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Abstract

Clustering is one type of unsupervised learning where the goal is to partition
the set of objects into groups called clusters. Faced to the difficulty to design
a general purpose clustering algorithm and to choose a good, let alone perfect,
set of criteria for clustering a data set, one solution is to resort to a variety of
clustering procedures based on different techniques, parameters and/or initial-
izations, in order to construct one (or several) final clustering(s). The hope is
that by combining several clustering solutions, each one with its own bias and
imperfections, one will get a better overall solution.

In the cooperative clustering model, as Ensemble Clustering, a set of clus-
tering algorithms are used in parallel on a given data set: the local results
are combined to get an hopefully better overall clustering. In the collaborative
framework, the goal is that each local computation, quite possibly applied to
distinct data sets, benefit from the work done by the other collaborators.

This paper is dedicated to collaborative clustering. In particular, after a
brief overview of clustering and the major issues linked to, it presents main
challenges related to organize and control the collaborative process.

Keywords: Collaborative Clustering, Clustering combining, Cooperative
clustering

1. Introduction

Unsupervised learning is often defined in contrast with supervised learning.
In supervised learning, the goal is to make predictions about output value y
given an input object or instance x. This is done through a decision procedure
h : X −→ Y that is learned from a training set S = {(x1, y1), . . . , (xN , yN )}
and some prior knowledge, where each example of S is composed of an object
xi ∈ X and a corresponding output value yj ∈ Y.
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By contrast, the objective of unsupervised learning is not to make predictions
from as yet unknown input values to output values, but to reveal possible hidden
structures in the available data set, S = {x1, . . . ,xN}. In a way, this can be
compared to signal analysis by which one seeks a decomposition of the signal
into underlying basis functions. If these putative structures or regularities may
sometimes be extrapolated to make predictions about future events, this is not
the primary goal of unsupervised learning. Another crucial distinction with
supervised learning is that there is no absolute way to measure the relevance of
the uncovered regularities, whatever their form [1]. In supervised learning, one
can use validation sets or cross-validation to estimate the predictive value of the
learned decision function. If the predictive performance is low, then either the
data or the learning algorithm is wanting. Unfortunately, there is no equivalent
to the predictive performance in unsupervised learning. The algorithms can
only find the kind of underlying structures that the user has predefined either
implicitly or explicitly in their code. In the best of worlds, the methods also
provides some level of significance of the discovered structure. But there is
no objective way of measuring the value of the findings, that is whether they
correspond to some “true” underlying structure of the data set or if they are just
figments of the imagination of the user and the algorithm chosen. Indeed, the
significance tests that are often used as referees are themselves, by necessity,
biased towards some types of regularities. This is this property that makes
unsupervised learning so challenging, both to find a solid theoretical theory
about what is a good or best technique, and to apply it with some level of
confidence to data in need of interpretability.

Clustering is one type of unsupervised learning where the goal is to partition
the set of objects into groups called clusters. These groups can be mutually
exclusive or they may overlap, depending on the approach used. Clusters are
defined by the fact that the objects within are more similar to each other than
to objects from other groups. The similarity measure is of course of paramount
importance to define the kind of structures or clusters that can be uncovered
in the data, and hundreds of distances have been proposed in the literature
according to the problem and context at hand.

Two major approaches of clustering exist: generative and discriminative,
both relying more or less directly on a chosen distance. The former supposes
that a generative model has been defined, often in the form of a statistical model,
and the goal is to find the model parameters maximizing the probability that
the data was generated by the model. The latter relies on similarity measures
and on optimization criteria to find groups in the data. In either case, before an
algorithm can be properly defined, numerous questions have to find an answer.

1.1. The questions raised in Clustering

The exploration of ill-known data sets and the uncovering of hidden regu-
larities are marred with an array of questions and potential pitfalls.

The question arising immediately is: what is clustering? Is there a clear
definition and hence, hopefully, some measurable criterion that ought to be
optimized?
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Figure 1: Clustering is an ill-defined problem

Intuitively, clustering is the grouping of objects such that similar objects end
up in the same group and dissimilar objects are assigned to different groups. For-
mally, clustering a data set S ofN objects means finding a partition {C1, . . . , CK}
of S such that:

K⋃
k=1

Ck = S,

where the groups Ck are:

1. As homogeneous as possible (small intra-group variability)

2. As distinct as possible (large inter-group variability)

Most clustering techniques output partitions (disjoint clusters):

Ck ∩ Ck′ = ∅ if k 6= k′

which is not always desirable.
For all its seemingly clear definition, clustering is an ill-defined problem. One

fundamental issue is that clustering is based on the idea that similar objects
should be clustered together while dissimilar objects should be separated in
different groups. But, mathematically, similarity is not a transitive relation,
while belonging to the same cluster is.

Thus, on Figure 1, which seems a reasonable clustering of the given data
points, x1 appears to be close to x2, and x2 to x3 and so on until x11, and, as
a consequence, they should all be put in the same cluster. But, if the shown
clustering is correct, it violates the first requirement (all similar elements should
end up in the same cluster): x5 and x6 should belong to the same cluster; as
well the second one (dissimilar elements should be put in distinct clusters): x5

and x3 should not belong to the same cluster.
There is therefore an ambiguity in the definition of clustering that can only

be removed through some additional bias. For instance, the distance used for
measuring the inter-group dissimilarity (e.g. single linkage, average linkage,
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complete linkage, and so on) will favor one type of structure over others. How-
ever, this bias impacts the clustering process and not the optimization criterion
which remains therefore intrinsically ambiguous.

Another major source of problems is that an ideal clustering would entail the
exploration of an impossibly large space of possible answers. Thus, the number
of partitions of N objects in K groups is:

SN,K =
1

K!

K∑
k=0

(−1)k (K − k)N
(
K

k

)
' KN

K!
as N →∞ (1)

If the number of partitions K is not known beforehand, then the number of
all partitions to be examined is given by the Bell number:

BN =

N∑
k=1

SN,k (2)

As an illustration, a computer handling one million partitions per second
would take more than 147,000 years to study all partitions of a set of only 25
elements: there are indeed 4,638,590,332,229,999,353 possible partitions of such
a set!

One therefore has two perspectives: either finding an optimization crite-
rion such that the optimization problem becomes convex in the search space,
or designing a heuristic search algorithm that can search the space of solutions
efficiently and, to some extent, escape local minima. No convex optimization cri-
terion is known, and thus one must solve the second alternative. As it happens,
most of the resulting optimization problems are NP-hard.

To sum up, clustering, is not only an ill-defined problem [2, 3], it is also
an ill-posed problem that requires some prior bias in order to be practically
solved. Different algorithms may yield dramatically different outputs for the
same input sets. Additionally, the entailed computational costs are huge if no
proper heuristics is employed.

Consequently, several concrete questions must be answered before a cluster-
ing method can be defined and applied.

1.1.1. Formally defining the types of clusters looked for

In clustering, we wish to organize the data in some meaningful way, but
“meaningful” depends on the context and on our focus of interest. The same
given set of objects can be clustered in various different meaningful ways. For
instance, we could be interested in categorizing speakers by the language they
speak, or by the topic of discussion, or by gender. Accordingly, one would con-
centrate on different descriptors in the spoken signal, and use different distances
in order to group the speakers.

The distance is a critical part in the definition of what types of clusters will
be looked for. Actually, in many algorithms, several distances must be decided
upon: a distance between instances in the input space, but also a distance
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between an instance and a cluster, and a distance between clusters. As is well-
known by practitioners, any single difference in these choices points may alter
considerably the result of a clustering.

Another problem is the choice of the relevant number of clusters when the
number of “true” underlying categories is not known beforehand. This is related
to the model selection problem [4]. Often, what is looked for are clusters that
are compact (within inertia) and well separated (extra-inertia). It happens that
these two requirements tend to be inversely correlated, when one improves, the
other deteriorates. The relative weights put on these aspects control therefore
the result in the same manner that the choice of the hypothesis space or of a
regularization term controls the result in supervised learning. However, unlike
for supervised learning, there is no ground truth in the data that can help
choosing the right “model”. Hence, the temptation not to have to choose,
which is one motivation for ensemble methods in clustering, as described below.

