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Abstract 

The absorption of carbon dioxide into monoethanolamine (MEA) solution has been studied. A specific setup allowing 
controlling gas-liquid interface has been studied. It is based on a stirred reactor. This study presents the determination 
of physicochemical and kinetic parameters. Determination has been done for MEA solution with and without 
sulphuric acid. This acid will illustrate the accumulation of SOx present in the fumes of a typical industrial process.  
 
© 2012 Published by Elsevier Ltd. Selection under responsibility of the Congress Scientific Committee 
(Petr Kluson) 
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1. Introduction 

Carbon dioxide emission from human activities forms a major point of attraction for scientists in the 
world because it is considered as predominantly responsible for the global warming [1]. The soaring 
demand for energy caused by demographic changes and economic development through the world is the 
main source of CO2 emission. A number of technologies have been tested to reduce or capture carbon 
dioxide emissions (Chemical absorption, physical absorption, cryogenic separation, membrane separation 
and biology fixation). Chemical solvent absorption is the most mature of them considering its reliability 
and competitivity [2,3]. 
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Nomenclature 

 

[j] Molar concentration of specie j (mol.m-3) 

A Interfacial area (m2) 

D Diffusivity (m2.s-1) 

E Enhancement factor  

Ei Instantaneous enhancement factor  

Ha Hatta number 

He Henry’s constant (Pa.m3.mol-1) 

k Kinetic constant (m3.mol.s-1) 

kG Mass transfer coefficient in the gas side (mol.m-2.s-1.Pa-1) 

kL Mass transfer coefficient in the liquid side (m.s-1)  

pi Partial pressure of species i (Pa) 

R Ideal gas constant (8.3144 J.mol-1.K-1) 

T Temperature (K or °C) 

VL Liquid volume (m3) 

Vg Gas volume (m3) 

 

Subscripts 

b bulk 

g gas 

i Interface 

l liquid 

w Water 

 

Greek Symbols 

 Rate of absorption by volume’s unity of reactor (mol.m-3.s-1) 

 

Molecule 

CO2 Carbon dioxide 

MEA Monoethanolamine 

N2O Nitrous oxide 
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Moreover, post combustion sources are characterized by high gas volume and low CO2 concentration 
flue gas, and these characteristics are further espoused by the absorption/desorption process with chemical 
reaction. 

The general absorption/desorption process flow diagram is shown on figure 1. The gas flue to be treated 
gets in the bottom of the absorption column. Then it progresses in contact with the solvent from the 
bottom to the top of the column. As upflow of gas whilst liquid trickles downward over the packing, the 
carbon dioxide transfers from the gas phase to the liquid phase and it reacts with the species present in the 
solvent. The treated gas flue goes out at the top of the column. For energy saving, the loading solvent 
passes through a heat exchanger before entering in the desorption column. At this point, the solvent is 
regenerated by heating and the carbon dioxide liberated is collected from the top of the desorption 
column. 

 

 

Fig. 1. Process flow diagram of an amine absorption process 

(A: Absorption column; B: Heat exchanger; C: Desorption column) 

This process has been extensively studied in order to optimize operating conditions, energy cost or 
estimating solvent degradation. In this work, we focused on transfer phenomena in the absorption column. 
We particularly study the influence of liquid composition along the column on absorption kinetic of 
carbon dioxide. Few factors drive the rate of absorption of CO2 (mass transfer of the acid gas in the 
solvent and kinetic reaction) [4]. Many works have also been done around process modelling but most of 
time by considering homogeneous kinetic parameters on the absorption process. However, the absorption 
column is a place where composition of the liquid and gas phase are strongly modified. 

Several kinds of solvents can be used to react with CO2. The first is monoethanolamine (MEA) [4–6] but 
other amines (DEA, AMP, etc.) [5], KOH or NaOH [6,7], ammonia [8,9] and mixed solvents [10,11] can 
be used. In this paper, we deal with the system MEA/CO2/H2O. 

