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SUMMARY
Neuronal activity can be modeled as a nonlinear dynamical system to yield measures of neuronal state and dysfunction. The electrical

recordings of stem cell-derived neurons from individuals with autism spectrum disorder (ASD) and controls were analyzed using mini-

mum embedding dimension (MED) analysis to characterize their dynamical complexity.MED analysis revealed a significant reduction in

dynamical complexity in ASD neurons during differentiation, which was correlated to bursting and spike interval measures. MED was

associated with clinical endpoints, such as nonverbal intelligence, and was correlated with 53 differentially expressed genes, which

were overrepresented with ASD risk genes related to neurodevelopment, cell morphology, and cell migration. Spatiotemporal analysis

also showed a prenatal temporal enrichment in cortical and deep brain structures. Together, we present dynamical analysis as a paradigm

that can be used to distinguish disease-associated cellular electrophysiological and transcriptional signatures, while taking into account

patient variability in neuropsychiatric disorders.
INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelopmental

condition defined by deficits in communication, social

interaction, and repetitive behavior that affects 76 in

10,000 children worldwide (Baxter et al., 2015; Geschwind

and State, 2015). Large gene sequencing studies and struc-

tural variant analyses have uncovered that rare coding and

de novomutations contribute to ASD by targetingmolecular

processes related to synaptic functioning, chromatin modi-

fication,andprenatal corticaldevelopment (Geschwindand

State, 2015; Parikshak et al., 2013; Sebat et al., 2007;Willsey

et al., 2013). Despite this convergence at the gene pathway

level, individual mutations are extremely heterogeneous,

with none accounting for more than 1% of ASD cases (Dev-

lin and Scherer, 2012). Previous studies have shown a corre-

lation between early brain overgrowth, asmeasured byhead

circumference and neuroimaging, and an increased risk for

ASD (Courchesne et al., 2003; Hazlett et al., 2011; Shen

et al., 2013). In this subset of the ASD population, postmor-

tem analysis has revealed an excess of neurons in the first 3

years of life, and seminal studies using induced pluripotent

stem cell (iPSC)-derived neurons have uncovered increased

proliferationofneural progenitors and reduced synaptogen-

esis (Courchesne et al., 2011; Marchetto et al., 2017).
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A promising alternative to overcome the challenges of

in vivo human brain studies are neuronal in vitro cultures

derived from human iPSCs (Vadodaria et al., 2018). iPSC-

derived neurons permit the study of neuronal firing, which

may provide insight into the fundamental mechanisms of

neuropsychiatric diseases at the cellular level. One of the

technologies utilized to study neuronal firing is the multi-

electrode array (MEA). Multielectrode arrays (MEAs) enable

high-throughput, longitudinal recordings of extracellular

electrical dynamics from populations of neurons at milli-

second resolution, facilitating the analysis of neurons

in vitro (Kreuz, 2011; Samengo and Elijah, 2013; Taketani

and Baudry, 2006). The analysis of electrical recordings typi-

cally involves the quantificationof spiking-related variables,

suchasfiring rate, spikemorphology, andnetworkmeasures.

Electrophysiological analyses of neurons derived from ASD

patients have revealed functional defects, such as reductions

in neuronal firing, disrupted postsynaptic currents, and

imbalanced excitatory/inhibitory tone (Derosa et al., 2018;

Liu et al., 2017; Marchetto et al., 2017; Mariani et al., 2015).

The human brain is a complex nonlinear system

comprising multiple interacting components at a variety

of spatiotemporal scales. This complexity poses a challenge

to scientific investigation, but it also provides an opportu-

nity to apply dynamical analysis tools to characterize
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neuronal activity (Röschke and Basxar, 1988). Minimal

embedding dimension (MED) analysis is amathematical al-

gorithm to determine the dynamical complexity of a time-

series recording (Kennel et al., 1992). In this framework, a

neuronal network is thought of as a system composed of

a finite number of differential equations that govern all

possible states of the system. The purpose of MED analysis

is to empirically estimate the number of governing equa-

tions, which is a measure of complexity, by iteratively

forming embeddings on an electrical time-series recording

(Kennel et al., 1992; Takens, 1981). Similar techniques have

been applied to electroencephalogram (EEG) andmagneto-

encephalogram recordings in autism, schizophrenia, bipo-

lar disorder, and depression (Akdemir Akar et al., 2015; Bosl

et al., 2011; Fernández et al., 2018; Jeong et al., 1998).

These studies suggested that dynamical complexity may

be increased in mood disorders, such as bipolar disorder

and depression, and decreased in developmental condi-

tions, such as schizophrenia and ASD.

Given the evidence of disrupted synapse formation in

previous studies (16), we hypothesized that electrical activ-

ity during differentiation from the neural progenitor to

neuronal stage would be marked by a reduction in dynam-

ical complexity in ASD. We applied MED analysis to the

time-series recordings of neurons derived from ASD and

neurotypical control subjects. In addition, we aimed to

demonstrate that MED analysis of ASD could be used in

combination with gene expression analysis to capture dis-

ease-relevant genetic mechanisms.