1.1.2. Organizing the search space

Once the type of clusters that is looked for in the data is outlined and
similarity measures have been defined accordingly, it remains to set up how
the space of possible solutions will be searched. Because it is impossible to
evaluate the whole set of solutions, it is necessary to devise algorithms that
perform local search. Some, like hierarchical ascendent clustering, iteratively
merge the clusters obtained at one step to get larger clusters at the next step
until a stopping criterion is met. Other, like k-means, are conspicuously trying
to optimize a criterion, such as:

Gk−means((S, d), (C1, . . . , CK)) = Argmin
c1,...,ck,...,cK

K∑
k=1

∑
x∈Ck

d(x, ck) (3)

where d stands for the distance used and the ck is the centroid of the cluster
Ck. The number of clusters has to be given a priori.

But because this type of criterion is NP-hard to satisfy, an iterative algo-
rithm, the k-means algorithm, is used instead. Its output is generally highly
dependent upon the initialization of the centroids ci.

Aside the criterion and the search algorithm, the space of solutions plays an
important role too. The number of attributes, their degree of (in)dependence,
the normalization used, all these aspects may strongly affect the result of learn-
ing. Furthermore, when dimensionality increases, the volume of the space in-
creases exponentially causing the available data to become extremely sparse.
One unexpected and frightful consequence is that, for most data distributions,
the relative difference of the distances of the closest and farthest data points
of an independently selected point goes to zero as the dimensionality increases.
Consequently, any algorithm that bases its analysis on the distribution of dis-
tances is doomed to fail at finding structures in the data if there is no truly
marked structure. Furthermore, the computational complexity of finding clus-
ters is in O(ND) where D is the dimension of the space. Since, in addition,
the set of all possible structures is extremely large (see equations 1 and 2),
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and the optimization criterion generally entails the existence of a complex land-
scape with many local optima, the algorithms for exploring such spaces must,
per force, use heuristics and possibly iterative procedures. In turn, this often
requires that several parameters be set and tuned by the user.

1.1.3. The validation

Because clustering relies on many a priori choices (i.e. similarity measures,
quality function, heuristics, parameters values, and so on) and since there is no
possible post validation with test data where true classes can be compared with
the classes discovered by the algorithm, the validation of the output of clustering
methods is a thorny question. The user is faced with the interrogation: does
the structure produced by the method “really” exist in the data, or is it merely
an artifact of the clustering method?

Some principled statistical procedures have been proposed for testing the
the significance of a clustering result [5]. They are based on the idea of mea-
suring deviations of some statistical quantities, like the largest nearest neighbor
distance, from what would be expected if the data points were homogeneously
distributed in the input space. However, the approach has several limits. First,
the statistical quantities suggested are not general, they are biased towards the
discovery of convex clusters. Second, the convergence rate of the statistical test
is so slow (O(log n)−1) that it requires enormous quantities of data to give some
useful clues. Finally, it requires that the user is able to guess some quantities,
like the volume in which lies the data, hard to compute when the input space
is not low dimensional.

Similarly, bayesian approaches to model-based clustering (e.g. mixture of
Gaussian distributions) have been put forward to yield validity measures such
as the Bayes factor [6]. However, these proposals are dependent upon some
preconceived models of the world, and they are often based on asymptotic ap-
proximations that are hard to satisfy in real applications.

Short of a satisfying theoretical ground, a whole area of methods and indexes
have been designed in order to assess the validity of clustering results. However,
all are arbitrary in some sense, in that they favor one type of structures over
others, and one must be very careful not to over-interpret seemingly optimistic
results from a clustering quality measure (see [7] for an overview of assessment
methods for clustering and their limits).

Because all clustering methods are based, whether implicitly or explicitly, on
a priori assumptions about the data-generating process, or about the interesting
structures that ought to be found, the final judge is often the domain expert
interested in what the algorithm has discovered in the data. The expert may
thus evaluate the output, and suggests modifications of the a priori choices in
order to test the robustness of the findings. Indeed the variability of the results
when the data sampling, or the parameter values, or the clustering algorithm
is changed is often taken as an indication of the reliability of the structure
uncovered in the data.

To measure this variability, several indexes exist: External indexes (used
to measure the extent to which cluster labels match externally supplied class
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labels), of which a prominent one is the Rand index [8]; Internal indexes (used
to measure the goodness of a clustering structure without respect to external
information); Relative indexes (used to compare two different clusterings or
clusters). Unfortunately, even if the stability of the clustering results is often a
good indicator of the fact that the uncovered structure is really present in the
data, it can also be misleading under certain circumstances. Indeed the shape
of the data manifold can cause a given clustering method to converge strongly
towards certain suboptimal solutions.

Overall, one guide for evaluation that is often found useful, and is at the basis
of some recent attempt at putting clustering on a sound foot, is the fact that
the cluster results are robust to variations either in the data (aka. permutation
invariance) and/or in the algorithms, that is variations in their principles, or
their parameter values, or the initializations. This forms one justification for
the recourse to ensemble methods for clustering, as will be described below.

When taken together, the issues facing a practitioner are numerous, and,
correspondingly the number of choices to be made and parameters to be set.
And because the results output by the clustering algorithms are generally very
dependent upon these choices, they have to be made cautiously. However, it is
often difficult to identify the ideal recipe for a given problem.

1.2. Combining Clusterings

Faced with the difficulty of choosing a good, let alone perfect, set of criteria
for clustering a data set: distances, optimal number of clusters, measures of
compactness, and so on, a temptation is to avoid as much as possible to have
to commit to pre-arranged methods or parameters. One solution for this is
to resort to a variety of clustering procedures based on different techniques,
parameters and/or initializations, in order to construct one (or several) final
clustering(s).

Because, in addition to this motivation, it is increasingly realized that it
can be interesting to detect multiple cluster structures that describe alternative
aspects in the same data set rather than trying to find “the” best clustering,
a recent and very active stream of research has focused on Multiple clustering
which is devoted to capture multi-faceted information in a data set. Accordingly,
the goal is no longer to get a single overall view of the data, but instead of
favoring multiple non redundant groupings.

Meanwhile, the success of ensemble methods in supervised learning has lent
credit to the power of panels of “experts” that combine their beliefs or decisions
in order to reach an overall solution. And while it is far from obvious that
the same success can be ensured in the context of unsupervised learning, many
works have been inspired by this idea.

Accordingly, approaches for combining clusterings have emerged that bring
together clusterings based on different sources and/or different clustering algo-
rithms [9]. The hope is that by combining several clustering solutions, each
one with its own bias and imperfections, one will get a better overall solution
[10]. The main idea is that fortuitous and not meaningful solutions will cancel
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each other out, and that the real structure in the data should emerge as the
most represented in the outputs of the algorithms because it would be the more
robust to variations in the algorithms’s settings.

...
(a) Sequential clustering

(b) Cooperative clustering

...

(c) Collaborative clustering

Figure 2: Different types of combinations of clusterings

It is useful to characterize multiple clustering based methods by looking at
three sets of possibilities:

1. Either the clustering algorithms work sequentially or they work in par-
allel.
In sequential approaches (Figure 2-a), like cascading [11], each method in
turn may use information provided by the previous clustering system(s)
while possibly exploiting new additional data. In both the sequential and
parallel regimes, one question is to determine when to end the procedure,
which ideally should converge to a fixed point.

2. The clustering algorithms work in isolation versus in interaction:
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• In cooperative clustering (see Section 1.2.1), each clustering algorithm
produces its result independently. The final clustering is computed in
a post-processing step, and the only exchange of information is about
when the individual processes are completed, so that post-processing
can start.

• In collaborative clustering (see Section 1.2.2), the group solves to-
gether problems defined and imposed by the central controller, af-
fecting an individual task to each learner. Interactions are recurrent
between team members, responsibility is collective, the action of each
teammate is geared to the performance of the group and vice versa.

3. Each algorithm works on the whole dataset or only on a subpart. The
advent of “big data” (large data sets often described in high-dimensional
spaces) renders distributed computing quite alluring, and sometime com-
pulsory. For instance, for reasons of privacy, ownership or storage, it
can happen that the data cannot be pooled together. If each algorithms
accesses only a partial view (different features), this situation is called
vertical clustering. If all the classifier work using the same set of features,
but only on a subset of the dataset, then one is faced with horizontal clus-
tering [12]. Horizontal and vertical clusterings can be combined in one
application (see Section 2). For instance, several health centers located in
different countries may want to discover structures in the diseases of the
citizens of the world in an attempt to identify latent causes, using data on
different populations and exploiting multiple partial information sources
at possibly varying resolutions.

