
HAL Id: hal-02327893
https://hal.science/hal-02327893v1

Submitted on 23 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Computing AES related-key differential characteristics
with constraint programming

David Gérault, Pascal Lafourcade, Marine Minier, Christine Solnon

To cite this version:
David Gérault, Pascal Lafourcade, Marine Minier, Christine Solnon. Computing AES related-key
differential characteristics with constraint programming. Artificial Intelligence, 2020, 278, pp.103183
(24). �10.1016/j.artint.2019.103183�. �hal-02327893�

https://hal.science/hal-02327893v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Computing AES Related-Key Differential

Characteristics with Constraint Programming

David Geraulta, Pascal Lafourcadea, Marine Minierb, Christine Solnonc

aUniversité Clermont Auvergne, CNRS, LIMOS, F-63000 Clermont, France
bUniversité de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France

cUniv. Lyon, INSA Lyon, CNRS, LIRIS, F-69621, France

Abstract

Cryptanalysis aims at testing the properties of encryption processes, and this
usually implies solving hard optimization problems. In this paper, we focus
on related-key differential attacks for the Advanced Encryption Standard
(AES), which is the encryption standard for block ciphers. To mount these
attacks, cryptanalysts need to solve the optimal related-key differential char-
acteristic problem. Dedicated approaches do not scale well for this problem,
and need weeks to solve its hardest instances.

In this paper, we improve existing Constraint Programming (CP) ap-
proaches for computing optimal related-key differential characteristics: we
add new constraints that detect inconsistencies sooner, and we introduce a
new decomposition of the problem in two steps. These improvements allow
us to compute all optimal related-key differential characteristics for AES-128,
AES-192 and AES-256 in a few hours.

Keywords:
Constraint Programming, AES, Differential cryptanalysis.

1. Introduction

Since 2001, AES (Advanced Encryption Standard) is the encryption stan-
dard for block ciphers [FIP01]. It guarantees communication confidentiality
by using a secret key K to cipher an original plaintext X into a ciphertext
AESK(X), in such a way that the ciphertext can further be deciphered into
the original one using the same key, i.e., X = AES−1

K (AESK(X)).
Cryptanalysis aims at testing whether an attacker can observe any non-

random property in the encryption process: if he cannot, then confidentiality

Preprint submitted to Artificial Intelligence October 18, 2019

is guaranteed. In particular, differential cryptanalysis [BS91] studies the
propagation of the difference δX = X ⊕ X ′ between two plaintexts X and
X ′ through the cipher, where ⊕ is the exclusive or (xor) operator. If the
distribution of the output difference δC = AESK(X) ⊕ AESK(X ′) is non
uniform, then an adversary can exploit this non-uniformity to guess the key
K used to encrypt messages with difference δX faster than by performing
exhaustive search: confidentiality is therefore lowered.

Today, differential cryptanalysis is public knowledge, and block ciphers
such as AES have proven security bounds against differential attacks. Hence,
[Bih93] proposed to consider differences not only between the plaintexts X
and X ′ but also between the keys K and K ′ to mount related-key attacks.
In this case, the cryptanalyst is interested in finding optimal related-key dif-
ferentials, i.e., input and output differences that maximize the probability of
obtaining the output difference given the input difference. In other words,
we search for δX, δK, and δC that maximize the probability that δC is equal
to AESK(X)⊕ AESK⊕δK(X ⊕ δX) for any plaintext X and any key K.

Finding an optimal related-key differential is a highly combinatorial prob-
lem that hardly scales. To simplify this problem, we usually compute differ-
ential characteristics which additionally specify intermediate differences after
each step of the ciphering process. Also, to reduce the search space, Knudsen
[Knu95] has introduced truncated differential characteristics where sequences
of bits are abstracted by single bits that indicate whether sequences contain
differences or not. Typically, each byte (8-bit sequence) is abstracted by a
single bit (or, equivalently, a Boolean value). In this case, the goal is no
longer to find the exact differences, but to find the positions of these differ-
ences, i.e., the presence or absence of a difference for every byte. However,
some truncated differential characteristics may not be valid (i.e., there do not
exist actual byte values corresponding to these difference positions) because
some constraints at the byte level are relaxed when reasoning on difference
positions. Hence, the optimal related-key differential characteristic problem
is usually solved in two steps [BN10, FJP13]. In Step 1, every differential
byte is abstracted by a Boolean variable that indicates whether there is a
difference or not at this position, and we search for all truncated differential
characteristics. Then, for each of these truncated differential characteristics,
Step 2 aims at deciding whether it is valid (i.e., whether it is possible to find
actual byte values for every Boolean variable) and, if it is valid, at finding
the actual byte values that maximize the probability.

Two main approaches have been proposed to solve the optimal related-key

2

differential characteristic problem on AES: a graph traversal approach [FJP13],
and a Branch & Bound approach [BN10]. The approach of [FJP13] requires
about 60 GB of memory when the key has 128 bits, and it has not been ex-
tended to larger keys. The approach of [BN10] only takes several megabytes
of memory, but solving Step 1 requires several days of computation when the
key has 128 bits, and several weeks when the key has 192 bits. Of course,
each of these problems must be solved only once, and CPU time is not the
main issue provided that it is “reasonable”. However, during the process of
designing new ciphers, this evaluation sometimes needs to be repeated sev-
eral times. Hence, even though not crucial, a good CPU time is a desirable
feature. Another point that should not be neglected is the time needed to
design and implement these approaches: To ensure that the computation is
completed within a “reasonable” amount of time, it is necessary to reduce
branching by introducing clever reasoning. Of course, this hard task is also
likely to introduce bugs, and checking the optimality of the computed so-
lutions may not be so easy. Finally, reproducibility may also be an issue.
Other researchers may want to adapt these algorithms to other problems,
with some common features but also some differences, and this may again
be very difficult and time-consuming.

1.1. Declarative approaches for cryptanalytic problems

An appealing alternative to dedicated approaches is to use generic solvers
such as Integer Linear Programming (ILP), Boolean satisfiability (SAT) or
Constraint Programming (CP). In this case, we have to design a model of the
problem (by means of linear inequalities for ILP, Boolean clauses for SAT,
and constraints for CP), and this model is automatically solved by generic
solvers.

ILP. Many symmetric cryptanalysis problems on different ciphers have been
tackled with ILP. For example, ILP has been used to find optimal (related
key) differential characteristics against bit-oriented block ciphers such as
SIMON, PRESENT or LBlock [SHW+14], to search for impossible differ-
entials [ST17], and to provide security bounds in the design of the new
lightweight block cipher SKINNY [BJK+16]. ILP models can only contain
linear inequalities. Therefore, it is necessary to transform non-linear opera-
tors into sets of linear inequalities. However, the resulting ILP model may
not scale well. For example, in [AST+17], authors introduce an ILP model of
the non-linear part of a block cipher (such as the SubBytes operation used in

3

AES). They present some results on SKINNY-128 where the time required
to find differential paths is about 15 days.

SAT. SAT and Satisfiability Modulo Theories (SMT) have also been used to
solve cryptanalysis problems. For example, in [MP13], Mouha and Preneel
use a SAT solver to search for optimal differential characteristics for a type
of ciphers called ARX, in which the nonlinear components are different from
the SubByte operation used in AES. In [SWW17], Sun et al. propose a
SAT/SMT model to search for division properties on ARX and word-based
block ciphers, and they show on SHACAL-2 that it scales better than ILP.
In [KLT15] the authors analyze the general class of functions underlying the
Simon block cipher: They derive SAT/SMT models for the exact differential
and linear behaviour of Simon-like round functions, and they use SAT/SMT
solvers to compute optimal differential and linear characteristics for Simon.
The SAT solver used in [KLT15] is CryptoMiniSat [SNC09], which is well
suited to solve cryptanalysis problems. In particular, it introduces xor-
clauses to easily model xor operations, and it uses Gaussian elimination to
efficiently propagate these xor-clauses. These xor-clauses can be used to
model bitwise xor operations in Step 2. However, they cannot be used to
model these operations in Step 1. Indeed, if 1⊕1 = 0 at a bitwise level (during
Step 2), this is no longer true during Step 1 because the xor of two bytes
different from 0 may be either 0 or a value different from 0, depending on
whether the two bytes have the same value or not (see Section 3.2). Similarly
to ILP, non linear operations such as SubBytes are not straightforward to
model by means of clauses. In [Laf18], Lafitte shows how to encode a relation
associated with a non linear operation into a set of clauses and, in [SWW18],
Sun et al. show how to reduce the number of clauses of this kind of encoding
by using the same approach as in [AST+17].

CP. CP models have been used in [LCM+17] for modeling algebraic side-
channel attack on AES and in [RSM+11] to design the non-linear part of a
block cipher with good properties. Recently, we have introduced CP mod-
els for finding related-key differential characteristics for AES [GMS16], Mi-
dori [GL16], and SKINNY [SGL+17]. These preliminary work have shown
us that off-the-shelf CP solvers are able to solve these problems quicker than
dedicated approaches. In particular, the CP model of [GMS16] for Step 1 of
AES when the key has 128 bits is solved in a few hours by CP solvers such
as Gecode [Gec06], Choco [PFL16], or Chuffed [CS14]. This CP model has

4

allowed us to find a better solution than the one claimed to be optimal in
[FJP13, BN10] for 4 rounds of AES when the key has 128 bits. However, the
CP model for Step 1 described in [GMS16] is not able to solve all instances
of AES within a reasonable amount of time. In [GLMS17, GLMS18], we
show how to decompose the hardest instances into independent sub-problems
which can be solved in parallel, thus allowing us to solve all AES instances.
However, computing optimal differential characteristics with the approach of
[GLMS17, GLMS18] still is very time consuming. For example, the hardest
instance (for 10 rounds of AES-192) needs more than two months of CPU
time to be solved.

1.2. Contributions and outline of the paper

In this paper, we introduce a new CP model for Step 1 and a new de-
composition of the solution process in two steps that allow us to solve every
instance of AES, for all key lengths, in a few hours: All instances but two
are solved in less than one hour, while the two hardest instances are solved
in 5 hours and 15 hours, respectively.

In Section 2, we describe the context of this work: the AES ciphering
process, the AES related-key differential characteristic problem, the two step
solving process that is used in [FJP13, BN10, GMS16], how to use differential
characteristics to design related-key attacks, and the basic principles of CP.

In Section 3, we describe the basic CP model of [MSR14] for solving
Step 1. This model is a straightforward encoding which associates a con-
straint between Boolean variables with every AES operation. A weakness
of this model is that the xor constraint at the Boolean level is a poor ab-
straction of the xor operation at the Byte level. As a consequence, there
is a huge number of truncated differential characteristics, most of which are
discarded at Step 2 because they are not valid.

In Section 4, we introduce a first contribution of this paper, which is a new
CP model for solving Step 1. The idea is to generate new xor equations by
combining initial equations coming from the key schedule, in a preprocessing
step, and to use these new equations to filter the search space. We also tighten
the definition of the xor constraint between Boolean variables by reasoning
on differences between bytes. We compare our new model with the model
introduced in [GMS16], and we show that it is faster, and that it drastically
reduces the number of non valid truncated differential characteristics for the
most challenging instance.

5

In Section 5, we describe the CP model for solving Step 2, which is a
straightforward extension of the model of [GMS16] to other key lengths than
128 bits. This model is able to quickly find the optimal byte-consistent
solution, given a truncated differential characteristic. However, for some
instances, there are many truncated differential characteristics and in this
case finding the optimal solution for all truncated differential characteristics
becomes time consuming.

In Section 6, we introduce a second contribution of this paper, which is
a new decomposition of the solution process in two steps which allows us to
solve the full problem much quicker.

In Section 7, we give an overview of the new cryptanalysis results that
have been derived from the new related-key differential characteristics com-
puted thanks to our new CP models, and we describe some further work.

2. Background

We start by presenting the AES encryption scheme and introducing the
notations used in our modeling. Then, we describe the AES related-key
differential characteristic problem, the two step solving process generally used
to solve it, and how differential characteristics are used to mount related-key
attacks. Finally we recall some basic principles of constraint programming.

Throughout the paper, we note [i, j] the set of all integer values ranging
from i to j, i.e., [i, j] = {v ∈ N : i ≤ v ≤ j}.

2.1. Description of AES

AES ciphers blocks of length n = 128 bits, where each block is seen as a
4 × 4 matrix of bytes, where a byte is a sequence of 8 bits. Given a 4 × 4
matrix of bytes M , we note M [j][k] the byte at row j ∈ [0, 3], and column
k ∈ [0, 3]. The length of keys is l ∈ {128, 192, 256} bits, and we note AES-l
the AES with keys of length l. The only difference when changing the length
l of the key is in the KeySchedule operator. We illustrate AES and describe
our cryptanalytic models for the case where l = 128, such that the key is
a 4 × 4 matrix of bytes. We describe the cases where l ∈ {192, 256} in
Appendix.

Like most of today’s block ciphers, AES is an iterative process which
is composed of r rounds. The number of rounds r depends on the key
length: r = 10 (resp. 12 and 14) when l = 128 (resp. 192 and 256).
An AES round has an SPN (Substitution-Permutation Network) structure

6

Operations applied at each round i ∈ [0, r − 1] for AES-128:

Key K = K0
(4×4 bytes)

KS

KS
Subkey Ki+1

ARK

XiPlaintext X

(4×4 bytes)

ARK

SB

SXi

SR MC

(i6=r−1)

Yi Zi Xr = AESK(X)

Ciphertext

Figure 1: AES ciphering process for 128 bit keys. Each 4× 4 array represents a group of
16 bytes. Before the first round, X0 is obtained by applying ARK on the initial text X
and the initial key K = K0. Then, for each round i ∈ [0, r − 1], SB is applied on Xi to
obtain SXi, SR is applied on SXi to obtain Yi, MC is applied on Yi to obtain Zi (except
during the last round when i = r − 1), KS is applied on Ki to obtain Ki+1, and ARK is
applied on Ki+1 and Zi to obtain Xi+1. The ciphertext is Xr.

and is described in Fig. 1 for l = 128. It uses the following five operations,
that are described in details below: SubBytes (SB), ShiftRows (SR), Mix-
Columns (MC), AddRoundKey (ARK), and KeySchedule (KS). Before the
first round, AddRoundKey is applied on the original plaintext X and the
initial key K0 = K to obtain X0 = ARK(X,K0). Then, for each round
i ∈ [0, r−1]: SubBytes is applied on Xi to obtain SXi = SB(Xi); ShiftRows
is applied on SXi to obtain Yi = SR(SXi); MixColumns is applied on Yi
to obtain Zi = MC(Yi) (except during the last round where MixColumns
is omitted so that Zr−1 = Yr−1); KeySchedule is applied on Ki to obtain
Ki+1 = KS(Ki); and AddRoundKey is applied on Zi and Ki+1 to obtain
Xi+1 = ARK(Zi, Ki+1). The final ciphertext is Xr.

