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Abstract. Well-posedness classes for degenerate elliptic problems in RN un-
der the form u = ∆ϕ(x, u) + f(x), with locally (in u) uniformly continuous

nonlinearities, are explored. While we are particularly interested in the L∞

setting, we also investigate about solutions in L1
loc and in weighted L1 spaces.

We give some sufficient conditions in order that the uniqueness and comparison

properties hold for the associated solutions; these conditions are expressed in

terms of the moduli of continuity of u 7→ ϕ(x, u). Under additional restric-
tions on the dependency of ϕ on x, we deduce the existence results for the

corresponding classes of solutions and data. Moreover, continuous dependence

results follow readily from the existence claim and the comparison property. In
particular, we show that for a general continuous non-decreasing nonlinearity

ϕ : R 7→ R, the space L∞ (endowed with the L1
loc topology) is a well-posedness

class for the problem u = ∆ϕ(u) + f(x).

1. Introduction

Motivated by our exploration [7] of uniqueness of entropy solutions to parabolic-
hyperbolic convection-diffusion PDEs ut+divF (u)−∆ϕ(u) = 0 with non-Lipschitz
nonlinearities (cf. [37, 40]; see also [35, 36, 17, 4] for the underlying motivations
in the pure hyperbolic case), we got interested in the analysis of well-posedness
of merely bounded solutions in the whole space for degenerate diffusion equations
ut−∆ϕ(u) = 0 of the generalized porous medium/fast diffusion kind. In this paper,
we throughly investigate the stationary case, i.e., the elliptic problems of the kind
u−∆ϕ(x, u) = f(x) in RN . Our main assumption is the locally uniform continuity
in u of the nonlinearity ϕ; in addition, ϕ should be of the Carathéodory type,
non-decreasing in u.

Actually, instead of working with pure L∞ solutions, we extend our investigation
to solutions in L1

loc or in weighted L1 spaces. Note that weighted contraction esti-
mates have been a trend in the recent research on convection-diffusion equations,
see Endal and Jakobsen [28], Alibaud, Endal and Jakobsen [1].
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In our contributuon, three different frameworks are explored. First, the clas-
sical results of Brézis [20] on locally integrable solutions to the equation u =
∆(|u|m−1u) + f(x), 0 < m < 1, are extended. We give a complete well-posedness
theory for L1

loc solutions under a generalized Keller-Osserman condition, extend-
ing also the results of Gallouët and Morel [30]. Further, for uniformly continuous
in u nonlinearities ϕ, an original quantitative continuous dependence estimate is
obtained in the setting of weighted L1(RN , ρ) spaces with exponentially decaying
weights ρ. Finally, for N ≥ 3, the well-posedness results of Bénilan and Crandall
[14] in the spaces L1(RN , ρ) with super-harmonic weights are re-visited.

1.1. A brief account on classical results. Although we are mainly concerned
with the stationary case, let us provide a brief bibliography on well-posedness classes
for both stationary and evolution nonlinear diffusion equations; we specifically high-
light theories allowing for study of uniqueness of merely L∞ solutions.

An extensive account on mathematical theory (or rather theories) of generalized
porous medium and fast diffusion equations can be found in the book by Vazquez
[42]. The reader can also consult the surveys by Aronson [10], Kalashnikov [32], the
books by DiBenedetto [27], and Wu et al. [43]. A powerful method for uniqueness
analysis of very weak solutions was put forward by Brézis and Crandall [21], further
classical results include Bénilan, Crandall, Pierre [16], Dahlberg and Kenig [23].
Recent results in this direction, both in the classical local case and in the nonlocal
(fractional) case, were obtained by del Teso, Endal and Jakobsen [25, 26], who
also provide an extensive bibliography. Close to our interests, let us mention that
Herrero and Pierre [31] proved uniqueness for merely locally integrable distributional
solutions of the fast diffusion equation ut = ∆(|u|m−1u), 0 < m < 1, under a
regularity assumption on ut which is verified in many interesting cases. Bénilan and
Crandall [14] obtained well-posedness and structural stability results on the general
evolution equation ut−∆ϕ(u) = 0 in the setting of weighted L1(RN ; ρ) spaces with
ρ decaying as |x|2−N as |x| → ∞, which gets quite close to including L∞ solutions.
Later, several classes of polynomially growing solutions were investigated by many
authors under assumptions of specific behavior of ϕ for u ∼ 0 and u ∼ ∞; we refer
to the book by Daskalopoulos and Kenig [24] for an extensive account on these
results and futher references.

Turning back to the stationary case, first note that the problem under the form
β(w)t − ∆w 3 0 was thoroughly investigated in the L1(RN ) setting by Bénilan,
Brézis and Crandall in [13]. Additional information relevant to L1(RN , ρ) setting
with ρ(x) = (1 + |x|2)−α, 0 < α ≤ (N − 2)/2, is given in the aforementioned
reference [14]. Note however that these results do not cover the case of general
L∞(RN ) solutions, although they get quite close to doing so. Next, uniqueness
of L1

loc distributional solutions (which covers our target setting L∞(RN )) to the
equation u = ∆ϕ(u) + f for ϕ(z) = |z|m−1z, 0 < m < 1, was shown by Brézis in
[20]. The same year, similar results were obtained by Bokalo [19] for the associated
evolution problem on R ×D, D ⊂ RN , without conditions at t = ±∞. Paper [20]
also contains the existence result in L1

loc(RN ), based on the unusual localization
property of Baras and Pierre [11]. The Brézis results were generalized by Gallouët
and Morel [30] to an arbitrary increasing nonlinearity ϕ which is concave on R+,
odd, and satisfies the Keller-Osserman condition∫ +∞

1

dz√∫ z
0
ϕ−1(s) ds

< +∞
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(see Keller [34], Osserman [38]). This condition ensures that the diffusion is so fast
(for large values of u) that the requirement that a solution is defined globally on
RN becomes a sharp restriction; for instance, the only globally defined solution of
u = ∆(|u|m−1u) , 0 < m < 1, is identically zero.

The above references [14] and [20, 30] are most relevant to our investigation.

1.2. The scope and the outline of the paper. We are concerned with the
nonlinear diffusion equation

(1) u = ∆ϕ(x, u) + f(x);

in Section 6, we briefly discuss implications for the associated evolution problem

(2) ut = ∆ϕ(x, u) + f(t, x), u|t=0 = u0.

Our primary focus is on the comparison principle for solutions. Clearly, compar-
ison principle implies uniqueness. Furthermore, following Wittbold et al. [2, 9] and
using classical existence results e.g. in the L1(RN ) framework ([13]) we also use the
comparison principle as the main tool (along with some rather weak estimates) in
order to deduce existence of solutions and their continuous dependence on the data.

Let us give an outline of the paper.
In Section 2, we give the definitions of solutions and the associated Kato [33, 20]

inequalities. Note that our results all come from construction of appropriate families
of test functions in order to exploit these Kato inequalities. We also introduce some
notation, give further assumptions on ϕ and recall the notion of a modulus of
continuity and related technical objects that are central for our techniques.

In Section 3, we give two kinds of comparison results for solutions of (1) with
nonlinearity ϕ uniformly continuous in the second variable. First we revisit the
L1
loc uniqueness results of Brézis [20], Gallouët and Morel [30] under a generalized

Keller-Osserman condition on the modulus of continuity of ϕ. We argue that most
of the restrictions on ϕ imposed in [30] can be dropped. To the authors’ knowledge,
such results were not yet published in the full generality. Moreover, a very simple
continuous dependence result can be formulated with the help of the comparison
technique; we refer to the work [9] of Wittbold and the first author for a similar
investigation in the setting of elliptic-parabolic convection-diffusion problems. Next,
a different approach to (1) with sublinear nonlinearities ϕ(x, ·) yields the comparison
property in the weighted spaces L1(RN , ρ) with ρ(x) = exp(−c|x|), c > 0. Here,
the possibility to choose a wide class of nonlinearities for the Kato inequalities is
instrumental. We obtain quantitative continuous dependence estimates of solutions
in terms of the data.

In Section 4 we give the associated existence results. These results exploit ex-
tensively the comparison principles of Section 3. More precisely, following the idea
put forward by Ammar and Wittbold in [2] we construct monotone sequences of
approximate solutions, and use ad hoc estimates to control their pointwise limit.
Existence, together with the uniqueness and continuous dependence shown in Sec-
tion 3, permits to state well-posedness results in several classes of solutions, namely,
in L1

loc(RN ), in L1(RN , exp(−c|x|)), and (for the case of an x-independent nonlinear-
ity ϕ) in the class L∞(RN ). For the case where ϕ depends on x, the L∞ framework
is not natural. Therefore we introduce the adequate class L∞ϕ (RN ) for the problem
(1) with nonlinearity ϕ, and show well-posedness in this class under an assumption
of “local” uniform continuity of ϕ in the second variable.
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Before turning to the next line of analysis, let us remind that the fundamental
solution of the laplacian operator played an important role for well-posedness theo-
ries in L1(RN ) for (1) (see [13, 29]) and the associated evolution problem ([14, 41]).
In Section 5 we obtain uniqueness, contraction and comparison results for (1) and
(2) in the weighted spaces L1(RN , ρ), with N ≥ 3 and weights ρ(x) given by trun-
cations of the fundamental solution profile |x|2−N . Existence of solutions with
L1(RN , ρ) ∩ L∞(RN ) data for the stationary problem (1) is also shown. More
generally, a wide class of supersolutions to −∆ρ = 0 can be used as weights (see
Theorem 5.2 and Corollary 2 for the exact statement). Our results in Section 5
are very close to those obtained by Bénilan and Crandall in [14]. Compared to this
classical reference, we work in the setting lacking space translation invariance, we
detail the technical arguments based on accurate use of moduli of continuity, and
finally devise a uniqueness proof suitable for the full evolution convection-diffusion
problem which motivated our study (see [7]).

Investigation of related classes of well-posedness for the evolution problem (2)
is mainly postponed to further work. We only briefly mention in Section 6 some
classical or recent results on the porous medium / fast diffusion equations; we also
indicate the possibility to combine the contraction claims in L1(RN , ρ) in Section 5
for the resolvent equation with the tool of integral solution ([12, 15]) of the under-
lying abstract evolution equation, similarly to what was done in [6] by Igbida and
the first author.

For the convenience of the reader, let us indicate the main results for the case
of an x-independent nonlinearity ϕ. Such results are formulated in Corollary 1,
Theorem 4.2, Theorem 4.3, and Theorem 5.4 (with Remark 14).

2. Main definitions and tools

In § 2.1, we give some notation used throughout the paper. In § 2.2, we give
the Kato inequalities for very weak solutions which provide the starting point for
the uniqueness analysis. Many of our results, and in particular, a version of the
Keller-Osserman condition (see [34, 38, 30]) are stated in terms of the moduli of
continuity of the nonlinearity ϕ which we define in § 2.3.