ASD is a highly heterogeneous disorder, which chal-

lenges attempts to ascertain disease-related transcriptional

changes, given only a binary case status.We showhere that

the MED supplies a continuous rather than binary variable

that is associated with disease severity and can be used to

more accurately distinguish disease-associated transcrip-

tional signatures, while taking into account patient vari-

ability. Through the application of dynamical analysis

techniques to patient-derived neuronal recordings, we

hope to introduce this paradigm for the interrogation of

disease signatures in neuropsychiatric disorders.
RESULTS

Study Design and MED Analysis Technique

This study was designed to identify a dynamical electro-

physiological cellular phenotype associated with idio-

pathic ASD, as well as the gene expression correlates of

this signal. To accomplish this, iPSC lines derived from

eight ASD patients with early brain overgrowth and seven

neurotypical controls were obtained and differentiated

into neurons using a pan-cortical protocol (Marchetto

et al., 2010). A schematic of the study design is depicted
in Figure 1A, and a description of the samples is given in

Table 1. Additional clinical metadata for these samples is

presented in Table S1. From the neural progenitor phase,

longitudinal electrical recordings were gathered with

MEA over the course of 47 days. For each recording, stan-

dard spike-related variables, as well as MED, a measure of

dynamical complexity, were computed. On day 15 post dif-

ferentiation, the developing cells were sorted for neuronal

identity using the PSA-NCAM marker and then RNA

sequenced. The subsequent analysis focused on linking

the observed dynamical cellular electrical phenotype with

gene expression changes that relate to ASD biology. This

was done by using the average MED values on day 15,

the same day RNA sequencingwas performed, for each sub-

ject as a variable in the gene expression models fit to the

RNA-sequencing data. Figure 1B depicts how dynamical

complexity may vary across samples, even when standard

measures such as the firing rate remain constant. In such

cases, nonlinear dynamical differences may uncover pat-

terns of disruption in gene expression not identified by bi-

nary case-control labels. Further intuition forMED analysis

is provided by a simulated example of the Hénon map, a

two-dimensional dynamical system, in Figure S1.

Neuronal Electrical Recordings and Dynamical

Analysis

To glean knowledge from this in vitro model of ASD, both

standard analytical tools and nonlinear dynamical

methods were applied to the electrical recordings of the

neurons. This approach is appropriate, as neuronal activity

is a nonlinear dynamical system that arises from the firing

of nascent neuronal networks. Representative electrical re-

cordings and spiking events are shown in Figure 2A. Tradi-

tional metrics, such as the mean firing rate, fail to show

statistical separation between the ASD and control group.

However, more complex measures, such as bursting and

the variation of interspike intervals (ISI) within bursts, are

able to show a difference between groups, suggesting that

dynamical analysis may also capture features related to

bursting or spike timing that fundamentally distinguish

ASD and control electrical activity (Figures 2B and 2C).

This is further supported by the strong correlation observed

between the MED and number of bursting electrodes

(R = 0.714, p % 0.001) and ISI coefficient of variation

(R = 0.492, p % 0.001).

MED was computed to quantify the dynamical

complexity of the electrical recordings. A previous study

provided evidence that iPSC-derived ASD neurons were

characterized by diminished synaptogenesis, thus compro-

mising the process of forming connected networks (Mar-

chetto et al., 2017). It was expected that MED would

capture this ASD-related deficit of electrophysiological

complexity, thereby uncovering a dynamical cellular
Stem Cell Reports j Vol. 13 j 474–484 j September 10, 2019 475
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Figure 1. Study Design and Visualizing Dynamical Complexity
(A) Conceptual overview of the study design. iPSCs from seven neurotypical controls and eight ASD cases were differentiated into neurons.
Neurons were characterized through RNA sequencing and MEA recordings to identify disease signatures that integrate across both levels of
analysis.
(B) Dynamical complexity may vary even when standard spiking variables are constant. For these pedagogical examples, the firing rate is
constant at 20 spiking events in the interval. Nevertheless, differences in the organization of the spiking events may result in large
differences in complexity, as measured by dynamical analysis. These differences may distinguish groups of interest, such as ASD, and
correlate to gene expression changes related to neuronal dysfunction.
See also Figure S1.
electrical phenotype for this disorder. A difference between

ASD and control MEDwas found to emerge after 11 days of

differentiation and persist with statistical significance for

the next 11 days of recording, as shown in Figure 2D. Cor-

relation analysis between MED and bursting variables re-

vealed a significant association with the number of

bursting electrodes and the ISI coefficient of variation,

strengthening the relationship between dynamical

complexity and coordinated spiking activity and variation.

Despite this relationship, the variance associatedwithMED

was less than that of bursting variables, suggesting

improved precision in the characterization of electrical ac-

tivity. Figure S2 details average subject-wise MED boxplots

across the key time points of the study, including the day

when RNA sequencing was performed.