SubBytes. SB is a non-linear permutation which is applied on each byte of Xi

separately, according to a look-up table (called S-box) S : [0, 255]→ [0, 255],
i.e.,

∀i ∈ [0, r − 1],∀j, k ∈ [0, 3], SXi[j][k] = S(Xi[j][k]).

ShiftRows. SR rotates on the left by one (resp. two and three) byte position
the second (resp. third and fourth) row of SXi, i.e.,

∀i ∈ [0, r − 1],∀j, k ∈ [0, 3], Yi[j][k] = SXi[j][(k + j)%4]

7

where % is the modulo operator that returns the remainder of the euclidean
division.

MixColumns. MC multiplies each column of the input matrix Yi by a 4× 4
fixed matrix M to obtain each corresponding output column in the matrix
Z, i.e.,

∀i ∈ [0, r − 2],∀j, k ∈ [0, 3], Zi[j][k] =
3⊕

x=0

M [j][x] · Yi[x][k]

where · is a finite field multiplication operator.
For the last round, MC is not applied and we have Zr−1 = Yr−1.

Maximum Distance Separable property. The coefficients of the matrixM used
by MC have been chosen to ensure a so-called MDS (Maximum Distance
Separable) property. This property comes from the theory of error correcting
codes [MS77] and guarantees the maximal possible diffusion property [Sin06].
For AES, it implies that, for each round i ∈ [0, r − 2] and each column
k ∈ [0, 3], the number of bytes that are different from zero in column k of Yi
or Zi is either equal to zero or strictly greater than four, i.e.,

∀i ∈ [0, r − 2],∀k ∈ [0, 3], (
3∑
j=0

(Yi[j][k] 6= 0) + (Zi[j][k] 6= 0)) ∈ {0, 5, 6, 7, 8}.

This property also holds when xoring different columns. More precisely,
let be i1, i2 ∈ [0, r − 2] two round numbers, and k1, k2 ∈ [0, 3] two column
numbers. For every row j ∈ [0, 3], we have

Zi1 [j][k1]⊕ Zi2 [j][k2] = (
3⊕

x=0

M [j][x] · Yi1 [x][k1])⊕ (
3⊕

x=0

M [j][x] · Yi2 [x][k2])

=
3⊕

x=0

M [j][x] · (Yi1 [x][k1]⊕ Yi2 [x][k2])

Therefore, the MDS property also holds for the result of the xor of two
different columns, i.e.,

∀i1, i2 ∈ [0, r−2],∀k1, k2 ∈ [0, 3], (
3∑
j=0

(dY [j] 6= 0)+(dZ[j] 6= 0)) ∈ {0, 5, 6, 7, 8}.

where dY [j] = Yi1 [j][k1]⊕ Yi2 [j][k2] and dZ[j] = Zi1 [j][k1]⊕ Zi2 [j][k2].

8

AddRoundKey. Before the first round, ARK performs a xor between the
initial plaintext X and the initial key K0 to obtain X0:

∀j, k ∈ [0, 3], X0[j][k] = X[j][k]⊕K0[j][k].

Then, at each round i, ARK performs a xor between Zi and subkey Ki+1

to obtain Xi+1, i.e.,

∀i ∈ [0, r − 1],∀j, k ∈ [0, 3], Xi+1[j][k] = Zi[j][k]⊕Ki+1[j][k].

KeySchedule. KS computes the subkey Ki+1 of each round i ∈ [0, r−1] from
the initial key K. Its exact definition depends on the length l of the key. We
describe it for l = 128 (see Appendix for keys of length l ∈ {192, 256}). The
subkey at round 0 is the initial key, i.e., K0 = K. For each round i ∈ [0, r−1],
the subkey Ki+1 is generated from the previous subkey Ki as follows:

• The first column of Ki+1 is obtained from the first and last columns of
Ki in two steps. First, we apply the SubBytes operation on all bytes
of the last column of Ki. We note SKi[j][3] the resulting byte for row
j, i.e.,

∀i ∈ [0, r − 1],∀j ∈ [0, 3], SKi[j][3] = S(Ki[j][3]).

Second, we rotate up all bytes in SKi by one byte position, and then
xor them with those in the first column of Ki. Moreover, a constant
ci is xored with the byte at row 0.

∀i ∈ [0, r − 1], Ki+1[0][0] = SKi[1][3]⊕Ki[0][0]⊕ ci
∀i ∈ [0, r − 1],∀j ∈ [1, 3], Ki+1[j][0] = SKi[(j + 1)%4][3]⊕Ki[j][0].

• For the last three columns k ∈ [1, 3], we simply perform xors:

∀i ∈ [0, r−1],∀j ∈ [0, 3],∀k ∈ [1, 3], Ki+1[j][k] = Ki+1[j][k−1]⊕Ki[j][k].

2.2. AES related-key differential characteristics

To mount related-key attacks, we track differences through the ciphering
process, where differences are obtained by applying the xor operator. We
note δA the differential matrix obtained by applying the xor operator on two
matrices A and A′, and for every row j and column k, δA[j][k] = A[j][k] ⊕

9

A′[j][k] is called a differential byte. The set of all differential bytes is denoted
diffBytesl. Among these differential bytes, some of them pass through S-
boxes, and we note Sboxes l this set. When the key length is l = 128, these
two sets are defined by:

diffBytes128 = {δX[j][k], δXr[j][k], δKr[j][k] : j, k ∈ [0, 3]}
∪ {δKi[j][k], δSKi[j][3], δXi[j][k], δSXi[j][k],

δYi[j][k], δZi[j][k] : i ∈ [0, r − 1], j, k ∈ [0, 3]}
Sboxes128 = {δKi[j][3], δXi[j][k] : i ∈ [0, r − 1], j, k ∈ [0, 3]}

See Appendix for the definition of diffBytesl and Sboxes l when l ∈ {192, 256}.
The goal is to find an optimal related-key differential characteristics, i.e.,

a byte value for every differential byte in diffBytesl such that the probability
of observing δXr given δX and δK0 is maximal.

This problem would be easy to solve (and the probability would be equal
to 1) if every operation applied during the ciphering process were linear.
However, AES is composed of three linear operations (SR, MC, and ARK),
and one non linear operation (SB). Moreover, the key schedule KS combines
linear xor operations with the non linear SB operation.

Propagation of differences by the linear operations. The linear operators only
move differences to other places, and we can deterministically compute the
output difference of a linear operator given its input difference. For SR
and MC, given two matrices A1 and A2, we have SR(A1) ⊕ SR(A2) =
SR(A1 ⊕ A2) and MC(A1) ⊕MC(A2) = MC(A1 ⊕ A2). This implies that
the output difference of SR is δYi = SR(δSXi) when the input difference is
δSXi, and the output difference of MC is δZi = MC(δYi) when the input
difference is δYi. Similarly, given four matrices A1, A2, A3, and A4, we
have ARK(A1, A2) ⊕ ARK(A3, A4) = ARK(A1 ⊕ A3, A2 ⊕ A4). Therefore,
the output difference of ARK is δXi+1 = ARK(δZi, δKi+1) when the input
differences are δZi and δKi+1.

Propagation of differences by the non-linear operation SB. This property
no longer holds for SB which applies to a byte B an S-box transformation
S(B) such that, given two bytes B and B′, S(B ⊕ B′) is not necessarily
equal to S(B)⊕ S(B′). Therefore, given an input differential byte δBin, we
cannot deterministically compute the output difference after passing through
S-boxes. We can only compute probabilities. More precisely, for every couple
of differential bytes (δBin, δBout) ∈ [0, 255]2, we can compute the probability

10

that the input difference δBin becomes the output difference δBout, which is
the proportion of byte couples (B,B′) such that δBin = B⊕B′ and δBout =
S(B)⊕S(B′). More precisely, this probability is denoted pS(δBout|δBin) and
is defined by

pS(δBout|δBin) =
#{(B,B′)∈ [0, 255]2 | (B⊕B′ = δBin) ∧ (S(B)⊕S(B′) = δBout)}

256

For the AES S-box, most of the times the probability pS is equal to 0
256

or
2

256
, and rarely to 4

256
[DR13]. The only case where pS is equal to 1 is when

there is no difference, i.e., pS(0|0) = 1: There is no difference in the output
(δBout = 0) if and only if there is no difference in the input (δBin = 0), since
the S-Box is bijective.

Probability of a valuation of differential bytes. To compute the probability
of a given valuation of all differential bytes, we first have to check that all
linear operators are satisfied by the valuation. If this is not the case, then
the probability is equal to 0. Otherwise it is equal to the product of the
transition probabilities of all differential bytes that pass through S-boxes,
i.e.,

p =
∏

δB∈Sboxesl

pS(δSB|δB) (1)

We refer the reader to [BS91] for more details on differential characteristics.

2.3. Two step solving process

The three approaches described in [BN10], [FJP13], and [GMS16] com-
pute optimal differential characteristics in two steps.

In a first step, each differential byte δB ∈ diffBytesl is abstracted with a
Boolean variable ∆B such that ∆B = 0 ⇔ δB = 0 and ∆B = 1 ⇔ δB ∈
[1, 255]. In other words, each Boolean variable assigned to 1 gives the position
of a difference. The goal is to find all truncated differential characteristics
(i.e., all Boolean solutions) that minimize the number of differences passing
through S-boxes (i.e., that minimize

∑
δB∈Sboxesl ∆B). We say that an S-box

δB ∈ Sboxes l is active whenever there is a difference passing through it, i.e.,
∆B = 1.

In a second step, for each truncated differential characteristic, we search
for actual byte values that satisfy the AES operations and that maximize
the probability p defined in Eq.(1). When a Boolean variable ∆B is equal
to 0 in the truncated differential characteristic, there is only one possible

11

Algorithm 1: Computation of optimal differential characteristics
Input: The size l of the key and the number r of rounds
Output: An optimal differential characteristic c∗

1 begin
2 v∗ ← Step1-opt(l, r)
3 v ← v∗

4 c∗ ← null
5 repeat
6 T ← Step1-enum(l, r, v)
7 for each truncated differential characteristic t ∈ T do
8 c← Step2(l, r, t)
9 if c 6= null and (c∗ = null or p(c) > p(c∗)) then c∗ ← c;

10 v ← v + 1

11 until c∗ 6= null and p(c∗) ≥ 2−6v;
12 return c∗

value for δB, which is 0. However, when ∆B = 1, there are 255 possible
values for δB. Note that some truncated differential characteristics are not
valid and cannot be transformed into byte solutions because truncated dif-
ferential characteristics only satisfy Boolean abstractions of the actual AES
operations. These characteristics are said to be byte-inconsistent.

The complete procedure to find optimal differential characteristics is de-
scribed in Algorithm 1. It first calls function Step1-opt to compute the min-
imal number v∗ of active S-boxes in a truncated differential characteristic
(line 2), and it initializes v to this minimal number of active S-boxes. Then,
it calls function Step1-enum to compute the set T of all truncated differential
characteristics such that the number of active S-boxes is equal to v (line 6).
For each truncated differential characteristic t ∈ T , it calls function Step2
(line 8): if t is not byte-consistent, Step2 returns null; otherwise, it returns
the optimal differential characteristic c associated with t. If this optimal
differential characteristic has a greater probability than c∗, then it updates
c∗ (line 9). Hence, when exiting from the loop lines 7-9, if c∗ is equal to null
(because all truncated differential characteristics in T are byte-inconsistent),
we have to increment v and iterate again on lines 6 to 10; otherwise, p(c∗) is
the largest probability with v active S-boxes and we have 2−7v ≤ p(c∗) ≤ 2−6v

(because each S-box has a probability which is equal to 2−7 or 2−6). However,
it may be possible that p(c∗) is not maximal: there may exist a solution with

12

higher probability with v + 1 active S-boxes if p(c∗) < 2−6(v+1). In this case,
we have to increment v and iterate again on lines 6 to 10 to check whether
there exists a higher probability with one more active S-box.

In this paper, we describe CP models for implementing functions Step1-
opt, Step1-enum, and Step2. Step1-opt and Step1-enum use the same model
which is described in Sections 3 and 4. The model of Step2 is described in
Section 5. In Section 6, we introduce a new decomposition in two steps that
speeds-up the solution process.

2.4. From differential characteristics to related-key attacks

Let us first clarify the relation between the differential characteristic c∗
computed by Algo. 1 and an optimal differential. What cryptanalysts would
like to have is an optimal differential, i.e., input and output differences that
maximize the probability of observing the output difference given the input
difference. Differential characteristics have been introduced to simplify the
problem by specifying all intermediate differences (after each step of the ci-
phering process). Several differential characteristics may have the same input
and output differences and only differ on intermediate differences. Hence, the
probability of a differential is the sum of the probabilities of all differential
characteristics that share its input and output differences. Thus, finding the
differential characteristic with the best probability gives us a lower bound
on the expected differential probability. This notion of expected differential
probability evaluates the average behavior of the differential taken on average
on all the key space, assuming the independence of intermediate probabili-
ties, the stochastic equivalence of the keys and other simplifying assumptions
such as those coming from the related-key setting, for example.

In summary, the probability of the differential characteristic computed by
Algo. 1 (denoted p) is an approximation for a lower bound of the expected
differential probability.

