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Abstract

The nucleolus produces the large polycistronic transcript (47S precursor) containing the

18S, 5.8S and 28S rRNA sequences and hosts most of the nuclear steps of pre-rRNA

processing. Among numerous components it contains condensed chromatin and active

rRNA genes which adopt a more accessible conformation. For this reason, it is a paradigm

of chromosome territory organization. Active rRNA genes are clustered within several

fibrillar centers (FCs), in which they are maintained in an open configuration by Upstream

Binding Factor (UBF) molecules. Here, we used the reproducible reorganization of nucle-

olar components induced by the inhibition of rRNA synthesis by Actinomycin D (AMD) to

address the steps of the spatiotemporal reorganization of FCs and nucleolar condensed

chromatin. To reach that goal, we used two complementary approaches: i) time-lapse

confocal imaging of cells expressing one or several GFP-tagged proteins (fibrillarin, UBF,

histone H2B) and ii) ultrastructural identification of nucleolar components involved in the

reorganization. Data obtained by time lapse confocal microscopy were analyzed through

detailed 3D imaging. This allowed us to demonstrate that AMD treatment induces no

fusion and no change in the relative position of the different nucleoli contained in one

nucleus. In contrast, for each nucleolus, we observed step by step gathering and fusion of

both FCs and nucleolar condensed chromatin. To analyze the reorganization of FCs and

condensed chromatin at a higher resolution, we performed correlative light and electron

microscopy electron microscopy (CLEM) imaging of the same cells. We demonstrated

that threads of intranucleolar condensed chromatin are localized in a complex 3D network

of vacuoles. Upon AMD treatment, these structures coalesce before migrating toward

the perinucleolar condensed chromatin, to which they finally fuse. During their migration,
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FCs, which are all linked to ICC, are pulled by the latter to gather as caps disposed at the

periphery of nucleoli.

Introduction

The nucleolus is a highly dynamic compartment inside the non-random 3D architecture of the

genome, whose key function consists of ribosome biogenesis [1–10]. Microscopists discern the

nucleolus together with surrounding condensed chromatin domains (or perinucleolar com-
partment) [11, 12] as the largest and densest nuclear compartment (S1 Fig). This structural

and metabolic unit assembles in the course of post-mitotic unfolding of chromosomes into

individual Chromosomal Territories (CTs) followed by genome reactivation [13–15]. Posed as

a specialized chromosomal locus for ribosome synthesis, the nucleolus comprises the basic fea-

tures of both Chromatin Domains (CDs) and chromatin-associated Nuclear Bodies (NBs). The

nucleolus integrates the gene-rich CDs that consist of eukaryotic rDNA loops–the giant tan-

dems built by hundreds of rRNA gene (r-gene) repeats with an uninterrupted head-to-tail

arrangement. The non-nucleosomal open structure of transcriptionally competent rDNA

chromatin (r-chromatin) unmasks the position of r-gene clusters in mitotic chromosomes that

can be distinguished as discrete stretches termed Nucleolus Organizing Regions (NORs) [16–

21]. Mammalian karyotypes mostly reveal several pairs of NOR-bearing chromosomes per

diploid set. For example, there are 10 NORs detected in humans, all mapped to short arms of

five acrocentric chromosomes pairs (N˚ 13, 14, 15, 21, 22) [3, 10, 22–24]. Only r-genes are

clustered within NOR-bearing acrocentric chromosomes, being positioned between the telo-

mere and centromere, adjacent to heterochromatic chromosomal segments. The rDNA arrays

are flanked by sequences of heterochromatic nature, identified as the Proximal Joint (PJ, on

the centromeric side) and the Distal Joint (DJ, on the telomeric side) [25, 26]. Being the largest

chromatin-associated nuclear body [27–29], the nucleolar territory harbors an enormous

number of r-gene expression products: the large 47S rRNA precursors assemble cotranscrip-

tionally with ribosomal proteins and ribosomal assembly factors to form the 90S particles,

which give rise to pre-40S and pre-60S particles at various stages of maturation upon endonu-

cleolytic cleavages.