2.1. Basic notation. Generically, ϕ denotes a Carathéodory function from RN×R
to R, non-decreasing in the second variable. In many statements, we assume that ϕ
is independent of x; this assumption will be explicitly indicated whenever it is used.
In all cases, the function x 7→ ϕ(x, u(x)) (or (t, x) 7→ ϕ(x, u(t, x)) will be denoted
by ϕ ◦ u. When u is a solution to the equation considered, then ϕ ◦ u will be often
denoted by w. When u1, u2 are two fixed solutions, then W will always denote the
function (w1 − w2) ≡ (ϕ ◦ u1 − ϕ ◦ u2).

The notation a∨ b, resp. a∧ b, stands for the maximum, resp. for the minimum
of a, b ∈ R. The positive (resp., negative) part of a function g is denoted by g+

(resp., g−); we have g+ = g ∨ 0, g− = −(g ∧ 0), and g = g+ − g−.
For R > 0, BR stands for the ball of RN of radius R centered at the origin.
For a measurable set A ⊂ Rm, we denote by 1lA(·) the characteristic function of

A. We denote by sign+(·) the characteristic function of (0,+∞).
For a bounded positive measurable function ρ on RN , we denote by L1(RN , ρ)

the space of measurable functions with finite norm ‖f‖L1(ρ) :=
∫
RN |f(x)| ρ(x)dx.

We usually drop dx in the notation for integrals.
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The maximal monotone graph which is the inverse of ϕ(x, ·) will be denoted by
β(x, ·). Its minimal section is the function

β0 : (x, z) ∈ RN × R 7→ { b | ∀c ∈ β(x, z), |b| ≤ |c| }.

Remark 1. Notice that for all measurable w : RN → R, the composition β0(·, w(·))
is measurable. Indeed, e.g. for λ ≥ 0, we have

{x ∈ RN | β0(x,w(x)) ≤ λ} = {x ∈ RN | ϕ(x, λ) ≤ w(x)};

this set is measurable, by the assumptions on ϕ and w.

2.2. Very weak solutions and Kato inequalities. In what follows, for the sta-
tionary case we always consider the very weak (distributional) solutions, which we
call D′ solutions for the sake of conciseness.

Definition 2.1. Let f ∈ L1
loc(RN ). A function u ∈ L1

loc(RN ) such that w :=
ϕ ◦ u ∈ L1

loc(RN ) is called a D′ solution to Problem (1) if for all ξ ∈ D(RN ),∫
RN

(
uξ − w∆ξ − fξ

)
= 0.

In the sequel, we will consider two solutions ui, i = 1, 2 (D′ solutions to the same
problem) corresponding to different data; recall that we write wi for the functions
ϕ ◦ ui := ϕ(·, ui(·)). The function w1 − w2 will be denoted by W . In the following
proposition, we recall (and slightly generalize) the Kato inequalities [33, 20] that
hold for solutions u1, u2 in the sense of Definition 2.1. Let us introduce the set

S := {S ∈W 1,∞
loc (R) | S(0) = 0,

S′ is non-decreasing, bounded, piecewise continuous }.

We denote S0 = {S ∈ S | zS′(z) ≥ 0}. In particular, S : z 7→ z+ belongs to S0.

Proposition 1. Assume that ui are D′ solutions of Problem (1) corresponding to
the data fi, respectively, i = 1, 2. Then for all S ∈ S, for all ξ ∈ D(RN )+, we have

(3)

∫
RN

(
(u1 − u2)S′(W )ξ − S(W )∆ξ

)
≤
∫
RN

(f1 − f2)S′(W )ξ.

Furthermore,

(4)

∫
RN

(
(u1 − u2)+ξ −W+∆ξ

)
≤
∫
RN

(f1 − f2) sign +(u1 − u2)ξ.

Proof. Since the distributional laplacian −∆W of W equals to f1 − f2 − u1 + u2 ∈
L1
loc(RN ), inequality (3) follows directly from the generalized Kato inequality (see

Brézis [20, Lemma A.2]). In order to get (4), we follow the idea of Blanchard and
Porretta [18]. We choose π ∈ D(RN ) and consider the relation

−∆(W + επ) = f1 − f2 − u1 + u2 − ε∆π ∈ L1
loc(RN ).

Let S′ε(z) = min{ z
+

ε , 1}, Sε(z) =
∫ z

0
S′ε(s) ds, for ε > 0. We use [20, Lemma A.2]

for the function W + επ and the “test function” S′(W + επ). We obtain

−∆Sε(W + επ) ≤ (f1 − f2 − u1 + u2)S′ε(W + επ)− ε∆πS′ε(W + επ) in D′(RN ).

As ε ↓ 0, the last term vanishes and the first term converges to −∆W+ in D′(RN ).
Further, S′ε(W + επ) converges in L1

loc(RN ) to the function sign +(W ) + π1lW=0.
Letting π ∈ D(RN ) converge to sign +(u1 − u2) in L1

loc(RN ), we infer (4). �
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2.3. Assumptions on ϕ, moduli of continuity and generalized Keller-Osserman
condition. Let us precise the assumptions on the nonlinearity ϕ. We usually as-
sume

(H0)

∣∣∣∣∣∣
ϕ : RN × R→ R is a Carathéodory function

non-decreasing in the second variable;
ϕ is uniformly continuous in the second variable on RN × R;

(when speaking about L∞ solutions, we relax the uniform continuity assumption
to the suitable local uniform continuity assumption; see e.g. Remark 11 in § 4.3).
In addition, for the L1

loc theory, the generalized Keller-Osserman condition (see
Definition 2.3 below) will be required.

It is usual to assume the normalization ϕ(x, 0) = 0 a.e., and β0(x, k) ∈ L1
loc(RN )

for all k ∈ R (cf. the existence results of [20, 29]). Our framework only differs by
translation by some given solution u∗. We do not assume ϕ(x, 0) = 0, but show
that, under a kind of growth assumption on β0(x, ·), problem (1) either admits
no solution whatever be the datum, or it admits a solution in the affine space
u∗ + E := {u = u∗ + ũ, ũ ∈ E} for data in f∗ + E, for the appropriately chosen
vector spaces E. For the sake of simplicity, we require that either

(Haut) ϕ is independent of x, normalized by ϕ(0) = 0

(in which case f∗ ≡ 0, u∗ ≡ 0); or

(Hsurj)

∣∣∣∣∣∣∣∣
for a.e. x ∈ RN , ϕ(x, ·) is surjective;

there exist f∗, u∗ ∈ L1
loc(RN )

such that u∗ is a D′ solution of (1) with datum f∗;

and for all k ∈ R, β0(·, w∗(·)+k) ∈ L1
loc(RN ), where w∗ = ϕ ◦ u∗.

Let us point out that (Hsurj) does hold under the following simple assumption:

(H ′surj)

∣∣∣∣ for all k ∈ R, for a.e. x ∈ RN ϕ(x, ·) is surjective,
and β0(·, k) ∈ L1

loc(RN ).

This assumption corresponds to the case where β0(x, 0) ∈ L1
loc(RN ), so that (Hsurj)

holds true, with the choice u∗ ≡ f∗ = β0(x, 0) and w∗ ≡ 0.
Also notice that, because there holds |β0(·, w∗(·))| ≤ |u∗| ∈ L1

loc(RN ), a growth
assumption on β0(x, ·) of the kind |β0(x, r + k)| ≤ C(k)|β0(r)| guarantees that
β0(·, w∗(·) + k) ∈ L1

loc(RN ). This allows for a (uniform in x) polynomial of expo-
nential growth of β0(x, ·).

The surjectivity assumption on ϕ(x, ·) in (Hsurj) can be relaxed (cf. assumption
(Haut)). However, let us stress that some restrictions on the dependence of the
domain of β0(x, ·) on x are needed in order to achieve existence (cf. [8, Example
3.1], which can be interpreted as an example of non-existence for our formulation).

Now we make precise what we mean by a modulus of continuity of ϕ, by its
inverse, and by sublinear or strictly sublinear nonlinearity.

Definition 2.2. Let ϕ : RN × R→ R be a Caratheodory function.

(i) Assume ϕ is uniformly continuous in the second variable on RN × R. We
then say that ϕ admits a modulus of continuity, and call the function

(5) r ∈ R+ 7→ sup
{
|ϕ(x, z)− ϕ(x, ẑ)|

∣∣ x ∈ RN , z, ẑ ∈ R, |z − ẑ| ≤ r
}
∈ R+

the best modulus of continuity of ϕ. In the sequel, the function R+ 7→ R+

given by (5) will be denoted by ω0(·)
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More generally, any continuous sub-additive non-decreasing function func-
tion ω : R+ 7→ R+ with ω(0) = 0 such that ω dominates ω0 is called a
modulus of continuity of ϕ.

(ii) Given a modulus of continuity ω, we define its inverse (in the generalized
sense) Ω by Remark (v) below. In particular, the inverse of the best modulus
of continuity ω0 will be denoted by Ω0.

(iii) When ϕ is uniformly continuous in the second variable, the quantity

|ϕ(x, z + y)− ϕ(x, y)|
is dominated by an affine function of z ∈ R+ independent of x ∈ RN and
y ∈ R (in this case, we say that ϕ is sublinear). If, in addition, the limit

lim
z→∞

ω0(z)
z exists and equals zero, we say that ϕ is strictly sublinear.

Remark 2.

(i) The best modulus of continuity ω0 of ϕ is a modulus of continuity of ϕ.
(ii) In the sequel, we will always assume that ϕ actually depends on its second

variable; then for all modulus of continuity ω of ϕ we have ω(r) ≥ ω0(r) > 0
for r > 0.

(iii) If ϕ is independent of x, the truncated function z 7→
(
ϕ(z) ∨ (ϕ(−M)

)
∧

ϕ(M) admits a modulus of continuity, for all M > 0.
(iv) Being sub-additive, the function ω0 is sublinear; therefore its concave hull

_ω : r ∈ R+ 7→ inf{ g(r) | g is concave on R+, g ≥ ω0 on R+}
is well defined. The function _ω is the smallest concave modulus of conti-
nuity of ϕ. If ϕ is strictly sublinear, then its smallest concave modulus of
continuity _ω is also strictly sublinear.

(v) If ω is a modulus of continuity of ϕ, we can inverse it; the procedure is
trivial if ω is strictly increasing and onto. In the general case, let Ω :
ω(R+ ∪{+∞}) 7→ R+ ∪{+∞} denote the greatest function such that ω ◦ Ω

is the identity mapping on ω(R+ ∪ {+∞}). If necessary, we extend Ω by
+∞ on R+ \ ω(R+ ∪ {+∞}).

(vi) The so defined inverse Ω of ω is a super-additive non-decreasing function
with Ω(0) = 0.

(vii) If ϕ admits a modulus of continuity, it can be chosen concave and bijective.
In this case, Ω is convex and strictly increasing.

Definition 2.3. We say that ϕ satisfies the generalized Keller-Osserman condition,
if ϕ admits a bijective modulus of continuity ω : R+ → R+ such that the inverse
function Ω of ω satisfies

(HKO)

∫ +∞

1

dz√
zΩ(z)

< +∞.

Remark 3. For technical reasons, it is convenient to assume ω bijective in the above
definition. But the so defined generalized Keller-Osserman condition is equivalent
to the requirement that (HKO) hold with Ω = Ω0, with the convention that 1

+∞ = 0.

