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Abstract 

The immunogenicity of therapeutic factor VIII (FVIII) in patients with hemophilia A has been 

puzzling scientific and clinical communities for more than 3 decades. Indeed, the 

development of inhibitory antibodies to FVIII remains a major clinical challenge and is 

associated with enormous societal costs. Thus, the reasons for which a presumably innocuous, 

short-lived, intravenously administered glycoprotein triggers such a deleterious, long-lasting 

neutralizing immune response is an enigma. This review does not pretend to bring an answer 

to this challenging question. It will however summarize the latest findings regarding the 

molecular interactions at play in the recognition of FVIII by the immune cells, the validity of 

the proposed risk factors for FVIII allo-immunization, and the different solutions that allow 

induction of FVIII-specific tolerance in preclinical models of hemophilia A.  
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Introduction 

Haemophilia A (HA) is an X-linked inherited disorder caused by a defect in the gene 

encoding coagulation factor VIII (FVIII). The disease is typically divided in three categories 

of severity based on the circulating levels of pro-coagulant FVIII detected in plasma. 

Haemophilia A is “mild” (5-40% of residual FVIII compared to normal plasma), “moderate” 

(1-5%) or “severe” (<1%). The most efficient strategy to correct or prevent bleeding in the 

patients relies on the intravenous administration of exogenous therapeutic FVIII that is either 

plasma-derived (pdFVIII) or recombinant (rFVIII). Currently, the most serious complication 

of FVIII replacement therapy is the development of anti-FVIII antibodies with neutralizing 

properties that are referred to as “FVIII inhibitors”. While anti-drug antibodies typically arise 

in 1-5% of the patients, FVIII inhibitors develop in up to 30% of the patients with HA.1 In 

addition, the intravenous route of administration is classically considered as non-

immunogenic.2 The elevated rate of development of inhibitory antibodies to FVIII is thus 

intriguing from an immunological stand-point. Here, we will review the current knowledge on 

the anti-FVIII immune response with a specific focus on the molecular interactions at play in 

the recognition of FVIII by the cells of the innate and adaptive immune system and on the 

intuitively proposed risk factors for FVIII allo-immunization. The review will also propose a 

short summary of the different immuno-intervention approaches validated in preclinical 

models of HA to confer tolerance to exogenous FVIII.  

 

Dynamics of the anti-FVIII immune response 

The primary immune response to therapeutic FVIII 

The development of FVIII inhibitors results from a classical allogenic immune response that 

is dependent on CD4 T cells.3 The implication of T cells has been suggested empirically in 

inhibitor-positive patients who became tolerant to exogenous FVIII following HIV infection.4 
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It was further suggested by the lack of anamnestic immune response to exogenous FVIII upon 

treatment using antagonist anti-CD40-ligand (CD40L) antibodies.5 The mandatory step for 

initiation of a T cell response is antigen recognition and internalization by a professional 

antigen presenting cells (APCs). After endocytosis, FVIII is cleaved into small peptides that 

associate with molecules of the major histocompatibility complex of class II (MHC class II) 

depending on their affinity. The APCs then migrate to secondary lymphoid organs such as 

spleen or lymph nodes to reach T cell-rich areas. Complexes of FVIII-derived peptide and 

MHC class II molecules are exposed at the surface of APCs and are presented to naïve CD4 T 

cells. The recognition of FVIII-derived peptide by the T-cell receptor (TCR) of T 

lymphocytes provides a first activation signal (signal 1). Additional signalization implicating 

interactions of ligands and receptors at the surface of T cells and APCs (signal 2), and 

presence of soluble pro-inflammatory stimuli such as cytokines (signal 3) are also required in 

the micro-environment to fully activate the FVIII-specific naïve T cells. Such signals involve 

at least interactions between CD40L expressed at the T cell surface with CD40 exposed on the 

APC membrane,6,7 as well as CD86 and CD28 expressed by APCs and T cells, respectively 

(Figure 1).8 Once activated, T cells migrate towards the B cell follicles. In general, humoral 

responses directed against proteins involve the follicular B cell pathway within secondary 

lymphoid organs.9 The early phase of this activation pathway corresponds to an extra-

follicular response where naïve B cells that have internalized the antigen through their 

membrane immunoglobulin or B-cell receptor (BCR) present CMH II/peptide complexes to 

activated T cells. The formation of the T/B cell synapse triggers intracellular signaling that 

leads to the differentiation of follicular B cells into short-lived plasma cells that produce IgM 

or IgG of low affinity.9,10 During the late phase of the follicular B cell response, activated B 

cells re-enter the follicles to interact with follicular helper T cells and form germinal centers 

(GCs).9 GCs are specialized micro-environment for T and B cell interactions leading to the 
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proliferation/selection of B cells and accumulation of somatic hypermutations in the genes 

encoding the variable regions of the BCRs. GCs responses generate memory B cells that are 

able to quickly differentiate into antibody secreting cells (ASCs) after re-exposition to the 

antigen.11 GCs associated responses also generate long-lived plasma cells.12 In the case of 

anti-FVIII immune responses, the presence of low affinity anti-FVIII antibodies has been 

documented in healthy donors, non-exposed patients to exogenous FVIII and inhibitor-

negative patients.13,14 It is conceivable that the production of such low affinity antibodies 

results from early extra-follicular responses. In contrast, the finding of high affinity anti-FVIII 

IgG4 observed in inhibitor-positive patients implicates the differentiation of follicular B cells 

involving formation of GCs and help from FVIII-specific follicular T cells.13–15 

 

The secondary immune response to therapeutic FVIII 

Primary responses involve naïve FVIII-specific T and B cells. In contrast, subsequent 

exposures of the organism to exogenous FVIII recruits FVIII-specific memory B cells 

generated during the primary immune response. Memory B cells are able to develop a faster 

and stronger immune response against FVIII than naïve B cells, and their recruitment leads to 

the production of high affinity neutralizing antibodies.10,14 T and B cell interactions are also 

essential during secondary anti-FVIII humoral responses in HA mice. The administration of 

an anti-CD40L monoclonal antibody to FVIII-deficient mice that have already developed a 

primary immune response to FVIII leads to GCs depletion after 24 hours. In addition, the 

repeated injection of FVIII concomitantly with an anti-CD40L antibody prevents the 

formation of new GCs and the production of anti-FVIII antibodies, while it does not allow 

induction of long-term tolerance.5 Thus, CD40-CD40L interactions play a crucial role in 

formation and maintenance of GCs during the secondary immune response to FVIII. Anti-