Nucleolar functions related to ribosome factories are properly organized within the con-

fines of distinct sub-compartments defined as Nucleolar Components (NCs). These appear in

light and transmission electron microscopes (LM and TEM, respectively) due to their unique

structures, mediated by r-gene expression products and specific protein signatures [1–3, 30–

34]. The pre-rRNA synthesis, processing and pre-ribosome assembling products are packaged

around the r-chromatin transcription sites according to the sequence of the main steps of ribo-

some biogenesis. Transcription and processing factories are distributed within three basic

ordered NCs giving rise to a tripartite nucleolar structure [4, 6] that is observed in TEM

according to the appearance and density of the main NCs (S1B Fig). In a transcriptionally

competent nucleolus, non-nucleosomal r-chromatin is shared among numerous Fibrillar Cen-
ters (FCs)–pale-stained NCs that have long been identified as an interphase counterpart of

mitotic NORs. The two other NCs constitute the Dense Fibrillar Component (DFC) and a rela-

tively opaque Granular Component (GC). The interface area between FC and the adjacent

DFC is known as transcriptionally active r-genes territory [35]. The DFC and GC correspond

respectively to early and late processing sub-compartments, where maturing 47S pre-rRNA

molecules being cleaved, modified and assembled with ribosomal proteins, generate 40S and
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pre-60S particles containing the precursors to 18S and to 28S, 5.8S and 5S rRNAs, respectively

[1–3, 6–10, 36].

Nucleolus-associated DNA (naDNA) domains presumably contain not only r-genes. In this

respect, two additional chromatin-associated NCs with still no identified roles in nucleolar

organization and functions are of particular interest. These are defined as members of nucleo-

lar chromatin (so called Nucleolus Associated Chromatin, NAC) and appear in the form of a

shell of perinucleolar condensed chromatin (PCC) that extends as strands of intranucleolar

condensed chromatin (ICC). The latter are located into small interstices or expandedNucleolar
Vacuoles (NVs) that are non-membrane limited light zones in continuity with nucleoplasm.

Preferential visualization of nucleolar chromatin domains on ultrathin sections shows that

ICC and PCC are constituted of 10–30 nm thick nucleosomal fibrils and represent a single sys-

tem passing through the interstitial network. Quite frequently FCs come in direct contact, and

even can link to one another, with the ICC [37–40]. The significance of nucleolar chromatin in

the spatial organization and/or regulation of nucleolar functions as well as the mechanisms of

its origin are still obscure.

The nucleolus arises at the end of telophase due to the synchronous reactivation of rRNA

synthesis on rDNA loops extending from several NORs into the developing nucleolar space.

During nucleologenesis, interphase NORs reorganize into rDNA-containing CDs (rCDs)

resulting from spatial interaction between non-randomly compartimentalized CTs, perinu-

cleolar centromeric and telomeric heterochromatin, as well as non-nucleolar genomic regions.

Being a derivate of interphase NOR-bearing CTs, the nucleolus seems to be reassembled in

compliance with the functional topography of nucleolus-associated chromosomal segments,

including non-ribosomal sequences of telomere and centromere satellite DNA. The bulk of

data, including quite recent results, indicates the particular role of intra- and perinucleolar

heterochromatin in nucleolar stability. Despite their non-ribosomal origin, rDNA flanking

regions, the centromeric and telomeric heterochromatic segments together with non-coding

RNAs (Ribosomal Intergenic Spacer Long Noncoding RNA, IGS lnc RNA)may be crucial for

postmitotic establishment and maintenance of the global nucleolar structure organized in the

form of functional sub-compartments [20, 21, 26, 41–51]. Whether rDNA-adjacent hetero-

chromatic chromosomal segments determine the exclusive position of the nucleolus within

the territorial architecture of the nucleus or contribute to the nucleolar organization and stabil-

ity via structural and functional interactions with surrounding nucleolar chromatin remains to

be elucidated.

In the present work we studied the 3D organization of FCs and of NAC to address

whether these structures constitute parts of a same entity. The best model for such studies is

nucleolar inactivation in response to the cessation of rRNA synthesis, causing emergence of

a few giant FCs associated with prominent zones of DFC and large ICC clumps. As an inhibi-

tor of rRNA synthesis, Actinomycin D (AMD) induces a typical spatial reorganization of

the nucleolar structure that has long been known as segregation of nucleolar components.