Indeed, assume (HKO) holds with Ω = Ω0. If limr→+∞ ω0(r) < +∞, we set
ω(r) = ω0(r) +

√
r, which is a bijective modulus of continuity of ϕ; since Ω(z) =

ω−1(z) is equivalent to z2 at +∞, we still have (HKO) with Ω. Now assume that ω0

is surjective, but not strictly increasing. Then we extend Ω0 by zero on R− and use
the convolution with a standard mollification kernel θ supported in [−1, 1] to define
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Ω(r) = (Ω0 ∗ θ)(r−1). By construction, Ω(0) = 0, Ω is continuous and it inherits
the super-additivity of Ω0; thus it is a continuous bijective function on R+. Since
we also have Ω ≤ Ω0, we get ω := Ω

−1 ≥ ω0. The so constucted ω verifies (HKO),
because Ω(z) ≥ Ω0(z−2) by the definition of Ω.

Remark 4. It is more usual to formulate the Keller-Osserman condition by requir-
ing that

(6)

∫ +∞

1

dz√∫ z
0

Ω(s) ds
< +∞.

It is shown by Gallouët and Morel that whenever lim supz→+∞ z/Ω(z) is finite, the
two conditions (HKO) and (6) are equivalent (see [30, p.904]). In our framework Ω

is a superlinear function, hence this equivalence holds true.

3. Comparison results for problem (1)

The following comparison results (together with the “basic” existence result of
§ 4.1 and with adequate a priori estimates) are the basis of the whole well-posedness
theory for growing solutions of (1). Note that the two kinds of results presented
below are not directly related. Indeed, the generalized Keller-Osserman condition
is required in § 3.1 but not in § 3.2; while in § 3.2, additional growth assumptions
are imposed on the solutions and data.

3.1. Comparison of L1
loc solutions. The following theorem is a rather straight-

forward generalization of the Gallouët and Morel result in [30].

Theorem 3.1. Assume ϕ satisfies (H0) and the generalized Keller-Osserman con-
dition (HKO) of Definition 2.3.

Then for all f ∈ L1
loc(RN ) there exists at most one D′ solution to Problem (1).

Furthermore, if ui are D′ solutions of (1) corresponding to fi, i = 1, 2, then f1 ≤ f2

implies u1 ≤ u2.

Remark 5. Here and in the subsequent results, the comparison properties persist
if we assume that u1 is a subsolution, and u2 is a supersolution of the corresponding
equations, with standard definition of sub- and super- very weak solutions.
Proof. Recall that W = w1 − w2 = ϕ ◦ u1 − ϕ ◦ u2. Let ω denote the (bijective)
modulus of continuity of ϕ such that Ω = ω−1 satisfies (HKO). Choose f1 ≤ f2 in
L1
loc(RN ).

Step 1. Using the Kato inequality (4), we find (u1−u2)+−∆W+ ≤ (f1− f2)+ ≤ 0

in D′(RN ). But

(7) W+(x) = (ϕ(x, u1(x))− ϕ(x, u2(x)))+ ≤ ω((u1(x)− u2(x))+)

thanks to the monotonicity of ϕ(x, ·); therefore we have Ω(W+) − ∆W+ ≤ 0 in
D′(RN ), with Ω satisfying the Keller-Osserman condition.

If Ω were convex, the proof of [30] would apply and yield W+ ≤ 0 a.e. in RN .
In fact, the super-additivity of Ω and the observation that Ω(z) ≤ const × z in a
neighbourhood of zero are sufficient for the proof to work. We give it here for the
sake of completeness.
Step 2. One constructs a family of barrier functions wR ≥ 0 defined on the open

cubes ΠR of RN with side 2R > 0, centered at the origin. The following properties
are needed:
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(i) wR(x)→ +∞ as x approaches the boundary ∂ΠR;
(ii) as R→ +∞, wR converges to zero uniformly on compact subsets of RN ;
(iii) the inequality Ω(wR)−∆wR ≥ 0 holds in D′(ΠR).

An adequate candidate is the sum wR(x) :=
∑N
i=1 w̃R(|xi|), where w̃R : [0, R) 7→

R+ is given by

w̃R(y) = (Hw0
)−1(
√

2y), Hw0
(u) =

∫ u

w0

dz√
G(z)−G(w0)

, G(z) =

∫ z

0

Ω(s) ds,

with w0 > 0. This construction corresponds to the value

R = R(w0) =

∫ +∞

w0

dz√
G(z)−G(w0)

.

This value is finite, thanks to the Keller-Osserman condition (see Remark 4) and
the fact that, by the monotonicity of Ω, G(z)−G(w0) ≥ Ω(w0)(z −w0) for z > w0.

One checks easily from the definition of w̃R that w̃R ∈ C1
(
[0, R)

)
∩ C2

(
(0, R)

)
,

and for y > 0, ũ′′R(y) = Ω(wR(y)); moreover, w̃R(y) = w0 + Ω(w0)
2 y2 + o(y2) as

y → 0. Thus the function y 7→ w̃R(|y|) is in C2((−R,R)), and one has pointwise on
ΠR,

0 =

N∑
i=1

(
Ω
(
w̃R(|xi|))−∆w̃R(|xi|)

)
≤ Ω

( N∑
i=1

wR(|xi|)
)
−∆

( N∑
i=1

w̃R(|xi|)
)

= Ω(wR(x))−∆wR(x),

because Ω is super-additive. Thus (iii) holds. Further, Ω being super-additive,

we necessarily have lim supz↓0 Ω(z)/z < +∞, therefore the integral of 1/
√
G(z)

diverges at zero. This implies property (i). Finally, note that R = R(w0) → ∞ iff
w0 → 0. For all i = 1, . . . , N , we have

|xi| =
1√
2

∫ w̃R(|xi|)

w0

dz√
G(z)−G(w0)

.

Thus the divergence of the integral of 1/
√
G(z) at zero implies that w̃R(|xi|) tends

to zero uniformly when |xi| stays bounded and w0 converges to zero. The property
(ii) follows.
Step 3. By Step 1, we have −∆W+ ≤ 0 in D′(RN ). Being non-negative and

subharmonic, W+ is, in particular, locally bounded on RN . Combining Step 1 with
the (iii) of Step 2, we get

Ω(W+)− Ω(wR)−∆(W+ − wR) ≤ 0 in D′(ΠR).

Using once more the Kato inequality, from the monotonicity of Ω we get −∆(W+−
wR)+ ≤ 0 in D′(ΠR). By (i) of Step 2, for all sufficiently small ε, wR is greater than
the finite quantity ess sup x∈ΠR

W+(x) on the boundary of the subdomain ΠR−ε. As
ε → 0, the comparison principle for the laplacian yields the inequality W+ ≤ wR
in ΠR. As R→ +∞, the property (ii) of Step 2 implies W+ ≤ 0 a.e. on RN . This
means that u1 ≤ u2, and the proof is complete. �

3.2. Comparison in weighted L1 spaces with exponential growth. Now we
establish quantitative continuous dependence estimates for a subclass of D′ solutions
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of problem (1). Notice that the estimate (7) together with the generalized Kato
inequality (3) yield

∀S ∈ S, ∀ ξ ∈ D(RN )∫
RN

Ω(W )S′(W )ξ ≤
∫
RN

S(W )∆ξ +

∫
RN

(f1 − f2)S′(W )ξ.(8)

In order to exploit (8), we will restrict the class of admissible data f and solutions u
to functions integrable on RN with some well-chosen weight ρ decaying at infinity.

The approach of this paragraph is based upon a linearization of (8) (a different
approach will be presented in Section 5). Roughly speaking, here we choose for S
a function in S0 satisfying the relation

(9) S′(z)Ω(z) = const× S(z);

because we need S′ to be non-decreasing, we have to truncate the solutions of (9)
in the way described in (11) below. In order to carry out this program, according
to Remark 2(iii) we choose a concave modulus of continuity ω of ϕ, which we
further regularize in Lemma 3.2 below; but we don’t require the generalized Keller-
Osserman condition any more.

Let ϕ satisfy (H0) and ω0 be its best modulus of continuity given by (5). Then
ϕ is sublinear, i.e., lim supz→+∞ ω0(z)/z is finite. We define

(10) m∞ := 1/
(
lim sup
z→+∞

ω0(z)/z
)
∈ (0,+∞]

(the case m∞ = +∞ corresponds to the case a strictly sublinear ϕ). First, we
regularize ω0.

Lemma 3.2. Let ϕ satisfy (H0). Then ϕ admits a modulus of continuity ω such
that Ω = ω−1 is a convex C2 function on R+ with Ω

′(k) ↑ m∞ as k → +∞.
Proof. The proof reproduces the arguments used to justify Remark 3, but we start
with the smallest concave modulus of continuity _ω of Remark 2(iii) instead of ω0.
Reasoning by contradiction, from the definition of _ω we easily get

lim sup
z→+∞

_ω(z)/z = lim sup
z→+∞

ω0(z)/z.

Denote (_ω)−1 by
^
Ω; by construction,

^
Ω(k − 2) ≤ Ω(k) ≤ ^

Ω(k). Therefore thanks to
the convexity of Ω we have in the case m∞ < +∞,

lim
k→∞

Ω
′(k) = m∞ ⇔ lim

k→∞
Ω(k)/k = m∞ ⇔ lim

k→∞

^
Ω(k)/k = lim

r→∞
r/_ω(r) = m∞.

In the case m∞ = +∞, we just start by replacing _ω(·) by _ω(·) +
√
·. �

We now construct a family of functions in S0 to be used in (8). Fix k > 0.
Consider

(11) Sk(z) =


Ω(k)
Ω′(k)

× exp
(

Ω′(k)

∫ z

k

ds
Ω(s)

)
, 0 < k ≤ z

z − k + Ω(k)
Ω′(k)

, z ≥ k,

where Ω is constructed in Lemma 3.2.
Since Ω is convex, Sk(z) tends to zero as z ↓ 0. Thus we can extend Sk to a

continuous function on R with Sk(z) = 0 for z ≤ 0. In fact, Sk is differentiable on
R \ {0, k}: we have S′k(z) = 1 for z > k, and

S′k(z) =
Ω(k)

Ω(z)
exp
(

Ω′(k)

∫ z

k

ds

Ω(s)

)
=

Ω
′(k)

Ω(z)
Sk(z),
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for z ∈ (0, k). By convexity, Ω(z) ≥ Ω(k) + Ω
′(k)(z − k) ≡ Ω

′(k)Sk(z) for z ≥ k. A
direct calculation gives that for r ∈ (0, k), S′′k (r) has the same sign as Ω

′(k)− Ω
′(r);

since Ω is convex, so is Sk on (0, k). Thus Sk ∈ S0, more exactly, it verifies the
following properties :

(12)

∣∣∣∣∣∣
S′k is a bounded Lipschitz continuous function, Sk(z) = 0 ∀ z ≤ 0,
S′k is strictly increasing on [0, k], S′k(z) = 1 for z ≥ k,
and Sk(z) verifies mkSk(z) ≤ S′k(z)Ω(z+) ∀z ∈ R, where mk = Ω

′(k+).