FVIII memory B cells are essentials to maintain long-term humoral response and to drive 
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quick anamnestic response upon FVIII re-exposure. While memory B cells are preferentially 

located in lymphoid organs, Van Helden et al successfully detected circulating FVIII-specific 

B cells in inhibitor-positive HA patients. By incubating irradiated-murin thymoma EL4B5, 

that express human CD40L with CD19-positive B cells from patients during 9 to 10 days, they 

allowed the in vitro differentiation of memory B cells into ASCs. The presence of FVIII-

specific memory B cells was then tested by ELISpot assay.16 The frequency of circulating 

FVIII-specific memory B cells represented 0.05% to 0.24% of surface IgG-positive B cells. 

Importantly, the secondary immune response generates long-lived plasma cells that are likely 

to migrate to specific niches in the bone marrow.9,17 In FVIII-deficient mice, FVIII-specific 

plasma cells are detected in the bone-marrow from the third injection of FVIII where they 

survive for more than 22 weeks without any further FVIII injection.18  

 

Initiation of an anti-FVIII immune response 

Antigen presenting cells 

Different types of APCs may be involved in the capture and endocytosis of therapeutic FVIII 

in patients. Among these, dendritic cells (DCs), macrophages, and B cells are the most 

probable candidates. The type of APCs at play depends on the immune status of the patients 

towards FVIII, in particular whether their organism has previously been exposed to 

exogenous FVIII or not. In previously untreated patients (PUPs), where the immune system 

never encountered FVIII, a role for naïve FVIII-specific B cells is very unlikely owing to their 

very low frequency. Recently, Zerra et al observed in FVIII-deficient mice the co-localization 

of exogenous FVIII in the marginal zone of the spleen at the level of a specialized B cell 

subset, marginal zone (MZ) B cells. MZ B cells express polyreactive B cell receptor and are 

located at the interface of blood circulation and immune system. The authors showed that the 

depletion of MZ B cells leads to a significant reduction of the anti-FVIII immune response.19 
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This observation may reflect the role of MZ B cells in trafficking FVIII from the MZ to B-cell 

follicles and to the CD4 T-cell and DC rich areas, rather than a direct role of MZ B cells in 

priming of naïve T cells.20 Besides, Archambault et al demonstrated, using a mouse model of 

conditional expression of MHC class II, that B cells are less prone than DCs to present 

antigens to naïve T cells during primary immune response.21 

Macrophages are generally described as highly efficient phagocytic cells due to the 

expression of a myriad of endocytic receptors. In blood, macrophages circulate as monocytes 

and differentiate into macrophages after infiltrating tissues. Several specialized sub-

populations of macrophages are present in the spleen.22 Interestingly, thirty minutes after 

intravenous injection, our seminal work had shown the co-localization of FVIII mostly with 

metallophillic and MZ macrophages in the MZ of the spleen of hemophilic mice. Depletion of 

splenic macrophages and CD11c+/CD8α- DCs by injection of clodronate-containing 

liposomes abrogated the anti-FVIII humoral response.23 As mentioned in the case of MZ B 

cells, this observation may reflect the role of MZ macrophages in cellular and molecular 

exchange between the MZ and the white pulp of the spleen in the initiation of antigen-specific 

immune responses.24 Of note, the ability of macrophages to express co-stimulation molecules 

and activate naïve CD4 T cells is lower than that of DCs.25,26  

It is important to mention that techniques used to date to validate the role of different splenic 

APC subsets rely primarily on the physical elimination of the cells, either by targeting cells 

characterized with a high endocytosis capacity using chlodronate-containing liposomes or 

using depleting antibodies that target particular APC populations. Such approaches are not 

without consequences on the architecture of the MZ of the spleen27 and interpretation on 

whether the targeted APC subtype is at play in the initiation of the anti-FVIII immune 

response or whether the disrupted MZ splenic structure is an artefactual reason for the 

reduced onset of FVIII-specific immune responses is not clear.  



 8 

DCs are often described as ‘sentinel’ cells28 by virtue of their high plasticity. DCs circulate in 

the blood in an immature state, and several distinct sub-populations of DCs are present in 

different tissues. DCs are able to sample antigens and to simultaneously detect danger signals. 

Following their migration to secondary lymphoid organs, they orchestrate the outcome of T-

cell presentation: depending on the nature of signals they sense in the micro-environment, 

they may promote T-cell inactivation and induction of immune tolerance or, on the contrary, 

T-cell priming and activation. Because of the central role of DCs in presenting antigen to 

naïve T cells, our group and others have used human immature monocytes-derived DCs (MO-

DCs), an in vitro source of DCs, to investigate the capture and presentation of FVIII by APCs. 

MO-DCs are able to endocytose FVIII and to present FVIII-derived peptide to human FVIII-

specific T cell lines.29–31  

 

Endocytic receptors for FVIII 

Antigens may be internalized via three different ways: macropinocytosis, phagocytosis or 

receptors-dependent endocytosis. Macropinocytosis consists in the internalization of large 

quantities of soluble antigen by non-specific membrane invagination. On the basis of the low 

concentration of circulating FVIII, it is unlikely that FVIII is internalized by APCs through 

macropinocytosis. Phagocytosis consists in the capture of large soluble particles such as virus, 

bacteria or apoptotic cells. In the case of protein antigens, endocytosis occurs mostly by 

means of receptors. Receptors-dependent endocytosis is very efficient from a kinetic point of 

view and implicates defined motives on the glycoproteins; this allows the capture of antigens 

present at low concentrations in the surrounding environment.26 Since FVIII circulates mostly 

as a complex with its chaperon molecule von Willebrand factor (VWF), the internalization of 

FVIII may occur through endocytic receptors that bind VWF or FVIII itself. Indeed, several 

endocytic receptors for VWF and FVIII have been identified.32,33 The endocytosis of FVIII or 
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the FVIII/VWF complex may lead to FVIII accumulation in lysosomes followed by its 

degradation, or to the trafficking of FVIII to the endosomal compartments and presentation of 

FVIII-derived peptide/MHC class II complex at the cell surface. The outcome of FVIII 

(catabolism or presentation to T cells) following its uptake depends on the site of 

internalization, the nature of APCs and the receptors that are involved in endocytosis. 