Nucleolar segregation can be easily determined by phase contrast microscopy by light and

dark “caps” that correspond in fact to FCs and DFCs reshaped into large crescent-like struc-

tures that appear to be pressed onto the surface of round nucleolar remnants [2, 22, 52–55].

Our hypothesis is that the dynamics of nucleolar components during nucleolar segregation

and capping may be caused by a concerted gathering of nucleolar associated chromatin pull-

ing FCs and DFC to the perinucleolar condensed chromatin shell. To study this phenome-

non, we combined 4D imaging of FC and of nucleolar chromatin in living cells with TEM

structural studies of the nucleolus within the same cells. To reach this goal, we developed a

new technical approach that correlates fluorescent live-cell 3D imaging with postfixation

immunolabeling and high resolution EM analysis of nucleolar organization performed in the
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same cell. For this, images of the nucleolar ultrastructure were merged with confocal micros-

copy (hereafter CM or LSM) images indicating the spatial distribution of UBF, a specific pro-

tein marker of uncondensed r-DNA genes, while the nucleosomal ICC was identified by

histone H2B-GFP fluorescence. This strategy allowed us to study in great detail the spatial

arrangement of nucleolar chromatin and its relationship with other nucleolar compartments

as well as the mechanisms involved in the displacement of FCs from the nucleolar interior to

its periphery during rRNA synthesis inhibition.

Materials and methods

Time-lapse confocal microscopy imaging of fluorescently tagged single living cells imaged by

correlative light and electron microscopic analysis (CLEM) was performed on HeLa cells stably

expressing histone H2B-GFP (courtesy of Dr K. Monier, ENS Lyon, France) or fibrillarin-GFP

(courtesy of Dr. P. Roussel, Pierre and Marie Curie University, Paris, France). We developed

our correlative study as follows. Initially, we followed the spatial organization and dynamics of

the rearrangement of FC by 3D imaging and time-lapse confocal microscopy, using both fixed

and living KB cells expressing or co-expressing fibrillarin-GFP, UBF-GFP/dsRed, and histone

H2B-GFP fusion proteins as well as HeLa cells stably transfected with fibrillarin-GFP and his-

tone H2B-GFP. In the second step, the reorganization of nucleolar chromatin induced by

AMD was studied by 4D CM in HeLa cells expressing histone H2B-GFP. At different time

points cells were fixed, immunolabeled for UBF, imaged for simultaneous localization of intra-

nucleolar condensed chromatin and FCs, and finally processed for TEM analysis. By using a

precise positioning and orientation system, we were able to find exactly the same cells and

image them by EM and then to subject the chosen cells to the following Confocal/TEM Over-

lay (CTO) [56].

Cell culture

HeLa and KB cells were used because they show prominent intranucleolar histone H2B-GFP

fluorescence (S1C and S2 Figs) corresponding to the nucleosomal domains with the ultrastruc-

tural appearance of ICC. In the experiments dedicated to LM/EM distribution of UBF, fibril-

larin, and histone H2B in living and fixed cells we applied transient transfection using human

KB cells. KB cells contain well visible intra-nucleolar inclusions of ICC (S2 Fig) and large FCs

associated with prominent DFC zones that facilitate LM discrimination of nucleolar sub-terri-

tories occupied by r-gene transcription and pre-rRNA processing machineries (S1A and S1B

Fig). In addition, preliminary experiments revealed high stability of KB cells to damage pro-

voked by the transfection procedure that yielded a large quantity of mono- and doubly-trans-

fected cells.

Cultures were either mono-transfected with UBF-GFP or fibrillarin-GFP plasmids or co-

transfected with H2B-GFP and UBF-dsRed plasmids. Transfected and non-transfected stock

cultures were maintained in 40 ml flasks containing DMEM (Gibco, UK) supplemented with

10% calf serum and 1% penicillin/streptomycin mixture. Cells were reseeded in new medium

2–3 times per week, as soon as the monolayer became late preconfluent or early confluent.

Tests for mycoplasma detection were performed monthly.