Theorem 3.3. Let ϕ satisfy (H0) and m∞ be given by (10). Let Ω be the convex
C2 function on R+ given by Lemma 3.2. Let k > 0. Set mk := Ω

′(k) (we have
mk ↑ m∞ as k → +∞).

Let ui, i = 1, 2, be D′ solutions of (1) corresponding to data fi ∈ L1
loc(RN ), and

wi = ϕ ◦ ui.
(i) Let ρ(x) = e−c|x| with 0 < c <

√
mk. If (f1 − f2)+ ∈ L1(RN , ρ) and

(w1 − w2)+ ∈ L1(RN , ρ), then (u1 − u2)+ ∈ L1(RN , ρ) and

(13)

∫
Sk((w1 − w2)+)ρ ≤ 1

mk − c2

∫
(f1 − f2)S′k((w1 − w2)+)ρ,

(14)

∫
(u1 − u2)+S′k((w1 − w2)+)ρ ≤ mk

mk − c2

∫
(f1 − f2)S′k((w1 − w2)+)ρ.

(ii) Let ρ(x) = e−
√
mk|x|. If f1 ≤ f2 and (w1−w2)+ ∈ L1(RN , ρ), then u1 ≤ u2.

Remark 6.

(i) In case (f1 − f2)+ ∈ L1(RN ), letting c → 0 and k → 0 in (14) we deduce
the classical T−contraction result in L1(RN ) of Bénilan et al. [13]. Our
version is different because we need the uniform continuity of ϕ; on the
other hand, we only require that ui, i = 1, 2, be D′ solutions of (1) satisfying
(ϕ ◦ u1−ϕ ◦ u2)+ ∈ L1(RN ), while in [13] ϕ is independent of x and higher
integrability (in Marcinkiewicz spaces) of each of the functions ϕ ◦ u1,2 is
assumed.

(ii) Greater is the parameter k, larger is the uniqueness class L1(RN , e−
√
mk|x|).

If ϕ is in addition, strictly sublinear, then mk ↑ +∞ as k → +∞, so that
uniqueness in the class L1(RN , e−c|x|) is true for all c > 0.

(iii) Uniqueness may fail in L1(RN , e−c|x|) for c >
√
m∞. An easy example is

provided by the linear case ϕ = 1
mId. Here we have m∞ = m, and for

N = 1 and f = 0, u1(x) ≡ 0 and u2(x) = e
√
mx are both solutions to (1)

integrable with any weight ρ(x) = e−(
√
m+ε)|x|, ε > 0.

Proof. of Th. 3.3. While using radial weight and test functions, we will denote by
the same letter an even function on R and the corresponding radial function.

Let us apply inequality (8) with the function Sk and with radial test functions
ξ. For a nonnegative even function ξ ∈ D(R) non-increasing on R+, dropping the
second (negative) term in ∆ξ(|x|) = ξ′′(|x|) + N−1

|x| ξ
′(|x|), from (12) we deduce

∀ ξ ∈ D+(RN )∫
RN

mkSk(W+)ξ(|x|) ≤
∫
RN

Sk(W+)ξ′′(|x|) +

∫
RN

(f1 − f2)+S′k(W+)ξ(|x|).(15)

Let R ≥ 0 and 0 < c ≤ √mk. The fact that S′k is bounded (in particular, Sk has a
linear growth at infinity) and the integrability assumptions on W+ = (w1 − w2)+
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permit to approximate the weight ρ(|x|) := e−c(|x|−R)+ by functions ξ ∈ D(RN )+

and pass to the limit in (15). Indeed, for L > 0, set

ρL(|x|) =

 exp(−c|x|), 0 ≤ |x| ≤ L
c exp(−cL)(|x| − L− 1

2c )
2, L < |x| < L+ 1

2c
0, |x| > L+ 1

2c .

(for the sake of simplicity, we only describe the case R = 0); ρL is C(R)∩C1(R\{0}),
and it is concave at the origin. Therefore ρL can be approximated uniformly on R
by functions ξh,L ∈ D((−L − 1

c , L + 1
c )) so that limh→0(ξ′′h,L) = ρ′′L pointwise on

R \ {0}, and

lim
h→0

∫
RN

Sk(W+)ξ′′h,L(|x|) ≤
∫
RN\{0}

Sk(W+)ρ′′L(|x|).

Thus (15) still holds with ξ = ρL, where ρ′′L is taken in the pointwise sense (i.e., on
R \ {0}).

Now we pass to the limit as L → ∞, using the fact that ρL → ρ and ρ′′L → ρ′′

pointwise on (0,+∞). Moreover, for all L, ρL is dominated by ρ and ρ′′L is dom-
inated by (2c

√
e)ρ, as an explicit calculation shows. Therefore Sk(W+)ρL(|x|),

(f1 − f2)+S′k(W+)ρL(|x|) and Sk(W+)ρ′′L(|x|) are dominated by an L1(RN ) func-
tion independent of L, and we pass to the limit using the Lebesgue dominated
convergence theorem.
(i) With R = 0, we readily deduce (13). Then we come back to (3); with the same
approximation as above, we deduce∫

RN

(u1 − u2)S′k(W+)ρ(|x|) ≤
∫
RN

Sk(W+) c2ρ(|x|) +

∫
RN

(f1 − f2)S′k(W )ρ(|x|).

Now (13) implies (14), because w+ = 0 as soon as u1 − u2 < 0. The same regu-
larization technique applied to (4) permits to deduce that (u1 − u2)+ ∈ L1(RN , ρ)
from the fact that (w1 − w2)+ ∈ L1(RN , ρ).

(ii) Passing to the limit in (15) with ξ(x) approximating ρ(x) = e−
√
mk(|x|−R)+ ,

R > 0, we get ∫
RN

mkSk(W+)ρ ≤
∫
{|x|>R}

mkSk(W+)ρ.

It follows that Sk(W+) equals zero a.e. on {|x| < R}; because R is arbitrary, we
infer W+ = 0 a.e. on RN . Now the Kato inequality (4) yields u1 ≤ u2 a.e. on
RN . �

3.3. Comparison property implies continuous dependence. A very simple
continuous dependence result follows from the comparison principle of Theorem 3.1,
under the a priori existence assumption.

Proposition 2. Assume that for all data f ∈ L1
loc(RN ) there exists a D′ solution

to Problem (1). Assume that the conclusion of Theorem 3.1 holds.
Then the solutions depend continuously on the data in L1

loc. More exactly, let
f ∈ L1

loc(RN ); let (fn)n∈N be a sequence converging to f in L1
loc(RN ). Denote by u,

resp. by un, the (unique) D′ solution of (1) associated with the datum f , resp. fn.
Then (un)n∈N converges to u in L1

loc(RN ).

In the next section, we will justify the existence assumption in Proposition 2.
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Proof. Because of the uniqueness of u, it is sufficient to show that all subsequence
of (un)n possesses itself a subsequence converging to u in L1

loc(RN ).
In the sequel, we work with an extracted (not relabelled) subsequence such that

(fn)n is dominated by a function F ∈ L1
loc(RN ) and converges a.e. on RN . We can

define pointwise (a.e. on RN ) the functions mn := infk≥n fk and mn := supk≥n fk;

these functions are a.e. finite and belong to L1
loc(RN ) because of the inequality

−F ≤ mn ≤ fn ≤ mn ≤ F a.e. on RN . By the assumption, there exist the
associated D′ solutions with the data mn, resp. mn, which we denote by un, resp.
un. Also denote by U , resp. by U , the D′ solutions associated with the data −F ,
resp. F .

By construction, (mn)n (resp., (mn)n) is a non-decreasing sequence (resp., a
non-increasing sequence); both sequences converge to f in L1

loc(RN ), as n→∞.
By the comparison principle, (un)n (resp., (un)n) is also non-decreasing (resp.,

non-increasing). Similarly, both sequences (un)n and (un)n are lower bounded by
U ∈ L1

loc(RN ), and upper bounded by U ∈ L1
loc(RN ). Therefore (un)n (resp., (un)n)

converges in L1
loc(RN ) and a.e. on RN to some limit u (resp., to some limit u), as

n→∞. Also wn =: ϕ ◦ un and wn =: ϕ ◦ un are both bounded from above (resp.,
bounded from below) by the L1

loc(RN ) function W := ϕ ◦U (resp., by W := ϕ ◦U).
The notion of D′ solution being stable with respect to the convergence of data and
solutions in the sense obtained above, we deduce that both u, u are D′ solutions to
Problem (1) with the same datum f . Therefore both of them coincide with u. The
comparison principle also yields un ≤ un ≤ un; thus the convergence of un to u
follows. �

Remark 7. The same arguments show that also w = ϕ ◦ u depends continuously
on f in L1

loc.

Remark 8. The L1
loc(RN ) continuous dependence result of Proposition 2 is purely

qualitative; indeed, it is based upon the qualitative comparison property.
Analogous (conditional, and qualitative) continuous dependence result can be

obtained for the L1(RN , e−c|x|) framework of § 3.2, starting from the comparison
property of Theorem 3.3(ii). But we also have quantitative continuous dependence
estimates (13),(14) for this framework. For instance, estimate (14) states a “quasi-
Lipschitz” dependence of u on f in L1(RN , e−c|x|).

For the sake of completeness, let us state the L1(RN , e−c|x|) continuous depen-
dence result.

Proposition 3. Assume (H0). Assume that there exist f∗, u∗ ∈ L1
loc(RN ) such that

u∗ is a D′ solution of (1) with the datum f∗.
Let c ∈ [0,

√
m∞) and ρc(x) = e−c|x|; let k be chosen so that mk > c2 (see

Lemma 3.2).
Let fn − f → 0 in L1(RN , ρc) as n → ∞. Assume that there exist D′ solutions

un, u of (1) with the data fn, f , respectively, such that wn, w ∈ w∗ + L1(RN , ρc),
where wn = ϕ ◦ un,w = ϕ ◦ u.

Then un − u and wn − w tend to zero in L1(RN , ρc); moreover, the estimates
(13),(14) hold. Further, if c 6= 0, then for all α > 0 there exists a constant d(α)
which only depends on ϕ and c such that

(16)

∫
|u1 − u2|ρc ≤ α+ d(α)

∫
|f1 − f2|ρc.
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The corresponding result for c = 0 is the L1(RN ) contraction mentioned in Re-
mark 6(i).
Proof. This result is essentially contained in Theorem 3.3(i). We only have to
notice that (16) follows from the Kato inequality (4), the estimate (13) and the fact
that z ≤ α + const(α, k, ϕ)Sk(z) for all z > 0; the constant const(α, k, ϕ) can be
computed from the definition (11) of Sk(·). �

4. Deducing well-posedness results for (1)

In this section, we complement the previous uniqueness and comparison results
with the corresponding existence results.

Our existence results are not the most general possible with respect to the as-
sumptions on ϕ (cf. e.g. the comments to the existence results of [20, 29]). But
they fit precisely the framework in which uniqueness and continuous dependence of
solutions take place. Indeed, in the proofs we use extensively the comparison results
of the previous sections; then monotone convergence arguments (in the spirit of [2])
allow to build very simple existence proofs on the top of a “basic” existence result.