1.2.1. Cooperative Clustering

In the cooperative clustering model, a set of clustering algorithms are used
in parallel on a given data set. The diversity of the local results is obtained
through the diversity of the local algorithms, their parameter values, and their
initializations. Once all local computations are completed, a master algorithm
takes control and combines the local results to get an hopefully better overall
clustering. The resolution of the possible conflicts between the local solutions
requires an algorithm that is able to compare results that may differ in their
format (e.g. different numbers of clusters, different degrees of belief associated
with the results, ...) and to find a consensus solution that minimizes the overall
violation to the local results (Figure 2-b).

The cooperative framework is related to the ensemble methods developed for
supervised learning. In these approaches, a set of (diverse) classifiers is learned
and the classification of new data points is obtained by taking a (weighted) vote
of their predictions [9]. Bayesian averaging can be considered as a precursor
method. Numerous new ones have been developed, from error-correcting output
coding to Bagging, and Boosting [13, 14, 15, 16] and their application in various
domains have become routine with often good results.

Ensemble methods are easy to implement in supervised learning for two rea-
sons. First, it is straightforward to define a combination of predictive functions
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hi to get an aggregated prediction function H. For instance, a linear combina-
tion is used in boosting, which, for a classification task gives:

H(x) = Majority
{ P∑
i=1

wi hi(x)
}

where wi is the weight of classifier hi.
Second, it is simple to measure both the performance of individual prediction

functions hi and the diversity of the set of the functions that are candidate for
being part of the combined global decision function.

Things are not so straightforward in unsupervised learning. Here, each indi-
vidual solution is a soft or hard partition of the data set. How to combine these
partitions has no obvious answer. For instance, it is not practical to assign each
example xj to some “majority cluster”, i.e. the cluster where the majority of
the clustering algorithms would have put xj . The first obstacle indeed being
that, usually, there is no direct correspondence between the clusters found by
the local algorithms. Searching for a correspondence between each cluster Cp

k

of a local clustering Cp and each cluster Cq
l of another local clustering Cq, and

doing this for all pairs of clusterings (Cp, Cq) taken in the set C of local clus-
terings is a daunting task with no simple and practical solution. In response,
various heuristic proposals have been made for these problems, among them,
the following:

• [17] introduced a new voting method to perform a combination of the
results even when there is no strict bijection between the clusters but only
a “good” correspondence.

• [18] presented three voting iterative methods: Iterative Voting Consen-
sus (IVC), Iterative Probabilistic Voting Consensus (IPVC) and Iterative
Pairwise Consensus (IPC). These algorithms use a feature map built from
the set of base clusterings and apply an EM-like consensus clustering.

• [19] proposed a cumulative voting method to come to a consensus from
partitions with a variable number of clusters. They described several
cumulative vote weighting schemes, with the corresponding algorithms, to
compute an empirical probability distribution summarizing the partitions.

• [20] tackled the problem of correspondence by using the cooccurrences
of pairs of patterns in the same cluster as votes for their association.
In this framework, the data partitions are mapped into a N × N co-
association matrix of patterns which represents a new similarity measure
between patterns. The final clusters are obtained by applying a MST-
based clustering algorithm on this matrix.

• [21] presented a cooperative clustering model mainly based on four compo-
nents (1) Co-occurred sub-clusters, (2) An histogram representation of the
pair-wise similarities within sub-clusters, (3) The cooperative contingency
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Algorithm 1: Algorithm for ensemble clustering

Data: The set S of data points
P algorithms: {Ai (1≤i≤P ) }

Result: A clustering G of the whole data set
Run in parallel the P algorithms Ai each on the set S ;
Compute all the P clusterings Ci ;
Compute the consensus solution G from {Ci (1≤i≤P ) } ;

graph, and (4) The coherent merging between the set of histograms. This
kind of Cooperative Clustering model is based on finding the intersection
between the multiple clusterings in terms of a set of sub-clusters. These
sub-clusters are represented by similarity histograms. The model applies
a homogeneous merging procedure on the cooperative contingency graph
to attain the same number of clusters by carefully monitoring the pairwise
similarities between objects in the sub-clusters [22].

Overall, research in ensemble clustering has blossomed over the recent years
[23, 24, 25, 26, 27, 28, 29, 16].

Ensemble (and cooperative) clustering follow the lines sketched in Algorithm
1.

1.2.2. Collaborative Clustering

By contrast to the cooperative clustering model, the collaborative model does
not seek an overall hopefully better clustering of a given data set S through the
combination of individual solutions. In the collaborative framework, the goal is
that each local computation, quite possibly applied to distinct data sets, benefits
from the work done by the other “collaborators”. This can be done through
the exchange of information about the local data, or the current hypothesized
local clustering, or the value of one algorithm’s parameters. The validity of the
approach rests on the assumption that useful information can be shared among
the local tasks.

This scheme leads naturally to distributed implementations of the compu-
tations, but instead of a two step process, as in the cooperative framework, it
generally entails several iterations at each local node because convergence of the
consensus solution requires several passes of the algorithm. Indeed, in addition
to the problem of what information to exchange between agents, one question is
how to measure the evolution at each node, and when to stop each local process.

Collaborative clustering is realized along the lines of Algorithm 2.

The sequel of the paper is dedicated to collaborative clustering. Section 2
gives the flavor of some issues raised in collaborative learning through simple
examples. In Section 3, the questions of why and when collaborative clustering
should be expected to work are examined. Then, Section 4 is devoted to the
questions of how to organize and control a collaborative process. Section 5
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Algorithm 2: Algorithm for collaborative clustering

Data: P subsets of S not necessarily disjoint: {Si (1≤i≤P ) }
P algorithms: {Ai (1≤i≤P ) }

Result: A clustering G of the whole data set
Run in parallel the P algorithms Ai each on its own data set Si ;
Compute all the P clusterings Ci ;
repeat

Compute the consensus solution G from {Ci (1≤i≤P )}
or local consensus solutions ;
Exchange information between the/some algorithms ;
Compute new clusterings Ci ;

until stabilization of the global clustering or of the local solutions;

presents previous works related to collaborative learning that have bearings on
the issue of collaborative clustering and reports some applications.

2. Simple illustrations of Collaborative Clustering

There are two kinds of information that clustering algorithms use and update
during their computations: information about the membership of each data
point (e.g. x23 ∈ C2 where C2 is the label given by one algorithm to a cluster),
and information about internal parameters, like the current number of clusters
envisioned, the coordinates of prototypes, and so on. Exchanges of information
can take place at these two levels.

2.1. Examples of collaboration

In order to illustrate the issues raised by Collaborative Clustering, it is useful
to contemplate simple examples. We will consider different scenarios in turn:

1. The algorithms have access to the same dataset : same objects and same
attributes.

2. The algorithms have access to the same dataset, but they only see partial
views (a.k.a. vertical clustering scenario).

3. The algorithms have access to different objects supposedly drawn from
the same distribution (virtual dataset) measured with the same set of
attributes (horizontal clustering).

4. The algorithms have access to different objects supposedly drawn from
the same distribution (virtual dataset) measured with different sets of
attributes.

To simplify the discussion, we will suppose that all the algorithms are of
the k-means variety, but possibly with different values of k and/or different
definitions of distances (e.g. `1 distance, or `2, or ...). They may also start from
different initial states. Thus, they can obtain different results even on the very
same data set. These algorithms can communicate:
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• the number of clusters k they are contemplating

• the proportion of objects affected to each cluster

• the identifiers of the objects in each cluster

• the coordinates of the prototypes µi that define each cluster Ci.

However, they do not change their own settings: k and the distance used.

Now, for each scenario above, we will examine what communication could
be set up among the algorithms in order to carry out a collaborative clustering.

Scenario 1: Same data
This scenario is similar to the one of ensemble clustering where a consensus

solution that escapes the limits of each biased solution is hoped for. The differ-
ence with ensemble clustering may lie in the protocol of exchanges between the
learning algorithms. In ensemble clustering, each algorithm computes its own
local solution, and then a master algorithm computes a consensus solution. In
collaborative clustering, there is no master algorithm and the communications
between algorithms can alter the local computations for a solution. Further-
more, one can be happy with different outputs from the local algorithms since
alternative clusterings for the same data may well be what is looked for. Col-
laborative clustering is thus a means used to help local algorithms to escape
local minima and discover better solutions.