To assess the behavioral relevance of MED, the correla-

tion between subject MED values and cognitive scores

was examined. This revealed a significant correlation in

two relevant endpoints, the Vineland ABC Score and

Nonverbal IQ, as shown in Figure 2E. This suggests that

the cellular dynamic state may have a meaningful impact

on cognitive and behavioral states relevant to ASD. There-

fore, MED is a dynamical cellular electrophysiological

phenotype that is related to both ASD status and some of

its relevant clinical features.
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Differential Expression Models for ASD and MED

RNA sequencing was performed at 15 days post differenti-

ation in order to explore the gene expression correlates of

MED and ASD. Given that MED captures both individual

and ASD-related electrical dynamics, we expected that it

would be associated with robust and biologically relevant

transcriptomic alterations (Figure S2). To test this rationale,

gene expressionwas examinedwith respect to (1)MED and

(2) ASD interacting withMED in separate models. Two sub-

ject outliers were excluded based on principal component

analysis (Figure S3). As shown in Figure 3, before false dis-

covery rate (FDR) correction, the MED model identified

1,423 differentially expressed genes, and the ASD interac-

tionmodel was associatedwith 761 genes. After controlling

for multiple comparisons, MED was associated with 53

genes in comparison with 7 for ASD in each respective

model. To assess the validity of this result, we permuted

the MED values among the subjects and found that the

original analysis identified more significant genes than

72% of the permuted trials, and the identified MED genes

overlapped with genes that are highly expressed in the

brain more strongly than in 91% of permuted trials. The

comprehensive lists of differentially expressed genes are

given in Tables S2 and S3, and examples of genes differen-

tially expressed with respect to MED value are shown in



Table 1. Characteristics of Subjects fromwhich iPSC Lines Were
Generated

iPSC Lines (N = 15)

Control ASD

Samples 7 8

Brain volume (cm3) 1,237.2 ± 86.6 1,372.9 ± 87.8

Age (years) 25.0 ± 27.7 13.3 ± 5.6

IQ 118.6 ± 8.6 67.9 ± 14.9

ADOS – 16.75 ± 2.8

Vineland ABC 99 ± 6.2 57.13 ± 15.1

Age, IQ, ADOS, and Vineland ABC scores were recorded at the time of biopsy.

Brain volume was computed via magnetic resonance imaging during early

childhood. All samples were derived from males. ASD cases met the diag-

nostic criteria as defined by ADOS total score cutoffs or guidelines from

the Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition.

Where relevant, quantities are shown as averages ± one standard deviation.

IQ, Wechsler Intelligence Quotient; ADOS, Autism Diagnostic Observation

Schedule; Vineland ABC, Vineland Adaptive Behavioral Composite, second

edition.
Figure S4. Of note, a model that only included the ASD sta-

tus without MED was unable to find any differentially ex-

pressed genes after FDR correction. This result suggests

that cell-derived electrical phenotypes could represent a

path forward in studying complex genetic disorders, such

as idiopathic ASD. Binary ASD-control labels do not ac-

count for the tremendous intersubject heterogeneity pre-

sent in such samples, and cellular markers may better

model both individual and group-related variance for

gene expression analyses.

Interrogation of the MED Signature

The gene expression signature of theMEDwas examined in

relation to knownASD genes and pathways, aswell as brain

regions and stages of development (refer to the Experi-

mental Procedures for details). For these comparisons, the

full set of differentially expressed MED and ASD genes,

before FDR correction, was considered. Figure 4A shows

that both ASD and MED genes are overrepresented in

brain-expressed and putative ASD genes. However, the

enrichment effect sizes were markedly larger for MED

genes. This finding provides evidence that MED is relevant

to physiological and disease-related gene lists. Next, biolog-

ical pathways were analyzed through gene ontology anal-

ysis, as shown in Figure 4B. MED genes were enriched in

neurodevelopmental, cell migration, junction assembly,

and regulatory terms. Additional exploration of cellular

components related to the MED gene signature showed a

significant overlap with neuronal components, such as

the synapse, postsynaptic density, axon, and dendritic

spines. Full results for gene ontology analysis testing of
biological processes and cellular components are given in

Tables S4 and S5, respectively. These findings suggest that

MED encodes a measure of neuronal maturation and

participation in circuit formation. Finally, to localize the

set of MED genes to developmental time points and brain

regions, data from the BrainSpan Atlas were used to iden-

tify enrichments in specific region-stage pairs (refer to the

Experimental Procedures for details). The enrichments

were visualized as a matrix in Figure 4C for all region-stage

pairs, and regional involvement during the highly en-

riched, late prenatal time point was mapped onto a repre-

sentation of the brain in Figure 4D. Table S6 lists the exact

p values obtained for the spatiotemporal analysis. This

analysis uncovered a strong prenatal temporal enrichment

in a mixture of cortical and deep structures (e.g., the visual

cortex, inferior temporal cortex, and thalamus), as well as a

secondary involvement of late childhood cortical regions,

suggesting that MED-related ASD pathology might play

out at various stages of development with diverse structural

involvement.
DISCUSSION

In this study, we propose a cellular electrical phenotype for

idiopathic ASD, the MED, which is derived from the

dynamical complexity of neuronal electrical recordings.