For inhibition of rRNA synthesis, cells were treated during 1–8 h by a low dose (0.05 μg/

ml) of AMD (Sigma, USA) in two different conditions: 1) Working with a Bio-Rad MRC-

1024ES Laser confocal microscope (LCM), we delivered the drug using a Bioptech (USA) per-

fusion system (for details see below). We noted that in this condition, the AMD concentration

did not reach a high level immediately and thus, nucleolar remodeling developed slowly and

took around 7 h to reach complete segregation. 2) Therefore, working with a Zeiss 710 NLO

Spatio-temporal reorganization of the nucleolus
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LCM and ILAS Spinning Disk confocal system (SDCS) we delivered AMD by direct addition

to the culture medium for immediate contact of cells with the full concentration of drug; in

these conditions nucleolar remodeling developed more rapidly so that we reached complete

segregation after around 2–3 h. The same procedure was used for UBF fluorescence studies in

fixed cells.

Transient transfection, observation and imaging of KB cells

A suspension of 5 x 105 KB cells/ml was seeded onto the surface of Ø40 mm glass coverslips

(Bioptech) placed in a Ø50 mm plastic Petri dish. Fugene-6 (Roche Diagnostics, Switzerland)

was used to transfect cells with a cDNA construct coding for UBF-GFP, fibrillarin-GFP or his-

tone H2B-GFP or in some experiments with two plasmids coding for H2B-GFP and UBF-

dsRed. Coverslips were fixed in 4% paraformaldehyde (PAF, EMS, USA), mounted in Citifluor

AF1 (Agar Scientific, UK) and stored at 4˚C. Alternatively, part of the transfected and fixed

cells was submitted to anti-GFP immunolabeling and TEM analysis. Preparations selected for

LCM were examined and imaged on a Bio-Rad LCM (described above) combined with an

Olympus IX70 fluorescence microscope using a Plan-Apochromat/x60/1.40/Oil objective (for

details see S1–S3 Methods).

Conventional TEM analysis

Sub-confluent KB/UBF-GFP and HeLa/H2B-GFP expressing cells on Ø40 mm coverslips were

rinsed (3 x 5 min) with 0.1M phosphate buffer (Biomérieux, France) and then fixed during 10

min with 4% PAF and 2.5% glutaraldehyde (both from EMS) in 0.1M phosphate buffer. After

postfixation in 1% OsO4 (EMS) in the same buffer, the cells were rinsed with phosphate buffer

and distilled water (MiliQ, Millipore, USA), scraped from coverslips, sedimented in 30% BSA

(Sigma-Aldrich, USA) using 0.5 ml centrifuge tubes, and jellified after removing BSA by add-

ing to the cell pellet a few drops of 25% glutaraldehyde. The pellets were cut into ~1mm3

pieces, washed in distilled water overnight, and then dehydrated in a series of acetone (Sigma,

USA) in deionized water up to 100% acetone. Then cells were infiltrated in a mixture of 100%

acetone-Embed 812 (EMS) 1:1 and 1:2 (overnight). The impregnation was continued with 2

changes of pure Embed 812. Finally, the samples were placed for polymerization at 60˚C

in BEAM capsules (#3, EMS) filled with a fresh portion of Embed 812. Silver-gold sections

(~0.1 μm) cut using a Reichert-Young Ultracut ultramicrotome (Reichert, Austria) were con-

trasted with 5% aqueous uranyl acetate and lead citrate (both from Merck, USA) and then

observed and imaged in a Hitachi H300 electron microscope at 70 kV.

Pre-embedding anti-GFP immuno-TEM labeling of UBF-GFP

transfected KB cells

Ultrastructural localization of GFP-tagged proteins in fixed transfected KB cells was performed

by using anti-GFP immuno-TEM, combining nanogold (Nanoprobes, USA) labeling with sil-

ver enhancement (HQ Silver Kit, Nanoprobes, USA) [57]. To detect GFP-positive sites in

TEM we used the following antibodies: (i) anti-human GFP mouse monoclonal (Roche Diag-

nostics); (ii) goat anti-mouse (Jackson, USA); (iii) streptavidin-nanogold conjugate (Nanop-

robes). Cells were harvested without osmication by meticulous scraping from the glass surface,

then dehydrated and embedded in epoxy resin as described in the previous section. Ultrathin

sections were picked up on 200 mesh copper grids (EMS) and stained with uranyl acetate and

lead citrate and examined and imaged as described above (for details see S4 Method).