The first paragraph aims at giving such basic result. We mainly focus on the
case of a non-autonomous nonlinearity ϕ, under the assumption (Hsurj). Under the
assumption (Haut), we simply exploit the Bénilan, Brézis and Crandall existence
theory (see [13]).

4.1. A “basic” existence result and related comparison properties. We
will treat separately the cases (Haut) and (Hsurj).
• Under hypothesis (Haut) and for f ∈ L1(RN ) ∩ L∞(RN ), existence of a D′

solution u such that ‖u‖L1 ≤ ‖f‖L1 , ess inf f ≤ ess inf u ≤ ess supu ≤ ess sup f is
well known (see [13]). These solutions satisfy additional integrability properties in
Marcinkiewicz spaces; one consequence is that the so constructed solutions verify
the comparison principle. Note that, under assumption (Haut), for all f ∈ L1

loc(RN ),
the truncated functions

(17) fm,n := (f+ ∧ n)1lBn
− (f− ∧m)1lBm

form a bimonotone sequence of compactly supported L∞ functions converging to
f pointwise, i.e., fn,m ↓m→+∞↑n→+∞ f . By the comparison principle, the corre-
sponding solutions un,m provided by the result of [13] also form a sequence non-
increasing in m, non-decreasing in n.
• Now we construct similar bimonotone sequence of truncated functions under the

hypothesis (Hsurj) in such a way that the comparison principle of Theorem 3.3(ii)
can be used. Let u∗ be a D′ solution of (1) with datum f∗, and w∗ = ϕ ◦ u∗. For
ε ∈ [0, 1], set

(18) ϕε(x, z) := ϕ(x, z) + ε(z−u∗(x)).

For ε > 0 and for a.e. x ∈ R, ϕε(x, ·) is bijective; we denote by βε(x, ·) its inverse
function. Recall that β0(x, ·) is the minimal section of the inverse graph to ϕ(x, ·).
Now for ε > 0 and k ∈ R, set ukε(x) := βε(x,w∗(x) + k) and fkε := f∗ − u∗ + ukε .
For ε = 0 and k 6= 0, we replace βε by β0 in the above definitions; the assumption
of surjectivity of ϕ(x, ·) in (Hsurj) is used to justify the definition of uk0 . Finally,
setting u0

0 := u∗, we have the inclusion u0
0 ∈ β0(x,w∗(x) + 0).

For n,m ∈ N, set

(19) fn,m := f∗+
(
(f−f∗)+∧(fn1 −f∗)∧n

)
1lBn−

(
(f−f∗)−∧(f∗−f−m1 )∧m

)
1lBm .
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Proposition 4. Assume ϕ satisfies (H0) and (Hsurj). With the notation introduced
hereabove, the following properties hold.

(i) For all ε ∈ [0, 1], u∗ is a D′ solution of the equation u−∆ϕε(x, u) = f∗.
(ii) For all ε > 0, for all k ∈ R, the function ukε is a D′ solution of u −

∆ϕε(x, u) = fkε ; moreover, wkε := ϕε◦ukε = w∗+k. In particular, wkε−w∗ ∈
L∞(RN ) ⊂ L1(RN , ρ) with weight ρ(x) = e−c|x|, for any c > 0.

(iii) For all ε ∈ [0, 1], the map k 7→ fkε is non-decreasing. Moreover, as k → ±∞,
we have fkε → ±∞ a.e. on RN . In particular, for all f ∈ L1

loc(RN ), we
have fn,m ↓m→∞↑n→∞ f .

(iv) For k > 0, the maps ε 7→ (fkε−f∗) and ε 7→ (ukε−u∗) are non-increasing. For

k < 0, the same maps are non-decreasing. In particular, if f−k1 ≤ f ≤ fk1 for
some k > 0, then f−kε ≤ f ≤ fkε for all ε ∈ [0, 1]. Similarly, if u−kε ≤ u ≤ ukε
for some k > 0 and ε > 0, then u−k0 ≤ u ≤ uk0 .

All the properties are easily deduced from the construction of fkε .
The statement below plays a role analogous to the aforementioned L1 ∩ L∞

existence result for (1), when (Haut) is replaced with (Hsurj).

Proposition 5. Assume ϕ satisfies (H0) and (Hsurj).

(i) Assume that f ∈ L1
loc(RN ) is such that f−k1 ≤ f ≤ fk1 for some k > 0.

Then there exists a D′ solution u of problem (1) satisfying the inequalities
w∗−k ≤ ϕ ◦ u ≤ w∗+k.

Moreover, the comparison principle holds for the so constructed solutions:

if f, f̂ are two data satisfying f−k1 ≤ f ≤ f̂ ≤ fk1 , then the associated
solutions u, û satisfy u ≤ û.

(ii) Let f ∈ L1
loc(RN ). Let fn,m be the truncates of f defined by (19). Then

there exists a sequence (un,m)n,m of D′ solutions of (1) associated with the
data (fn,m)n,m and such that un,m is non-increasing in m, non-decreasing
in n.

Proof.

(i) Step 1 : First assume that (f − f∗) ∈ L2(RN ) and consider ϕε defined by (18).
We construct solutions to the regularized and translated problem (here we use
Proposition 4(i)):

(20) (u− u∗)−∆(ϕε(x, u)− ϕε(x, u∗)) = f − f∗.
Rewriting the problem in terms of the new unknown w̃ := ϕε(x, u)− ϕε(x, u∗), we
reduce the above problem to

(21) β̃ε(x,w)−∆w = f̃ .

with f̃ ∈ L2(R) and β̃ε : RN×R −→ R a Carathéodory function such that β̃ε(x, 0) =

0 and |β̃ε(x, k)| ≤ 1
ε |k| for a.e. x ∈ RN , for all k ∈ R. Therefore a variational

solution w̃ε ∈ H1
0 (RN ) to (21) can be constructed through minimization of the

convex coercive functional

Jε : w̃ ∈ H1(RN ) 7→
∫
RN

(1

2
| ∇w̃|+

∫ w̃

0

β̃ε(x, s) ds
)

;

this solution is, in particular, a solution in the sense of distributions. Then uε =
u∗ + β̃ε ◦ w̃ε is a D′ solution of (20).
Step 2 : Notice that by construction, w̃ε ∈ L2(RN ); therefore for all c > 0, w̃ε ∈
L1(RN , e−c|x|). Thus uε is a D′ solution of u − ∆ϕε(x, u) = f which satisfies
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ϕε ◦ uε ∈ w∗+L1(RN , e−c|x|). By Proposition 4(ii), u±kε are D′ solutions of the
equation u−∆ϕε(x, u) = f±kε such that

w±kε ≡ ϕε ◦ u±kε ≡ w∗ ± k ∈ w∗+L∞(RN ) ⊂ w∗+L1(RN , e−c|x|).

Notice that by the assumption and by Proposition 4(iv), f−kε ≤ f ≤ fkε . Because
ϕε is uniformly continuous in the second variable and wε − w±kε ∈ L1(RN , e−c|x|),
by the comparison principle of Theorem 3.3(ii) we deduce that u−kε ≤ uε ≤ ukε . By
the monotonicity of ϕε(x, ·), we deduce the uniform bound w∗ − k ≤ wε ≤ w∗ + k
on wε ≡ ϕε ◦uε. Using Proposition 4(iv), we deduce in addition the uniform bound

u−k0 ≤ uε ≤ uk0 on uε.
Step 3 : From the uniform bounds of Step 2, it follows that the sets (uε)ε and (wε)ε
are relatively compact in L1

loc(RN ) weakly and in w∗ + L∞(RN ) weakly-*. We can
extract a (not labelled) sequence such that uε converges in D′ to u ∈ L1

loc(RN ), and
wε converges in D′ to w ∈ w∗ + L∞(RN ). Because the sequences are linked by the
relation wε = ϕ(x, uε) + ε(uε − u∗) with a monotone function ϕ(x, ·), by the Minty
argument we deduce that w = ϕ(x, u). Thus we have constructed a D′ solution u

of problem (1) for f ∈ f∗ + L2(RN ) such that f−k1 ≤ f ≤ fk1 for some k > 0. In
addition, this solution satisfies

(22) u−k0 ≤ u ≤ uk0 and w∗ − k ≤ ϕ ◦ u ≤ w∗ + k.

Step 4 : Now we can drop the assumption f ∈ f∗ + L2(RN ). Indeed, replace f

with the truncates fn,m defined in (19); by construction, fn,m ∈ f∗ + L2(RN ).
By the previous steps, there exist corresponding solutions un,m satisfying (22).
Using Proposition 4(iii), the uniform bounds (22) and repeating the compactness
arguments of Step 3, we deduce the existence of a D′ solution u with datum f .
Moreover, u satisfies (22); in particular, (22) allows to use the comparison principle
of Theorem 3.3(ii).

This ends the proof of (i).
(ii) Taking k = max{m,n}+ 1, we have

f−k1 ≤ fn,m+1 ≤ fn,m ≤ fn+1,m ≤ fk1 .

Thus the claim of (ii) is an immediate consequence of the result of (i). �

Remark 9. Notice that another existence proof was given by Gallouët and Morel
in [29], for all L1(RN ) data f . In the place of (22), an equi-integrability estimate
was deduced from the Kato inequality (3). The uniform continuity of ϕ was not
used in [29], and more integrability (in Marcinkiewicz spaces) was shown for the so
constructed solutions, as in [13].

In conclusion, in this paragraph we have derived existence under the assump-
tion f−k1 ≤ f ≤ fk1 made in Proposition 5(i). Proposition 5(ii) is a step towards
dropping this restriction; but we need bounds replacing (22) in order to ensure
that the bimonotone sequence (un,m)n,m converges to some a.e. finite limit. Such
ad hoc bounds are obtained in the three paragraphs below, under the additional
assumptions on the nonlinearity ϕ and/or on the datum f .

4.2. Well-posedness in L1(RN , e−c|x|).

Theorem 4.1. Assume that ϕ satisfies either (Haut) or (Hsurj). Assume that

(H0) holds; let ρc(x) = e−c|x| with c2 ∈ [0,m∞) (see (10) for the definition of m∞).
Then L1(RN , ρc) is a well-posedness class for problem (1).
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More exactly, for all f ∈ f∗ +L1(RN , ρc) there exists a unique D′ solution uf of
(1) such that wf = ϕ◦uf ∈ w∗+L1(RN , ρc); we also have uf ∈ u∗+L1(RN , ρc); both
uf − u∗ and wf − w∗ depend continuously in L1(RN , ρc) on f − f∗ ∈ L1(RN , ρc);
and the map f 7→ uf is order-preserving on f∗ + L1(RN , ρc).

Notice that under the assumption (H0), we have |ϕ(x, y+z)−ϕ(x, y)| ≤ const(1+
|z|). Therefore the implication

u− u∗ ∈ L1(RN , e−c|x|) =⇒ w − w∗ ∈ L1(RN , e−c|x|)

holds for c > 0. Thus for c > 0 and under any of the assumptions (Haut),(H
′
surj),

Theorem 4.1 means in particular existence, uniqueness and continuous dependence
of a solution uf ∈ L1(RN , e−c|x|) for all datum f ∈ L1(RN , e−c|x|).