Inlet Gas flue 

Outlet gas flue CO2 flue 
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2. Experimental 

2.1. Experimental Setup 

 
Studying the absorption kinetics directly on a packed column can be driven but access to the exchange 

surface can be obtained by some empiric correlations. Then it is more powerful to achieve a specific setup 
allowing fixing the area by which mass transfer occurred. 

In the literature, several measurement devices are reported for absorption kinetic’s determination 
(Laminar liquid jet absorber [12,13], Wetted wall column [8,14], wetted sphere [15] and stirred reactor 
[16]). All of them permit to determine the constant kinetic by fixing exchange surface between gas and 
liquid phases. For the first three devices, both inlet and outlet of gas and liquid have to be measured. The 
residence time is short and allows considering homogeneous composition in each phases. 

 

 

Fig. 2. Stirred reactor scheme (Lewis cell type) 

Our setup is based on a stirred reactor (Fig. 2). (Volume: 1L and inner diameter: 80mm). The low part 
of the reactor is fulfilled with the liquid and the upper part contains the gas. It is composed of a 
cylindrical glass vessel. The system is equipped with a double jacket which permits to be in isothermal 
condition. Two turbines, one in the gas phase and another in the liquid phase, mix separately and 
independently the reactor. The reactor is equipped with temperature and pressure sensors. A gas reservoir 
with pressure sensor permits to control the injected amount. A pneumatic valve controls the inlet gas. 
This valve permits to do micro-injections of gas (10 kPa). 
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Fig. 3. Data from the reactor 

The solvent is sucked up from the bottom into the reactor by the vacuum pump and the air is also 
removed. The experience is started after the stabilization of the pressure and the temperature in the 
reactor. Carbon dioxide is injected into the reactor automatically when the pressure and temperature are 
stabilized. 

In these experimental conditions, we can consider that the small amount of absorbed carbon dioxide 
does not modify the chemical composition of the liquid. Liquid can also be considering homogeneous and 
with constant physical properties during a single injection. FigureFig. 3 shows a typical behaviour of the 
reactor pressure during the experimental procedure with several injections. The experiences are stopped 
when the solutions are saturated by the gas. 

2.2. Chemicals 

All solvents are prepared with deionised water, MEA from Fisher chemical (>99% purity) and 
sulphuric acid from Fischer chemical (>95%). The dioxide carbon was purchased from Air Liquid 
(>99.9% vol. purity). 

3. CO2 absorption in MEA solution 

3.1. Chemical mechanism  

The reactions 1-3 describe the CO2 absorption into MEA solution. The reaction 1 corresponds to the 
mass transfer. The reaction 2-3 is the chemical reactions. 

(CO2)g  (CO2)l          (1) 

(CO2)l + MEA  MEACOOH        (2) 

MEACOOH + MEA  MEACOO- + MEAH+      (3) 
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3.2. Mass transfer equation  

The global flux of CO2 transferred between the gas and the liquid can be defined considering the 
driving force caused by the difference of concentration between the bulk (b) of the liquid and the interface 
(i). 

   or        (4) 

The Henry’s law is used to determine the concentration of CO2 at the interface from the pressure in the 
gas phase. The kinetics constant would then be estimated by monitoring the pressure inside the reactor. 

         (5) 

Using ideal gas law, the partial pressure of dioxide carbon can be expressed in concentration. 

         (6) 

With sufficient agitation in the reactor, the absorption is driven by kinetic of reaction. After a single 
injection, the composition of the solution remains unchanged thanks to the micro-injection of the gas. 
Then we can consider a pseudo 1st order for this reaction. In this case, the Hatta number can be use in 
condition if this number is superior to 3 and inferior to Ei/2 (Ei: instantaneous enhancement factor). 

          (7) 

Then the global flux in case of the chemical absorption in pseudo 1st order is defined by: 

      (8) 

Following Kucka’s method [16], the equation (9) has been used to represent the absorption of CO2 into 
a basic solvent. This equation assumed that the absorption of CO2 is in pseudo 1st order. 

