 
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DOX loading and release profile: DOX loading onto GO and GOfMLP was achieved by stirring 

each nanomaterial dispersion in PBS (0.1 mg·mL-1) at a physiological pH in the presence of the 

drug (4 ºC, 24 h in dark conditions). We tested different DOX:NM ratios (mg:mg), from 0.25 

to 2 (DOX:NM = 0.25 was chosen to prepare GO-DOX and GOfMLP-DOX conjugates for the 

delivery studies).  After mixing overnight, the extra DOX molecules were removed by 

centrifugation (4 ºC, 5938×g) and the pellet was washed thoroughly until the supernatant 

became color-free. The loading content of the drug (mg DOX loaded:mg NM) was quantified 

by measuring the absorbance of the supernatants at 483 nm by analytical RP-HPLC with a 

Nucleosil 100-5 Waters C18 reverse phase HPLC column and a Waters Alliance e2695 

separation module. The column was used with 1.2 mL·min-1 flow rate of a gradient from 5 to 

65% of B (A = H2O/0.1% TFA; B = CH3CN/0.08% TFA) for 20 min, according to the standard 

calibration curve of free DOX. The obtained GO-DOX and GOfMLP-DOX were redispersed 

in PBS (0.1 mg·mL-1, according to the initial concentration of NM) at two different pHs 

(pH=7.4 and pH=5.0) for subsequent tests of DOX delivery. Then, both complex dispersions 

were incubated at 37 ºC under oscillation at 300 rpm by using an Eppendorf ThermoMixer® 

instrument to induce drug release. This cycle was repeated at specific time points to calculate 

the cumulative weight and relative percentage of the released DOX as a function of incubation 

time.   

Cancer cell culture: HeLa (human cervical adenocarcinoma) cells were cultured as mono-

layers in Dulbecco’s modified Eagle medium supplemented with 10 µg·mL-1 gentamycin 

(Lonza BioWhittaker), 10 mM HEPES (Lonza BioWhittaker), 0.05 mM β-mercaptoethanol 

(Lonza BioWhittaker) and 10% FBS, in a humidified incubator (37 °C, 5% CO2). The cells 

were purchased from ATCC at passage 4 and were kept in liquid nitrogen until use. For cell 

killing experiments, cells were seeded in 12-well plates (1×105 cells/well, 1 mL/well). The 

formulations were diluted in the cell culture media at different concentrations and 
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subsequently cells were exposed for 8 or 24 h to the treatments. HeLa cells were also 

incubated with GOfMLP-DOX in the absence and in the presence of fMLP (0.5 mg/mL) and 

EDTA (10 µM). After 24 h of incubation, the cells were washed and rinsed with fresh media. 

For confocal microscopy, the cells were seeded in 8-well chamber slides (Thermo Scientific) 

(1×104 cells/well, 500 µL/well). Cells were left to grow until 70-80% confluency and were 

subsequently exposed for up to 24 h. 

Cancer cell killing: cell viability was determined by flow cytometry using the standard assay 

with FVD (Fixable Viability Dyes, violet, Invitrogen), either 8 or 24 h after exposure to the 

materials. The supernatant was aspirated and discarded and the cells were washed twice with 

PBS. Cells were detached from the plates using a solution of 0.25% Trypsin/0.53 mM EDTA. 

The cells were washed with PBS, 2% FBS and then were incubated (20 min, 4 °C) with the 

dye (dil. 1:2000). To evaluate their apoptotic state, the cells were stained with annexin V 

labeled with FITC (556419, BD Bioscience) as per the instructions from the supplier. 

Thereafter, the cells were washed with PBS, 2% FBS and resuspended in 300 µL, and 

immediately acquired on the cytometer (Beckman Coulter, Fullerton, CA). At least 10000 

cells were counted for each sample, and experiments were performed in triplicates. Flow 

cytometry data were generated using FlowJo software (FlowJo LLC, software version 7.6.5. 