Previous in vitro studies examining ASD neurons have

demonstrated both single unit recording abnormalities

and alterations in spiking and bursting properties using

MEA (Liu et al., 2017; Marchetto et al., 2017; Mariani

et al., 2015). Here, we describe ASD-related nonlinear

dynamical electrophysiologic alterations using iPSC-

derived neurons. Other electrophysiological variables

related to bursting also successfully separated the case

and control groups, but with less precision than MED.

This finding suggests that dynamical complexity may be

related to the integrated and synchronized firing of

neuronal networks in culture, rather than the isolated

behavior of single units. As differentiation from the neural

progenitor phase begins, MED increases as a function of

neuronal bursting and spike timing properties and peaks af-

ter 2 weeks ofmaturation. The trajectory of this complexity

increase is altered in the ASD group, as these samples fail to

match the MED found in the control samples.

The divergence in dynamical complexity occurs early on

during the first few weeks of differentiation past the neural

progenitor phase. A recent study using the same ASD sam-

ples revealed that transient pathological priming of expres-

sion networks occurs around this time point, supporting

the relevance of this early developmental period (Schafer

et al., 2019). In our study, MED deficits in the ASD group

begin to lessen after 2 weeks of recording, along with a
Stem Cell Reports j Vol. 13 j 474–484 j September 10, 2019 477
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Figure 2. Electrical Analysis of Neuronal Lines, Minimum Embedding Dimension, and Clinical Correlations
(A) Raw MEA data. Raw electrode waveforms (top) are used for spike detection (bottom) and downstream analyses.
(B) Spike interval and bursting variables highlight electrophysiological differences. Group average values with 95% confidence intervals
are given for several time points of two variables. Variation in the interspike interval and number of bursting electrodes does show
significant group-based differences for day 15 and 17 between control (blue) and ASD (red). For each relevant panel, significance was as
tested with Welch’s two-sided t test and indicated by asterisks. *p % 5 3 10�2, **p % 5 3 10�3, ***p % 5 3 10�5, and
****p % 5 3 10�7.
(C) Overview of group-wise differences across spiking measures and MED. This binary matrix indicates at which time points a measure was
able to detect a significant difference between cases and controls (black squares). The MED outperforms all measures in distinguishing
groups, but it does overlap with some bursting and spike interval variables, as shown in (B). Relatively common measures, such as the
mean firing rate, fail to distinguish control and ASD activity over any day of the recording period.
(D) MED offers a sustained and statistically significant separation of groups. Average MED values and 95% confidence intervals for both
groups are depicted for the first eight time points. The control subjects (blue) are associated with higher MED complexity score in
comparison with the ASD subjects (red). The dotted rectangle indicates the values of the MED during day 15 of the MEA recordings, when
RNA sequencing was performed.
(E) MED is correlated to clinical endpoints of interest. Low MED scores, which are associated with ASD diagnosis, are correlated to lower
Vineland adaptive behavior score (left) and lower early nonverbal IQ (right). The gray shading represents a 95% confidence interval around
the fitted curve, as estimated by a linear model.
See also Figure S2.
general trend of decreasing activity noted across measures

in both groups, perhaps due to the pruning of weakly con-

nected neurons and the establishment of more mature cir-

cuits. The convergence ofMED at later time points suggests

that the electrical complexity gap may be a transient phe-

nomenon in development that nevertheless disrupts the

early formation of neural connections and contributes to

ASD pathology at later time points. Patient EEG studies

have shown that recordings taken from people diagnosed

with ASD also exhibit reduced dynamical complexity

compared with controls (Bosl et al., 2011). The mechanism

by which neuronal complexity deficits may propagate to

the circuit and brain-wide levels to drive pathology remains

an interesting avenue for further study.
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Interestingly, MED was highly correlated with the vari-

ability in interspike intervals, indicating that dynamical

complexity is sensitive to heterogeneity in the rate of

spiking (Figure 2B). As suggested in Figure 1B, neurons

firing with a constant rhythm would have a lower MED

than neurons firing with an ever-changing rhythm, which

would require more embedding dimensions to model. At a

molecular level, we found that the MED differentially ex-

pressed genes are associatedwith ASD risk genes and neuro-

developmental pathways, such as neurogenesis, cell

migration, and cell morphology. Examination of cellular

components implicated in theMED gene expression signa-

ture localized to the neuron, implicating the synapse, den-

drites, and axons (Table S5). These findings agree with
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Figure 3. Gene Expression Signatures of MED and ASD
(A) MED is associated with differential expression in 1,423 genes before multiple comparison correction and 53 genes after correction, as
depicted in the heatmaps. Hierarchical clustering of the samples based on gene expression separates low- and high-complexity samples, as
indicated by the MED color bar.
(B) Examination of ASD genes in a combined MED and ASD interaction model identifies 761 differentially expressed genes before correction
and 7 differentially expressed genes after multiple comparison correction.
(C) The log2 fold changes of the 53 differentially expressed genes after multiple comparison correction for MED are shown. The red bars
correspond to genes that are negatively correlated to MED, and the blue bars correspond to genes that are positively correlated to MED.
Underlined genes are also implicated in ASD risk or brain function in previous studies. Most differentially expressed genes are negatively
correlated to MED, and positively correlated genes have less variability in their log fold changes.
See also Figure S4.
sequencing studies that have shownASD affects a variety of

neurodevelopmental processes, such as neuronal prolifera-

tion, migration, and synaptogenesis (Courchesne et al.,

2018; De Rubeis et al., 2014; Krumm et al., 2014;Marchetto

et al., 2017; Mariani et al., 2015; Parikshak et al., 2013;