Let us now explain how the differences δX, δK, and δXr of the differential
characteristic c∗ computed by Algo. 1 may be used to construct a so-called
distinguisher. To this aim, let us assume that we can query an oracle: given
a plaintext X, this oracle returns C = EncK(X) such that C is either the
result of ciphering X by r rounds of the AES with an unknown and randomly
chosen key K, or it is a random permutation. The attacker randomly chooses
a set S = {X1, . . . , Xm} of m plaintexts. For each plaintext X i ∈ S, she
asks the oracle to compute Ci = EncK(X i) and Ci′ = EncK′(X

i′) where
X i′ = X i ⊕ δX, and K ′ = K ⊕ δK. If the oracle implements the AES,

13

then she can expect to find a pair (X i, X i′) such that Ci ⊕ Ci′ = δXr after
trying roughly 1/p random input pairs. As p is much larger than 2−n, this
is much sooner than expected for a randomly selected permutation. In other
words, the differential characteristic c∗ allows the attacker to know if the Enc
function of the oracle is r rounds of the AES or a random permutation: we
have built a distinguisher on r rounds, i.e., we have exhibited a particular
property that distinguishes a random permutation from the AES with a
complexity equal to O(1/p).

Finally, this distinguisher may be used to mount a related-key differential
attack on r + 1 rounds. This last step is difficult to explain in a few lines.
The basic idea is to add an extra round at the end of the r rounds and to
recover some key bits of the subkey Kr+1 by exploiting the differences in the
ciphertexts. We refer the reader to [BS91] for more details on related-key
attacks.

2.5. Reminders on Constraint Programming

We briefly recall basic principles of CP and we refer the reader to [RBW06]
for more details.

CP is used to solve Constraint Satisfaction Problems (CSPs). A CSP is
defined by a triple (X,D,C) such that X is a finite set of variables, D is a
function that maps every variable xi ∈ X to its domain D(xi) (that is, the
finite set of values that may be assigned to xi), and C is a set of constraints
(that is, relations between some variables which restrict the set of values that
may be assigned simultaneously to these variables).

Constraints may be defined in extension, by listing all allowed (or for-
bidden) tuples of the relation, or in intention, by using mathematical oper-
ators. Let us consider for example a CSP with X = {x1, x2, x3} such that
D(x1) = D(x2) = D(x3) = {0, 1}, and let us consider a constraint that en-
sures that the sum of the variables in X is different from 1. This constraint
may be defined by a table constraint that enumerates all allowed tuples:

(x1, x2, x3) ∈ {(0, 0, 0), (0, 1, 1), (1, 0, 1), (1, 1, 0), (1, 1, 1)}.

Conversely, it may be defined by enumerating all forbidden tuples:

(x1, x2, x3) 6∈ {(1, 0, 0), (0, 1, 0), (0, 0, 1)}.

Finally, it may be defined by using arithmetic operators: x1 + x2 + x3 6= 1.

14

Solving a CSP involves assigning values to variables such that all con-
straints are satisfied. More formally, an assignment A is a function which
maps each variable xi ∈ X to a value A(xi) ∈ D(xi). An assignment A
satisfies (resp. violates) a constraint c ∈ C if the tuple defined by the values
assigned to the variables of c in A belongs (resp. does not belong) to the
relation defined by c. An assignment is consistent (resp. inconsistent) if it
satisfies all the constraints (resp. violates some constraints) of the CSP. A
solution of a CSP is a consistent assignment.

An objective function may be added to a CSP, thus defining a Constrained
Optimization Problem (COP). This objective function is defined on some
variables of X and the goal is to find the solution that optimizes (minimizes
or maximizes) the objective function.

CP languages provide high-level features to define CSPs and COPs in
a declarative way. Then, these problems are solved by generic constraint
solvers which are usually based on a systematic exploration of the search
space: Starting from an empty assignment, they incrementally extend a par-
tial consistent assignment by choosing a non-assigned variable and a consis-
tent value for it until either the current assignment is complete (a solution has
been found) or the current assignment cannot be extended without violating
constraints (the search must backtrack to a previous choice point and try an-
other extension). To reduce the search space, this exhaustive exploration of
the search space is combined with constraint propagation techniques: Each
time a variable is assigned to a value, constraints are propagated to filter the
domains of the variables that are not yet assigned, i.e., to remove values that
are not consistent with respect to the current assignment. When constraint
propagation removes all values from a domain, the search must backtrack.

Different levels of constraint propagation may be considered; some en-
force stronger consistencies than others, i.e., they remove more values from
the domains. A widely used propagation level enforces Generalized Arc Con-
sistency (GAC): a constraint c is GAC if for each variable xi of c and each
value vi ∈ D(xi), there exists a tuple t in the cartesian product of the do-
mains of the variables of c such that t satisfies c and xi is assigned to vi in t
(t is called a support of xi = vi).

Let us consider for example the constraint x1 + x2 + x3 6= 1. If D(x1) =
D(x2) = {0} and D(x3) = {0, 1}, then the constraint is not GAC because
there is no support of x3 = 1 (the only tuple in D(x1)×D(x2)×D(x3) that
satisfies the constraint is (0, 0, 0)). Hence, to enforce GAC, we must remove
1 from D(x3).

15

A key point to speed up the solving process of CSPs is to define the order
in which variables are assigned, and the order in which values are assigned to
these variables, when building the search tree. CP languages allow the user
to specify this through variable and value ordering heuristics.

3. Basic CP model for Step 1

Functions Step1-opt and Step1-enum used in Algorithm 1 for computing
optimal differential characteristics share the same CP model. The only differ-
ence is in the goal of the solving process: in Step1-opt the goal is to search for
a solution that optimizes a given variable called obj Step1, whereas in Step1-
enum the goal is to enumerate all solutions when the variable obj Step1 is
assigned to a given value.

In this section, we describe a first CP model for Step1-opt and Step1-
enum, called CPBasic, which has been introduced in [MSR14] and is derived
in a straightforward way from the definition of the AES operations.

3.1. Variables of CPBasic

CPBasic does not associate a Boolean variable with every differential byte
δB ∈ diffBytes l. Indeed, during Step 2, the initial differential plaintext δX,
the last round differential subkey δKr, and the final differential ciphertext
δXr can be deterministically computed given the values of all other differen-
tial bytes:

• δX is obtained by xoring δX0 and δK0.

• δKr is obtained by applying the key schedule to δKr−1 for AES-128,
and to δKr−1 and δKr−2 for AES-192 and AES-256. Note that for
the bytes δB that pass through S-boxes during this last round, we
deterministically choose for δSB the value that maximizes pS(δSB|δB).

• δXr is obtained by xoring δZr−1 and δKr.

Hence, CPBasic associates a Boolean variable ∆B with every differential byte
δB ∈ diffBytes l \ {δX[j][k], δKr[j][k], δXr[j][k] : j, k ∈ [0, 3]}. Each Boolean
variable ∆B is assigned to 0 if δB = 0, and to 1 otherwise.

We also define an integer variable objStep1 which corresponds to the num-
ber of active S-boxes. The domain of this variable is D(objStep1) = [1, l

6
].

Indeed, the smallest possible value is 1 because we need to have at least one

16

active S-box to have a differential characteristic (we forbid the obvious solu-
tion such that δX and δK only contain bytes set to 0, meaning that there is
no difference in the initial plaintext and key). The largest possible value is l

6

because the highest probability pS(δout|δin) to pass through the AES S-box is
2−6 = 4

256
when δin 6= 0. Therefore, the greatest probability of a differential

characteristic with objStep1 active S-boxes is 2−6∗objStep1 . As we want a differ-
ential characteristic which is more efficient than the key exhaustive search,
its probability must be greater than 2−l (as explained in Section 2.4) and,
therefore, objStep1 must not be larger than l

6
.

3.2. Definition of a xor constraint

As many AES transformations use the xor operator, we define a con-
straint to model it at the Boolean level.

During Step 2, when reasoning at the byte level, the xor operator is
applied on each bit of each byte using the following table:

x y x⊕ y
0 0 0
0 1 1
1 0 1
1 1 0

However, during Step 1, each byte is abstracted by a Boolean value indicating
whether the byte is equal to 0 or not, and we must consider an abstraction
of this operator. More precisely, let us consider three differential bytes δB1,
δB2 and δB3 such that δB1 ⊕ δB2 = δB3 (or equivalently, δB1 ⊕ δB2 ⊕ δB3

= 0). If two of these bytes are equal to 0, then we know for sure that the
third one is also equal to 0 (because 0⊕ 0 = 0). Also, if one differential byte
is equal to 0 and a second one is different from 0, then we know for sure that
the third one is different from 0 (because 0 ⊕ δBi = δBi). However, when
two differential bytes are different from 0, then we cannot know if the third
one is equal to 0 or not (because if the two bytes have the same value then
the third one is equal to 0, whereas if they have different values the third
one is different from 0). Hence, when abstracting differential bytes δB1, δB2

and δB3 with Boolean variables ∆B1, ∆B2 and ∆B3 (which only model the
fact that there is a difference or not), we obtain the following definition of
the xor constraint:

XOR(∆B1,∆B2,∆B3)⇔ ∆B1 + ∆B2 + ∆B3 6= 1

17

(C1) objStep1 =
∑

δB∈Sboxesl ∆B

(C2) ∀δB ∈ Sboxes l,∆SB = ∆B

(C3) ∀i ∈ [0, r − 2],∀j, k ∈ [0, 3],XOR(∆Zi[j][k],∆Ki+1[j][k],∆Xi+1[j][k])

(C4) ∀i ∈ [0, r − 1],∀j, k ∈ [0, 3],∆Yi[j][k] = ∆SXi[j][(j + k)%4]

(C5) ∀i ∈ [0, r − 2],∀k ∈ [0, 3],
(∑3

j=0 ∆Yi[j][k] + ∆Zi[j][k]
)
∈ {0, 5, 6, 7, 8}

(C6) ∀j, k ∈ [0, 3],∆Zr−1[j][k] = ∆Yr−1[j][k]

(C7) ∀i ∈ [0, r − 1],∀j ∈ [0, 3],
XOR(∆Ki+1[j][0],∆Ki[j][0],∆SKi[(j + 1)%4][3])

(C8) ∀i ∈ [0, r − 1],∀j ∈ [0, 3],∀k ∈ [1, 3],
XOR(∆Ki+1[j][k],∆Ki+1[j][k − 1],∆Ki[j][k])

Figure 2: Constraints of the CPBasic model for Step 1 of AES-128

where + stands for the integer addition. In other words, either the three
variables are false (no difference), or at least two variables are true (at least
two differences).

3.3. Constraints of CPBasic

The constraints of CPBasic are listed in Fig. 2 and are described below.

Number of active S-boxes. Constraint (C1) ensures that objStep1 is equal to
the number of active S-boxes, i.e., the number of ∆B variables that are
associated with differential bytes in Sboxes l and that are assigned to 1.

SubBytes. Constraint (C2) ensures that there is a difference in the output
differential byte of an S-box iff there is a difference in the input differential
byte. Indeed, SB has no effect on the presence/absence of differences during
Step 1 because the S-box is bijective and (B⊕B′ 6= 0)⇔ (S(B)⊕S(B′) 6= 0).

AddRoundKey. ARK is modeled by the xor constraint (C3).

ShiftRows. SR is modeled by the equality constraint (C4) that simply links
the shifted bytes.

18

MixColumns. MC cannot be modeled at the Boolean level, as knowing where
differences hold in Yi is not enough to determine where they hold in Zi.
However, the MDS property is modeled by constraint (C5): It ensures that
the number of differences in a same column of Yi and Zi is equal to 0 or
greater than 4. Constraint (C6) models the fact that MC is not applied
during the last round.

KeySchedule. KS is modeled by xor constraints (combined with a rotation
of the bytes of SK for some columns). When l = 128, this corresponds to
constraints (C7) and (C8). The constant ci which is xored with SKi[1][3]
and Ki[0][0] when defining Ki+1[0][0] does not appear in (C7): it is canceled
when xoring Ki+1[0][0] with K ′i+1[0][0] to define δKi+1[0][0]. Indeed, we
have:

δKi+1[0][0] = Ki+1[0][0]⊕K ′i+1[0][0]

= SKi[1][3]⊕Ki[0][0]⊕ ci ⊕ SK ′i[1][3]⊕K ′i[0][0]⊕ ci
= δSKi[1][3]⊕ δKi[0][0]

See Appendix for the definition of the KS constraints when l ∈ {192, 256}.

3.4. Goal

The same model is used to solve two problems, i.e., Step1-opt and Step1-
enum. The difference between these problems is in their goals:

• For Step1-opt, the goal is to find the minimum number of active S-
boxes, i.e., minimize objStep1;

• For Step1-enum, the goal is to enumerate all solutions when objStep1 is
assigned to a given value v. Each solution corresponds to a truncated
differential characteristic with v active S-boxes.

3.5. Ordering heuristics

As the goal is to minimize the number of active S-boxes (for Step1-opt)
or enumerate all solutions with a small number of active S-boxes (for Step1-
enum), we define ordering heuristics as follows: first assign variables associ-
ated with bytes that pass through S-boxes (those in Sboxes l), and first try
to assign them to 0.

19

3.6. Performance of CPBasic

CPBasic is complete in the sense that for any solution at the byte level
(on δ variables), there exists a solution of CPBasic at the Boolean level (on
∆ variables). However, experiments reported in [GMS16] have shown us
that there is a huge number of solutions of CPBasic which are byte incon-
sistent and do not correspond to solutions at the byte level. For example,
for AES-128, when the number of rounds is r = 3, the optimal solution of
Step1-opt has objStep1 = 3 active S-boxes, and Step1-enum enumerates more
than five hundred truncated differential characteristics with three active S-
boxes. However, none of them is byte-consistent. Actually, the optimal
byte-consistent truncated differential characteristic has five active S-boxes.
In this case, most of the solving time is spent at generating useless truncated
differential characteristics which are discarded in Step 2.

4. CPXOR: New CP model for Step 1

In [GMS16], we have described another model for Step 1, called CPEQ,
that drastically reduces the number of inconsistent truncated differential
characteristics for AES-128. In this section, we describe a new model for
Step 1, called CPXOR, and we show that it is more efficient than CPEQ.