When the algorithms can share the identifiers of the objects, it is an easy
matter to compare cluster memberships. For instance, in Figure 3, we have 8
data points and two clustering algorithms A and B. The cluster memberships
can be compared via the matrix:

Algorithm x1 x2 x3 x4 x5 x6 x7 x8

A Ca Ca Ca Ca Ca C′a C′a C′a
B Cb Cb Cb C′b C′b C′′b C′′b C′′b

In this case, it is apparent that the cluster Cb found by algorithm B is
compatible with cluster Ca found by algorithm A since Cb ⊆ Ca. Similarly,
C′b ⊆ C′a. However, there is a conflict regarding the cluster C′′b since it has an
intersection with both Ca and C′a. Aware of this conflict, each algorithm could
take steps to eliminate it. For instance, algorithm A could start its next loop
by putting the offending point x8 in cluster Ca before updating the prototype
µa, therefore biasing its own solution toward a solution compatible with the
current one of algorithm B. Simultaneously, algorithm B could put x8 in cluster
C′b. Of course, if this is done simultaneously by both algorithms, the conflict
will persist.

It is apparent that this näıve collaborative approach needs much work out
before it can be implemented and extended to more than 2 algorithms. First, the
communication bandwidth tends to increase as O(P 2) where P is the number
of participating algorithms. Second, the computation of the “offending” data
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Figure 3: (Left) the data set shared by the clustering algorithms, here in R2. (Right) The
clustering found by algorithm A: Ca and C′a, and by algorithm B: Cb, C′b and C′′b .

points is more complicated than the simple example above shows. Finally, it is
not obvious to define collaboration so that the whole process tends to discover
stable local solutions. Indeed, a change in the solution of algorithm Ai can
trigger changes in solutions by other algorithms which themselves can modify
the solution of Ai. These kinds of loops are not easy to control if an energy
function of the whole system cannot be identified and if the overall collaboration
scheme is not proved to lead to a decrease of this energy function.

The communication between the algorithms can also involve other character-
istics than the memberships of the objects. For instance, the algorithms could
also exchange the coordinates of their prototypes together with the weights of
these prototypes given by the proportion of the objects they represent.

Coming back to the data set of Figure 4, algorithm A could inform algorithm

B that it has two prototypes with coordinates µa = [µ
(1)
a , µ

(2)
a ]> and µa′ =

[µ
(1)
a′ , µ

(2)
a′ ]> and weights 5/8 and 3/8. Algorithm B in turn would communicate

µb = [µ
(1)
b , µ

(2)
b ]>, µb′ = [µ

(1)
b′ , µ

(2)
b′ ]>, and µb′′ = [µ

(1)
b′′ , µ

(2)
b′′ ]> with respective

weights 3/8, 2/8 and 3/8.
In this case, this would push algorithm A toward the absorption of the data

point x5 in the cluster Ca, ending the conflict with the solution of algorithm B.
Again, this gives only an outline of what is involved when exchanging infor-

mation about the models themselves, and not the data points. For instance, if
an algorithm takes into account the prototypes computed by other algorithms,
what should be the weights of these prototypes?

Scenario 2: Same objects, different attributes
When the algorithms can share the identifiers of the objects but the at-

tributes they measure are different, they can no longer use information about
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Figure 4: (Left) The prototypes computed by algorithm A at time step t. (Center) The
prototypes computed by algorithm B. (Right) The updates of the prototypes of algorithm A
when taking into account the prototypes communicated by algorithm B.

the centroids computed by other algorithms. However, they can still compare
the way they group objects.

One way of doing this is to use consensus matrices [30]. A consensus matrix
for a set of algorithms is a N × N matrix where each element M(i, j) is the
frequency that the objects i and j are put together in the same cluster by
the algorithms. Ideally, if the algorithms all agreed on the clustering, then we
would have M(i, j) ∈ {0, 1},∀i, j ∈ {1, N}, and it would be easy to recover the
clusters. Any departure from this ideal case is a sign of disagreement between
the clusterings made by the algorithms.

For the data set depicted in Figure 3, the consensus matrix is given in Figure
5. Again, it is apparent that the one offending object is x8, so that this is
where the two collaborating algorithms should focus in order to improve their
agreement.

Scenario 3: Different objects, same attributes
When different objects are considered by the various algorithms, a collab-

oration has meaning only if it is assumed that the subsets of data are drawn
from the same distribution.

A general case is when there are partial intersections between the subsets
of data that the algorithms consider. Then, consensus matrices can still be
computed, using a normalization of the entries M(i, j) taking into account the
number of times the two objects of the pair have been considered together by
the algorithms. This can be used as a basis for the detection of disagreements
triggering further adaptations.
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Figure 5: (Left) The data set and the clusterings by algorithms A and B. (Right) The cor-
responding consensus matrix. The shaded parts denotes the objects for which there is an
agreement between the clusterings.

Another type of collaboration involves the exchange of the coordinates of
the centroids found by the collaborating algorithms, which can be done since
the algorithms share the same input space. As was indicated in the scenario 1,
the exchange of centroids may allow for modifications that tend to reduce the
disagreement between the solutions found locally.

Scenario 4: Different objects, different attributes
Interestingly, even if the attributes considered by the various algorithms are

not the same, the exchange of the centroids’s coordinates can still be a channel
of exchange as long as there is still some non empty intersection between the
subsets of attributes. Of course, the smaller the intersection, the higher the
risk that the remaining common attributes are in fact not relevant to the true
underlying regularities, and the higher the risk of exchanging noisy signals.

The most difficult case is when both the subsets of objects and the subsets of
attributes are disjoint. Then the only bits of information that can be of interest
to the various algorithms is the relative proportions of the clusters found at each
location. If for instance, algorithm A has found the proportions {0.25, 0.75} for
two clusters and algorithm B has found {0.10, 0.13, 0.77} for three, then it is not
absurd to suppose that the clusters found by the two algorithms indeed can be
put in close match. However, that kind of simple situation is just too simplistic
to be realistic. In most cases, a much more involved analysis should be carried
out, with likely weak results so far as the collaboration is concerned.

2.2. Illustration: two algorithms collaborating, one well-informed and the other
not

In collaborative clustering, it is hoped that by combining several algorithms,
each with its own data source and characteristics, one gets better results than
by using each algorithm independently. But, is this hope granted?

Taking a very simple setting, what happens if two clustering algorithms
are made to collaborate, both applied to the same objects, but using different
attributes (vertical clustering)? And particularly, what happens if the set of
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Figure 6: Visualization of the two subsets of the Waveform data set using posterior mean
projection, with labels obtained using F-VBGTM before collaboration. We can see good
clustering results on the first subset (left). The results of clustering on the second subset of
noisy variables are bad (right).

Figure 7: Effect of the Collaborative Clustering. When Abad sends results to algorithm Agood,
the uncovered underlying structure is severely impaired (left figure). By contrast, clustering
is much improved when Agood sends information prior to the data processing of Abad (right
figure).

attributes used by one algorithm, Agood is relevant to the underlying existing
structure of the data set, while the other subset, used by a Abad, is totally
irrelevant, containing only a noisy signal?

In the following, the algorithm F-VBGTM [31] was used on a split Waveform
data set. This data set was chosen because of its structure: it contains 5,000
observations described by 21 relevant variables and 19 noisy variables. The
data set was split into two subsets, the first one described using the relevant
variables (dimension 5, 000× 21) and the second one using the useless variables
(dimension 5, 000× 19).

The clustering results by F-VBGTM on the two subsets of the Waveform
data set without collaboration are shown in Figure 6. It is apparent that al-
gorithm Agood, using the relevant variables, was able to capture the underlying
structure of the data set, while algorithm Abad produced essentially a random
solution.

17



Here an oriented collaboration scheme was employed, in which the results
of algorithm Ai was sent to algorithm Aj (j 6= i) before its own processing of
the data set. As could be expected, when algorithm Abad influences algorithm
Agood, the structure discovered is seriously impaired (left on Figure 7). On
the contrary, algorithm Abad benefits a lot from information sent by Agood as
shown on the right of Figure 7. These results are only qualitative, but they show
the potential for harmful as well as beneficial collaboration between clustering
algorithms.