Pinto et al., 2014; Voineagu et al., 2011; Willsey et al.,

2013). While it is unclear how spiking dynamics unfold

in the developing human brain, our finding of decreased

complexity of ASD neurons in culture indicates that early

neuronal physiology is disrupted. The clear and sustained

reduction in complexity found in the ASD group likely

arises from deficiencies in synaptogenesis, which were pre-

viously reported in this cohort (Marchetto et al., 2017). Dif-

ficulty in forming synaptic connections in vitro diminishes

the underlying complexity of their electrical outputs, as

measured by MED.

The detection of molecular changes related to idiopathic

ASD is complicated by the immense genetic heterogeneity

associated with the disorder (De Rubeis et al., 2014; Devlin
and Scherer, 2012). Although the sample size in this study

is much smaller than those typically recruited for popula-

tion genomics analyses, this iPSC-based approach offers a

major advantage over other methods in that cellular vari-

ables relevant to disease may be directly recorded and stud-

ied in relation to gene expression changes (Vadodaria et al.,

2018). In this manner, we are able to find molecular

changes associated with idiopathic ASD by tapping into

the fundamental electrical dynamics that lie at the core

of the disease. Notably, MED was associated with a broader

differential gene expression signature than ASD status, and

these genes were associated with fetal cortical develop-

ment, supporting the growing body of literature that sug-

gests ASD disrupts the normal formation of brain circuits

during the early stages of life (Parikshak et al., 2013;Willsey

et al., 2013). Therefore, the utility of MED as a cellular elec-

trical phenotype for ASD is demonstrated both directly,

through electrical recordings, and indirectly, through the

examination of gene expression trends related to MED.
Stem Cell Reports j Vol. 13 j 474–484 j September 10, 2019 479
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Figure 4. Enrichment of MED Gene Expres-
sion Signature with ASD-Related Genes,
Biological Pathways, and Spatiotemporal
Analysis
To interpret the broad biological relevance of
MED and ASD expression signatures, differ-
entially expressed genes before FDR correc-
tion were further analyzed.
(A) The MED (black) and ASD (gray) differ-
entially expressed genes were tested for
enrichment in five lists: (1) highly brain-ex-
pressed genes, (2) putative ASD risk genes,
(3) gold standard ASD risk genes, and (4)
highly liver-expressed genes (negative con-
trol). Significance was tested using the
binomial test with a cutoff of p = 0.05 (red
line). Both ASD and MED genes were enriched
in brain, Princeton, and SFARI lists, although
the effect size of the MED signature was
notably stronger. Neither set overlapped with
liver-expressed genes, a negative control.
(B) Biological processes implicated with MED.
The gene expression signature of MED affects
neurodevelopmental, cell migration, and

growth-related ontologies. Significance of enrichment was calculated using Fisher’s exact test with false discovery rate control and a cutoff
of pFDR = 0.05 (red line).
(C) Gene lists from 16 neuroanatomical regions and 13 developmental stages were tested for enrichment with the MED genes. The
neuroanatomical regions include the inferior temporal cortex (ITC), thalamus (THA), dorsal frontal cortex (DFC), medial frontal cortex
(MFC), cerebellar cortex (CB), ventral frontal cortex (VFC), hippocampus (HIP), superior temporal cortex (STC), primary visual cortex (V1C),
amygdala (AMY), inferior parietal cortex (IPC), primary auditory cortex (A1C), striatum (STR), primary motor cortex (M1C), olfactory cortex
(OFC), and primary somatosensory cortex (S1C). Fisher’s exact test was performed for each region-stage pair and plotted on a heatmap after
false discovery rate correction. A variety of cortical and deeper structures are implicated in MED, primarily at prenatal time points. Strong
enrichment of the DFC and MFC is also indicated during late childhood. The grayed-out regions represent structures that are not present in
the early prenatal brain.
(D) Visualization of cortical and interior MED-associated regions during late prenatal development (25–28 post conceptual weeks). Raw
enrichment p values (praw) were plotted to show the range of structural involvement at this time point. Cortical regions such as the
A1C, S1C, and ITC are enriched for the MED signature; however, deeper lying structures such as the thalamus and striatum are also
revealed.
In summary, we demonstrate that nonlinear dynamical

analysis can be applied to electrical recordings from pa-

tient-derived neurons to reveal differences in complexity

between ASD and control subjects. The MED is associated

with gene expression changes that both validate existing

genetic and mechanistic studies and present less well-

described findings, such as the implication of fetal basal

brain regions and late childhood cortical development in

ASD mechanisms. iPSC-derived models are a rich platform

to study neurodevelopmental disorders, because they allow

for the examination of cellular disease mechanisms in

otherwise inaccessible tissue. Further study of MED as a

cellular electrical phenotype for ASD will shed light on

the utility of this approach.We believe that this integration

of methods is a good strategy for tackling the immense het-

erogeneity associated with idiopathic ASD and hope that it

facilitates future studies in autism and related disorders.
480 Stem Cell Reports j Vol. 13 j 474–484 j September 10, 2019
EXPERIMENTAL PROCEDURES

iPSC Samples and Neuronal Differentiation
iPSC lines were derived from two sources. First, 13 samples from