By Remark 6(ii), as soon as Theorem 4.1 is justified we readily deduce

Corollary 1. Let ϕ : R 7→ R be a nondecreasing uniformly continuous on R func-
tion. Assume that ϕ is strictly sublinear in the sense that

lim
z→+∞

1

z
sup
y∈R
|ϕ(y+z)− ϕ(y)| = 0.

Then the problem u−∆ϕ(u) = f is well posed, in the sense of Theorem 4.1, in
the space L1(RN , ρc) with ρc = e−c|x|, for all c ∈ [0,+∞).

Proof. of Th. 4.1. In view of Theorem 3.3 and Proposition 3, it only remains to
prove existence.

Under assumption (Hsurj), we use Proposition 5(ii). It yields a bimonotone
sequence of D′ solutions un,m corresponding to the truncated data fn,m; recall that
fn,m converge to f a.e., by Proposition 4(iii). The case of the assumption (Haut)
is similar, with fn,m given by (17).

By the monotone or by the dominated convergence theorems, fn,m converge to f

in L1(RN , ρc) as m→∞, n→∞. Thus

∫
RN

|fn,m−f∗| ρc is bounded by a constant

independent of n,m. From the estimates of Proposition 3 applied to solutions un,m

and u∗, it follows that the quantities

(23)

∫
RN

|wn,m − w∗|ρc and

∫
RN

|un,m − u∗|ρc

are bounded by a constant independent of n,m. Thanks to the monotone con-
vergence theorem, we conclude that there exists u ∈ u∗ + L1(RN , ρc) such that
un,m ↓m→+∞↑n→+∞ u; moreover, wn,m converge to w = ϕ ◦ u in the same sense,
and w ∈ w∗ + L1(RN , ρc). It follows that u is the required solution. �

Remark 10. Let us briefly discuss the finer case where mk ≡ m∞ for k large
enough; one example is the case of a linear autonomous ϕ (see Remark 6(iii)). Bas-
ing ourselves on the comparison result of Theorem 3.3(ii), we can get a conditional
continuous dependence result (similar to the one of Proposition 2) for data in the
critical space L1(RN , e−

√
m∞|x|). But we do not know whether the existence of a

solution holds for these data.

4.3. Well-posedness in L∞(RN ). For the sake of simplicity, let us restrict our
attention to the autonomous case ϕ : R→ R. Corollary 1 readily yields the following
result (which can also be deduced from the results of § 4.4 or of § 5.2 below).
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Theorem 4.2. Let ϕ : R → R be a continuous non-decreasing function. Then
L∞(RN ) is a well-posedness class for problem (1).

More exactly, for all f ∈ L∞(RN ) there exists a unique D′ solution uf to prob-
lem (1) within the class L∞(RN ); the map f 7→ uf is order-preserving (in particular,
the maximum principle holds, i.e., ess inf f ≤ uf ≤ ess sup f); and, in case (fn)n∈N
is a uniformly bounded sequence of functions that converges to f a.e. on RN , the
corresponding solutions ufn converge to uf a.e. on RN .
Proof. It suffices to apply e.g. Theorem 4.1 to the problem (1) with ϕ replaced by
the truncated function

ϕM : z 7→
(
ϕ(z) ∨ (ϕ(−M)

)
∧ ϕ(M),

with M = ‖f‖L∞ . The function ϕM is uniformly continuous, and the constants
M− := ess inf f and M+ := ess sup f are, obviously, constant D′ solutions of
problem u − ∆ϕM (u) = f with the right-hand sides M− and M+, respectively.
Thus the existence of a unique associated solution uMf (together with the compar-

ison principle) follows by Corollary 1. Due to the comparison principle, we have
M− ≤ uMf ≤ M+, so that ϕ(uMf ) ≡ ϕM (uMf ), thus uMf also solves the original

problem (1).
For the uniqueness and comparison result, it suffices to consider two solutions

u1, u2 ∈ L∞(RN ) with data f1, f2 ∈ L∞(RN ), f1 ≤ f2. Set

M ′ = max{‖f1‖L∞ , ‖f2‖L∞ , ‖u1‖L∞ , ‖u2‖L∞}

and truncate ϕ at the level M ′. By Corollary 1, it follows that u1 = uM
′

f1
≤ uM

′

f2
=

u2.
Finally, the continuous dependence claim of the theorem follows from the exis-

tence and comparison properties, in the same way as in Proposition 2. �

Remark 11. Let us indicate a framework which replaces L∞ in the case of a
non-autonomous nonlinearity ϕ. For the sake of simplicity, assume that ϕ satisfies
(H ′surj) and (H0) (in the place of the uniform continuity restriction in (H0), it is

sufficient to assume that for all k > 0, the truncated function (x, z) 7→
(
ϕ(x, z) ∨

(−k)
)
∧ k is uniformly continuous in the second variable).

For k ∈ R, set uk0 = β0(x, k). Introduce the set L∞ϕ (RN ) as the set of all

measurable functions f on RN such that

∃k ∈ R u−k0 ≤ f ≤ uk0 .

Then L∞ϕ is a well-posedness class for problem (1), in the same sense as in
Theorem 4.2. The corresponding maximum principle reads :

ul0 ≤ f ≤ uk0 =⇒ ul0 ≤ uf ≤ uk0 .

The proof of the remark follows the lines of the proof of Theorem 4.2, with
M−,M+ replaced by ul0, u

k
0 and with truncations ϕM replaced by truncations of

the form (ϕ ∨ (−k)) ∧ k.

4.4. Well-posedness in L1
loc(RN ). Following [20, 30] let us study the existence of

solutions of (1) without growth restrictions at infinity, under the generalized Keller-
Osserman condition on the nonlinearity ϕ. The argument, based on the “local
estimate” of [11, 30], is somewhat simplified thanks to the use of the comparison
property, as e.g. in [31], and of the bi-monotone data approximations of Ammar
and Wittbold [2].
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Notice that, unlike in [20, 29, 30] we have chosen to write (1) in terms of the
unknown u rather than in terms of w = ϕ ◦ u. The two frameworks are not exactly
equivalent, unless for a.e. x ∈ RN the function ϕ(x, ·) is strictly increasing.

Theorem 4.3. Assume that ϕ satisfies (H0) and, moreover, the generalized Keller-
Osserman condition (HKO) holds. Assume that either (Haut) or (Hsurj) holds.
Then problem (1) is well-posed in L1

loc(RN ).
More exactly, for all datum f ∈ L1

loc(RN ) there exists a unique D′ solution uf
of (1), and the mappings f ∈ L1

loc(RN ) 7→ uf ∈ L1
loc(RN ), f ∈ L1

loc(RN ) 7→ wf :=
ϕ ◦ uf ∈ L1

loc(RN ) are continuous and order-preserving.
Proof. Thanks to Theorem 3.1 and Proposition 2, it is sufficient to prove the
existence of a D′ solution for all datum f in L1

loc(RN ). Making the change f  f−f∗,
u u−u∗, ϕ(·, z) ϕ(·, z+u∗(·))− ϕ(·, u∗(·)), we can assume that ϕ(x, 0) = 0.
Step 1. Assume u is a D′ solution of (1) with some datum f , and w = ϕ ◦ u.

By assumption, there exists a bijective modulus of continuity ω of ϕ such that
Ω = ω−1 satisfies (HKO). Being super-additive, positive and non-decreasing, Ω

satisfies the inequality

(24) ∀r ≥ t > 0,
Ω(r)

r
≥ Ω([r/t]t)

([r/t] + 1)t
≥ [r/t]t

([r/t] + 1)t

Ω([r/t]t)

[r/t]t
≥ 1

2

Ω(t)

t
,

where [r/t] stands for the smallest n ∈ N such that r/t ≥ n.
Inequality (24) successfully replaces the monotonicity of Ω(t)/t in the proof of

[30, Lemma 3]. Slightly modifying the proof of Lemma 2 in the same reference, we
get for all R > 0, R′ > R the estimate∫

BR

Ω(Z) ≤ C(R,R′)
(

1 +

∫
BR′

|f |
)

valid for all nonnegative function Z satisfying

(25) Ω(Z)−∆Z ≤ |f | in D′(RN ).

Because ϕ(x, 0) = 0, as in the proof of Theorem 3.1, Step 1, we deduce that (25)
holds with Z = w±. By the convexity of Ω, Z ≤ const(1 + Ω(Z)). It follows that∫
BR
|w| is estimated by a constant that only depends on R, on R′ > R and on∫

BR′
|f |.

Step 2. Now fix f ∈ L1
loc(RN ). Assuming (Hsurj), we define fn,m by (19) and

use Proposition 5. Let (um,n)m,n be the corresponding bimonotone sequence of
solutions. Under the assumption (Haut), following [2] we define fn,m by (17), and
use the results of [13] (see § 4.1).

By construction of fm,n, we have the uniform bound
∫
K
|fm,n| ≤ const(K) for

all K ∈ RN . By Step 1, the functions wm,n = ϕ ◦ um,n are locally equi-integrable.
Fix m and let n→∞. By the comparison principle of Theorem 3.1, both (um,n)n

and (wm,n)n are non-decreasing sequences. Thus wm,n converges in L1
loc(RN ) to

some function wm as n → ∞; furthermore, um,n converges to some measurable
function um taking values in (−∞,+∞], and wm = ϕ ◦ um. Passing to the limit in
the integral identities satisfied by um,n, by the monotone convergence theorem we
infer that for all ξ ∈ D(RN ), there exists the limit

lim
n→∞

∫
RN

um,nξ =

∫
RN

fmξ +

∫
RN

wm∆ξ < +∞,
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where fm = limn→+∞ fn,m. By the monotone convergence theorem, um,nξ con-
verges to umξ in L1(RN ) for an arbitrary nonnegative ξ ∈ D(RN ). We infer that
um ∈ L1

loc(RN ). Hence um is a D′ solution of (1) with the datum fm.
We then pass to the limit as m→ +∞ in the same way. This ends the existence

proof. �

5. A contraction theory in weighted L1 spaces for (1)

The results of this section bear much ressemblance to those of Bénilan and Cran-
dall in [14, Section 2], although we use quite different techniques. We are mainly
concerned with the case of dimension N ≥ 3 (analogous results for N = 2 are in-
dicated). The Kato inequalities are exploited in a way different from the previous
sections: to be short, we just pick weights satisfying −∆ρ ≥ 0. Instead of working
directly with arbitrary locally integrable super-harmonic weights (see Corollary 2),
we first use the simplest weights which are the truncated fundamental solutions of
the laplacian operator. Note that in their context, Bénilan and Crandall [14] use
the superharmonic weights x 7→ (1 + |x|2)−α with α ≤ N−2

2 , inspired as well by
the fundamental solution of the laplacian. Let us mention in passing that a differ-
ent use of the fundamental solution was made by Pierre in [41], in the context of
very weak solutions of the associated evolution problem. The choice made in the
present paper is instrumental in the study [7] of the convection-diffusion problem
ut + divf(u) − ∆ϕ(u) = 0; note that it further extends to fractional convection-
diffusion integrodifferential equations ([5]).