Currently, endocytic receptors that are known to bind to VWF and FVIII have been mostly 

involved in the clearance of VWF and/or FVIII. This review will focus mainly on endocytic 

receptors that have been shown to bind to FVIII (Table 1). 

 

Low density lipoprotein receptor family 

The role of the low-density lipoprotein-1 (LRP-1 or CD91) in FVIII catabolism has been 

documented in several studies.34,35 The physiological relevance of LRP-1 in FVIII clearance 

was demonstrated in a mouse model in which deletion of LRP-1 increased the endogenous 

plasma FVIII levels and FVIII half-life.36 Furthermore, epidemiological studies in human of 

two polymorphisms of the LRP-1-encoding gene have shown that this receptor modulates the 

levels of plasma FVIII.37 FVIII presents three potential binding sites to LRP-1:a low affinity 

site located in the C2 domain34, and two high affinity sites situated in the A2 and A3 

domains.38,39 Under physiological conditions, the binding region for LRP-1 on the heavy 

chain (A2 domain) is only exposed after proteolytic cleavage of FVIII.40 Thus, while intact 

FVIII only interacts with LRP-1 via its light chain, activated FVIII binds to LRP-1 through 

both its heavy and light chains. When VWF is complexed to FVIII, it interferes with the 

binding site on the light chain.34 In a scenario proposed by Sarafanov, the VWF/FVIII 

complex binds to heparan sulfate proteoglycans (HSPG), a component of the extracellular 

matrix, leading to the concentration of FVIII at the cell surface and dissociation of the 

VWF/FVIII complex, thus exposing the binding site on FVIII for LRP-1.41 More recently, 
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Rastegarlari et al observed a direct interaction of VWF with LRP-1 at the surface of 

macrophages under shear stress conditions, thus highlighting another possible mechanism of 

binding of VWF/FVIII complex to LRP-1.42 While LRP-1 has been mostly involved in the 

catabolism of antigens, several studies have  reported a role of LRP-1 in the development of 

immune response.43,44 Indeed, the binding of heat shock proteins (HSP) and proteins released 

by tumor cells to LRP-1 on APCs leads to their internalization and activation of nuclear factor 

kappa B (NF-kB) pathway, subsequently leading to the maturation of APCs and the secretion 

of pro-inflammatory cytokines and allowing the polarization of the T-cell response toward 

Th1 and Th17 profiles.43,45 Others receptors of the LDL-R family may contribute to FVIII 

uptake by APCs, since LDL-R interacts with FVIII and regulates the circulating FVIII levels 

in concert with LRP-1.46,47 Yet, a role for LRP-1 or others LDL-R in the initiation of anti-

FVIII immune response remains to be demonstrated, since an involvement of these receptors 

in FVIII uptake by MO-DCs has been excluded by several studies.31,48,49 

 

Asialoglycoprotein receptor  

The scavenger receptor asialoglycoprotein receptor (ASGPR) was reported to recognize β-D-

galactose and N-acetyl-galactosamine residues that are predominantly exposed on the B-

domain of FVIII.50 Because no obvious differences in the half-life and immunogenicity of 

full-length FVIII and B domain deleted FVIII (BDD-FVIII) have been observed, the role of 

this receptor in FVIII catabolism or endocytosis by APCs remains to be determined.51 In 

agreement with this, the use of galactose to saturate ASGPR had no effect on FVIII uptake by 

DCs.29  

 

Siglec-5 
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Recently, Pegon et al reported that sialic-acid binding immunoglobulin-like lectins-5 (Siglec-

5), a human receptor of the lectin family, binds to both VWF and FVIII. Siglec-5 recognizes 

sialic acid-ending polysaccharide chains. While binding of VWF to Siglec-5 is dependent on 

sialic acid exposure, binding of FVIII is not. Interaction of FVIII and VWF with Siglec-5 

expressed at the surface of HEK293 cells leads to endocytosis of both proteins and 

accumulation in early endosomes. The over-expression of human Siglec-5 in mice induces the 

decrease in plasma levels of VWF and FVIII, suggesting that Siglec-5 contributes to the 

regulation of circulating levels of VWF/FVIII in human.52 Since, human MO-DCs and 

plasmacytoid DCs express Siglec-5, further investigations deciphering the role of this receptor 

in FVIII uptake and processing by human DCs would be interesting.53  

 

The macrophage mannose receptor or CD206 

To date, the only endocytic receptor that has been shown to lead to FVIII processing and 

presentation to CD4 T cells is the macrophage mannose receptor (MMR) also known as 

CD206.54 Pre-incubation of MO-DCs with mannan, an antagonist of mannose-sensitive 

receptors, inhibits more than 50% of FVIII endocytosis, and abrogates the activation of a 

FVIII-specific T-cell line.29,55 CD206 is a divalent ion-dependent endocytic receptor that 

belongs to the C-type lectin receptor family. The tissue distribution of CD206 is well 

documented in mice, but remains poorly known in human.56 In human, CD206 is expressed 

by different macrophages and dendritic cells subsets as well as by hepatic, splenic, lymphatic 

and dermal microvascular endothelial cells.56–58 CD206 is involved in innate immune 

responses through its capacity to recognize a wide variety of pathogens (Gram-positive or 

Gram-negative bacteria, yeasts, parasites and mycobacteria).59 It also plays a role in adaptive 

immune responses and leads to antigen presentation.60 Moreover, CD206 is involved in the 

modulation of the catabolism of many endogenous glycoproteins in mice.61 FVIII is heavily 



 12 

glycosylated and harbors 25 potential sites of glycosylations, 20 of which are 

glycosylated.62,63 rFVIII and pdFVIII present similar glycosylation profiles, including high 

mannose structures, with bi-, tri- or tetra-antennary complex type chains, that are located on 

Asn239 and on Asn2118 in the A1 and C1 domain, respectively.62,64 While Asn239 carries 

either high-mannose, or hybrid or complex structures, Asn2118 present only high mannose 

structures.65 Glycans at Asn239 and at Asn2118 are implicated in FVIII binding to CD206. 