Marchetto et al. (2017) comprised the bulk of the lines (Marchetto

et al., 2017). These included eight lines derived from ASD patients

with an early brain overgrowth phenotype and five age-matched

neurotypical control lines. Second, two additional control lines

from neurotypical adults were added to balance the groups. The

samples from the first cohort included standardized clinical and

functional assessments, including the AutismDiagnostic Observa-

tion Schedule, Wechsler Intelligence Scale, and Vineland Adaptive

Behavior Scale. Sample metadata and clinical scores are given in

Table S1. Samples were obtained with approval from the internal

review board of the Salk Institute for Biological Studies and

informed consent of all subjects. Neuronal differentiation was

accomplished through differentiation of the iPSCs into neural pro-

genitor cells, followed by the removal of FGF2 to drive maturation



into neurons, as described in the literature (Marchetto et al., 2017,

2010).

MEA Recordings and Spike Analysis
Ninety-six-well MEA plates from Axion Biosystems (San Francisco,

CA, USA) were used to record electrical activity of neurons derived

from all 15 subjects. Each subject’s cells were plated in replicates of

six and seededwith10,000neural progenitor cells thatwere induced

into neuronal differentiation the next day. Wells were coated with

poly-ornithine and laminin before cell seeding. Cells were fed every

otherdayandmeasurementswere taken twiceaweekbefore feeding.

TheMaestroMEAsystemandAxIS software (AxionBiosystems)were

used to record neuronal electrical activity from the plates. Voltages

were recorded at a frequency of 12.5 kHz and bandpass filtered be-

tween 10 Hz and 2.5 kHz. Spike detection was performed using an

adaptive threshold set to 5.5 standard deviations above themean ac-

tivityofeachelectrode. Following5minofplate rest time, recordings

were performed for 10 min. A total of 15 separate recordings were

performed over a time span of 47 days for each subject.

Multielectrode data analysis was performed using the Axion Bio-

systems Neural Metrics Tool, which calculated standard spike-

related variables. Bursts were detected with an adaptive Poisson

algorithm for high spiking activity that occurred on a single elec-

trode. Variables were averaged across subject replicates and plotted

by group for each day of the recordings. The 95% confidence inter-

val around the mean was also calculated and plotted for each day

to aid in the discovery of significant trends.

False Nearest Neighbors and Embedding Dimension

Analysis
The false nearest neighbor (FNN) method was proposed by Kennel

et al. (1992) to find the MED for time-series dynamic systems

(Kennel et al., 1992). In this framework, a time series arises from a

dynamical system composed of n differential equations. All possible

states of the system can be geometrically represented by an attrac-

tor, which is a regular shape formed when the n state variables

(e.g., x, y for a two-variable system) are plotted against one another.

When only a single variable is accessible, we can instead use

d delayed embeddings of this variable to reconstruct the

attractor. For example, for y(n) from time series x(t): yðnÞ=
ðxðnÞ; xðn+TÞ;.; xðn+ ðd � 1ÞTÞÞ where T is the time delay and

the trajectory evolves by y(n), y(n + 1) If the embedding dimension

d is lower than the native embedding dimension, the system is not

fully unfolded, and the reconstruction fails to represent the dy-

namics of the system, which leads to FNNs in the geometric space.

When iteratively increasing the embedding dimension from d to

d + 1, the FNN percentage decreases during the unfolding process

until the MED is reached and the state space is fully represented.

Therefore, plotting the FNN percentage against the embedding

dimension reveals the MED, a quantitative indicator of the

intrinsic complexity of the system. Figure S1 visually demonstrates

these concepts in an intuitive manner.

Two criteria were used to define the FNNs, as described in the

literature (Kennel et al., 1992). The first criterion is the tolerance

threshold parameter, Rtol, which measures how the neighbor

distances change relative to previous distances when increasing

d to d + 1. If the neighbors are false, adding another dimension
would largely increase the neighbor distances during the unfold-

ing process. The second criterion models noise in the data. We

introduced a threshold parameterAtol to compare the neighbor dis-

tances in dimension d + 1with the size of the attractors in dimen-

sion d. By combining these two criteria, the MED for time-series

data can be effectively found, even when the data are noisy.

We set T = 2, and we used the same threshold parameters as in

Kennel’s original study Rtol = 15 and Atol = 2 (Kennel et al.,

1992). FNN was implemented in MATLAB R2017b (Natick, MA,

USA) and performed on both real MEA data and simulated data

from the Hénon map (Hénon, 1976; MATLAB, 2017). An online

code repository for the MED analysis is freely accessible to others

who wish to perform a similar dynamical complexity analysis of

electrical recording data. The GitHub repository is available at

this link: https://github.com/gyrheart/FNN.