In § 5.1 we show the L1(RN , ρ) contraction result for “L∞ solutions”. This
turns out to be another well-posedness class (see § 5.2). Recalling the main focus
of our work, note that this result does not allow to claim uniqueness of merely
L∞(RN ) solutions (claim already proved in Theorem 4.2). However this claim
can be eventually deduced from the estimates of § 5.1 following the method of [7]
outlined in Remark 13.

Finally, notice that, extending by density the solution operator, one can con-
struct a pure L1(RN , ρ) abstract theory for the problem (1), which can be seen as
the resolvent problem for the associated abstract evolution problem (cf. [14]; see
Section 6 for further comments in this direction).

5.1. The contraction and comparison property. First, note the following ele-
mentary observation.

Lemma 5.1. Let Ω : R+ → R+ be a convex function such that Ω(r) = 0 iff r = 0.
Let Ω

∗ : z ∈ R+ → supr∈R+

(
rz − Ω(r)

)
be its Legendre (Fenchel) transform. Then

ess limz↓0 (Ω
∗)′(z) = 0.

Proof. It is well known that Ω
∗ is convex (and thus, its derivative is a.e. defined

on R+), and Ω is, in turn, the Legendre (Fenchel) transform of Ω
∗. In addition,

Ω
∗(0) = 0. We argue by contradiction. If ess limz↓0 (Ω

∗)′(z) is not zero, then
(Ω
∗)′ is lower bounded by some c > 0. Then Ω

∗(z) ≥ cz for all z. Then Ω(r) =
supz∈R+

(
rz−Ω

∗(z)
)
≤ supz∈R+

(
rz−cz

)
, which is zero for all r ≤ c. This contradicts

the assumption Ω(r) > 0 for r > 0. �

Theorem 5.2. Assume N ≥ 3. Assume (H0). Let ui be D′ solutions of (1)
corresponding to data fi ∈ L1

loc(RN ), i = 1, 2. Assume that W+ = (w1 − w2)+ ∈
L∞(RN ), where wi = ϕ ◦ ui.
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Let R > 0, ρ(x) =
(
|x| ∨ R

)2−N
. Assume (f1 − f2)+ ∈ L1(RN , ρ). Then

(u1 − u2)+ ∈ L1(RN , ρ) and

(26)

∫
RN

(u1 − u2)+ρ ≤
∫
RN

(f1 − f2)sign +(u1 − u2)ρ.

In particular, if f1 ≤ f2, then u1 ≤ u2.

Remark 12. With the same arguments applied to the case N = 2, we deduce
(26) with ρ ≡ 1. We thus get, in particular, the L1(R2) contraction result for L∞

solutions of u−∆ϕ(u) = f , result which is already known. Indeed, it is contained in
Theorem 3.3 (see Remark 6(i)), because the hypothesis u1, u2 ∈ L∞(RN ) permits
to use a local modulus of continuity in Theorem 3.3. Also note that this case is
essentially – up to an adaptation of the Kato inequalities from weak to very weak
solutions of the stationary equation, see Proposition 1 – contained the work of Maliki
and Touré in [37] (see also Ouédraogo [40] and references therein, where anisotropic
diffusion case is analyzed). Also the case N = 1, with the constant weight ρ ≡ 1, is
covered by the result of [37].

Proof. We are intended to use (4) with the test functions ρε(x) =
(
|x| ∨R

)2−N−ε
,

ε > 0, and let ε decrease to zero.

To this end, let ρε,L(x) =
((
|x| ∨R

)2−N−ε− (L)2−N−ε)+

, L > R. Regularizing

ρε,L by convolution, dropping the negative measure part of the distribution ∆ρε,L
concentrated of {x ∈ RN | |x| = R}, from (8) we deduce∫

RN

(u1 − u2)+ρε,L ≤
∫
RN

W+∆ρε,L +

∫
{|x|=L}

W+ (N−2+ε)L1−N−ε

+

∫
RN

(f1 − f2) sign+(u1 − u2)ρε,L

for a.e. L > R′, where ∆ρε,L is taken in the pointwise (a.e. on RN ) sense. Be-
cause W+ is bounded, the integral on the sphere {|x| = L} is upper bounded by
const LN−1L1−N−ε = const L−ε. We calculate ∆ρε,L = ε(N−2+ε)|x|−N−ε1lR<|x|<L
and notice that |x|−N−ε1l|x|>R = |x|−2ρε1l|x|>R is integrable. Letting L → ∞,

thanks to the boundedness assumption on W+ and the integrability assumption on
(f1 − f2)+ we deduce that (u1 − u2)+ ∈ L1(RN , ρε) and∫

RN

(u1 − u2)+ρε ≤ ε(N−2+ε)

∫
{|x|>R}

W+ |x|−2ρε

+

∫
RN

(f1 − f2) sign+(u1 − u2)ρε.(27)

Now fix δ > 0. By assumption and Remark 2(viii), ϕ admits a concave modulus of
continuity ω. Using (7) and setting Ω = ω−1, from (27) we get∫

RN

(
(1− δ)(u1 − u2)+ + δΩ(W+)

)
ρε ≤ c ε

∫
{|x|>R}

W+ |x|−2ρε

+

∫
RN

(f1 − f2) sign+(u1 − u2)ρε.(28)

Let us show that

(29) c ε

∫
{|x|>R}

W+ |x|−2ρε ≤ δ
∫
RN

Ω(W+)ρε + rδ(ε)
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with rδ(ε) → 0 as ε decreases to zero. Indeed, let Ω
∗ be the Legendre (Fenchel)

transform of Ω. By definition, we have

cεW+ |x|−2 = δ
(
W+ cε

δ
|x|−2

)
≤ δ Ω(W+) + δ Ω

∗(
cε

δ
|x|−2);

c ε

∫
{|x|>R}

W+ |x|−2ρε ≤ δ
∫
RN

Ω(W+)ρε + δ

∫
{|x|>R}

Ω
∗(
cε

δ
|x|−2)ρε.

By the convexity of Ω
∗, we have Ω

∗( cεδ |x|
−2) ≤ (Ω

∗)′( cεδ R
−2) cεδ |x|

−2 whenever |x| ≥
R. We can use Lemma 5.1 to deduce that (Ω

∗)′( cεδ R
−2) =: oε tends to zero as

ε→ 0. Therefore

(30)

0 ≤ rδ(ε) := δ

∫
{|x|>R}

Ω
∗(
cε

δ
|x|−2)ρε ≤ oε

∫
{|x|>R}

cε|x|−2ρε

= c ε oε

∫ +∞

R

r−2+2−N−εrN−1 dr = cR−ε oε → 0 as ε→ 0.

Thus letting ε→ 0 and then δ → 0, from (28), (29), (30) we infer that (u1−u2)+ ∈
L1(RN , ρ) and (26) holds. �

Now, the latter result implies the analogous one in the L1(RN , ρ) setting for quite
general superharmonic weights ρ. Indeed, recall that the convolution of a source
term µ with the fundamental solution of the laplacian yields solution to the problem
−∆ρ = µ (cf. e.g. [14, Prop. 8] for one precise statement of the kind). The case
µ ≥ 0 corresponds to superharmonic functions. Then, exploiting the truncation
of the fundamental solution with the parameter R > 0, the discretization of the
measure µ on a fine grid, and the the monotone convergence theorem in the context
of R→ 0, we deduce the following generalization.

Corollary 2. In the assumptions of Theorem 5.2, replace the weight ρ by the super-
harmonic weight

ρµ : x 7→
∫
RN

1

|x− y|N−2
dµ(y),

where µ is a Radon measure such that ρµ is well defined as an element of L1
loc(RN ).

Then the claim (26) of Theorem 5.2 remains true.

Proof. Introduce for R > 0

(31) ρµR : x 7→
∫
RN

1

(|x− y| ∨R)N−2
dµ(y).

Since ρµR ≤ ρµ by construction, then the assumption (f1−f2)+ ∈ L1(RN , ρµ) yields
(f1−f2)+ ∈ L1(RN , ρµR). Assuming for a moment that the analogue of Theorem 5.2
is proved with weight ρµR – which is deduced by linearity from Theorem 5.2 itself,
because ρ in its statement can be replaced by any translation ρ(· − y), y ∈ RN , –
we can let R→ 0 in the inequality

(32)

∫
RN

(u1 − u2)+ρµR ≤
∫
RN

(f1 − f2)sign +(u1 − u2)ρµR.

Separating (f1− f2) into the positive and the negative parts, using the assumed in-
tegrability of (f1−f2)+ with the weight ρµ, we deduce the claim from the monotone
convergence theorem as R→ 0.

It remains to assess the claim (32). To do so, we will exploit Theorem 5.2
in the context of a two-step approximation procedure. First, for L > 0 we set
µL = µ1l[−L,L)N and introduce the corresponding weight ρµL

R with the formula
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analogous to (31). If the weighted contraction property (32) is achieved with weights
ρµL

R in the place of ρµR, at the limit L→∞, using the monotone convergence theorem
as above we deduce the claimed property (32) itself. Now, to assess the analogue
of (32) with weights weights ρµL

R , for R,L fixed and k ∈ N we set

µL,k(·) =
∑

−Lk≤i1,...,iN<Lk

µ
(
Πi1...iN

)
δ(· − yi1...iN )

with parallepepipeds Πi1...iN and their centers yi1...iN given by

Πi1...iN =
[ i1
k
,
i1 + 1

k

)
×· · ·×

[ iN
k
,
iN + 1

k

)
, yi1...iN =

( i1 + 1/2

k
, . . . ,

iN + 1/2

k

)
;

this is the discretization of µL with a linear combination of Dirac masses on a
uniform cartesian grid. Introduce the associated weights following the recipe of (31).
Since ρ

µL,k

R is a linear combination of shifted weights appearing in inequalities (26),
the claim (32) with weight ρµR replaced by ρ

µL,k

R is immediate. Now, it is not difficult
to check that the weights ρ

µL,k

R and ρµL

R are equivalent up to the multiplicative

constant
(
1 + 1

2kR

)N−2
; this verification is postponed to Lemma 5.3 below. In

particular, by construction if (f1 − f2)+ ∈ L1(RN , ρµ) we also have (f1 − f2)+ ∈
L1(RN , ρ) for ρ = ρµR, ρ = ρµL

R (because ρµL

R ≤ ρµR ≤ ρµ) and for ρ = ρ
µL,k

R (by the

above stated weights’ equivalence). Since
(
1 + 1

2kR

)N−2 → 1 as k →∞, passage to

the limit k →∞ in (32) with weight ρ
µL,k

R is immediate. This ends the proof of the
Corollary. �

Lemma 5.3. With the notation of the above proof, there holds for a.e. x ∈ RN(
1 +

1

2kR

)−(N−2)

ρµL

R ≤ ρ
µL,k

R ≤
(

1 +
1

2kR

)N−2

ρµL

R .

Proof. For x, y ∈ RN , set dR(x, y) = 1
(|x−y|∨R)N−2 . By construction of ρ

µL,k

R and

ρµL

R , it is enough to prove that whenever |y − y∗| ≤ 1
2k there holds(

1 +
1

2kR

)−1

dR(x, y) ≤ dR(x, y∗) ≤
(

1 +
1

2kR

)
dR(x, y).