However, since CD206 has not been involved in FVIII endocytosis by mouse bone-marrow 

derived-dendritic cells, the precise role of CD206 in FVIII endocytosis and presentation to T 

cells in vivo remains to be demonstrated.49 

 

CLEC4M 

More recently, another C-type lectin receptor, CLEC4M, also known as CD299, L-SIGN or 

DC-SIGNR, was reported to bind, internalize and catabolise VWF and FVIII, either in their 

complex form or not.32,66 CLEC4M is expressed by sinusoïdal endothelial cells in the liver, 

placenta, lymph nodes, lung and gastro-intestine tractus.67 As in the case of CD206, the 

binding of CLEC4M is dependent on high mannose oligosaccharides exposed on FVIII. Since 

CLEC4M has been mostly described as an adhesion receptor, a direct role of CLEC4M in 

FVIII immunogenicity is unlikely.  

 

FVIII residues involved in endocytosis 

Several attempts have been made to identify the key residues of FVIII implicated in its 

internalization by APCs, independently from any preconceived idea on the nature of the 

endocytosis receptors at play. Using the monoclonal antibody KM33 that recognizes an 

epitope located in the C1 domain of FVIII, Herczenik et al have demonstrated that the 

Arg2090, Lys2092 and Phe2093 residues are involved in FVIII endocytosis by MO-DCs.31 
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The substitution of these residues to alanines by site directed mutagenesis generated a FVIII 

mutant that is significantly less internalized by APCs.68,69 More recently, using a similar 

approach with a monoclonal anti-C2 antibody, we demonstrated that Arg2215 and Arg2220 of 

the C2 domain also participate in FVIII endocytosis by MO-DCs.68 The substitution of these 

residues to alanine residues yielded a mutant FVIII that was less prone to endocytosis by MO-

DCs. Mutation of the three C1 residues showed conflicting results on the immunogenicity of 

FVIII in FVIII-deficient mice.68,69 Taken together, the available data demonstrate the 

involvement of complex interaction networks that modulate FVIII uptake and lead either to 

FVIII catabolism or processing and presentation to T cells.  

 

Facilitation of endocytosis of FVIII by other molecules 

The experimental set-up used to study the endocytosis of FVIII by APCs generally leaves 

aside key proteins that may be directly or indirectly implicated in the internalization process. 

This is true for VWF and complement molecules which are virtually absent in serum free 

conditions, or are inactivated or present in low amounts when 10% decomplemented fetal calf 

serum is used. Our seminal work had documented a significant reduction of FVIII endocytosis 

by MO-DCs in the presence of VWF.49,70 VWF was thus found to inhibit the binding of FVIII 

to CD206.29,55 Recent finding by the Voorberg lab have provided a more complexed picture of 

the role of VWF on FVIII endocytosis and processing by APCs. Sorvillo et al thus 

demonstrated that, while most of VWF remains bound to the cell membrane, FVIII-derived 

peptides are still detected in association with MHC class II molecules at the surface of MO-

DCs.71 The comparison of the MHC II-bound FVIII peptidome when FVIII was incubated 

alone or with VWF in the presence of MO-DCs showed changes in the repertoire of FVIII-

derived peptides presented on HLA-DR molecules.71 Interestingly, VWF-derived peptides 

were detected in association with HLA-DR molecules only when VWF was incubated with 
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FVIII, suggesting that the presence of FVIII mediates VWF endocytosis. Currently, it is not 

clear whether the same endocytic pathways are involved when FVIII is complexed to VWF or 

not. Importantly, the fact that VWF was found to be endocytosed in a LRP-1-dependent 

manner by macrophages under shear-stress conditions, should encourage new investigations 

of FVIII/VWF uptake by MO-DCs under non-static conditions. The repercussion of VWF co-

endocytosis with FVIII on the onset of the anti-FVIII immune response in vivo is difficult to 

predict. It has been hypothesized that the concomitant presentation of VWF-derived peptides 

by APCs may recruit VWF-specific regulatory T cells that would down-regulate the 

activation of naïve FVIII-specific T cells and thus favor tolerance to therapeutic exogenous 

FVIII.72 This could explain at least in part the proposed protective effect played by VWF on 

the immunogenicity of plasma-derived FVIII.73 

Molecules of the complement system play major roles in the development of innate and 

adaptive immune responses. Our group recently investigated the role of complement system 

on FVIII endocytosis and presentation to T cells by MO-DCs. We observed that the C3 

component of the complement system and its cleavage product C3b increase the endocytosis 

of FVIII by MO-DCs and its presentation to a FVIII-specific CD4 T-cell hybridoma (Rayes et 

al in press). The interaction of C3b with FVIII was demonstrated by Elisa, and FVIII and C3b 

were found to co-localize on the surface of MO-DCs. Interestingly, complement activation 

restored the endocytosis of the C1 mutant (Arg2090Ala-Lys2092Ala-Phe2093Ala) by MO-

DCs. The transient depletion of C3 using humanized cobra venom factor resulted in a drastic 

reduction of the immune response to exogenous FVIII in FVIII-deficient mice (Rayes et al in 

press). Taken together, these observations highlight new endocytic route(s) for FVIII which 

are dependent on interactions between FVIII and C3b.  

 

The outcome of FVIII presentation by APCs: T cell activation or tolerance induction? 
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Danger signals/environmental risk factors 

According to the danger signal theory proposed by Matzinger,74 the presence of danger 

signals in the micro-environment at the bleeding site, by promoting the maturation of APCs, 

is required to initiate anti-FVIII immune responses. Indeed, as explained above, naïve FVIII-

specific CD4 T cells can be activated only if they received signal 1 (MHC II/FVIII peptide 

triggering the TCR), signal 2 (co-stimulatory molecules) and signal 3 (cytokines) from APCs. 

Failure to provide signals 2 and 3 turns the naïve T cells into regulatory T cells. Danger 

signals are sensed by APCs through pattern recognition receptors (PRR). Danger signals may 

be of endogenous origin, such as molecules released upon cellular lesion or cellular stress, or 

exogenous, such as pathogen-associated molecular patterns (PAMP). Depending on the 

presence of such signals in the micro-environment, immune system will either initiate a 

neutralizing immune response or, on the contrary, will activate regulatory mechanisms. 