A weakness of CPBasic comes from the fact that the xor constraint be-
tween Boolean variables is a poor abstraction of the xor relation at the byte
level, because whenever two xored bytes are different from zero, we cannot
know whether the result is equal to zero or not. In Section 4.1, we show how
to tighten this abstraction by generating new xor equations, obtained by
combining initial equations coming from the key schedule. In Section 4.2, we
describe the variables of CPXOR, and we introduce new Boolean variables
that model differences at the byte level. In Section 4.3, we describe the con-
straints of CPXOR, and we show how to tighten the definition of the AES
operations at the Boolean level by reasoning on differences at the byte level.
In Section 4.4 we discuss some implementation issues and in Section 4.5, we
experimentally compare CPXOR with CPEQ.

4.1. Generation of new xors

Every subkey differential byte δKi[j][k] either comes from the initial dif-
ferential key δK, or is obtained by xoring two differential bytes according
to the key schedule rules. Hence, the whole key schedule implies a set of
16∗ (r−1) (resp. 16∗ (r−1)−8 and 16∗ (r−2)) xor equations for AES-128

20

(resp. AES-192 and AES-256), where each of these equations involves three
differential bytes. We propose to combine these initial equations to infer new
equations.

Let us consider, for example, the three equations that define δK1[0][3],
δK2[0][2] and δK2[0][3], respectively, for AES-128:

δK0[0][3]⊕ δK1[0][2]⊕ δK1[0][3] = 0 (2)

δK1[0][2]⊕ δK2[0][1]⊕ δK2[0][2] = 0 (3)

δK1[0][3]⊕ δK2[0][2]⊕ δK2[0][3] = 0 (4)

These equations share bytes: δK1[0][2] for Eq. (2) and (3), δK1[0][3] for
Eq. (2) and (4), and δK2[0][2] for Eq. (3) and (4). We may combine Eq. (2),
(3), and (4) by xoring them, and exploit the fact that B ⊕ B = 0 for any
byte B, to generate the following equation:

δK0[0][3]⊕ δK2[0][1]⊕ δK2[0][3] = 0 (5)

This new equation is redundant at the byte level, as (2) ∧ (3) ∧ (4) ⇒ (5).
However, at the Boolean level, the propagation of the xor constraint cor-
responding to Eq. (5) detects inconsistencies which are not detected when
only considering the xor constraints corresponding to Eq. (2), (3), and (4).
Let us consider, for example, the case where ∆K0[0][3] = 1, ∆K2[0][1] =
∆K2[0][3] = 0, and all other Boolean variables still have 0 and 1 in their
domains. In this case, the propagation of xor constraints associated with
Eq. (2), (3), and (4) does not detect an inconsistency as only one variable
is assigned for each constraint, and for the two other variables, we can al-
ways choose values such that the sum is different from 1. However, at the
byte level, δK0[0][3] cannot be assigned to a value different from 0 when
δK2[0][1] = δK2[0][3] = 0. Indeed, in this case, Eq. (3) and (4) imply:

δK1[0][2]⊕ δK2[0][2] = δK1[0][3]⊕ δK2[0][2] = 0

⇒ δK1[0][2] = δK2[0][2] = δK1[0][3]

⇒ δK0[0][3]⊕ δK1[0][2]⊕ δK1[0][3] = δK0[0][3]

As a consequence, if δK0[0][3] 6= 0, we cannot satisfy Eq. (2). This incon-
sistency is detected when propagating the xor constraint associated with
Eq. (5), as it ensures that ∆K0[0][3] + ∆K2[0][1] + ∆K2[0][3] 6= 1.

Hence, we propose to combine xor equations of the key schedule to gen-
erate new equations. More precisely, given two equations δB1⊕ . . .⊕δBn = 0

21

and δB′1 ⊕ . . . ⊕ δB′m = 0 such that {B1, . . . , Bn} ∩ {B′1, . . . , B′m} 6= ∅, we
generate the equation: ⊕

B∈{B1,...,Bn}∪{B′1,...,B′m}\{B1,...,Bn}∩{B′1,...,B′m}

δB = 0.

This new equation is recursively combined with existing ones to generate
other equations until no more equation can be generated.

For example, from Eq. (2), (3), and (4), we generate the following equa-
tions:

From (2) and (3): δK0[0][3]⊕ δK1[0][3]⊕ δK2[0][1]⊕ δK2[0][2] = 0 (6)

From (2) and (4): δK0[0][3]⊕ δK1[0][2]⊕ δK2[0][2]⊕ δK2[0][3] = 0 (7)

From (3) and (4): δK1[0][2]⊕ δK1[0][3]⊕ δK2[0][1]⊕ δK2[0][3] = 0 (8)

Then, from Eq. (2) and (8) (or, equivalently, from Eq. (3) and (7) or from
Eq. (4) and (6)), we generate Eq. (5). As no new equation can be generated
from Eq. (2), (3), (4), (5), (6), (7), and, (8), the process stops.

The number of new equations that may be generated grows exponentially
with respect to the number r of rounds. For example, for AES-128, when
r = 3 (resp. r = 4), the total number of new equations that may be generated
is 988 (resp. 16332). When further increasing r to 5, the number of new
equations becomes so large that we cannot generate them within a time
limit of one hour.

To avoid this combinatorial explosion, we only generate equations that
involve at most four differential bytes. Indeed, the basic Boolean xor con-
straint associated with an equation simply states that the sum of the Boolean
variables must be different from 1. In Section 4.3.1, we show how to strengthen
this constraint by reasoning on differences at the byte level when the xor
constraint involves no more than four variables. In this case, each xor con-
straint is very efficiently handled by simply channeling three pairs of Boolean
variables. Preliminary experiments have shown us that these strengthened
xor constraints both reduce the number of choice points and speed-up the
solution process, and that further adding xor constraints for equations that
involve more than four variables (to forbid that their sum is equal to one)
does not significantly reduce the number of choice points and often increases
time.

For AES-128 (resp. AES-192 and AES-256) with r = 10 (resp. r = 12 and
r = 14) rounds, the number of initial equations coming from the key schedule

22

is 144 (resp. 168 and 192). From these initial equations, we generate 122
(resp. 168 and 144) new equations that involve three differential bytes, and
1104 (resp. 1696 and 1256) new equations that involve four differential bytes.

The algorithm that generates equations has been implemented in Picat
[ZKF15], and the time spent by Picat to search for all equations of length
smaller than or equal to four is always smaller than 0.1 seconds. This time
is negligible compared to the time needed to solve Step 1.

We note xorEq l the set of all equations (both initial and generated equa-
tions) coming from the key schedule when the key length is l.

Note that xorEq l actually contains all possible equations with at most
four differential bytes implied by the key schedule algorithm. In other words,
our procedure does not miss implied equations even if it does not allow
the generation of intermediate equations of length greater than 4. We have
checked this by exhaustively generating all possible equations with at most
four differential key bytes and, for each equation that does not belong to
xorEq l, we have proven that it is not a logical consequence of the initial set
of equations of the key schedule (by demonstrating that xorEq l is consistent
with the negation of the equation). The whole checking procedure (performed
by a program written in C) for all possible equations, is done in a few minutes
for the three possible key lengths.

4.2. Variables of CPXOR
All variables of CPBasic are also variables of CPXOR.
We introduce new Boolean variables that are used to tighten the Boolean

abstraction by reasoning on differences at the byte level: given two differential
bytes δB1 and δB2, the Boolean variable diff δB1,δB2

is equal to 1 if δB1 6= δB2,
and to 0 otherwise. We do not define a diff variable for every couple of
differential bytes in diffBytes l, but restrict our attention to couples of bytes
for which it is useful to know whether they are equal or not.

More precisely, we consider three separate sets of differential bytes and
we only compare differential bytes that belong to a same set.

• The first set, called DK, contains bytes coming from δK and δSK ma-
trices. The diff variables associated with these bytes are used to tighten
the constraints associated with the equations of xorEq l, as explained
in Section 4.3.1.

• The second and third sets, called DY and DZ, contain bytes coming
from δY and δZ matrices, respectively. The diff variables associated

23

with these bytes are used to propagate the MDS property of Mix-
Columns at the byte level, as explained in Section 4.3.2.

For each of these three sets, we consider a separate subset for each row
j ∈ [0, 3]:

• For DK, we know that every initial xor equation due to the key
schedule either involves three bytes on a same row j (i.e., ∆Ki+1[j][k],
∆Ki+1[j][k− 1], and ∆Ki[j][k]), or it involves two bytes on a same row
j (i.e., ∆Ki[j][0], and ∆Ki+1[j][0]), and a byte that has just passed
through an S-box on the next row ((j+1)%4) (i.e., ∆SKi[(j+1)%4][3]).
As we cannot know if the input and output differences of S-boxes are
equal or not (i.e., if δKi[(j + 1)%4][3] is equal to δSKi[(j + 1)%4][3]
or not), we can limit diff variables to couples of differential bytes that
occur on a same row of δK matrices, or on two consecutive rows of δK
and δSK matrices.

• For DY and DZ, the MDS property implies relations between columns
of DY and DZ and, in Section 4.3.2, we use a generalization of this
property that xors bytes of a same row for different columns. As these
xors are only performed on bytes that occur in a same row, we can
limit diff variables to couples of differential bytes that occur in a same
row of δY matrices (for DY) and δZ matrices (for DZ).

Hence, for each row j ∈ [0, 3], we define the three following sets:

DKj = {δKi[j][k], δSKi[(j + 1)%4][3] : i ∈ [1, r], k ∈ [0, 3]}
DYj = {δYi[j][k] : i ∈ [0, r − 2], k ∈ [0, 3]}
DZj = {δZi[j][k] : i ∈ [0, r − 2], k ∈ [0, 3]}.

Given these sets, we define the diff variables as follows: For each set D ∈
{DKj, DYj, DZj : j ∈ [0, 3]}, and for each pair of differential bytes {δB1, δB2} ⊆
D, we define a Boolean variable diff δB1,δB2

.

4.3. Constraints of CPXOR
The constraints of CPXOR are listed in Fig. 3. Constraints (C ′1) to (C ′6)

are identical to Constraints (C1) to (C6) of CPBasic. Constraints (C ′2), (C ′4),
(C ′6), (C ′7), (C ′10), and (C ′11) are equalities of the form ∆i = ∆j: they allow us
to rename variables in order to simplify the description of the model without
changing the performance of the solvers.

24

(C ′1) objStep1 =
∑

δB∈Sboxesl ∆B

(C ′2) ∀δB ∈ Sboxes l,∆SB = ∆B

(C ′3) ∀i ∈ [0, r − 2],∀j, k ∈ [0, 3],XOR(∆Zi[j][k],∆Ki+1[j][k],∆Xi+1[j][k])

(C ′4) ∀i ∈ [0, r − 1],∀j, k ∈ [0, 3],∆Yi[j][k] = ∆SXi[j][(j + k)%4]

(C ′5) ∀i ∈ [0, r − 2],∀k ∈ [0, 3],
(∑3

j=0 ∆Yi[j][k] + ∆Zi[j][k]
)
∈ {0, 5, 6, 7, 8}

(C ′6) ∀j, k ∈ [0, 3],∆Zr−1[j][k] = ∆Yr−1[j][k]

(C ′7) ∀D ∈ {DKj, DYj, DZj : j ∈ [0, 3]},∀{δB1, δB2} ⊆ D,
diff δB1,δB2

= diff δB2,δB1

(C ′8) ∀D ∈ {DKj, DYj, DZj : j ∈ [0, 3]},∀{δB1, δB2, δB3} ⊆ D,
diff δB1,δB2

+ diff δB2,δB3
+ diff δB1,δB3

6= 1

(C ′9) ∀D ∈ {DKj, DYj, DZj : j ∈ [0, 3]},∀{δB1, δB2} ⊆ D,
diff δB1,δB2

+ ∆B1 + ∆B2 6= 1

(C ′10) ∀(δB1 ⊕ δB2 ⊕ δB3 = 0) ∈ xorEq l,
(diff δB1,δB2

= ∆B3) ∧ (diff δB1,δB3
= ∆B2) ∧ (diff δB2,δB3

= ∆B1)

(C ′11) ∀(δB1 ⊕ δB2 ⊕ δB3 ⊕ δB4 = 0) ∈ xorEq l,
(diff δB1,δB2

= diff δB3,δB4
) ∧ (diff δB1,δB3

= diff δB2,δB4
) ∧ (diff δB1,δB4

=
diff δB2,δB3

)

(C ′12) ∀i1, i2 ∈ [0, r − 2],∀k1, k2 ∈ [0, 3],∑3
j=0 diff δYi1 [j][k1],δYi2 [j][k2] + diff δZi1

[j][k1],δZi2
[j][k2] ∈ {0, 5, 6, 7, 8}

(C ′13) ∀i1, i2 ∈ [0, r − 2],∀j, k1, k2 ∈ [0, 3],
diff δKi1+1[j][k1],δKi2+1[j][k2] + diff δZi1

[j][k1],δZi2
[j][k2] + ∆Xi1+1[j][k1] +

∆Xi2+1[j][k2] 6= 1

Figure 3: Constraints of the CPXOR model for Step 1

Constraints (C ′7) and (C ′8) ensure symmetry and transitivity on diff vari-
ables. For each set D ∈ {DKj, DYj, DZj : j ∈ [0, 3]}, they ensure that
the diff variables associated with couples of bytes in D define an equivalence

25

relation.
Constraint (C ′9) relates diff and ∆ variables. Indeed, whenever two Boolean

variables ∆B1 and ∆B2 are equal to 0, then we know for sure that there is no
difference at the byte level, i.e., δB1 = δB2. Similarly, whenever ∆B1 6= ∆B2,
we know for sure that there is a difference at the byte level, i.e., δB1 6= δB2.

Constraints (C ′10) and (C ′11) propagate the xor equations of xorEq l and
are described in Section 4.3.1. Constraint (C ′12) propagates the MDS prop-
erty at the byte level and is described in Section 4.3.2. Constraint (C ′13)
propagates ARK at the byte level and is described in Section 4.3.3.