      (9) 

The CO2 diffusivity and Henry ‘constant of CO2 in the solution are determined by analogy with nitrous 
oxide (N2O) .[17,18] 

       (10) 
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4. Results and discussion 

Firstly, the experiences are done in MEA solution 30%wt. at difference temperature. That permits to 
observe the influence of the temperature and the solution loading on the absorption profile. The figure 
Fig. 4 shows the absorption profile of CO2 in MEA 30%wt. solution at different loading. With increasing 
the loading, the slope of the curve is lower. The slope of the curve depends on the concentration of MEA 
like it is written in the equation 9. 
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Fig. 4. Absorption of CO2 in 30% MEA solution in stirred reactor (loading= mole of CO2/mole of base) 

 
By fitting experimental point with the model, we can determine the kinetic constant which is the only 

unknown parameter in our equations. 
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Fig. 5. Absorption profile between experimental data and the model 
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The figure 5 shows that we obtained a good agreement between experimental and modelling pressure. 
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Fig. 6. Kinetic constant between MEA and dioxide carbon in the literature [16,19–21] 

All estimated constant are in the figure 6 and compared with the literature. The estimated kinetic 
constant is coherent with the literature. The hypotheses (homogenous in the liquid, pseudo first order) in 
the model are correct. To be more convenient, in results presentation, we will estimate the kinetic at the 
beginning of the absorption. To achieve this, we will plot the derivative of the pressure at t=0 for each 
absorption profile. Figure 7 and 8 are built considering the gradient at the origin. 
 

The figure 7 presents the results from experiences realized with MEA 30%wt. solutions at the different 
temperatures. For a low mole CO2 injected, the gradient is high when the temperature increases. For the 
same concentration of MEA, the absorption profile depends on the kinetic constant (eq. 9) which depends 
itself on the temperature following the Arrhenius’s law. With an increase of the temperature, the kinetic 
constant increases too. So that’s why the gradient at the origin of the curve increases with the 
temperature. Moreover, whatever the temperature, the absorption’s rate decreases with saturation of the 
liquid by carbon dioxide. 
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Fig. 7. Gradient at the origin of pressure for MEA 30% at different temperature 

 
Below, are presented the results from experiences realized in presence of sulphuric acid at 25°C. The 

sulphuric acid is the product from the reaction between water and SOx which is present in the industrial 
fumes. 

 

-0.02

-0.01

0.00
0 0.5 1 1.5 2

(d
p/

dt
) t=

0

Mole of CO2 injected

MEA 30%

MEA 30% + 0.25M H2SO4

MEA 30% + 0.5M H2SO4

MEA 30% + 1M H2SO4

MEA 30% + 1.5M H2SO4

0.25M H2SO4

0.5M H2SO4

1M H2SO4

1.5M H2SO4

 
 

 

Fig. 8. Gradient at the origin of pressure for MEA 30% with different concentrations of acid sulphuric at 25°C 

The figure 8 shows clearly that sulphuric acid adding to the MEA solution has a strong influence on 
initial kinetic behaviour. First, increasing sulphuric acid concentration leads to a decrease of the kinetic. 
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Second, presence of sulphuric acid leads to a quicker saturation of the solution by carbon dioxide. 
(Example: 1.5M H2SO4, saturation occurs with 1 mol of CO2). From a chemical point of view, sulphuric 
acid causes a neutralization of MEA. Each molecule blocks 2 molecules of MEA as explain in equation 
11. 

H2SO4 + 2 MEA  SO4
2- + 2 MEAH+ (11) 

 

5. Conclusion  

The absorption of CO2 is done with several solutions of MEA with and without sulphuric acid. Using 
the comparison of the gradient at the origin for each absorption profile, we observed the influence of 
temperature, loading solution and the concentration of sulphuric acid on the gradient at the origin for each 
absorption profile.  

Following Kucka’s method, the kinetic constant is determined the absorption of CO2 into 30%wt. 
solution of MEA. For this method, an analogy between N2O and CO2 is used to determine CO2 diffusivity 
and Henry’s constant for the liquid phase. Those parameters are determined for N2O in several 
alkanolamine solutions without CO2. In the literature, the ionic strength influences these parameters with 
negative effect. [22–24] Going further, the ionic strength and other pollutants will be study to determine 
their influences on the physicochemical parameters. 
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