Currently, the nature of the danger signal(s) implicated in the anti-FVIII immune response 

remains unknown. Pfistershammer et al demonstrated that in vitro FVIII is not able to induce 

MO-DCs maturation.75 Accordingly, using HEK293 cell lines transfected with Toll-like 

receptors (TLR), a family of PRR, we reported that FVIII alone is not able to activate TLR 

pathway.76 More recently, Miller et al observed a synergistic effect of pdFVIII and 

lipopolysacharide (LPS) on the expression of the co-stimulatory molecules CD83 and CD86 

on MO-DCs. It is thus possible that pdFVIII plays a synergistic role on DC maturation in the 

context of inflammation.77 However, the absence of an effect of rFVIII in the same 

experimental setup suggests that the synergistic effect of pdFVIII is induced by molecules 

contained in the pdFVIII product and not by the very FVIII molecule. In addition, while 

several clinical and pre-clinical data reported a higher risk to develop FVIII inhibitors in 

patients treated with rFVIII as compared to patients treated with pdFVIII, no study reported a 

higher risk in patients treated with pdFVIII.  
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The pro-coagulant activity of FVIII may provide danger signal, since FVIII injection in a 

context of bleeding in HA patients activates the FX that accumulated at site of bleeding which 

leads to a burst of thrombin generation.78 Skupsky et al demonstrated that heat-inactivated 

FVIII is less immunogenic than native FVIII, and that inhibition of thrombin by hirudin at the 

time of FVIII administration significantly reduces the anti-FVIII immune response in FVIII-

deficient mice.79 In contrast with this finding, Meeks et al demonstrated the similar 

immunogenicity of wild-type FVIII and of an inactive Val634Met FVIII variant (which can 

be activated by thrombin but lacks co-factor activity) and an inactive Arg372Ala/Arg1689Ala 

FVIII variant (which cannot be cleaved by thrombin and does not dissociate from VWF).80 

Furthermore, we observed that the inactive Val634Met FVIII mutant is still immunogenic in 

FVIII-deficient mice in the absence of activation of the extrinsic coagulation cascade 

pathway.81 Thus, whether the pro-coagulant activity of FVIII is a source of the danger signal 

that riggers the anti-FVIII immune response remains unclear. 

The inflammatory state of the patients has often been proposed as a potential risk factor to 

develop FVIII inhibitors. FVIII injection during an infection/surgery or at the time of 

vaccination have been proposed to increase the risk to develop inhibitors owing to the 

presence of exogenous or endogenous pro-inflammatory signals.  

The hypothesis was strengthened by a pilot study conducted in 26 PUPs treated by early 

prophylaxis, started at the time of the first bleedings and using lower frequencies and lower 

doses of FVIII than standard treatment (once 25 IU/kg/week versus thrice 40-50IU/kg/week 

for the standard protocol). During the first 20 exposure days, FVIII injections were strictly 

performed at distance of possible inflammatory events such as infections, surgery or 

vaccinations.82 The incidence of FVIII inhibitors was significantly reduced compared to an 

historical control group (48% vs 3.8% study group). These data suggest that injection of 

exogenous FVIII in a context that avoids danger signals (bleeding, infection or immunization, 
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etc…) decreases the risk for allo-immunization. This finding was however not reproduced in 

another cohort of patients,83 and studies in preclinical models of hemophilia A yielded 

conflicting results. While induction of an acute bleeding in the knee joint of FVIII-deficient 

mice did not increase the anti-FVIII immune response,84 bleeding episodes in hemophilic rats 

increased FVIII immunogenicity.85 As far as vaccination is concerned, a retrospective analysis 

on 375 PUPS on the influence of vaccination on inhibitor development, reported the absence 

of association between vaccination and FVIII exposure.86 Similarly, in humanized hemophilic 

mice, the injection of vaccinal antigens before FVIII administration decreased the frequency 

of immunization to exogenous FVIII.87 

Several studies reported that intensive FVIII treatment in case of severe hemorrhages or 

surgery is associated with a higher prevalence of FVIII inhibitor development.88,89 As evoked 

earlier, this could be explained by alert signals inherent to these events, but also to the 

exposure of the organism to high amounts of FVIII antigens. Indeed, intuitively, the dose of 

antigen administered is predicted to affect the intensity of the induced immune response. This 

was demonstrated in the case of FVIII in earlier studies by Reipert et al wherein the 

intravenous administration of 0.1 or 1 µg rFVIII to FVIII-deficient mice lead to 10-fold 

different levels of anti-FVIII IgG.90  

Interestingly, the use of prophylaxis in HA patients was correlated with a lower risk to 

develop inhibitors.82,88,89 In principle, prophylaxis, as opposed to on-demand treatment, 

consists in injecting lower amounts of FVIII at regular intervals independently from the 

occurrence of bleeding events, to provide an as continuous as possible exposure of the 

organism to the exogenous FVIII antigen. In line with the antigen discontinuity theory 

proposed by T Pradeu, such a continuous exposure to an exogenous antigen should prevent 

the onset of neutralizing immune responses and favor the induction of a peripheral 

tolerance.91 
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Genetic risk factors for the development of an inhibitory anti-FVIII immune response 

Among genetic risk factors, the mutation of the F8 gene leading to HA has been established. 