3. Why and when collaboration should be beneficial?

In cooperative clustering, the goal is to find a structure in a data set using
several algorithms that have access to the whole data set. Therefore the notion
of consensus among the individual solutions is central in order to control the
cooperative process. And while the measurement of consensus can depend on
the specificities of the application domain, it is still a relatively easy matter to
define such measures.

The situation is quite different in collaborative clustering where the goal is
to identify structures in each of the local data sets considered by the various
algorithms. There, it is more problematic to ensure that collaboration can bring
improvement locally, and it is also much more difficult to control the process
since the notion of global consensus is no longer operative. Intuitively, the
collaboration is valuable if the final local clusterings have higher quality than if
there had been no exchange of information between the local processes.

The potential benefits of collaboration can be due to three causes:

1. The fact that more data is better. One can hope therefore that other
algorithms bring more information about the data generating process than
is locally available.

2. The fact that perturbations can help an algorithm to escape local optima.

3. The fact that it might be profitable to modify the bias of a given algorithm
by feeding it with external information coming from algorithms that may
have different biases.

Note that identifying these three possible reasons for benefiting from collab-
orative clustering does not translate trivially into an overall control procedure
that would lead to better performance.

First, determining if one of these three situations is valid in one’s current
context is not obvious. Second, even if it is established that one, or more, of these
three ingredients is/are present in some collaborative clustering scheme, none
of these three potential causes is guaranteed to bring improvements. Indeed,
a local algorithm that is working on its own data set can only benefit from
information coming from another algorithm if the data set of the latter shares
enough regularities with its own data set. Likewise, perturbations can help the
exploration process of an algorithm, but it can also hamper it if they draw
it to poor regions of the search space. Finally, and similarly, there is no a
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priori reason to believe that external information that in effect modifies the
optimization criterion of the local algorithm, modifies it in the right direction.

Therefore, extreme attention must be taken in order to ensure that the
collaborative process can improve the performance of each local algorithm, and
the controlling strategy must be carefully crafted. The lack of a natural notion
of overall consensus makes it all the more complicated to achieve.

In the following, we draw attention to each of the three possible causes in
turn. And for each of these, we discuss why the outcome should be a benefit,
and how could a control procedure become aware of this improvement.

3.1. More data is better

More (training) data entails in general that a better solution is reached by
an inductive procedure, be it supervised or unsupervised. This is because con-
sidering a larger data sample reduces the variance, and thus the approximation
error while leaving the bias, or approximation error, untouched. In the case of
collaborative clustering, more data means more unlabeled data.

Let us suppose that the data generating process associated with the local
algorithm is characterized by the distribution PX (e.g. the distribution that
characterize the patient in a given hospital), then the incoming unlabeled data
(or its model as sent by the collaborative algorithm(s)) can be useful insofar as
its (unknown) marginal distribution with respect to the description space X of
the local algorithm is equal, or very close, to PX . For instance, this is what
would happen if the incoming data from another hospital describes patients that
have the same distribution of symptoms than the patients at the local hospital,
at least along the dimensions measured at the local hospital.

If this property is warranted, then the local algorithm should benefit from
the incoming data, in that it should return a better structure over the local
data set. It is expected that the clusters over the local data should be of better
quality, at least with respect to the bias enforced by the local algorithm.

One problem is to ensure that the incoming data indeed obeys the same dis-
tribution. Measures of divergence of probability distributions such as Kullback-
Leibler divergence, relative entropy, information gain and so on can be of use in
this respect [32].

3.2. Incoming information can help one participating algorithm to escape local
optima

Inductive algorithms evaluate the level of structure of the data set using
some inductive criterion. In the case of supervised learning, this is realized
generally through a regularized empirical risk measure:

R̂(h) =
1

m

m∑
i=1

`(h(xi), yi) + reg(h)

where there are m labeled data points (xi, yi), ` is a loss function that penalizes
incorrect predictions h(xi), and reg(h) is regularization function that usually
penalizes non smooth functions h.
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In the case of unsupervised learning, inductive criteria are often related to
some measure of the compactness and distinctness of the sub structures that
one is interested in discovering in the data. For instance, in the case of the
k-means algorithm the criterion takes the form of Equation 3 of section 1.1.2:

Gk−means((S, d), (C1, . . . , CK)) = Argmin
c1,...,ck,...,cK

K∑
k=1

∑
x∈Ck

d(x, ck)

where d stands for the distance used and the ck is the centroid of the cluster Ck.
Thus, in principle, an unsupervised learning algorithm explores the param-

eter space in order to minimize the posited ideal inductive criterion, and may
fall into local minima. Any source of perturbation could therefore help the al-
gorithm to escape these traps, and information coming from other collaborative
algorithms may play the perturbative role.

Ideally, it would be easy to detect if the information communicated by an-
other algorithm is useful or not, that is if it allows the local algorithm to escape
suboptimal minima. It would suffice to track the value of the criterion.

However, a large part of the unsupervised algorithms are heuristic in na-
ture, and they do not directly optimize an inductive criterion. Rather, as is
the case for the k-means algorithm, they follow a myopic and iterative process
with no explicit optimizing criterion. As a consequence, it might be difficult to
assess whether the incoming information is useful or not. And in the absence
of such insurance, it is quite possible that the incoming information pushes the
exploration towards poor regions of the space of solutions. The difficulty stems
from the difference between ideal inductive criteria and the true, heuristic, op-
timization taking place in the learning algorithm. There is need here for more
research investigating this issue, but some works are interesting in this respect
[33, 34, 35, 36, 37].

3.3. Incoming information modifies the bias of one participating algorithm

Suppose that the algorithm A is biased towards the discovery of convex
subgroups in the data while algorithm B looks for threadlike structures. When
algorithm A sends information to algorithm B, in the form, for instance, of
the data points with labels corresponding to the discovered structures, then
algorithm B will group together points that would not be grouped by algorithm
A. If algorithm A takes the groups of algorithm B as suggestions that should be
considered to some extent in order to form groups, then this effectively modifies
the inductive bias of algorithm A. The shapes found will tend to be not as
convex as they would in the absence of the information coming from algorithm
B.

But why would that be an interesting modification of the initial bias rather
than a damaging one? And how could one assess the merit, if any, of such a
modification?

Again, we are drawn back to the issue of evaluating the appropriateness of a
clustering method, a question for which there does not exist a definite answer.
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In addition, the fact that each local algorithm is influenced by the results
of other algorithms and affects them in return, causes the overall process to be
recursive with no obvious terminal fixed point. The analysis of such algorithms
is thus delicate to carry out.

One paradigmatic illustration of collaborative approaches is the “blackboard”
architecture developed in the Hearsay II system during the 1970’s [38, 39, 40],
itself influenced by the Pandemonium multi-agent system of Selfridge [41]. In
these systems, a set of modules, each dedicated to a subtask and a domain
knowledge, e.g. phonemes identification, word recognition, syntax, phrase, ...,
analyze separately the incoming voice signal, make hypotheses about the utter-
ances and post these partial and uncertain hypotheses on a “blackboard” so that
other modules can use them as input and can raise or lower their confidence. A
result is output when a coherent solution is found with enough confidence level.

4. Collaborative Clustering: the What and How issues

Given that collaborative clustering is defined by the fact that a set of “base
methods” or “experts” exchange information while they perform their local task,
information that may influence their running, a set of questions arise in order
to implement such collaborative methods. Among them, and quite prominent
are:

1. What information should (optimally) be exchanged between the algo-
rithms?

2. How to measure the diversity of the methods (agreement)?
3. How to measure the performance of each method?
4. How to measure the quality of the common goal if there is one?
5. How to control the collaborative process? This, in turn, entails ques-

tions about the estimation of degree of advancement by the algorithms
and about the measurement of diversity of the local results and/or local
algorithms.

4.1. Communication: what should be transferred between experts?

The base methods can exchange information of different types:

1. About the candidate structures hypothesized in the data sets.
2. About the memberships of the instances in the data set.

Information on the structure.. The exchange of information can bear on defin-
ing characteristics of the structure that are looked for by the “experts”. For
instance, the contributing algorithms could communicate about the attributes
they have found useful, or about the distance(s) they use, or the number of clus-
ters they contemplate. This will be especially helpful in horizontal clustering
where the local methods do not operate on the same data points, or even in the
same input spaces.