4.3.1. Constraints associated with the xor equations of xorEq l
In the basic model, every xor constraint involves exactly three Boolean

variables, and ensures that the sum of these variables is different from 1.
In Section 4.1, we have shown how to generate new xor equations from

initial key schedule equations, and these new equations either involve three
or four differential bytes. Hence, we need to extend the xor constraint for
the case where we have four Boolean variables. A straightforward extension
is to simply state that the sum of the Boolean variables must be different
from 1. Indeed, a xor equation that involves four differential bytes cannot
be satisfied if exactly one of these four differential bytes is different from
zero. However, this is a poor abstraction of the relation at the byte level.
We propose to tighten Boolean xor constraints associated with the Key
Schedule by exploiting diff variables.

Constraint (C ′10) corresponds to the case of equations that involve three
differential bytes. For each equation δB1 ⊕ δB2 ⊕ δB3 = 0 in xorEq l, it
ensures that whenever two differential bytes of {δB1, δB2, δB3} have different
values, then the third one is different from 0 and therefore its associated
Boolean variable is equal to 1. Note that this constraint combined with
Constraint (C ′9) ensures that ∆B1 + ∆B2 + ∆B3 6= 1. Indeed, if ∆B1 = 1
and ∆B2 = ∆B3 = 0, then Constraint (C ′9) implies that diff δB2,δB3

= 0,
which is inconsistent with the fact that diff δB2,δB3

must be equal to ∆B1.
Constraint (C ′11) corresponds to the case of equations that involve four

differential bytes. For each equation δB1⊕ δB2⊕ δB3⊕ δB4 = 0 in xorEq l, it
ensures that whenever two differential bytes of {δB1, δB2, δB3, δB4} are equal
then the two other ones must also be equal. Again, this constraint combined
with Constraint (C ′9) ensures that ∆B1 + ∆B2 + ∆B3 + ∆B4 6= 1. Indeed,
if ∆B1 = 1 and ∆B2 = ∆B3 = ∆B4 = 0, then Constraint (C ′9) implies that
diff δB2,δB3

= 0 and diff δB1,δB4
= 1, which is inconsistent with the fact that

26

diff δB2,δB3
must be equal to diff δB1,δB4

.

4.3.2. Propagation of MDS at the byte level

As seen in Section 2.1 (paragraph “Maximum Distance Separable prop-
erty”), the MDS property also holds for the result of the xor of two different
columns of δY and δZ. Hence, for all i1, i2 in [0, r − 2], and for all k1, k2 in
[0, 3], we have:

3∑
j=0

(δYi1 [j][k1]⊕ δYi2 [j][k2] 6= 0) + (δZi1 [j][k1]⊕ δZi2 [j][k2] 6= 0) ∈ {0, 5, 6, 7, 8}.

This property is modelled by constraint (C ′12).

4.3.3. Propagation of ARK at the byte level

ARK implies the following equations: ∀i1, i2 ∈ [0, r− 2],∀j, k1, k2 ∈ [0, 3],

δKi1+1[j][k1]⊕ δZi1 [j][k1] = δXi1+1[j][k1]

δKi2+1[j][k2]⊕ δZi2 [j][k2] = δXi2+1[j][k2].

By xoring these two equations, we obtain:

δKi1+1[j][k1]⊕ δKi2+1[j][k2]

⊕ δZi1 [j][k1]⊕ δZi2 [j][k2]

= δXi1+1[j][k1]⊕ δXi2+1[j][k2].

From this equation, we infer that it is not possible to have exactly one of the
three following inequalities which is true:

δKi1+1[j][k1] 6= δKi2+1[j][k2]

δZi1 [j][k1] 6= δZi2 [j][k2]

δXi1+1[j][k1] 6= δXi2+1[j][k2]

Constraint (C ′13) ensures this property: The first two inequalities are mod-
eled by diff δKi1+1[j][k1],δKi2+1[j][k2] and diff δZi1

[j][k1],δZi2
[j][k2]; For the third in-

equality, we exploit the fact that if ∆Xi1+1[j][k1] + ∆Xi2+1[j][k2] = 1 then
δXi1+1[j][k1] 6= δXi2+1[j][k2].

27

4.4. Implementation

CPXOR only uses common and widely implemented constraints. There-
fore, it may be easily implemented with any existing CP libraries. In order to
ease the comparison between different solvers, we have implemented CPXOR
with a high-level modeling language called MiniZinc [NSB+07]: MiniZinc
models are translated into a simple subset of MiniZinc called FlatZinc, using
a compiler provided by MiniZinc, and most existing CP solvers have devel-
oped FlatZinc interfaces (currently, there are fifteen CP solvers which have
FlatZinc interfaces).

We ran experiments with Gecode [Gec06], Choco [PFL16], Chuffed [CS14],
and Picat-SAT [ZKF15]: Gecode and Choco are CP libraries which solve
CSPs by combining search with constraint propagation; Chuffed is a lazy
clause hybrid solver that combines features of finite domain propagation and
Boolean satisfiability; Picat-SAT translates CSPs into Boolean satisfiability
formulae, and then uses the SAT solver Lingeling [Bie14] to solve it.

Gecode and Choco are clearly outperformed by Chuffed and Picat-SAT for
both Step1-opt and Step1-enum. This shows us that clause learning is a key
ingredient for solving these problems. Picat-SAT and Chuffed have comple-
mentary performance. For the optimisation problem Step1-opt, Picat-SAT is
always the fastest solver. For the enumeration problem Step1-enum, Chuffed
is faster than Picat-SAT on small instances, i.e., all AES-128 instances, and
AES-192 (resp. AES-256) instances when the number of rounds r is lower
than 5 (resp. 7). However, Picat-SAT is faster than Chuffed on larger in-
stances and Chuffed is not able to solve AES-192 (resp. AES-256) instances
within a 24 hour time limit when r ≥ 9 (resp. r ≥ 11).

The good performance of Picat-SAT is not surprising given that most
variables are Boolean variables. If we exclude equality constraints, there are
only two different kinds of constraints:

• (C ′3), (C ′8), (C ′9), and (C ′13) are of the form:
∑

∆i∈S ∆i 6= 1;

• (C ′1), (C ′5) and (C ′12) are of the form:
∑

∆i∈S ∆i = v where v is the
integer variable objStep1 for (C ′1) and an integer variable whose domain
is {0, 5, 6, 7, 8} for (C ′5) and (C ′12);

where S is a set of Boolean variables. These two kinds of constraints are
easily translated into Boolean formulae by combining at-most and at-least
encodings which are widely studied in the SAT community [ZK17]. Note
that we cannot use the xor-clauses introduced in CryptoMiniSat [SNC09]

28

for modeling the xor constraint in Step 1 because the semantics of the xor
operation is changed when abstracting every byte by a Boolean value.

As CPXOR only uses sum constraints, we can also translate it into an
Integer Linear Programming (ILP) model in a very straightforward way, by
using an encoding similar to the one introduced in [MWGP12], for example.
Each constraint

∑
∆i∈S ∆i 6= 1 is translated into #S inequalities: for each

∆j ∈ S, we add the inequality −∆j +
∑

∆i∈S\{∆j}∆i ≥ 0. Each constraint∑
∆i∈S ∆i = v such that v is an integer variable whose domain is {0, 5, 6, 7, 8}

is encoded by introducing a new Boolean variable x ∈ {0, 1} and adding the
following inequalities: ∑

∆i∈S

∆i ≥ 5x

∀∆i ∈ S, x ≥ ∆i

When x = 0, every ∆i is constrained to be equal to 0 by x ≥ ∆i; Otherwise,
the first inequality ensures that at least 5 variables of S are set to 1. We have
used Gurobi [Opt18] to solve this ILP model, and experiments have shown
us that it is not competitive with Picat-SAT.

4.5. Comparison of CPXOR with CPEQ

The model introduced in [GMS16], called CPEQ, is an improvement of
CPBasic. Like CPXOR, CPEQ exploits equality relationships at the byte level
to better propagate the MDS property. Constraints (C ′1) to (C ′9) and Con-
straints (C ′12) and (C ′13) are common to CPXOR and CPEQ

1.
However, in CPEQ we do not infer new xor equations from the initial

equations of the key schedule, as explained in Section 4.1, and therefore Con-
straints (C ′10) and (C ′11) are not used in CPEQ. Instead of generating new
equations, CPEQ uses the key schedule rules to pre-compute, for each differ-
ential byte δKi[j][k], a set V (i, j, k) of differential bytes such that δKi[j][k] is
equal to the result of xoring all bytes in V (i, j, k). Then, for each differential
byte δKi[j][k], a variable V1(i, j, k) is constrained to be equal to the subset
of bytes of V (i, j, k) that are different from 0. These V1 variables are used
to infer that two differential bytes are equal when their corresponding V1

1In [GMS16], CPEQ is defined by using eq variables instead of diff variables, such
that each diff δB1,δB2

variable that occurs in a constraint of CPXOR must be replaced by
1− eqδB1,δB2

in CPEQ.

29

variables are equal, and that ∆Ki[j][k] is equal to 0 (resp. 1) when V1(i, j, k)
is empty (resp. contains only one variable).

In this section, we experimentally compare CPXOR with CPEQ.

Experimental setup. All experiments have been performed on a single core
of a server with an Intel Xeon E5-2687W v4 CPU at 3.00GHz.

We compare CPXOR and CPEQ on the two problems described in Sec-
tion 2.3, i.e., Step1-opt, that aims at finding the minimal value of objStep1 ,
and Step1-enum, that aims at enumerating all truncated differential charac-
teristics when the value of objStep1 is fixed to a given value v.

We consider 23 instances denoted AES-l-r where l ∈ {128, 192, 256} is
the key length and r is the number of rounds: r ∈ [3, 5] (resp. [3, 10] and
[3, 14]) when l = 128 (resp. 192 and 256). We do not consider values of r
larger than 5 (resp. 10) when l = 128 (resp. 192) because for these values
the maximal probability becomes smaller than 2−l.

CPXOR and CPEQ are both implemented2 with MiniZinc [NSB+07], and
we report experimental results obtained with Picat-SAT which is the best
performing solver among all the considered solvers (as discussed in Sec-
tion 4.4).

Results for Step1-opt. For each instance, Table 1 reports the optimal value
v∗ of ObjStep1 computed by Step1-opt. This optimal value may be different
for CPXOR and CPEQ as they consider different abstractions of the KS
xor operations. In practice, for all instances but one, both models find the
same optimal value, and for this optimal value there exists at least one byte-
consistent truncated differential characteristic (see Table 2) so that the repeat
loop (lines 6-10) of Algorithm 1 is executed only once. However, for AES-
192-10, the minimal value of objStep1 is equal to 27 with CPEQ whereas it is
equal to 29 with CPXOR. As a consequence, if we use CPEQ to solve Step1-
opt, the repeat loop of Algorithm 1 is executed three times: v is successively
assigned to 27, 28, and 29, and for each of these values, we need to solve
Step1-enum and Step2. When v = 27 (resp. 28), Step1-enum with CPEQ
finds 92 (resp. 1436) truncated differential characteristics which are all byte-
inconsistent so that Step2 returns null for each of them. When v = 29, some
truncated differential characteristics are byte-consistent and the repeat loop

2These models are available on https://gitlab.inria.fr/source code/aes-cryptanalysis-
cp-xor-2019/.

30

Step1-opt Step1-enum
CPEQ CPXOR CPEQ CPXOR
v∗ topt1 v∗ topt1 #T tenum1 #T tenum1

AES-128-3 5 4 5 3 4 6 4 4
AES-128-4 12 21 12 14 8 74 8 38
AES-128-5 17 44 17 33 1113 32340 1113 22869
AES-192-3 1 3 1 2 15 16 15 10
AES-192-4 4 8 4 5 4 12 4 7
AES-192-5 5 14 5 8 2 13 2 9
AES-192-6 10 34 10 18 6 65 6 45
AES-192-7 13 72 13 37 4 98 4 66
AES-192-8 18 205 18 73 8 752 8 333
AES-192-9 24 2527 24 520 240 43359 240 13524
AES-192-10 27 3715 29 3285 27548 - 602 216120
AES-256-3 1 3 1 3 33 39 33 29
AES-256-4 3 8 3 7 14 38 14 25
AES-256-5 3 13 3 8 4 21 4 15
AES-256-6 5 25 5 17 3 29 3 20
AES-256-7 5 48 5 47 1 22 1 15
AES-256-8 10 61 10 49 3 76 3 52
AES-256-9 15 172 15 106 16 705 16 430
AES-256-10 16 236 16 112 4 385 4 224
AES-256-11 20 488 20 286 4 705 4 312
AES-256-12 20 625 20 140 4 1228 4 463
AES-256-13 24 1621 24 822 4 1910 4 597
AES-256-14 24 2179 24 682 4 1722 4 607

Table 1: Comparison of CPEQ and CPXOR for solving Step 1. For each instance, we
display the results with CPEQ and CPXOR for Step1-opt (optimal value v∗ of objStep1, and
time topt1 in seconds) and Step1-enum (number #T of truncated differential characteristics
when objStep1 is assigned to the value v∗ found with CPXOR, and time tenum1 in seconds).
We report ’-’ when the time exceeds two weeks.

is stopped. For this instance, CPXOR is able to infer that there is no byte-
consistent truncated differential characteristic with 27 or 28 active S-boxes,
and it returns 29, which is the smallest possible value for which there are
byte-consistent truncated differential characteristics.

31

When comparing CPU times, we note that CPXOR is always at least as
fast as CPEQ: CPXOR is able to solve every instance but one (AES-192-10)
in at most 822 seconds, whereas CPEQ needs up to 2527 seconds to solve
these instances. For instance AES-192-10, CPXOR is a bit faster than CPEQ
(3285 seconds instead of 3715), while it finds a better solution that has 29
active S-boxes instead of 27.