The latter follows by a straightforward case study. Indeed,

(a) If |x− y|, |x− y∗| ≤ R then dR(x, y) = R2−N = dR(x, y∗).

(b) If |x− y|, |x− y∗| ≥ R then

dR(x, y)

dR(x, y∗)
=
( |x− y∗|
|x− y|

)N−2

≤
( |x− y|+ |y − y∗|

|x− y|

)N−2

≤
(

1 +
1/(2k)

R

)N−2

;

the reciprocal bound is obtained by simply exchanging the roles of y,y∗.

(c) If |x− y∗| ≤ R ≤ |x− y| then

dR(x, y)

dR(x, y∗)
=
( R

|x− y|

)N−2

≤ 1

while

dR(x, y∗)

dR(x, y)
=
( |x− y|

R

)N−2

≤
( |x− y∗|+ |y∗ − y|

R

)N−2

≤
(

1 +
1/(2k)

R

)N−2

.

(d) Finally, if |x − y| ≤ R ≤ |x − y∗| then the argument of (c) applies by merely
exchanging the roles of y,y∗. �
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Remark 13. Notice that instead of letting R → 0 as in the above proof, we can

also rescale the weights of Theorem 5.2, so that we can take
( |x|
R ∨ 1

)2−N
; then we

can let R → +∞ and reach the weight ρ = 1. This yields another technique for
proving uniqueness of L∞ solutions of (1); we refer to our work [7] for an application
of the above techniques to convection-diffusion problems.

5.2. Well-posedness in L1(RN , ρ) for L∞ solutions. Now let us turn to the

well-posedness issue for (1) in L1(RN ,
(
|x| ∨R

)2−N
), N ≥ 3. Notice that analogous

results for N = 2 are already contained in § 4.3.

Theorem 5.4. Let ϕ : R→ R be a continuous non-decreasing function. Let N ≥ 3.

Let R > 0 and ρ(x) =
(
|x| ∨R

)2−N
. Then L1(RN , ρ)∩L∞(RN ) is a well-posedness

class for problem (1).
More exactly, for all f ∈ L1(RN , ρ) ∩ L∞(RN ) there exists a unique D′ solution

uf of (1) such that wf := ϕ◦uf ∈ L∞(RN ). Moreover, uf ∈ L1(RN , ρ)∩L∞(RN );
the mapping f ∈ L1(RN , ρ) ∩ L∞(RN ) 7→ uf is an order-preserving contraction in
L1(RN , ρ); and the maximum principle holds, i.e., ess inf f ≤ uf ≤ ess sup f .

Remark 14. With ρ replaced by a super-harmonic weight ρµ as in Corollary 2,
in the same way we obtain the well-posedness results for the data in L1(RN , ρµ) ∩
L∞(RN ).

Proof. of Th. 5.4 For the existence, the arguments are the same as the ones used
for the proof of Theorem 4.1. We consider the truncated nonlinearities z 7→

(
ϕ(z)∨

ϕ(−M)) ∧ ϕ(M), where M = ‖f‖L∞ . We consider truncated data fn,m given
by (17) and the corresponding bimonotone sequence of solutions (un,m)n,m (given
by the results of [13], see § 4.1), which also satisfies ‖un,m‖L∞ ≤ M . Instead of
(23) we use the uniform estimates of ‖wn,m − w∗‖L∞ and

∫
RN |un,m − u∗|ρ (with

u∗ ≡ 0, w∗ ≡ 0) deduced from Theorem 5.2 (see (26)). It follows that un,m (resp.,
wn,m) converge in D′(RN ) to a function uf in L1(RN , ρ) ∩ L∞(RN ) (resp., to the
function wf := ϕ ◦ uf ∈ L∞(RN )). The function uf is the required solution.

The uniqueness and comparison are obtained as in the proof of Theorem 4.2;
the continuous dependence follows from the comparison principle, in the way of
Proposition 2. �

As in Remark 11, the result of Theorem 5.4 can be generalized to the case of a
non-autonomous nonlinearity ϕ; it suffices to replace the space L∞ for f, u by the
space L∞ϕ .

Remark 15. Assume the nonlinearity ϕ satisfies (H ′surj). Assume that for all

k > 0, the truncated function (x, z) 7→
(
ϕ(x, z)∨(−k)

)
∧ k is uniformly continuous

in the second variable (the assumption (H0) is a stronger sufficient condition).

Let N ≥ 3. Let R > 0 and ρ(x) =
(
|x| ∨R

)2−N
.

With the notation of Remark 11, L1(RN , ρ) ∩ L∞ϕ is a well-posedness class for
problem (1).

More exactly, for all f ∈ L1(RN , ρ) ∩ L∞ϕ (RN ) there exists a unique D′ solution

uf of (1) such that wf := ϕ ◦ uf ∈ L∞(RN ). Moreover, uf belongs to L1(RN , ρ) ∩
L∞ϕ (RN ); the mapping f ∈ L1(RN , ρ) ∩ L∞ϕ (RN ) 7→ uf is an order-preserving

contraction in L1(RN , ρ); and the following maximum principle holds:

ul0 ≤ f ≤ uk0 =⇒ ul0 ≤ uf ≤ uk0 .
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Proof. In view of the uniform continuity in z of the function
(
ϕ(x, z)∨ (−k)

)
∧ k,

Proposition 5(ii) yields a bimonotone sequence un,m of solutions with data fn,m

in (19). In order to show that the limit uf of un,m belongs to L1(RN , ρ), we use
the estimate (26). Indeed, one crucial point of the construction of L∞ϕ is that

w = ϕ ◦ u ∈ L∞(RN ) when u ∈ L∞ϕ (RN ). This allows us to apply Theorem 5.4.
Thus the existence follows; the other points are shown as in the proof of Theo-

rem 5.4. �

6. On the evolution problem (2)

The evolution problem corresponding to the stationary equation (1) was the
object of intense study over years: in the space-homogeneous case, it corresponds
to the celebrated porous medium / fast diffusion equations. We refer to the books
[24, 42] and references therein for extensive account on well-posedness theories and
well-posedness classes for these equations.

In this section, we only briefly comment on the application of the techniques
and ideas of the present paper to the evolution case. First, in what concerns the
setting of L∞ solutions, the technique of Section 5 works for entropy solutions of the
evolution problem (2). It was demonstrated in the previous work [7] of the authors
that it yields the uniqueness and comparison principle.

Second, because our study is based upon Kato inequalities, we are not able to
address very weak solutions and have to limit the scope to either solutions having
ut ∈ L1

loc, or those having ∇w := ∇ϕ(x, u) ∈ L2
loc. Concerning the first case, note

that Herrero and Pierre [31] proved, in many interesting situations, that the L1

regularity assumption on ut is fulfilled (and then derived uniqueness of merely locally
integrable distributional solutions) for the fast diffusion equation ut = ∆(|u|m−1u),
0 < m < 1. Concerning the second case, Kato and entropy inequalities were
addressed in [39, 22, 18] and many other contributions (this is the basis of the
aforementioned result of [7]).

It should be stressed that even under the additional regularity assumptions on
∇w or on ut the case where ϕ(x, ·) may degenerate, the Blanchard-Porretta trick
used in Proposition 1 is difficult to adapt to the evolution setting. Different results
in this direction are contained in [18, 3, 6]. The results of [3, 6] both concern
obtention of the Kato inequality between one solution u with ∇w ∈ L2

loc and a
time-independent solution û with the same ∇ŵ integrability. These results can be
naturally interpreted within the nonlinear semigroup theory, in the way expolited,
e.g., in [6] by Igbida and the first author. The uniqueness for the evolution problem
is related to the uniqueness of the integral solutions in the sense of Bénilan [12,
15] to the abstract evolution problem associated with the resolvent equation of
the kind (1). This approach, combined with the results of Section 5, eventually
leads to well-posedness results in weighted L1(RN , ρ) spaces with superharmonic
weights ρ. However, the detailed analysis of this problem (closely related to classical
results of Bénilan and Crandall [14] where specific weights and x-independent ϕ were
addressed) is beyond the scope of the present paper.
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[25] F. del Teso, J. Endal and E.R. Jakobsen. Uniqueness and properties of distributional solutions
of non-local equations of porous medium type.Adv. Math. 305(2017), 78-143.

[26] F. del Teso, J. Endal and E.R. Jakobsen. On distributional solutions of local and non-local
problems of porous medium type. C. R. Math. Acad. Sci. Paris 355 (2017), no. 11, 1154–1160.

[27] E. DiBenedetto. Degenerate parabolic equations. Universitext. Springer-Verlag, New York,
1993.



CLASSES OF WELL-POSEDNESS FOR QUASILINEAR DIFFUSION EQUATIONS 27

[28] J. Endal and E. R. Jakobsen. L1 Contraction for Bounded (Nonintegrable) Solutions of De-

generate Parabolic Equations. SIAM J. Math. Anal. 46 (6) (2014), pp.3957–3982.
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[37] M. Maliki and H. Touré. Uniqueness of entropy solutions for nonlinear degenerate parabolic

problem. J. Evol. Equ. V.3(2003), no.4, pp.603–622.

[38] R. Osserman. On the inequality ∆u ≥ f(u). Pacific J. Math. V.7(1957), pp.1641–1647.
[39] F. Otto. L1 contraction and uniqueness for quasilinear elliptic-parabolic equations. J. Diff.

Eq., V.131(1996), pp.20–38.
[40] A. Ouédraogo. Explicit conditions for the uniqueness of solutions for parabolic degenerate

problems. Int. J. Dyn. Syst. Differ. Equ. 6 (2016), no. 1,pp.75–86.

[41] M. Pierre. Uniqueness of the solutions of ut − ∆ϕ(u) = 0 with initial datum a measure.
Nonlinear Anal. 6 (1982), no. 2, 175–187.

[42] J.L. Vázquez. The porous medium equation. Mathematical theory. Oxford Math. Monographs.

Oxford Univ. Press, 2007.
[43] Z. Wu, J. Zhao, J. Yin and H. Li. Nonlinear diffusion equations. World Scientific Publ., River

Edge, New-Jersey, 2001.

E-mail address: boris.andreianov@univ-tours.fr

E-mail address: mohamedmaliki@yahoo.fr


	1. Introduction
	1.1. A brief account on classical results
	1.2. The scope and the outline of the paper

	2. Main definitions and tools
	2.1. Basic notation
	2.2. Very weak solutions and Kato inequalities
	2.3. Assumptions on , moduli of continuity and generalized Keller-Osserman condition

	3. Comparison results for problem (1) 
	3.1. Comparison of L1loc solutions
	3.2. Comparison in weighted L1 spaces with exponential growth
	3.3. Comparison property implies continuous dependence

	4. Deducing well-posedness results for (1)
	4.1. A ``basic'' existence result and related comparison properties
	4.2. Well-posedness in L1(RN,e-c|x|)
	4.3. Well-posedness in L(RN)
	4.4. Well-posedness in L1loc(RN)

	5. A contraction theory in weighted L1 spaces for (1)
	5.1. The contraction and comparison property
	5.2. Well-posedness in L1(RN, ) for L solutions

	6. On the evolution problem (2)
	References