One advantage of this communication channel is that it preserves the secrecy
of the objects. It is also parsimonious in that it usually involves only a few
values.
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Information on the data points.. The other main option is to exchange infor-
mation about the hypothesized membership of the data points. Often, this is
done through the communication of the subgroups of objects found so far. Of
course, this requires that there exists an agreement on the identity of the ob-
jects. One difficulty is that each algorithm uses its own labeling of the subgroups
and, therefore, a translation has to be made by each local algorithm in order to
compare its own result with the ones that are communicated.

This type of exchange is more onerous than the one involving structural
information since it is proportional to the number of instances in the data set.
Furthermore, it also generally requires more computations of each of the local
method.

Aside from the type of information exchanged between experts, one question
regards the directionality and the intensity of the communication. For instance,
suppose that an expert appears very good according to a measure of perfor-
mance, and much more so than another one. Should they exchange information
in a symmetric way? The question is at least worth considering, and is not
settled. This is also tied to the way performance is measured (see 4.3).

4.2. Diversity: what methods should be selected?

In most existing ensemble clustering methods, the whole set of available base
methods is used in order to obtain a final result. This stems from the hypothesis
that all methods are relevant to the task, at least to some (positive) extent, and
should therefore be useful. This, however, is questionable.

It is obvious that if there is no variety in the ensemble of methods, nothing
can be gained through collaboration. Diversity is thus a requirement. But to
what extent?

If the experts must at least “speak the same language”, e.g. use the same
input space or the same set of data points, do they have also to agree to a
minimal level in order to contribute constructively to each other task? This is
no simple question, and if there have been some works aimed at exploring this
issue, their findings are not quite conclusive since many factors are at play to
explain the results. It is however tempting to hypothesize that in order to have
the most fruitful collaboration, an intermediate level of diversity between the
experts should be struck.

In [42], the authors suggest a method in order to measure the diversity of
local experts in an unsupervised task by looking at how much more they agree
on the specific data set as compared to a randomized one. They then use that
measure in order to weight the contributions of the experts.

We go back to this issue when discussing specific lines of works (see Section
5).

4.3. Level of performance of each method. How to measure it?

Measurement of performance in clustering is one of the hardest question. Or,
rather, this is a question with no perfect, or best, answer. Intrinsically, clustering
is an exploratory technique which aims at uncovering unsuspected structures in
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the data. It is therefore questionable that a definite optimization criterion can
be defined a priori. It will always be biased towards some kind of regularities. If
the underlying structure of the data does not obey this prescription, clustering
will miss it.

There is therefore no objective way of measuring the absolute quality of a
partitioning of data points. All existing classical evaluation criteria implicitly
favor one type of structure above others. If the measure used is “aligned” with
the type of structure that is looked for, then this a lucky conjunction and it is
legitimate to use this measure as a performance gauge. Otherwise, the measure
will be misleading.

Let us suppose then that the chosen criterion is adequate, and is shared by
all participating algorithms. In that case, using an ensemble approach can be
a good idea. Indeed, because clustering data points into subgroups involves a
gigantic search space and a hard to optimize function, all algorithms realize in-
exact approximations of the ideal best partitioning. Mutualizing their strengths
while trying to factor out their weaknesses is therefore a tempting approach.

Suppose on the other hand that there is no ground to prefer one evaluation
criterion over other ones. Should one then hope that by using several algorithms,
each seeking to optimize a different performance measure, one would get a better
clustering result? This is a recipe to define a new performance criterion, but one
difficult to characterize. And, again, there is no reason to hope that this criterion
should be better adapted to the discovery of the “right” type of structures. This
however can help the algorithms to escape local traps by submitting them to
“alien” hypotheses on the structures.

4.4. If there is a common goal: how to measure a “consensus”?

In clustering aggregation, the goal is to reach, if possible, a better clustering
of a data set using P clusterings. The idea is generally to produce a single
clustering that agrees as much as possible with the P clusterings. The notion
of agreement, or, conversely, of disagreement, must therefore be formalized in
order to give rise to a measurement.

Formally, the collaborative framework modifies the criterion that each local
algorithm Ai seeks to optimize in order to discover an underlying structure
(clustering) Ci in the local data set Si. It becomes:

Gi(Si) = Argmin
Ci

{
f(Si) + g

(
agreement(Ai, {Aj (1≤j≤P, j 6=i)})

)}
where the term g

(
agreement(Ai, {Aj (1≤j≤P, j 6=i)})

)
provides a measure of the

agreement between what has been found by the local algorithm Ai and all other
collaborating algorithms. It is important to note that the agreement function
generally does not take into account the original descriptions of the data points,
but only the partitions to which they are allocated by the different clustering
algorithms. Therefore, agreement must be defined as a kind of distance or simi-
larity between assignments or between high level descriptions of the clusterings.
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Suppose several clustering algorithms wish to compare their results on a
common data set, how can this be done? This depends on the learning task,
wether it is consensus clustering where the goal is to reach a common cluster-
ing for the same data set, vertical clustering where the description space is the
same, but not the examples, and one still looks for a common shared character-
ization, or collaborative clustering where only local clusterings are looked for,
but still assuming that information from other local clustering can help each
local computation.

The following gives a flavor of the solutions proposed for each of these three
settings.

Consensus clustering. In consensus clustering, the goal is to find one clustering
for one data set based on several input clusterings. The idea, in general, is
to search for a clustering G that is most similar, on average, to all the input
clusterings Ci(1 ≤ i ≤ P ).

One method for measuring similarity between clusterings is to rely on the
mutual information between the assignments of the data points to the clusters in
the target clustering G and the various input clusterings Ci. Thus, for instance
[23]) propose what they call the mutual information (that is not in fact the
proper mutual information measure which is not symmetrical [32]):

I(G, Ci) =

K(G)∑
k=1

K(Ci)∑
l=1

p(G(k), C(l)i ) log

(
p(G(k), C(l)i )

p(G(k)) p(C(l)i )

)
The goal is to find the optimal reference clustering G with respect to this

measure, which results in a difficult combinatorial optimization problem which
has been shown to be NP-complete. Heuristics exist that lead to approximate
solutions, but guidance is necessary as to which heuristic to use depending on
the characteristics of the data sets and the number of clusters that are looked
for.

An alternative strategy relies on an iterative procedure where input cluster-
ings are computed at successive time steps, compared thanks to some consensus
measure, and iteratively modified until convergence to a unique clustering is ob-
tained, or some stopping criterion is satisfied. This obeys the schema of Figure
2, and is a form of collaborative clustering where all experts work on the same
data set.

One solution to define the “similarity” between clusterings is to rely on a
consensus measure that compares the partitions in which the data points are cast
by each input clustering. A perfect consensus is obtained when the partitions
induced by the various clusterings match perfectly.

The archetypal approach for measuring consensus is the so-called consensus
matrix. This is a N ×N matrix of which each element Mi,j stores, for each pair
of examples i and j, the proportion of clusterings in which the two examples
have been clustered together. Thus, for each participating algorithm A`, we
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have what is called a connectivity matrix :

M (`)(i, j) =

{
1 if examples i and j belong to the same cluster

0 otherwise

The consensus matrix can then be defined as:

M(i, j) =
1

P

P∑
`=1

M (`)(i, j)

where P is the number of algorithms.
Each entry of the consensus matrix is a real number between 0 and 1, a

perfect consensus matrix being one with only entries that are 0 or 1.

Other techniques to define similarity between input clusterings have been
proposed, noticeably methods based on graph structures (e.g., [43]).

Vertical clustering. If one looks for a common structure of several different data
sets, as is done in “vertical clustering”, it is no longer possible to make direct
comparisons at the level of the examples since they are different. Only descrip-
tions of the clusters found by each expert can be exchanged, and a consensus
measure must be defined at this level. Very few works look at this framework.
[44] is a noteworthy exception. Here, the problem is to estimate Gaussian mix-
tures at different nodes of a sensor network. The authors show how to adapt an
Expectation-Maximization procedure to tackle it. They formalize what is as-
sumed a priori to exist as commonalities between supposedly independent nodes
(i.e. a common underlying signal measured with different offsets at each node
and the same noise level) and what should be communicated between nodes
(i.e., the estimated values of the mixtures parameters).