Thus, mutations resulting in severe alterations of FVIII expression such as the inversion of 

intron 22, large deletions and nonsense mutations significantly increase the risk to develop 

inhibitors to therapeutic FVIII.92 Such mutations lead to the expression of a strongly truncated 

FVIII or to the complete absence of endogenous FVIII (intron 22 inversion) and the patients 

with these mutations are referred to as “cross-reactive material” (CRM) negative. From an 

immunological point of view, the lack of expression of endogenous FVIII in CRM-negative 

patients results in the absence of thymic education of newly arising T cells and lack of 

establishment of central tolerance: in absence of FVIII expression in the thymus, FVIII-

reactive CD4 T cells are not eliminated during the process of negative selection, and FVIII-

specific regulatory T cells (Tregs) are not induced. In contrast, CRM-positive patients have 

higher chance to develop central tolerance to FVIII and hence to control the immune response 

to exogenous FVIII. The majority of CRM-positive patients generally produce an endogenous 

FVIII with a missense point mutation, that is either lacking pro-coagulant activity (e.g., FVIII 

with the V634M mutation),93 or that accumulates in the endoplasmic reticulum and is poorly 

secreted.94,95 We and others have documented the importance of the affinity for HLA-DR of 

the peptides from wild-type therapeutic FVIII that correspond to the peptides of endogenous 

FVIII that carry the HA-causing mutation, as a risk factor for allo-immunization to 

therapeutic FVIII.96–98 Yet, despite the fact that tolerance is not perfect when a mutated FVIII 

is expressed, the risk to develop FVIII inhibitors is drastically reduced in CRM-positive 

patients. Gouw et al in their meta-analysis on 5283 patients with severe HA from 30 different 

cohorts observed a higher risk in patients with large deletions or nonsense mutations as 

compared to patient with intron 22 inversions (INV22).99 Although somewhat surprising, 

those results could be explained by the intracellular expression of two FVIII polypeptides 
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(FVIIII22I et FVIIIB) in peripheral blood cells (PBMCs) and hepatic tissue from patients with 

INV22.100 The authors proposed that the two FVIII polypeptides may be expressed by 

medulary thymic epithelial cells and favor the induction of T-cell tolerance to FVIII. The 

latter hypothesis remains to be confirmed in view of the fact that another study failed to detect 

FVIII-encoding mRNA in PBMCs from INV22 patients.101 Presumable, patients who do not 

develop a central tolerance to FVIII, rely on the induction of peripheral tolerance in order to 

control of FVIII-reactive T cells.  

Importantly, all CRM-negative patients do not develop inhibitors since inhibitors are detected 

in roughly 30% of patients with severe HA. The mechanisms involved in the induction of 

peripheral T-cell tolerance to FVIII CRM-negative patients and in the subsequent control of 

the anti-FVIII immune response have not been elucidated as yet. Investigations of the genetic 

risk factors associated with FVIII inhibitor development suggest the involvement of multiple 

factors. Polymorphisms in different immune genes, including IL-10, TNF-a and CTLA-4 

genes, have been associated with the onset of FVIII inhibitors.102–104 In particular, 

polymorphisms associated with high Il-10 and TNFa production levels were more frequent 

among inhibitor-positive patients.105,106 Of note, IL-10 was first described to down-regulate 

the synthesis of Th1 cytokines and was associated with polarization of immune responses 

towards a Th2 type which are characterized by isotype switch and increased antibody-

mediated immune responses. Hu et al reported that proliferating FVIII-specific CD4 T cells 

exhibit different phenotypes depending on the immune status of the patients. While T-cell 

blasts generated from inhibitor-positive patients were polarized towards both the Th2 

(positive for the interleukin Il-4) and Th1 (positive for the cytokine IFN-g) pathways, T-cell 

blasts obtained from inhibitor-negative patients were of Th1 and Th3 (TGF-b-positive) type. 

Interestingly, FVIII-specific T cell blasts isolated from healthy donors were polarized either 

towards the Th1 or Th3 pathways, but never towards Th2.107 The authors proposed that Th1 
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cells may mostly be implicated in the initiation of anti-FVIII immune response, whereas 

polarization towards a Th2 response may favor the development of a strong immune response 

to FVIII with the production of FVIII inhibitors. However, the underlying mechanisms are 

probably more complex since Il-10, a typical Th2-type cytokine that is also the hallmark of 

Tregs, is produced by monocytes and is endowed with pleiotropic effects in 

immunoregulation and inflammation. For example, IL-10 down-regulates the expression of 

MHC class II and costimulatory molecules at the surface of macrophages, while promoting B-

cell survival and proliferation. The ABO blood groups were recently proposed to modulate 

FVIII immunogenicity. Thus, Franchini et al reported in a retrospective study on a small 

cohort of severe hemophilia A that non-O blood group patients have a higher risk to develop 

inhibitors, independently from other covariates (FVIII products, F8 mutation).108 To date, 

ABO blood groups have mostly been reported to influence VWF and FVIII clearance.109 The 

mechanisms underlying the reduced immunogenicity of FVIII in blood group O patients 

remain to be determined. Recent investigations involving the genome-wide association of 

13,331 single nucleotides polymorphisms (SNPs) from 1,081 immune genes in 833 patients 

with severe HA110 have revealed additional polymorphisms in multiple genes involved in 

immune regulation. Thirteen SNPs were significantly associated with inhibitor risk, 5 SNPs 

being correlated with an increase prevalence (MAPK9, DOCK2, CD44, IQGAP2 and 

CSF1R), and 8 SNPs being apparently protective (PDGFRB, PCGF2, HSP90B1, F13A1, 

IGSF2, ALOX5AP, MAP2K4 and PTPRN2).  

Of note, we have reported the increased prevalence of short tandem GT repeats in the 

promoter of the gene encoding heme-oxygenase 1 (HO-1) in patients who have developed 

inhibitory antibodies to FVIII.111 HO-1 catalyses heme to generate the anti-inflammatory and 

immuno-suppressive compounds carbon monoxide and biliverdin, and has been associated 

with Treg functions.112,113 Recently, another regulatory enzyme that also supports Treg 
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functions was implicated in the control of the anti-FVIII immune response: indoleamine 2,3-

dioxygenase 1 (IDO1).114 IDO1 is a heme-enzyme involved in the metabolism of tryptophan 

and is expressed by various cell types including DCs. Tryptophan metabolites resulting from 

IDO1 activity promote immune tolerance by inducing the apoptosis of T cells and promoting 

the differentiation of Tregs.115 Interestingly, PBMCs isolated from inhibitor-positive HA 

patients failed to express IDO1 and anti-inflammatory cytokines upon in vitro TLR9 

stimulation in contrast to PBMCs from inhibitor-negative patients. Interestingly, in FVIII-

deficient mice, the induction of HMOX-1 and of IDO1 were independently found to protect 

from the development of a humoral response to FVIII.114,116 Taken together, these 

observations suggest the existence of mechanisms of peripheral induction of T-cell tolerance 

to FVIII that are deficient in patients with FVIII inhibitors.  