RNA Sequencing
At 15dayspost differentiation, theneuronspositive for PSA-NCAM

(Anti PSA-NCAMAntibody,Miltenyi Biotec)were sorted using flow

cytometry to isolate neuronal fate-committed cells. RNA was ex-

tracted after cell sorting on TRIzol LS reagent (Invitrogen) from all

15 neuronal samples. Total RNA was extracted using a DNA Free

RNA Kit (Zymo Research) according to the manufacturer’s instruc-

tions. RNAqualitywas assayed using an Agilent Technologies 2200

TapeStation, and samples with integrity superior to RIN 8.5 were

used for library preparation. Stranded mRNA sequencing libraries

were prepared using the Illumina TruSeq Stranded mRNA Library

Prep Kit according to the manufacturer’s instructions. RNA with a

poly A tail was isolated using magnetic beads conjugated to polyT

oligos. mRNA was then fragmented and reverse transcribed into

cDNA. dUTPs were incorporated, followed by second-strand

cDNA synthesis. The dUTP-incorporated second strand was not

amplified. cDNA was then end repaired, index adapter ligated,

and PCR amplified. AMPure XP beads (Beckman Coulter) were

used to purifynucleic acid after each step of the library preparation.

All sequencing libraries were then quantified, pooled, and

sequenced at single-end 50 bp on an Illumina HiSeq 2500 at the

Salk Institute Next Generation Sequencing Core.

Then, 1,000 ng of RNA was used for library preparation with the

Illumina TruSeq RNA Sample Preparation Kit. The RNAs were

sequenced on an Illumina HiSeq 2000 with 50 bp paired-end reads,

generating 50 million high-quality sequencing fragments per sam-

ple on average. Sequenced reads were quality tested using FASTQC

(Andrews,2010) andalignedto thehg19(Landeretal., 2001)human

genome using the STAR aligner version 2.4.0k (Dobin et al., 2013).

Mapping was carried out using default parameters (up to ten mis-

matches per read, and up to nine multi-mapping locations per

read).Thegenome indexwas constructedusing thegeneannotation

supplied with the hg19 Illumina iGenomes collection (Illumina,

2015) and sjdbOverhang value of 100. Raw gene expression was

quantified across all gene exons (RNA sequencing) using the top-ex-

pressed isoformasproxy for gene expression. Transcripts permillion

(TPM) values were calculated for each sample:

TPMi =
Xi

li
,

0
BB@

1
PXj

lj

1
CCA3106;
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where Xi is the count estimate for gene i and li is the length of the

transcript as determined by querying the Ensembl mart with data-

set = ‘‘hsapiens_gene_ensembl’’, using biomaRt in R version 3.5.1.

TPM values were log2 + 1 transformed for downstream analyses.

Two subject outliers were detected by visual inspection of a prin-

cipal component analysis plot of the normalized gene counts ma-

trix (Figure S3). Thirteen sampleswere retained for further analysis,

including seven ASD lines and six control lines.

Differential Expression Analysis
Gene-based read counts were analyzed for differential expression

using the R DeSeq2 package, which uses variance stabilization

techniques and the negative binomial distribution to detect

expression changes across experimental conditions (Boston, MA,

USA) (Love et al., 2014). For this study, two conditions were

analyzed for differential expression, using two different model

matrices. First, differential expression with respect to MED was

analyzed (expression f MED). Second, autism-associated genes

were gleaned by testing a model that included autism and

autism-MED interactions (expression f MED + MED 3 ASD +

ASD). A total of 24,162 genes were examined for differential

expression, and genes were deemed significant if pFDR was less

than 0.05. An expanded set of genes with praw %0.05 was used

to assess broad trends in the data with follow-up analyses. Plotting

of individual gene expression results, top gene summaries, and

heatmaps were performed using TPM normalized counts that

were corrected for covariates with the R ComBat package (Boston,

MA, USA). All gene expression data are deposited at Gene Expres-

sion Omnibus (GEO: GSE125020).

Gene Ontology Analysis
Gene ontology (GO) analysis was performed to determine which

biological pathways were associated with differentially expressed

genes. The statistical overrepresentation tool from PantherDB

was used to perform Fisher’s exact tests for a list of uncorrected

differentially expressed genes and each GO term in the database

(Mi et al., 2017; Thomas et al., 2006). p values were adjusted

for multiple comparisons using FDR correction. Biological pro-

cesses with a pFDR less than 0.05 were reported and plotted in

this study.