Collaborative clustering. In collaborative clustering, one is interested in the lo-
cal clusterings attained by each local algorithm on the local data sets. In this
setting, the notion of consensus becomes even more slippery than for vertical
clustering. It has to be defined to reflect the kind of information that one would
deem interesting to share between the local algorithms. It could be that the
expected number of clusters is very similar, or that the hierarchical structure of
the clustering is the same, or any other such expectation that can be translated
into constraints that local clustering algorithms can send to each other and, in
return, take into account.

One instance of a consensus function with an associated distributed cluster-
ing algorithm can be found in [45] in the context of discovering clusters of pixels
in satellite images.

4.5. How to control the collaboration?

As soon as a collection of “agents” is interacting in pursuit of some task(s),
several control strategies are possible. This is also true in the case of collabo-
rative clustering. The set of possibilities can be organized along the following,
strongly dependent, dimensions:
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• Synchronous versus asynchronous operations. The experts can be left
functioning at their own pace and exchanging information as leisurely or
as rapidly as they see fit. This asynchronous strategy is best when each
expert has its own goal and exchanges information only insofar that it
may help in the pursuit of its local goal. When all experts are involved
in a single overall task, synchronicity is usually required since the final
result depends (equally) on all local achievements. The choice is obviously
heavily dependent upon the type of process: iterative or one-shot.

• Iterative versus one-shot process. In one-shot process, all experts com-
pute their local solution, and when this is done, and only then, a master
algorithm combines them and outputs the final solution. Experts may
well vary in the time they take to produce a solution, the master algo-
rithm must wait until the slowest one has contributed before starting the
combination process. Most techniques proposed for consensus clustering
use this type of control strategy because there is only one clustering pass
before the combination process takes place.
When, by contrast, the computations performed by each expert can take
into account partial solutions communicated by other experts, and is there-
fore iterative, synchronicity becomes an issue. Either, the process is orga-
nized with a master clock: each expert must produce and communicate its
temporary solution before another clustering phase starts, or the agents
communicate freely, asynchronously, at their own initiative. This later
type of organization, or lack thereof, can be encountered in collabora-
tive clustering, where each expert pursues its own local clustering task.
However, most proposals use a synchronous control strategy.

• Local versus global control. Local control goes generally hand in hand
with an asynchronous control strategy, while global control is linked to
the need for a master clock, and often also with the computation of a final
combined overall solution.

One central concern with collaborative approaches is the termination prop-
erty. While it is required that a clustering algorithm stops at somme point, even
though the solution reached might not correspond to a global optimum of the,
sometimes hidden, optimization criterion, it might be difficult to ensure that all
algorithms stop when collaborating with other clustering algorithms in a itera-
tive way. Indeed, it is easy to imagine cycles where one agent Ai produces some
temporary solution Ci(t) at step t that modifies the solution Cj(t+ 1) produced
by another agent Aj at time t+1, which in turn pushes Ai to change its solution
at time t + 2 to Ci(t + 2), only to influence Aj to revert to its earlier solution
Cijt) at time t+ 3, and so on.

In the same way that convergence is an issue in multi-agent systems, it is a
central question in iterative collaborative clustering. One general method is to
define an “energy function” that is guaranteed to decrease with each iteration.
This is, for instance, the approach taken in [45].
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5. Related work

Collaborative learning denotes distributed algorithms that influence each
other during their own computations by exchanging information. We already
underlined the pioneering works of Oliver Selfridge on the Pandemonium in 1958
[46, 41] and the highly sophisticated Hearsay II system developed for speech un-
derstanding in the 1970s [38]. The co-learning framework developed for super-
vised classification from partial and disjoint views [47] has also a special place
in the history of collaborative learning since it was based on a formal analysis
leading to the definition of the algorithm.

Regarding unsupervised learning, algorithms for co-clustering or bi-clustering,
initialized by [48], can be considered as forerunners of what was not yet called
collaborative clustering. Co-clustering is indeed a limit case where the algorithm
can be seen as an organized interplay between two agents exchanging informa-
tion about the same data set, each agent seeing only one dimension (e.g. objects
or attributes values) and trying to find clusters along this dimension taking into
account what is found by the other agent. More recent work on co-clustering,
which is not in the scope of this paper, can be found in [49, 50, 51].

However, this was not before the very end of the 1990s that collaborative
approaches emerged as a concept in its own right worthy of interest (e.g. [52]).
Many methods have been investigated from various perspectives: collaborative
frameworks based on fuzzy clustering or topological maps, higher-level collab-
orative schemes relying on existing clustering algorithms or collaborative ap-
proaches dedicated to distributed datasets.

5.1. Implementations

5.1.1. Fuzzy collaborative clustering

A fuzzy collaborative clustering architecture is introduced by [53], in which
several subsets of patterns can be processed together to find a common struc-
ture to all of them. In this system, different subsets of the initial data are
processed independently. Then, each partition matrix is modified according to
the other matrices found: each result produced on a subset is modified according
to results found on the other subsets. Extensive experiments of the method are
also proposed in [54] along with algorithmic details. An application of this col-
laborative fuzzy clustering method to semantic web content analysis has been
proposed in [55]. The authors discuss a collaborative proximity-based fuzzy
clustering and show how this type of clustering is used to discover a structure
of web information in the spaces of semantics and data.

Another fuzzy collaborative framework is proposed by [56], where rough sets
are used in a collaborative paradigm in which several subsets of patterns are
processed together to find a common structure. A clustering algorithm is de-
veloped by integrating the advantages of both fuzzy sets and rough sets. A
quantitative analysis of the experimental results is also provided for synthetic
and real-world data. To tackle the problem of distributed data, [57] proposed
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a framework to cluster distributed classifiers. They show that clustering dis-
tributed classifiers as a preprocessing step for classifier combination enhances
the achieved performance of the ensemble.

5.1.2. Topological and topographic maps

In a recent work [58], the authors present a formalism based on topological
collaborative clustering using prototype-based clustering techniques. Topolog-
ical maps representing different sites collaborate without having to access the
original data, thus preserving their privacy. Two different approaches of collab-
orative clustering are given: horizontal and vertical collaboration. The strength
of collaboration (exchange of confidence levels) between each pair of datasets is
determined by a parameter, called coefficient of collaboration, to be estimated
iteratively during the collaboration phase using a gradient-based optimization.
The method comprises two steps. In the first one, the Som (Self-Organizing
Map) algorithm [59] is applied to each dataset independently. In the second
one, the collaboration phase takes place to enrich the information contained in
the different topological maps produced during the first step.

In [31], another collaborative clustering approach based on topographic maps
is proposed. The idea is to combine the Variational Bayesian Generative To-
pographic Mapping (VBGTM) and Fuzzy c-means (FCM). VBGTM was in-
troduced as a variational approximation of Generative Topographic Mapping
(GTM) to control data overfitting, but when the number of latent points is
large, similar units need to be clustered to facilitate quantitative analysis of the
map and the data. FCM is used to determine the prototypes as well as the
clusters and the corresponding membership functions of the input data, based
on the latent variables obtained from VBGTM.

5.1.3. Collaboration of existing clustering methods

Besides the development of any sort of specific collaborative methods, general
frameworks describing how clustering methods can work together have been
proposed.

For example, [60] presented a new architecture for collaboration, in order to
help a set of clustering algorithms to reach an agreement on the partitioning of a
common dataset. In this setting, the collaboration aims at making the methods
agree on the partitioning through a refinement of their results.

Another collaborative framework is given in [61], which goal is to solve
multi-view and alternative clustering problems. Ensemble clustering and semi-
supervised clustering principles are used to control different clustering algo-
rithms by sharing a common model. The aim of the method is to reach a
consensus or alternatively to improve local clustering solutions.

A similar approach has been proposed by [21]. The authors defined a new
cooperative clustering model which involves cooperation among multiple clus-
tering techniques to increase the homogeneity of objects within the clusters.
The model is capable of handling datasets with different properties by develop-
ing two data structures: a histogram representation of the pair-wise similarities
and a cooperative contingency graph. The two data structures are designed to
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find the matching sub-clusters between different clusterings and to obtain the
final set of clusters through a coherent merging process.