 

Therapeutic strategies to prevent and control the anti-FVIII immune response 

Modification of FVIII structure 

The endocytosis of FVIII being a prerequisite for the onset of the anti-FVIII immune 

response, a strategy consists in modifying the structure of FVIII in order to prevent its 

recognition by APCs. The modification of residues involved in FVIII endocytosis by DCs at 

the level of the C1 or C2 domains as well as Asn2118 was shown to prevent the uptake of 

FVIII by human DCs but did not abrogate the onset of the anti-FVIII immune response in 

FVIII-deficient mice.68,117 Moreover, designing less immunogenic FVIII molecules by 

introducing mutations may be hardly compatible with the preservation of its structure and pro-

coagulant activity. An alternative to the traditional approach of site directed mutagenesis has 

recently been explored to generate better expressed and possibly less immunogenic FVIII 

variants. Using ancestral sequence reconstruction (ASR), Zakas et al have recently identified 

two common FVIII-encoding ancestor genes: An53 from the rodent lineage and An68 from a 
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lineage common to primates and rodents, that share 95 and 87% homology with human FVIII 

sequence, respectively.118 Recombinant BDD An53 and An68 were more efficiently produced 

and secreted than human BDD-FVIII. Interestingly, the two ancestor FVIII molecules were 

also less antigenic than BDD-FVIII as they were poorly recognized and neutralized by a panel 

of anti-A2 and anti-C2 monoclonal antibodies. Further investigations on T-cell epitope 

prediction as well as immunogenicity in preclinical models of HA are needed to determine 

whether ASR is a viable strategy to design less immunogenic FVIII in the future.  

 

Immuno-intervention 

Prevention of HLA-DR mediated interactions between APCs and T cells  

A strategy to prevent the initiation of the anti-FVIII immune response consists in preventing 

the signalization required for the priming of naive FVIII-specific T cells by targeting signal 1 

(Table 2). Using in silico measurement of the binding of FVIII-derived peptide to MHC II 

molecules, Moise et al predicted key modifications of major immuno-dominant T-cell 

epitopes at the level of the C2 domain. The substitutions drastically decreased the affinity of 

FVIII peptides affinity for MHC II as well as subsequently T-cell activation.119 Although 

theoretically attractive, such a ‘de-immunization’ strategy of FVIII appears risky and highly 

complex in view of the polyclonality of the anti-FVIII immune response and involvement of a 

large number of T-cell epitopes largely spread over the FVIII structure, and in view of the 

complexity of introducing point mutations in FVIII without affecting its pro-coagulant 

activity and ability of being intracellularly trafficked and secreted, as evoked earlier.120 

 

Inhibition of B cells  
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B cells are the precursors of plasma cells that secrete anti-FVIII antibodies. Several strategies 

for targeting B cells have been tested, including the use of proteasome inhibitors.17 One 

promising strategy is based on the use of liposomal nanoparticles coated with FVIII and the 

CD22 ligand (CD22L).121 Stimulation of the BCR in association with CD22 signalization 

down regulates B cells in an antigen-specific manner.122 Indeed, in FVIII-deficient mice, a 

single administration of FVIII and CD22L complexed to liposomes nanoparticles reduced the 

production of inhibitory anti-FVIII IgG. However, the latter strategy has not been tested in the 

context of repeated injections of FVIII which would be necessary to evaluate the induction of 

tolerance to FVIII. Our yet unpublished work demonstrates that blocking the BCR 

signalization pathway using inhibitors of the Bruton’s tyrosine kinase does not prevent the 

onset of a naive anti-FVIII immune response in mice, but reduces the memory response to 

therapeutic FVIII in FVIII-challenged mice, thus paving the way to strategies aimed at 

ameliorating the outcome of immune tolerance induction by administration of high dose 

FVIII.  

 

Induction of T-cell tolerance  

Drug-mediated immunosuppression has been tested with success in preclinical models of HA. 

Thus, the daily per os administration to FVIII-deficient mice of rapamycin, an inhibitor of the 

Il-2 signalization pathway, concomitantly with repeated injections of FVIII was associated 

with a significant decrease in the anti-FVIII humoral response.123 Rapamycin treatment 

favored the emergence of CD4+CD25+Foxp3+ regulatory T cells and down-regulated Th2 

polarization. Rapamycin-mediated immunosuppression was however not antigen-specific. 

Recent investigations using synthetic nanoparticles containing rapamycin and FVIII gave 

promising results in hemophilic mice.124 A very brief low dose regimen of methotrexate has 
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been recently shown to promote tolerance to the human therapeutic enzyme alglucosidase alfa 

in a mouse model of Pompe disease. Methotrexate-induced tolerance involved the induction 

of regulatory B cells that secrete Il-10 and TGF-b.125 The effect of methotrexate in dampening 

FVIII immunogenicity remains to be tested.  

Another alternative approach to favor the expansion of Tregs in vivo consists in the use of IL-

2/anti-IL-2 antibody (JES6-1) complexes.126 The administration of this complex in parallel to 

FVIII treatment during 4 weeks was found to inhibit the production of anti-FVIII antibodies 

in mice, and to induce tolerance in the following weeks. The protective effect was associated 

with a 7-fold increase in the number of circulating natural CD4+CD25+Foxp3+Helios Tregs, 

as compared to a control group. The Tregs were however short-lived, highly suppressive but 

probably not specific for FVIII. In parallel, FVIII-specific human regulatory T cells 

engineered by retroviral transduction of polyclonal Tregs from healthy donors with an anti-

FVIII TCR coding sequence was shown to down-regulate anti-FVIII T and B cell responses in 

vitro.127 In a different strategy, our group has shown that the injection to pregnant FVIII-

deficient mice with the A2 and C2 domains of FVIII fused to the murin Fcg1 fragment, is 

followed by the transplacental transfer of A2-Fcg1 and C2-Fcg1 to the foetuses. The transfer 

was dependent on the neonatal Fc receptor and induced central as well as peripheral T-cell 

tolerance that lasted for several weeks after birth.128 

Lastly, the induction of FVIII-specific tolerance upon administration of FVIII by the oral 

route has been investigated. The latter strategy exploits the tolerogenic environment that 

characterizes the gut-associated lymphoid tissue. The proof of concept was brought with the 

oral administration of the purified C2 domain of FVIII to FVIII-deficient mice, either by the 

nasal or oral routes, prior to subcutaneous injection of the C2 domain with adjuvant.129 