Results for Step1-enum. In Table 1, we report results for solving Step1-enum
when v is fixed to the optimal value v∗ found when solving Step1-opt with
CPXOR. CPXOR is always faster than CPEQ, and it is able to solve all
instances but three in less than 607 seconds. The three most challenging
instances are AES-128-5, AES-192-9, and AES-192-10, which are solved by
CPXOR in less than 7 hours, 4 hours and 60 hours, respectively. CPEQ is able
to solve AES-128-5 and AES-192-9 in less than 9 and 12 hours, respectively.
However, AES-192-10 cannot be solved by CPEQ within two weeks. Actually,
for this instance, CPXOR strongly reduces the number of solutions: There
are 602 truncated differential characteristics with CPXOR instead of 27548
with CPEQ

3.
Note that reducing the number of truncated differential characteristics is

very important to reduce the total solving time as for each characteristic of
Step 1, we need to search for an optimal byte solution (or prove that it is not
byte-consistent, which is the case of every characteristic found with CPEQ
but not with CPXOR).

4.6. Discussion

Experimental results show us that adding new xor constraints (obtained
by combining the initial equations coming from the key schedule) allow us to
tighten the Boolean abstraction and speed-up the solution process. Our new
model only uses common and widely implemented constraints and it has been
implemented in MiniZinc. Therefore, it can be solved by any CP solver that
accepts MiniZinc models and it can be easily translated in any constraint-
based modeling language. As a counterpart, using this model involves to pre-
compute new xor equations. If this pre-computation step has a negligible
time complexity compared to the solving process, it may limit the re-usability
of the proposed approach for other cryptanalysis problems.

3The number of solutions with CPEQ has been found by decomposing Step1-enum into
independent sub-problems which have been solved in parallel (see [GLMS17]).

32

Another possibility to strengthen the CP model would have been to in-
troduce a new global constraint. Global constraints are a key point of CP
success: they both ease the modeling step by providing compact ways for
declaring constraints, and speed-up the solution process by providing ded-
icated propagators. In our context, we could replace constraints (C ′10) and
(C ′11) by a single constraint globalXOR({∆Ki[j][k] : i ∈ [0, r], j, k ∈ [0, 3]}).
In this case, we must implement a propagator that filters the domains of
∆Ki[j][k] variables in order to forbid Boolean assignments that do not sat-
isfy the key schedule xor equations at the byte level. A key point is to
find a good compromise between the strength of the filtering and its time-
complexity, and this usually involves an important work of design and im-
plementation. This also implies a loss of universality of the model as it can
only be solved by solvers for which a propagator dedicated to globalXOR has
been implemented.

5. CP model for Step 2

Given a truncated differential characteristic computed by Step1-enum,
Step 2 aims at searching for the byte values with the highest differential
probability (or proving that the characteristic is not byte-consistent). In
this section, we describe the CP model introduced in [GMS16] for AES-128,
extended to AES-192 and AES-256 in a straightforward way.

5.1. Variables of the Step 2 model

For each differential byte δB ∈ diffByte l, we define an integer variable.
The domain of each of these variables depends on whether it has a corre-
sponding Boolean variable in the Step 1 model:

• Each differential byte δB ∈ {δX[j][k], δKr[j][k], δXr[j][k] : j, k ∈ [0, 3]}
has no Boolean counterpart in the Step 1 model (because its value is
deterministically inferred from the values of other variables). In this
case, the domain is D(δB) = [0, 255].

• Each differential byte δB ∈ diffByte l \ {δX[j][k], δKr[j][k], δXr[j][k] :
j, k ∈ [0, 3]} has a Boolean counterpart ∆B in the Step 1 model. In
this case, the domain is D(δB) = {0} if ∆B = 0, and D(δB) = [1, 255]
otherwise.

33

As we look for a byte-consistent solution with maximal probability, we
declare an integer variable PδB for each differential byte δB ∈ Sboxesl: This
variable corresponds to the base 2 logarithm of the probability pS(δSB|δB) of
obtaining the S-box output difference δSB when the S-box input difference is
δB. The domain of PδB depends on the value of ∆B in the truncated differen-
tial characteristic: If ∆B = 0, then pS(0|0) = 1 and therefore D(PδB) = {0};
otherwise, pS(δSB|δB) ∈ { 2

256
, 4

256
} and D(PδB) = {−7,−6} (the constraint

associated with the SubBytes operation forbids couples (δB, δSB) such that
pS(δSB|δB) = 0).

Finally, we introduce an integer variable objStep2 which corresponds to
the base 2 logarithm of the probability of the differential characteristic. The
domain of objStep2 is derived from the number of differences that pass trough
S-boxes in the truncated differential characteristic, i.e., D(objStep2) = [−7 ·
v,−6 · v] where v =

∑
δB∈Sboxesl ∆B.

5.2. Constraints of the Step 2 model

The constraints basically follow the AES operations to relate variables, as
described in Section 3 for Step 1, but consider the definition of the operations
at the byte level, instead of the Boolean level.

A main difference is that the SubBytes operation, which has no effect at
the Boolean level, must be modeled at the byte level. This is done thanks
to a ternary table constraint which extensively lists all triples (X, Y, P) such
that there exist two bytes B1 and B2 whose difference before and after pass-
ing through S-Boxes is equal to X and Y , respectively, and such that P is
the probability of this transformation: For all δB ∈ Sboxesl, we add the
constraint

(δB, δSB, PδB) ∈ {(X, Y, P) | ∃(B1, B2) ∈ [0, 255]× [0, 255], X = B1 ⊕B2,

Y = S(B1)⊕ S(B2), P = log2(pS(Y |X))}.

This table constraint contains 1 + 255 ∗ 127 tuples. The first tuple is (0, 0, 0)
and it corresponds to the case where the input differential byte δB is 0: In
this case, the output differential byte δSB is also 0, and pS(0|0) = 1. All
other tuples correspond to non null input differences: There are 255 possible
non null input differences, and for each of them there are 127 possible output
differences (one for which the probability is equal to 2−6, and 126 for which
the probability is equal to 2−7).

All other constraints are defined in a rather straightforward way, using
table constraints.

34

5.3. Objective function
The goal is to find a byte-consistent solution with maximal differential

probability. As we consider logarithms, this amounts to searching for a so-
lution that maximizes the sum of all PδB variables. Hence, we constrain
objStep2 to be equal to the sum of all PδB variables:

objStep2 =
∑

δB∈Sboxesl

PδB

and we define the objective function as the maximization of objStep2.

5.4. Implementation
Our Step 2 model only uses table constraints. These constraints are

straightforward to implement with a CP library, and dedicated propagators
have been designed for efficiently propagating them. Indeed, table constraints
are a hot research topic and a key point for the success of CP (see, e.g.,
[CY10, DHL+16, VLS18]). Hence, we have implemented our Step 2 model
with Choco [PFL16], using the domOverWDeg variable ordering heuristic
and the lastConflict search strategy (that are predefined in Choco).

It is possible to model Step 2 using other kinds of approaches, such as ILP
or SAT; however, these approaches do not directly support table constraints
and do not have dedicated algorithms for propagating them. Therefore, they
are less straightforward to use. In the next two paragraphs, we describe
some recent work that introduce ILP or SAT encodings for solving similar
cryptanalysis problems.

Encoding table constraints with ILP. In [AST+17] Abdelkhalek et al. de-
scribe how to encode the S-box differential table which relates 8-bit input
differences with 8-bit output differences. In a first step, they generate one
inequality for each 16-bit tuple that does not belong to the table (in or-
der to forbid this tuple). For the AES S-box, there are 33150 forbidden
tuples. In a second step, they reduce the number of inequalities. As the
initial set of inequalities corresponds to a product-of-sum representation of
Boolean functions, the minimum set of inequalities corresponds to the set of
prime implicants of the relation, and it can be computed by using the Quine-
McCluskey algorithm [Qui55, MJ56]. However, as computing the minimum
set is an NP-hard problem, they use the heuristic algorithm called Espresso
[BSVMH84] to compute an approximate solution. For the AES S-box, this
algorithm reduces the number of inequalities from 33150 to 8302. Note that
these inequalities must be added for each active S-box.

35

Encoding table constraints with SAT. In [Laf18], Lafitte describes how to
encode a relation R ⊆ {0, 1}n (such that R is composed of k words of {0, 1}n)
as a SAT formula with 2n − k clauses: Each of these clauses is a disjunction
of n litterals which forbids one word of {0, 1}n \ R. This encoding may be
used to model the S-box differential relation and, in this case, we have 33150
clauses for each byte that passes through an active S-box. In [SWW18], Sun
et al. show how to reduce the number of clauses by using the same approach
as in [AST+17].

In [Wal00], Walsh shows that enforcing arc consistency on a binary con-
straint filters more values than unit propagation on the kind of SAT encoding
proposed in [Laf18, SWW18]. This explains why SAT solvers on this encod-
ing are usually outperformed by CP solvers. However, in [Bac07], Bacchus
introduces a SAT encoding of an arbitrary constraint (defined by a set of
allowed tuples) which enforces GAC and is linear in the number of allowed
tuples. Also, the set of allowed tuples may be represented by a binary deci-
sion diagram (BDD) [Bry86], and BDDs may be encoded into clauses which
enforce GAC, as described by Eén and Sörensson in [ES06], for example.
These encodings should improve performance of SAT solvers (and also ILP
solvers as similar encodings could be used for ILP too) for computing optimal
differential characteristics.

5.5. Experimental evaluation

In Table 2, we display the CPU time needed by Choco to search for opti-
mal differential characteristics, given the set of truncated differential charac-
teristics computed by Step1-enum. For all instances but three (AES-128-5,
AES-192-9, and AES-192-10), the time needed to find the optimal solution
given one truncated differential characteristic is smaller than 100 seconds,
and the number of truncated differential characteristics is smaller than 20,
so that the optimal solution for all truncated differential characteristics is
found in less than 500 seconds. However, for AES-128-5 (resp. AES-192-9
and AES-192-10), the average solving time per truncated differential charac-
teristic is 210 (resp. 147 and 92) seconds, and there are 1113 (resp. 240 and
602) truncated differential characteristics so that the total solving time for
all truncated differential characteristics exceeds 65 hours (resp. 9 hours and
15 hours). Note that for these three instances most truncated differential
characteristics are not byte consistent: Among the 1113 (resp. 240 and 602)
characteristics enumerated by Step1-enum, only 97 (resp. 13 and 202) are
byte-consistent.

36

#T #B p t2
t2

#T

AES-128-3 4 2 2−31 10 2.5
AES-128-4 8 8 2−75 40 5
AES-128-5 1113 97 2−105 235086 211.2
AES-192-3 15 15 2−6 15 1
AES-192-4 4 4 2−24 13 3.3
AES-192-5 2 2 2−30 11 5.5
AES-192-6 6 6 2−60 35 5.8
AES-192-7 4 4 2−78 46 11.5
AES-192-8 8 8 2−108 119 14.9
AES-192-9 240 80 2−146 35254 146.9
AES-192-10 602 202 2−176 55310 91.9
AES-256-3 33 33 2−6 26 0.8
AES-256-4 14 14 2−18 25 1.8
AES-256-5 4 4 2−18 12 3
AES-256-6 3 3 2−30 11 3.7
AES-256-7 1 1 2−30 9 8.8
AES-256-8 3 1 2−60 19 6.3
AES-256-9 16 16 2−92 457 28.6
AES-256-10 4 4 2−98 160 40
AES-256-11 4 4 2−122 178 44.5
AES-256-12 4 4 2−122 237 59.3
AES-256-13 4 4 2−146 244 61
AES-256-14 4 4 2−146 302 75.5

Table 2: Results of Choco for solving Step 2. For each instance, we display: the number
#T of truncated differential characteristics, the number #B of byte-consistent truncated
differential characteristics, the maximal probability p = 2objStep2 among all byte-consistent
truncated differential characteristics, the total time t2 for solving Step 2 for all truncated
differential characteristics, and the average time t2

#T for solving Step 2 for one character-
istic. Times are in seconds.

6. New two-step decomposition

Every Boolean solution computed during Step 1 corresponds to a trun-
cated differential characteristic. Given one of these Boolean solutions, Step
2 is solved rather quickly, as shown in Table 2. However, in some cases, the
number of Boolean solutions is quite large, and solving Step 2 for all Boolean

37

solutions becomes time-consuming.
To reduce the number of Boolean solutions, we propose to shift the fron-

tier between Steps 1 and 2. More precisely, we modify the output of Step1-
enum: Instead of enumerating all Boolean solutions, we focus on the variables
associated with bytes that pass through S-boxes, i.e., we enumerate all as-
signments of Boolean variables associated with differential bytes in Sboxes l.
For AES-128, this amounts to enumerating all assignments of ∆Xi[j][k] and
∆Ki[j][3] that belong to Boolean solutions (in other words, we do not enu-
merate the values of ∆Ki[j][k] with k ∈ [0, 2], and we do not enumerate the
values of ∆Yi[j][k] and ∆Zi[j][k]). Hence, every Boolean assignment com-
puted by the new Step 1 no longer corresponds to a truncated differential
characteristic (as Boolean variables associated with bytes that do not pass
through S-boxes are not assigned), but to a non empty set of truncated differ-
ential characteristics (all truncated differential characteristics that share the
same values for Boolean variables associated with bytes that pass through
S-boxes).

Step 2 is adapted to integrate the fact that the new Step 1 does not
assign values to some variables: The domain of a variable δB associated
with a Boolean variable ∆B which is not assigned in the new Step 1 is
D(δB) = [0, 255].

This simple reduction of the scope of the new Step 1 greatly reduces the
number of different assignments (as many assignments only differ on values
assigned to ∆Yi, ∆Zi, or ∆Ki[j][k] with k ∈ [0, 2]), without increasing the
size of the search space to explore in the new Step 2. Indeed, the values of
δYi, δZi, and δKi[j][k] with k ∈ [0, 2] are deterministically inferred from the
values of the variables associated with inputs and outputs of S-boxes (i.e.,
δXi, δSXi, δKi[j][3], and δSKi[j][3] for AES-128).

In Table 3, we give the results obtained with this new decomposition.
For the new Step 1, we compare CPEQ and CPXOR for solving Step1-enum
with Picat-SAT. Again, CPXOR is faster than CPEQ, and it is able to solve
all instances but two in less than 7 minutes. The two hardest instances are
AES-128-5, which is solved in 24 minutes, and AES-192-10, which is solved in
less than 4 hours. For this last instance, CPEQ did not terminate after three
days. We therefore stopped it, and report the number of Boolean assignments
it found within these three days in Table 3.