Ashland, OR, USA). Cell viability (%) was calculated as [(A/B)×100], where A and B are the 

number of dead cells of treated and control cells respectively. Values represent mean ± SD (n 

= 3). 

Cell uptake studies: confocal images have been captured with a Microscope Zeiss Axio 

Observer Z1 Confocal Spinning disk equipped with 63 or 100× oil objective and 40× for 

quantification. Green Cell-Mask was recorded using 488 nm laser and recording in the green 

channel (505-555 nm), while DOX was recorded using 561 nm laser in the red channel (600-

660 nm). Images have then been treated with FIJI software. For quantification, Region Of 
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Interest (ROI) analysis was applied. ROIs have been selected accordingly for each cell. The 

intensity average has been calculated after blank subtraction. 

Statistical analysis: all statistical analyses were performed using the Graph-Pad Prism 7 

software (San Diego, CA, USA). Details of the data analysis used are explained in GraphPad 

Prism 7 user’s guide (https://www.graphpad.com/guides/prism/7/user-guide/index.htm). 
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Figure 1. Scheme of the synthesis of GOfMLP. 

  

 
Figure 2. TEM images of GO and GOfMLP after treatment with H2O2 (control) or 

MPO/H2O2 for 24 h. 
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Figure 3. Average Raman spectra of GO (left) and GOfMLP (right) samples. Controls, non-

degraded (I) and degraded (II) set of spectra are represented in both cases. 

 

 
Figure 4. Neutrophil (PMN, polymorphonuclear neutrophils) viability and degranulation in 

response to GO vs. GOfMLP. (a) Neutrophils were exposed for 3 h to GO and GOfMLP at the 

indicated concentrations and cell viability was measured by using the Alamar Blue assay. 

Data shown are mean values ± S.D. (n=3). (b) Neutrophils were exposed to GO and GOfMLP 

at 50 µg·mL-1 for 3 h and analyzed by flow cytometry following staining with FITC-MPO 
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antibodies. Neutrophils exposed to fMLP+CB were included as a positive control for MPO 

release, and untreated neutrophils served as a negative control. 

 

 
Figure 5. Neutrophil degradation of GO and GOfMLP. Freshly isolated human neutrophils 

were exposed to 50 µg·mL-1 (a) GO and (b) GOfMLP for the indicated time-points. Raman 

confocal microspectroscopic measurements showed biodegradation of GOfMLP as 

determined by a reduction in the intensity of both the D and G bands (b), while no changes 

were evidenced for GO alone (a). The data shown represent an average of the whole scan (i.e., 

10.000 spectra per sample). 
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Figure 6. Confocal images of HeLa cells after 8 h of incubation with DOX, GO-DOX and 

GOfMLP-DOX at 10 µM. In green, membranes stained with Cell-Mask; in red, DOX. Scale 

bar: 10 µm. 

 

 

 
Figure 7. Confocal images of HeLa cells after 8 h of incubation with a) DOX, b) GO-DOX, 

and c) GOfMLP-DOX at 10 µM. d) Quantification of DOX via fluorescence intensity inside 

of the nuclei using FIJI software. * represents statistical significance comparing the 

fluorescence intensity averages (Student's t-test, ns p>0.05, * p<0.05, ** p<0.01, *** 

p<0.001, **** p<0.0001). Scale bars: 20 µm.  
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Figure 8. Cancer cell killing using nano-carriers. Evaluation of cell viability (a, c) and 

apoptosis, as evidenced by using the annexin V-FITC assay (b, d) in HeLa cells after 8 h (a, b) 

and 24 h (c, d) of incubation. The cells were exposed to DOX, GO-DOX, or GOfMLP-DOX, 

or were left untreated as a control. Data shown are mean values ± SD (n = 3). * (in black) 

shows statistically significance compared to the control. * (in red) shows significance 

comparing the different formulations of the drug (DOX). Two-way ANOVA followed by 

Bonferroni’s post-test: ns p>0.05, * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001. 