However, induction of tolerance using this protocol requires enormous quantities of FVIII and 

the maintenance of FVIII integrity until it reaches the gut. In an alternative attempt, bio-
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encapsulated FVIII fragments fused to the B subunit of the cholera toxin (CTB), a 

transmucosal carrier, allowed the absorption of FVIII fragments by gut microbial flora follow 

gavage. The treated mice demonstrated a drastically reduced humoral anti-FVIII response.130  

 

Conclusion 

The present days are facing a paradoxical situation where a myriad of different approaches for 

immuno-intervention and induction of specific tolerance to FVIII are being validated in 

hemophilic mice, and where novel therapies using bypassing agents or gene therapy may 

render the administration of exogenous FVIII no longer the standard of care in the future. At 

the same time, the knowledge we have of the elevated immunogenicity of FVIII in HA 

patients remains very incomplete and fragmented. Advances in our understanding of the way 

FVIII is captured and internalized by APCs, of the nature of the dominant T and B cell 

epitopes, of the major genetic risk factors as well as in the validation or refutation of 

intuitively proposed danger signals are however undeniable. From both a scientific and 

clinical points of views, we strongly believe that deciphering the immunogenicity of FVIII 

should remain a priority for the community. Importantly, the experience accumulated in the 

field of FVIII and hemophilia A shall lead the way in the more general context of 

immunogenicity of therapeutic proteins.  
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Legends to figures 

Figure 11. Initiation of the anti-FVIII immune response. Therapeutic exogenous FVIII is 

captured by APCs that cleave FVIII into small peptides in the endosomal compartment. 

FVIII-derived peptides associate with molecules of MHC class II. Complexes of FVIII-

derived peptide and MHC class II molecules are exposed at the surface of APCs and are 

presented to naïve CD4 T cells. The recognition of FVIII-derived peptide by the TCR of the T 

lymphocytes provides the first activation signal (signal 1), interactions of co-stimulation 

molecules and ligands at the surface of T cells and APCs provide a second signal (signal 2), a 

third signal is mediated by soluble pro-inflammatory stimuli such as cytokines (signal 3). The 

three signals are required to get the full activation of naïve T cells and differentiation into 

effector T cells. Naïve B cells that have internalized FVIII through their BCR, present CMH 

II/peptide complexes to the activated FVIII-specific T cells. The formation of the T/B cell 

synapse triggers intracellular signaling that leads to the differentiation of follicular B cells 

either into memory B cells or plasma cells. 

  

                                                             
1 Abbreviations: PAMPS, pathogen-associated molecular patterns; TFs, tissue-factors; PRR, pattern recognition 
receptors; TCR, T-cell receptor. 
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Table 1. Endocytic receptors for FVIII2  

Receptor FVIII binding Catabolism Endocytosis leading to 

peptide presentation* 

References 

LRP-1 Light chain (inhibited by 

VWF) 

A2/A3 domain of 

activated FVIII 

Yes No 34,37–40,48 

LDL-R Specific site unknown Yes (in mice) No 36,47 

HSPG A2 domain Yes in mice 

(LRP-1 

dependent and 

LRP-1 

independent) 

No 41 

ASGPR Desialylated B-domain 

associated glycans 

Yes (in mice) No 50,51 

Siglec-5 Specific site unknown Yes (in mice 

expressing 

human Siglec-

5) 

unknown 52 

CD206 

(MMR) 

Exposed mannose glycans 

at Asn239 and Asn2118 

(inhibited by VWF) 

No (in mice) Yes 29,55 

CLEC4M High mannose glycans No No 66,131,132 

* In in vitro model using mouse or human DCs  

  

                                                             
2 Abbreviations: LRP-1, low-density lipoprotein related receptor-1; LDL-R, low-density lipoprotein receptor; 
HSPG, heparan sulfate proteoglycan; ASGPR, asialoglycoprotein receptor; Siglec-5, sialic-acid binding 
immunoglobulin-like lectin-5; MMR, macrophage mannose receptor; CLEC4M, C-type lectin domain family 4 
member M. 
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Table 2. Therapeutic strategy to prevent the development of inhibitors in preclinical 
model3 

Target Therapeutic 
strategy 

Mechanism of action FVIII-specific References 

APCs (Endocytosis 
of FVIII) 

Modification of FVIII 
structure 

Prevention of FVIII 
capture by APCs  

Yes 69,81 

T cells/ APCs 
synapse (signal 1) 

Prediction of T cell 
epitope and design 
of mutated FVIII 

De-immunization by 
prevention of HLA-DR 
mediated interactions  

Yes 119 

B cells FVIII and CD22L 
coated liposomal 
nanoparticles 

Suppression of B cell 
response by 
engagement of CD22 

Yes 121 

Tolerance 
induction 

Rapamycin Inhibition of Il-2 
signalization, 
emergence of 
regulatory T cells 

No/  

Yes, if formulated in 
FVIII containing 
nanoparticles 

 

123,124 

 Methotrexate 
(Single low dose 
regimen) 

Induction of Il-10 and 
TGF-β secreting 
regulatory B cells 

Not tested in 
preclinical model of HA 
(described as antigen 
specific) 

 

125 

 Il-2/ anti-Il-2 
complexes 

Emergence of Tregs 

 

No 126 

 Materno-foetal 
transfer of A2/C2 
domain of FVIII 
fused to Fc fragment 
of IgG1 

Induction of central 
and peripheral 
tolerance by passive 
transfer of A2 and C2 
from the mother to 
the foetus  

 

Yes 128 

 Administration of 
bio-encapsulated 
FVIII fragments 
fused to the B 
subunit of the CTB 

Induction of tolerance 
through mucosal 
route, emergence of 
Tregs 

Yes 130 

 

                                                             
3 Abbreviations: APCs, antigen-presenting cells; HLA-DR, Human Leukocyte Antigen – antigen D Related; 
CD22, cluster of differentiation-22; Il-2, interleukin-2; Il-10, interleukin-10; TGF-β, transforming growth factor 
beta; Tregs, regulatory T cells; Fc, Fc- Fragment of IgG; CTB, Cholera toxin B. 