Both CPEQ and CPXOR find the same number of Boolean assignments
(#T) for all instances but one. For AES-192-10, there are 7 Boolean assign-
ments with CPXOR, and at least 40 with CPEQ (as CPEQ has enumerated

38

New Step 1 New Step 2 Total time
CPEQ CPXOR

#T tenum1 #T tenum1 #B t2
t2

#T
seq par

AES-128-3 2 3 2 2 2 7 3.5 12 9
AES-128-4 1 16 1 8 1 13 12.6 35 35
AES-128-5 103 2651 103 1409 27 52313 507.9 53755 3388
AES-192-3 14 14 14 8 14 19 1.4 29 11
AES-192-4 2 7 2 4 2 7 3.5 16 13
AES-192-5 1 9 1 4 1 4 3.8 16 16
AES-192-6 2 27 2 11 2 14 7.0 43 36
AES-192-7 1 41 1 17 1 7 7.4 61 61
AES-192-8 1 221 1 57 1 8 8.2 138 138
AES-192-9 3 1720 3 386 3 109 36.3 1015 942
AES-192-10 ≥40 - 7 13558 7 281 40.1 17124 16892
AES-256-3 33 34 33 23 33 36 1.1 62 27
AES-256-4 10 25 10 14 10 24 2.4 45 23
AES-256-5 4 20 4 10 4 15 3.8 33 22
AES-256-6 3 27 3 12 3 16 5.3 45 34
AES-256-7 1 21 1 8 1 7 7.4 62 62
AES-256-8 2 55 2 18 2 14 7.0 81 74
AES-256-9 4 203 4 63 4 69 17.3 238 186
AES-256-10 1 99 1 41 1 45 45.3 198 198
AES-256-11 1 320 1 77 1 28 27.8 391 391
AES-256-12 1 258 1 89 1 35 35.2 264 264
AES-256-13 1 694 1 140 1 46 46.0 1008 1008
AES-256-14 1 1087 1 97 1 35 34.8 814 814

Table 3: Results with the new decomposition. For each instance, we display: the results
for the new Step 1 with CPEQ and CPXOR (#T = number of Boolean assignments
computed by Step1-enum; tenum1 = time spent by Picat-SAT to solve Step1-enum), the
results for the new Step 2 (#B = number of Byte-consistent Boolean assignments; t2
= time spent by Choco for all Boolean assignments; tmax = worst time per Boolean
assignment), and total time for solving the whole problem by Algorithm 1 with CPXOR
and the new decomposition (seq = time when using a single core; par = time when using
#T cores in parallel for solving Step 2). Times are in seconds. We report ’-’ when time
exceeds 3 days.

39

40 Boolean assignments within the CPU time limit of 3 days). As expected,
there are less Boolean assignments with the new decomposition than with the
original one for many instances. In some cases, the reduction is drastic: from
1113 (resp. 240 and 602) to 103 (resp. 3 and 7) for AES-128-5 (resp. AES-
192-9 and AES-192-10). As a consequence, the time needed to enumerate all
Boolean assignments is also smaller with the new decomposition. In some
cases, the speed-up is important. For example, with CPXOR, Step1-enum is
solved in more than 6 (resp. 3, and 60) hours with the initial decomposition
for AES-128-5 (resp. AES-192-9, and AES-192-10), whereas it is solved in
less than 24 (7, and 226) minutes with the new decomposition.

For all instances but one (AES-128-5), every Boolean assignment com-
puted by Step1-enum is byte consistent. However, for AES-128-5, only 27
Boolean assignments, among the 103 computed by Step1-enum, are byte
consistent.

The time spent by Choco to find the optimal differential characteristic
given one Boolean assignment (t2

#T
) is rather comparable to the one displayed

in Table 2, for the initial decomposition: it is larger for 9 instances, equal
for 3 instances, and smaller for 10 instances. As there are less Boolean
assignments with the new decomposition than with the initial one, the total
time for Step 2 (t2) is often smaller and, for the most challenging instances it
is much smaller: it is larger than 65 hours (resp. 9 hours, and 15 hours) with
the initial decomposition for AES-128-5 (resp. AES-192-9, and AES-192-10),
whereas it is smaller than 15 hours (9 minutes, and 4 hours) with the new
decomposition.

The last two columns of Table 3 give the time needed to solve the whole
problem as described in Algorithm 1, i.e., solve Step1-opt with CPXOR, then
solve Step1-enum with CPXOR and the new Step 1, and finally solve the
new Step 2 for each Boolean assignment computed by Step1-enum (for all
instances, the loop lines 6 to 10 is executed only once as the exit condition
is satisfied when v = v∗). The seq column gives the time when using a
single core of a server with an Intel Xeon E5-2687W v4 CPU at 3.00GHz.
The par column gives the time when Step 2 is solved in parallel for each
Boolean assignment, using #T cores of the same server. This time has been
estimated by adding the times of Step1-opt and Step1-enum with the maximal
time needed to solve Step2 for one Boolean assignment, over the #T Boolean
assignments computed by Step1-enum.

The total seq time is smaller than one hour for all instances but two, and
11 instances are solved in less than one minute. The two hardest instances are

40

AES-128-5 (which is solved in less than 15 hours), and AES-192-10 (which
is solved in less than 5 hours). When using #T cores to solve Step 2 in
parallel for each Boolean assignment, the total solving time is reduced for all
instances that have more than one Boolean assignment. In particular, the
solving time is reduced to less than one hour for instance AES-128-5.

This is a clear improvement with respect to dedicated approaches as the
approach of [FJP13] cannot be extended to keys of size l > 128 bits, due to
its memory complexity, and the approach of [BN10] needs several weeks to
solve Step 1 for AES-192.

As already pointed out in [GMS16], for AES-128-4, we have found a byte-
consistent solution with objStep1 = 12 and a probability equal to 2−79. This
solution is better than the solution claimed to be optimal in [BN10] and
[FJP13]: In these papers, authors address the same problem as us and they
say that the best byte-consistent solution has objStep1 = 13, and a probability
equal to 2−81.

Finally, we have found better solutions for AES-256. In particular, we
have computed the actual optimal differential characteristic for AES-256-14,
and its probability is 2−146, instead of 2−154 for the one given in [BKN09].

7. Conclusion

We introduced new CP models for finding optimal differential character-
istics for AES: We introduced a new decomposition of the solving process in
two steps, that allows us to reduce the number of Boolean assignments, and
a new CP model for solving the first step, that exploits new xor constraints
inferred from the key schedule to reduce the number of byte-inconsistent
Boolean assignments. These new CP models have allowed us to solve all
instances in a few hours.

For AES-128, we have found a better differential characteristic for r = 4
rounds, with a greater probability, but it cannot be used to improve attacks
as the best attacks in the related-key and chosen-key models exploit the
optimal 5 round related-key differential characteristic.

For AES-192 and AES-256, the optimal differential characteristics com-
puted with our new models allowed us to mount new related-key attacks,
related-key distinguishers and q-multicollisions. In particular, we improved
the related-key distinguisher and the basic related-key differential attack
on the full AES-256 by a factor 26 and the q-multicollisions by a factor 2
(see [GLMS18] for more details).

41

These cryptanalytic problems open new and exciting challenges for the
CP community. In particular, these problems are not easy to model. More
precisely, naive CP models (such as the one described in Section 3) are easy
to design but they may not scale well. The addition of new xor equations
and the introduction of diff variables that model inequality relations at the
byte level drastically improve the solving process, but these constraints are
not straightforward to find and implement. Hence, a challenge is to define
new CP frameworks, dedicated to this kind of cryptanalytic problems, in
order to ease the development of efficient CP models for these problems.

Among the most challenging cryptanalytic problems that we want to look
at, we may cite the ones studied in [CHP+18] that directly implement partic-
ular attacks from related key differential characteristics and the recent results
obtained using ILP solvers for studying the so-called division properties in
an other symmetric key encryption primitive, the stream ciphers [TIHM17].

Finally, developing efficient methods to evaluate the security of block
cipher is a first step towards the computer aided design of such primitives.
This is a challenging and promising direction of research that will help us to
have security by design.

Acknowledgements. This research was conducted with the support of the
FEDER program of 2014-2020, the region council of Auvergne-Rhône-Alpes,
the GDR-IA, and the ANR (DeCrypt ANR-18-CE39-0007). We thank the
reviewers for their comments that helped us improving the paper, Jérémie
Detrey for implementing the C code that checks the completeness of the sets
xorEql, Charles Prud’homme and Jean-Guillaume Fages for their technical
support on the use of Choco, and Neng-Fa Zhou for his technical support on
the use of Picat.

[AST+17] Ahmed Abdelkhalek, Yu Sasaki, Yosuke Todo, Mohamed Tolba,
and Amr M. Youssef. MILP modeling for (large) s-boxes to
optimize probability of differential characteristics. IACR Trans.
Symmetric Cryptol., 2017(4):99–129, 2017.

[Bac07] Fahiem Bacchus. Gac via unit propagation. In Principles and
Practice of Constraint Programming, Lecture Notes in Com-
puter Science, pages 133–147. Springer, 2007.

[Bie14] Armin Biere. Yet another local search solver and lingeling and
friends entering the sat competition 2014. pages 39–40, 01 2014.

42

[Bih93] Eli Biham. New types of cryptoanalytic attacks using related
keys (extended abstract). In Advances in Cryptology - EURO-
CRYPT ’93, volume 765 of Lecture Notes in Computer Science,
pages 398–409. Springer, 1993.

[BJK+16] Christof Beierle, Jérémy Jean, Stefan Kölbl, Gregor Leander,
Amir Moradi, Thomas Peyrin, Yu Sasaki, Pascal Sasdrich, and
Siang Meng Sim. The SKINNY family of block ciphers and
its low-latency variant MANTIS. In Advances in Cryptology -
CRYPTO 2016 Part II, volume 9815 of LNCS, pages 123–153.
Springer, 2016.

[BKN09] Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. Distin-
guisher and related-key attack on the full AES-256. In Advances
in Cryptology - CRYPTO 2009, volume 5677 of LNCS, pages
231–249. Springer, 2009.

[BN10] Alex Biryukov and Ivica Nikolic. Automatic search for related-
key differential characteristics in byte-oriented block ciphers:
Application to aes, camellia, khazad and others. In Advances
in Cryptology - EUROCRYPT 2010, volume 6110 of LNCS,
pages 322–344. Springer, 2010.

[Bry86] Randal E. Bryant. Graph-based algorithms for boolean function
manipulation. IEEE Trans. Computers, 35(8):677–691, 1986.

[BS91] Eli Biham and Adi Shamir. Differential cryptoanalysis of feal
and n-hash. In Advances in Cryptology - EUROCRYPT ’91,
volume 547 of Lecture Notes in Computer Science, pages 1–16.
Springer, 1991.

[BSVMH84] Robert King Brayton, Alberto L. Sangiovanni-Vincentelli, Cur-
tis T. McMullen, and Gary D. Hachtel. Logic Minimization
Algorithms for VLSI Synthesis. Kluwer Academic Publishers,
1984.

[CHP+18] Carlos Cid, Tao Huang, Thomas Peyrin, Yu Sasaki, and Ling
Song. Boomerang connectivity table: A new cryptanalysis tool.
In Advances in Cryptology - EUROCRYPT 2018, volume 10821

43

of Lecture Notes in Computer Science, pages 683–714. Springer,
2018.

[CS14] Geoffrey Chu and Peter J. Stuckey. Chuffed solver de-
scription, 2014. Available at http://www.minizinc.org/

challenge2014/description_chuffed.txt.

[CY10] Kenil C. K. Cheng and Roland H. C. Yap. An mdd-based gener-
alized arc consistency algorithm for positive and negative table
constraints and some global constraints. Constraints, 15(2):265–
304, 2010.

[DHL+16] Jordan Demeulenaere, Renaud Hartert, Christophe Lecoutre,
Guillaume Perez, Laurent Perron, Jean-Charles Régin, and
Pierre Schaus. Compact-table: Efficiently filtering table con-
straints with reversible sparse bit-sets. In Michel Rueher, edi-
tor, Principles and Practice of Constraint Programming - 22nd
International Conference, CP 2016, Toulouse, France, Septem-
ber 5-9, 2016, Proceedings, volume 9892 of Lecture Notes in
Computer Science, pages 207–223. Springer, 2016.

[DR13] Joan Daemen and Vincent Rijmen. The design of Rijndael:
AES-the advanced encryption standard. Springer Science &
Business Media, 2013.

[ES06] Niklas Eén and Niklas Sörensson. Translating pseudo-boolean
constraints into SAT. JSAT, 2(1-4):1–26, 2006.

[FIP01] FIPS 197. Advanced Encryption Standard. Federal Information
Processing Standards Publication 197, 2001. U.S. Department
of Commerce/N.I.S.T.

[FJP13] Pierre-Alain Fouque, Jérémy Jean, and Thomas Peyrin. Struc-
tural evaluation of AES and chosen-key distinguisher of 9-round
AES-128. In Advances in Cryptology - CRYPTO 2013 - Part I,
volume 8042 of LNCS, pages 183–203. Springer, 2013.

[Gec06] Gecode Team. Gecode: Generic constraint development envi-
ronment, 2006. Available from http://www.gecode.org.

44

[GL16] David Gérault and Pascal Lafourcade. Related-key cryptanal-
ysis of midori. In Progress in Cryptology - INDOCRYPT 2016,
volume 10095 of LNCS, pages 287–304, 2016.

[GLMS17] David Gérault, Pascal Lafourcade, Marine Minier, and Chris-
tine Solnon. Revisiting AES related-key differential attacks
with constraint programming. Cryptology ePrint Archive, Re-
port 2017/139, Extended version of [GLMS18], 2017. https:

//eprint.iacr.org/2017/139.

[GLMS18] David Gérault, Pascal Lafourcade, Marine Minier, and Chris-
tine Solnon. Revisiting AES related-key differential attacks with
constraint programming. Inf. Process. Lett., 139:24–29, 2018.