More recently, [45] proposed a new collaborative framework that works with
most clustering algorithms. The collaboration scheme used is horizontal collab-
oration (see Section 2). All algorithms work either on subsets representing the
same data in different feature spaces, or on the exact same data searching for a
different number of clusters, or a mix of both.

5.1.4. Distributed data

Due to the recent growth of data automatically gathered, there is a growing
need of efficient methods dealing with distributed data.

[62] defined a collaborative clustering approach that focuses on distributed
or ubiquitous knowledge discovery, when only the access to the local dataset is
available. The authors present two different versions of the method, one where
the data are the same but described by different features, and one where the
features are the same, but the objects of each local dataset are different. The
approach consists in two step. First a collaborative fuzzy clustering step and
then a particle swarm optimization to optimize the collaboration.

More recently, [63] proposed a new efficient way to deal with large distributed
datasets. The method is based on a collaborative divide-and-conquer algorithm
using k-means as base clustering algorithm. The collaboration consists in the
exchange of seeds between the clustering methods to accelerate the convergence
in each partition.

5.2. Dimensions of Collaborative Methods for Clustering

To sum up, several dimensions can be useful to characterize the tasks and
methods of collaborative clustering:

1. single objective vs. multiobjective clustering;

2. global clustering vs. local clusterings;

3. single domain clustering vs. multi-domain clustering;

4. clustering of single scale data vs. multiscale data;

5. single strategy vs. multi-strategy approaches;

6. exchange of information on the membership of the samples to cluster vs.
exchange of information on the clustering models.

Table 1 proposes a classification of the main methods presented in this paper
according to these characteristics.

5.2.1. Single objective vs. multiobjective clustering

The notion of objective relates to the criterion or criteria to optimize.
It may be convenient to define a single expression as a combination (or com-

promise) between several targets to maximize. For example, it is common in
clustering to seek to maximize both clusters compactness (intra-cluster simi-
larity) and difference (inter-cluster dissimilarity). This can be expressed by a
criterion: compacity(C) + λ.dissimilarity(C), where C is a clustering and λ
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a parameter to control the relative importance of the two targets. In this case,
we talk about single objective clustering.

By contrast, the goal of multiobjective clustering is to find clusters in a data
set by applying several clustering algorithms corresponding to different objective
functions (or criteria). A final clustering corresponding to a trade-off between
the base criteria can eventually be derived using a Pareto front.

5.2.2. Global clustering vs. local clusterings

The goal of the collaboration can either be to produce a unique partition of
the whole dataset: global clustering, or it may be to find partitions of subsets
of the data, whether they are described by the same attributes or not: local
clustering.

In the case of a global clustering, the final partition results from a consensus
between the solutions produced by the different methods. This consensus func-
tion can rely directly on the partitions of the data set produced by the methods,
or may take into account the (parametric) models produced by these methods.

5.2.3. Single domain clustering vs. multi-domain clustering

In the single-domain case, all objects belong to the same super-class of ob-
jects (for example, furniture or living beings). In the multi-domain case, the
objects categorized by the various local methods may belong to different super-
classes (for instance, it could be interesting to see in which way and to what
extent insects in a colony and citizens in an economic system share criteria or
model parameters).

5.2.4. Clustering of single scale data vs. multiscale data

In some other cases, the data correspond to the same items, but are de-
scribed at different scales. This is especially the case for remote sensing images
for example, but it can also involve objects described at different levels of ab-
straction.

In all these cases, it may be beneficial to have clustering tools operating at
different levels of description to collaborate in order to produce a more informed
view of the data.

5.2.5. Single strategy vs. multi-strategy approaches

In a single strategy approach, all collaborating methods are based on the
same algorithm, but working on different data or having different parameter
values. Exchange of information between these methods is easy because they
share the same settings.

It is harder to benefit from the collaboration of different methods, like, for
example, a k-means algorithm and a hierarchical clustering algorithm, because of
the lack of direct correspondence between solutions. The same kind of problem
arises in multi-objective clustering.
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[53] single global memberships
[57] single local � � models
[58] single local � models
[31] multi local � models
[60] single global � memberships
[61] multi local � � � models
[21] single global memberships
[45] single global � memberships
[62] single local � � models
[63] single global � memberships

Table 1: Classification of the presented collaborative methods, according to the six main
characteristics described in Section 5.2.

5.2.6. Exchange of information on the membership of the samples to cluster vs.
exchange of information on the clustering models

One way to address the issue of exchanging information between algorithms
that differ in their functioning is to communicate at the level of the member-
ship of each data point to the clusters in each local solution. This does not
require that the algorithms share any information about their internal state.
However, exchanging information about these internal states can enrich com-
munication and speed up the collaborative process. For instance, algorithms
based on mixture of probabilities distributions could find useful to exchange
information about the shapes of these distributions.

5.3. Applications

Most of the work presented in this section have been compared in the lit-
erature on the classical UCI datasets. One reason for this choice was the high
execution cost of many of these algorithms, making them hard to execute on
large datasets. However, some were used on real data to solve concrete problems.

For example, [64] developed a 3-D motion segmentation method, based on
collaborative clustering. The segmentation is computed from two perspective
views. A multi-view extension of the Sparse Subspace Clustering [65] algorithm
is proposed to combine the information across multiple image frames.

In [66] a study was published on the topic of marketing research. The au-
thors used a multi-objective particle swarm optimization (MOPSO) within a
collaborative fuzzy clustering framework. The main contributions of this work
consist, first, in giving a method to compute the collaboration matrix between
the different data repositories, and second, in proposing a using fitness functions
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at both levels (data and information levels), that allow one to build a consensus
between all the data sites.

In [67], the authors presented an application of their collaborative clustering
approach to remote sensing image classification. This multi-strategic method
integrates different kinds of clustering algorithms that collaborate to produce
a unique consensual result. The paper highlights how clustering methods can
collaborate and presents results in the paradigm of object-oriented classification
of a very high resolution remotely sensed images of an urban area.

6. Conclusion and Perspectives

Despite the increasing number of methods and tools dedicated to unsuper-
vised collaborative classification, this paradigm is still surprisingly infrequently
used. However, the emergence of the Big Data area, with all its demand for
distributed but collaborative computations should radically change this situa-
tion. Moreover, while, until recently, “ensemble methods” were mostly aimed
at supervised learning, a shift of attention towards unsupervised learning is
taking place. This is due in part to the pressing need for methods that allow
one to explore large data sets without well-defined preconceptions, and without
pre-existing categories that can be used as labels in training instances.

In this paper, we have underlined the differences between approaches that
aim at combining clusterings: multi-view clustering, cooperative or consensus
clustering, and collaborative clustering. In the latter, the local algorithms usu-
ally process different data sets, either because the instances or the descriptors,
or both, differ. In addition, and this is essential, these algorithms seek to find
structures in the data that may differ from the structures found by other al-
gorithms. However, they are ready to use information coming from the other
algorithms in order to discover better structures than if they were operating in
isolation. Another key feature of the collaborative clustering framework is that
the local algorithms may exchange information among themselves iteratively,
and not in prelude of a final consensus making phase.

Still, for all the surge of interest on collaborative clustering, there remain
many venues to explore and numerous questions to settle. In this paper, we have
tried to expound a systematic set of characteristics that can be used in order to
describe algorithms, and above all to devise new schemes. But above all, we have
underlined a set of issues and questions that any method must face: the type of
information that is exchanged, the protocol controlling the communications, the
way that differences are resolved at each node, the stopping criteria, to name
the foremost ones.

Even though there now exists a panoply of methods and of successful exper-
iments, we are still lacking a theoretical understanding about the conditions for
positive collaboration in clustering tasks. All situations cannot be conducive
to fruitful collaboration. But in which ways the local tasks should be related
for a fruitful collaboration to be possible? To what extent the local clustering
algorithm should share their a priori on the interesting data structures? What
information should they exchange? And among which set of collaborators? Is
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there a way to detect negative collaborations? Finally, in a distributed and col-
laborative framework, how to define a stopping criterion? All these questions
are still largely open.

This survey paper has tried to organize and convey the main issues facing
the development of collaborative clustering methods. This is an exciting and
promising field that arrives on time for solving knowledge discovery problems
in the big data area. We believe that the time is ripe for largely extending the
use of these methods. All the while, this is also a domain rich with questions
that go beyond the current statistical learning theory, and that should stimulate
very interesting new research efforts.
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