Statistical Tests for Gene List Overlap and Clinical

Correlations
Statistical analyses for gene list overlap and clinical correlations

were performed using R version 3.51 (Vienna, Austria) (R Core

Team, 2016). Clinical correlation was examined between MED

day 15 average values and subject clinical scores. To further explore

the differential expression results, overlap was measured with ASD

genes, brain-expressed genes, and a negative control of liver-ex-

pressed genes (Abrahams et al., 2013; Krishnan et al., 2016; Uhlén

et al., 2015). Tissue-specific gene sets were obtained from the Hu-

man Protein Atlas (available from www.proteinatlas.org). For

each list of interest, overlap was tested using the binomial test,

and significance was assigned to p values less than 0.05. Clinical

correlations between MED and various clinical endpoints were

calculated using the Pearson correlation test. Presented correla-

tions are significant at p values less than 0.05.
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Spatiotemporal Enrichment Analysis
Spatiotemporal enrichment of the MED differentially expressed

genes was assessed using gene expression data from the BrainSpan

Atlas of the Developing Human Brain (Sunkin et al., 2013).

Normalized gene transcript counts were acquired for region-stage

pairs. Twelve developmental stages and 16 discrete brain structures

were included. In a process similar to one described by Krishnan

et al. (2016), representative genes sets were chosen for each re-

gion-stage pair by calculating the modified Z score of a given

gene in the distribution of counts for all region-stage pairs

(Krishnan et al., 2016). The modified Z score was calculated using

the median, and the median absolute deviation (MAD) of each

gene across all pairs was calculated for the ith gene and jth re-

gion-stage pair:

zi;j = 0:6453
counti;j �mediani

MADi

:

For the jth region-stage, all genes for which zi,j R 2 were selected

as representative genes.

Enrichment was calculated by performing the Fisher’s exact test

using the list of differentially expressedMED genes and each repre-

sentative region-stage set of genes. Enrichment scores were cor-

rected for multiple comparisons using FDR controlling, and pFDR

values are plotted in the heatmap in Figure 4. Significance was as-

signed to region-stage pairs with pFDR less than 0.05. All spatiotem-

poral enrichments are listed in Table S6.
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Supplemental Figure 1 
 

 
 

Figure S1: Minimum embedding dimension simulation.  
The goal of the MED technique is to estimate the dimensional complexity of the system using only a time-
series recording from a single variable in the system. This can be accomplished by using an algorithm to 
minimize the number of false nearest neighbors (FNNs) identified by iteratively plotting the time series 
over embedded versions of itself. A. The Hénon map. The Hénon map is a 2-variable (𝑥, 𝑦) nonlinear 
dynamical system that exhibits chaotic behavior over time, simulated to recorded electrical activity (left). A 
state space reconstruction of this system reveals a smooth and regular attractor (right), in which some 
(𝑥, 𝑦) coordinate pairs are closer together in space (blue and green) relative to other pairs (red). This 
attractor is a geometric representation of the 2-variable system, which can be summarized as having a 
dimensionality, or complexity, of 2, because it is fully unfolded in the (𝑥, 𝑦) coordinate space. B. False 
nearest neighbors (FNN) to find the minimum embedding dimension (MED). Percentage of FNN is 
minimized when a time series is embedded in its native dimensionality. For the Hénon system, the MED 
occurs at 2, because it is a 2-variable system. C. Demonstration of the FNN procedure to find MED. The 
recording of a single variable from a dynamical system, such as 𝑥	in the Hénon system or electrical 
activity in a system of neurons, can be embedded with delayed versions of the time series to reconstruct 
the original attractor of the entire system. This allows for the iterative testing of embedding dimensions 
and measurement of conserved neighboring points until a minimum is reached. In the example of the 
Hénon system, 1-dimensional embedding erroneously clusters all 3 points together. A 2-dimensional 
embedding correctly separates the red point from the blue and green points. Finally, a 3-dimensional 
embedding fails to create a further separation of these points, signifying that sufficient complexity is 
captured by a 2-dimensional embedding for the Hénon system. In the case of MEA recordings, MED 
provides a measurement of dynamical complexity of neural activity, potentially providing insights into the 
neurobiology of development and ASD. 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
Supplemental Figure 2 
 
 

 
 
Figure S2: MED intersubject variability.  
A-H show boxplots for 7 control (blue) and 8 ASD (red) subject MED values averaged over six replicates 
across the timepoints of MEA recording. The diminished dynamical complexity of the ASD subjects 
becomes apparent in the second week timepoints, through the course of the remaining days. Despite the 
group differences, these panels reveal the individual subject variation in the measurement. F. Of note, 
this panel shows the MED subject values for day 15 of the recordings, which was the day that cells were 
extracted for RNAseq. The average subject MED values on this day were used as the variable of interest 
for gene expression analysis. 
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Supplemental Figure 3 
 
 

 
 

Figure S3: RNA sequencing counts matrix PCA plot.  
Principal components analysis plot of the RNA sequencing counts matrix reveals two outlier subjects, 
CON-2 and ASD-4, which were removed for differential expression analysis. In parentheses, the 
percentage of variance explained by each principal component is given. 
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Supplemental Figure 4 
 
 

 
 
Figure S4: Examples of genes differentially expressed for MED.  
Individual gene plots for genes that are differentially expressed for the MED value reveal linear 
correlations between gene expression and dynamical complexity. These relationships capture 
transcriptomic variance more comprehensively than ASD-control group labels. For all panels, the grey 
shading represents a 95% confidence interval around the mean values, as estimated by a linear model. 
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