[GMS16] David Gérault, Marine Minier, and Christine Solnon. Con-
straint programming models for chosen key differential crypt-
analysis. In Principles and Practice of Constraint Programming
- CP 2016, volume 9892 of LNCS, pages 584–601. Springer,
2016.

[KLT15] Stefan Kölbl, Gregor Leander, and Tyge Tiessen. Observations
on the SIMON block cipher family. In Advances in Cryptology
- CRYPTO 2015 - 35th Annual Cryptology Conference, Santa
Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I,
volume 9215 of Lecture Notes in Computer Science, pages 161–
185. Springer, 2015.

[Knu95] Lars R. Knudsen. Truncated and higher order differentials. In
Fast Software Encryption, pages 196–211. Springer, 1995.

[Laf18] Frédéric Lafitte. Cryptosat: a tool for sat-based cryptanalysis.
IET Information Security, 12(6):463–474, 2018.

[LCM+17] Fanghui Liu, Waldemar Cruz, Chujiao Ma, Greg Johnson,
and Laurent Michel. A tolerant algebraic side-channel attack
on AES using CP. In Principles and Practice of Constraint
Programming - 23rd International Conference, CP 2017, Mel-
bourne, VIC, Australia, August 28 - September 1, 2017, Pro-
ceedings, volume 10416 of Lecture Notes in Computer Science,
pages 189–205. Springer, 2017.

45

[MJ56] E. J. McCluskey Jr. Minimization of boolean functions*. Bell
System Technical Journal, 35(6):1417–1444, 1956.

[MP13] Nicky Mouha and Bart Preneel. A proof that the ARX cipher
salsa20 is secure against differential cryptanalysis. IACR Cryp-
tology ePrint Archive, 2013:328, 2013.

[MS77] Florence Jessie MacWilliams and Neil James Alexander Sloane.
The theory of error-correcting codes, volume 16. Elsevier, 1977.

[MSR14] Marine Minier, Christine Solnon, and Julia Reboul. Solving
a Symmetric Key Cryptographic Problem with Constraint Pro-
gramming. In 13th International Workshop on Constraint Mod-
elling and Reformulation (ModRef), in conjunction with CP’14,
pages 1–13, 2014.

[MWGP12] Nicky Mouha, Qingju Wang, Dawu Gu, and Bart Preneel.
Differential and linear cryptanalysis using mixed-integer linear
programming. In Chuan-Kun Wu, Moti Yung, and Dongdai
Lin, editors, Information Security and Cryptology, pages 57–76.
Springer, 2012.

[NSB+07] Nicholas Nethercote, Peter J. Stuckey, Ralph Becket, Sebastian
Brand, Gregory J. Duck, and Guido Tack. Minizinc: Towards
a standard CP modelling language. In Principles and Practice
of Constraint Programming - CP 2007, volume 4741 of LNCS,
pages 529–543. Springer, 2007.

[Opt18] Gurobi Optimization. Gurobi optimizer reference manual, 2018.

[PFL16] Charles Prud’homme, Jean-Guillaume Fages, and Xavier Lorca.
Choco Documentation. TASC, INRIA Rennes, LINA CNRS
UMR 6241, COSLING S.A.S., 2016.

[Qui55] W. V. Quine. A way to simplify truth functions. The American
Mathematical Monthly, 62(9):627–631, 1955.

[RBW06] Francesca Rossi, Peter van Beek, and Toby Walsh. Handbook
of Constraint Programming (Foundations of Artificial Intelli-
gence). Elsevier Science Inc., New York, NY, USA, 2006.

46

[RSM+11] Venkatesh Ramamoorthy, Marius-Calin Silaghi, Toshihiro Mat-
sui, Katsutoshi Hirayama, and Makoto Yokoo. The design of
cryptographic s-boxes using csps. In Principles and Practice of
Constraint Programming - CP 2011 - 17th International Con-
ference, CP 2011, volume 6876 of Lecture Notes in Computer
Science, pages 54–68. Springer, 2011.

[SGL+17] Siwei Sun, David Gérault, Pascal Lafourcade, Qianqian Yang,
Yosuke Todo, Kexin Qiao, and Lei Hu. Analysis of aes, skinny,
and others with constraint programming. In 24th International
Conference on Fast Software Encryption, 2017.

[SHW+14] Siwei Sun, Lei Hu, Peng Wang, Kexin Qiao, Xiaoshuang Ma,
and Ling Song. Automatic security evaluation and (related-key)
differential characteristic search: Application to simon, present,
lblock, DES(L) and other bit-oriented block ciphers. In Ad-
vances in Cryptology - ASIACRYPT 2014 Part I, volume 8873
of LNCS, pages 158–178. Springer, 2014.

[Sin06] R. Singleton. Maximum distance -nary codes. IEEE Trans. Inf.
Theor., 10(2):116–118, September 2006.

[SNC09] Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending
SAT solvers to cryptographic problems. In Theory and Appli-
cations of Satisfiability Testing - SAT 2009, 12th International
Conference, SAT 2009, volume 5584 of Lecture Notes in Com-
puter Science, pages 244–257. Springer, 2009.

[ST17] Yu Sasaki and Yosuke Todo. New impossible differential search
tool from design and cryptanalysis aspects - revealing structural
properties of several ciphers. In Advances in Cryptology - EU-
ROCRYPT 2017, volume 10212 of Lecture Notes in Computer
Science, pages 185–215, 2017.

[SWW17] Ling Sun, Wei Wang, and Meiqin Wang. Automatic search of
bit-based division property for ARX ciphers and word-based
division property. In Advances in Cryptology - ASIACRYPT
2017, pages 128–157, 2017.

47

[SWW18] Ling Sun, Wei Wang, and Meiqin Wang. More accurate differ-
ential properties of led64 and midori64. IACR Transactions on
Symmetric Cryptology, 2018(3):93–123, 2018.

[TIHM17] Yosuke Todo, Takanori Isobe, Yonglin Hao, and Willi Meier.
Cube attacks on non-blackbox polynomials based on division
property. In Advances in Cryptology - CRYPTO 2017, volume
10403 of Lecture Notes in Computer Science, pages 250–279.
Springer, 2017.

[VLS18] Hélène Verhaeghe, Christophe Lecoutre, and Pierre Schaus.
Compact-mdd: Efficiently filtering (s)mdd constraints with re-
versible sparse bit-sets. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence, IJCAI
2018, pages 1383–1389, 2018.

[Wal00] Toby Walsh. SAT v CSP. In Principles and Practice of Con-
straint Programming, volume 1894 of Lecture Notes in Com-
puter Science, pages 441–456. Springer, 2000.

[ZK17] Neng-Fa Zhou and H̊akan Kjellerstrand. Optimizing SAT en-
codings for arithmetic constraints. In Principles and Practice
of Constraint Programming - 23rd International Conference,
CP 2017, volume 10416 of Lecture Notes in Computer Science,
pages 671–686. Springer, 2017.

[ZKF15] Neng-Fa Zhou, Hakan Kjellerstrand, and Jonathan Fruhman.
Constraint Solving and Planning with Picat. Springer, 2015.

48

APPENDIX

Extension to AES-192 and AES-256

Description of KeySchedule when l ∈ {192, 256}
AES-192

For AES-192, the initial key K has 6 columns. The first four columns of
K are used to initialize the four columns of K0, i.e., for each row j ∈ [0, 3]
and each column k ∈ [0, 3], K0[j][k] = K[j][k]. The last two columns of K
are used to initialize the first two columns of K1, i.e., for each row j ∈ [0, 3]
and each column k ∈ [0, 1], K1[j][k] = K[j][k + 4].

The last two columns of K1, and the four columns of all following subkeys
are defined as follows.

Columns 1 and 3 are always obtained by performing a xor between bytes
of the previous and the 6th previous column:

∀i ∈ [2, r],∀j ∈ [0, 3], Ki[j][1] = Ki−2[j][3]⊕Ki[j][0]

∀i ∈ [1, r],∀j ∈ [0, 3], Ki[j][3] = Ki−1[j][1]⊕Ki[j][2]

Columns 0 and 2 are also obtained by performing a xor between bytes of the
previous and the 6th previous column, but some of these xors are combined
with SubBytes operations, word rotations, and constant additions, depending
on the value of i%3. For column 0, if the round number i ∈ [1, r] is such that
i%3 6= 0, then

∀j ∈ [0, 3], Ki[j][0] = Ki−2[j][2]⊕Ki−1[j][3]

otherwise

Ki[0][0] = Ki−2[0][2]⊕ SKi−1[1][3]⊕ ci
∀j ∈ [1, 3], Ki[j][0] = Ki−2[j][2]⊕ SKi−1[(j + 1)%4][3]

where ci is a constant, and SKi−1[j][3] is the result of applying the SubBytes
operation on Ki−1[j][3], i.e.

∀j ∈ [0, 3], SKi−1[j][3] = S(Ki−1[j][3])

For column 2, if the round number i ∈ [2, r] is such that i%3 6= 1, then

∀j ∈ [0, 3], Ki[j][2] = Ki−1[j][0]⊕Ki[j][1]

49

otherwise

∀j ∈ [0, 3], Ki[j][2] = Ki−1[j][0]⊕ SKi[(j + 1)%4][1]

where SKi[j][1] is the result of applying the SubBytes operation on Ki[j][1],
i.e.

∀j ∈ [0, 3], SKi[j][1] = S(Ki[j][1])

AES-256

For AES-256, the initial key K has 8 columns, and these columns are
used to initialize K0 and K1, i.e., for each row j ∈ [0, 3] and each column
k ∈ [0, 3], K0[j][k] = K[j][k] and K1[j][k] = K[j][k + 4].

Then, for each round i ∈ [2, r− 1], the subkey Ki+1 is generated from the
previous subkeys Ki and Ki−1 as follows:

• The first column of Ki+1 is obtained from the first and last columns of
Ki in two steps. First, we apply the SubBytes operation on all bytes
of the last column of Ki. We note SKi[j][3] the resulting byte for row
j, i.e.,

∀i ∈ [1, r − 1],∀j ∈ [0, 3], SKi[j][3] = S(Ki[j][3]).

Then, depending on whether i is odd or even, we either simply perform
a xor, or combine this xor with a rotation and a constant addition:
for each i ∈ [1, r − 1], if i%2 = 0 then

Ki+1[0][0] = SKi[1][3]⊕Ki[0][0]⊕ ci
∀j ∈ [1, 3], Ki+1[j][0] = SKi[(j + 1)%4][3]⊕Ki[j][0]

else
∀j ∈ [1, 3], Ki+1[j][0] = SKi[j][3]⊕Ki[j][0].

• For the last three columns k ∈ [1, 3], we simply perform xors:

∀i ∈ [1, r−1],∀j ∈ [0, 3],∀k ∈ [1, 3], Ki+1[j][k] = Ki−1[j][k−1]⊕Ki[j][k].

50

Definition of diffBytesl and Sboxes l when l ∈ {192, 256}
AES-192

diffBytes192 = { δX[j][k], δKi[j][k], δXi[j][k], δSXi[j][k],

δYi[j][k], δZi[j][k] : i ∈ [0, r], j ∈ [0, 3], k ∈ [0, 3]}
∪
{ δSKi[j][1] : i ∈ [1, r], j ∈ [0, 3], i%3 = 1}
∪
{ δSKi[j][3] : i ∈ [1, r], j ∈ [0, 3], i%3 = 2}

Sboxes192 = { δKi[j][1] : i ∈ [1, r − 1], j ∈ [0, 3], i%3 = 1},
∪
{ δKi[j][3] : i ∈ [1, r − 1], j ∈ [0, 3], i%3 = 2}
∪
{ δXi[j][k] : i ∈ [0, r − 1], j ∈ [0, 3], k ∈ [0, 3]}

AES-256

diffBytes256 = { δX[j][k], δKi[j][k], δXi[j][k], δSXi[j][k],

δYi[j][k], δZi[j][k] : i ∈ [0, r], j ∈ [0, 3], k ∈ [0, 3]}
∪
{ δSKi[j][3] : i ∈ [1, r], j ∈ [0, 3], k ∈ [0, 3]}

Sboxes256 = { δKi[j][3] : i ∈ [1, r − 1], j ∈ [0, 3]},
∪
{ δXi[j][k] : i ∈ [0, r − 1], j ∈ [0, 3], k ∈ [0, 3]}

Definition of constraints related to KS for Step 1 when l ∈ {192, 256}
Constraints (C7) and (C8) of Fig. 2 correspond to the key schedule for

AES-128. For AES-192 and AES-256, these two constraints must be replaced
by the constraints listed below.

51

AES-192

∀i ∈ [0, r − 1],∀j ∈ [0, 3] : if (i− 1)%3 = 2

then XOR(∆Ki[j][0],∆SKi−1[(j + 1)%4][3],∆Ki−2[j][2])

else XOR(∆Ki[j][0],∆Ki−1[j][3],∆Ki−2[j][2])

∀i ∈ [2, r − 1],∀j ∈ [0, 3] : XOR(∆Ki[j][1],∆Ki−2[j][3],∆Ki[j][0])

∀i ∈ [1, r − 1],∀j ∈ [0, 3] : if i%3 = 1

then XOR(∆Ki[j][2],∆SKi[(j + 1)%4][1],∆Ki−1[j][0])

else XOR(∆Ki[j][2],∆Ki[j][1], Ki−1[j][0])

∀i ∈ [1, r − 1],∀j ∈ [0, 3] : XOR(∆Ki[j][3],∆Ki−1[j][1],∆Ki[j][2])

AES-256

∀i ∈ [1, r − 1] : XOR(∆Ki+1[0][0],∆SKi[1][3],∆Ki[0][0])

∀i ∈ [1, r − 1],∀j ∈ [1, 3] : if i%2 = 0

then XOR(∆Ki+1[j][0],∆SKi[(j + 1)%4][3],∆Ki[j][0])

else XOR(∆Ki+1[j][0],∆SKi[j][3],∆Ki[j][0])

∀i ∈ [1, r − 1],∀j ∈ [0, 3],∀k ∈ [1, 3] : XOR(∆Ki+1[j][k],∆Ki−1[j][k − 1],∆Ki[j][k]).

52