Spatio-temporal reorganization of the nucleolus
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Time-lapse observation and imaging of living KB cells

To trace the dynamics of fibrillarin and UBF redistribution in the course of nucleolar segrega-

tion during AMD treatment we performed long-term 4D studies using fibrillarin-GFP and

UBF-GFP expressing cells growing on Ø40 mm coverslips, using a living cells observation sys-

tem based on a Bioptechs FCS2 incubation chamber with a specimen and objective tempera-

ture control module and peristaltic pumps that enabled perfusion with fresh medium and

delivery of AMD at 37±0.1˚C. The flow of the pumps was adjusted to 10 ml/h. Images were

collected using a Bio-Rad MRC-1024ES/Olympus IX70 LCM in fast scanning mode (1/2 sec

for each 512x512 image) to diminish the exposure of cells to the laser beam. To demonstrate

the general features of the behavior of components containing fibrillarin and UBF during

nucleolar segregation we used simple visualization tools in the form of 2D movies (standard

2D+time mode) provided by ImageJ or QuickTime. For spatial reconstruction with subse-

quent dynamic modeling in the form of 4D movies we utilized a more sophisticated approach,

Rev4D software developed by the CRESTIC group (University of Reims, Reims, France) to

analyze and visualize the evolution of multiple topology-changing structures during their

deformation, division, fusion, etc. [58, 59]. To demonstrate redistribution of nucleolar proteins

in 4D the most significant data were extracted from time/z-series, then 3D reconstructed using

Amira 5.5 software (TGS, Mercury Computer Systems, France) and finally displayed in chro-

nological order as a gallery of consequential volume models (for details see S5 Method).

Imaging of histone H2B and UBF in living HeLa cells

To study the 4D dynamics of the ICC and its relationship with FCs during nucleolar segrega-

tion and capping, we used a CLEM approach combined with post-fixation immunolabeling of

UBF. For time-lapse imaging a suspension of histone H2B-GFP tagged HeLa cells at 60–70%

confluence was plated on Ø35 mm uncoated glass “MatTek” or “Ibidi μ-Dish-500” Petri dishes

(MatTek, USA and Ibidi GmbH, Germany) with Ø14 mm and Ø21 mm wells as growth area.

The bottom coverslip of these dishes is an etched finder grid that facilitates the search for

regions/cells of interest (ROI/COI). After 24–48 h of incubation the cells were briefly rinsed 3x

with PBS and incubated in fresh medium at 37˚C for 2–3 h before experiments.

All procedures connected with confocal microscopy such as selection and marking of

appropriate cells or groups, capture of control z-stacks as well as time-lapse imaging during

AMD action, were conducted at 37˚C in a CO2-enriched atmosphere using a special micro-

scope plate holder with a close-fitting lead. To outline a ROI, the culture was first previewed

and recorded under low magnification on a Zeiss 710 NLO LCM and Spinning Disk ILAS2

confocal system (SDCS) (Roper Scientific, USA) coupled with a Zeiss Axioobserver inverted

microscope with a 512x512 EMCCD camera (for details see S6 Method).

Postfixation imaging of HeLa cells after anti-UBF immunolabeling

Imaging of labelled UBF is widely used to identify undercondensed active or inactive rDNA

genes folded into the structure of interphase FC and metaphase NORs [15, 60–62]. To perform

UBF labeling, AMD treated H2B-GFP transfected cells were immediately fixed at the end

of time-lapse imaging. To label UBF we used: (i) mouse anti-UBF/F9-fragment monoclonal

antibodies (Santa Cruz Biotechnology, USA); (ii) biotinylated goat anti-mouse antibodies

(Jackson, USA); (iii) streptavidin-Alexa568 (Invitrogen Molecular Probes, USA). After immu-

nolabeling, COI previously imaged during time-lapse experiments were found by their posi-

tion on the finder grid. After 3D imaging of immunostained UBF, cells were prepared for

TEM and CLEM analysis (for details see S7 Method).

Spatio-temporal reorganization of the nucleolus
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CLEM technique

Cells growing in MatTek dishes were fixed in 4% PAF, rinsed in PBS, and post-fixed in 2.5%

glutaraldehyde and 1% OsO4 in 0.1M phosphate buffer (Biomérieux) and rinsed with PBS and

distilled water. The cells were dehydrated through a series of ethanol-deionized water mixtures

up to 100% ethanol, infiltrated in a mixture of 100% ethanol-Embed 812 (EMS) 1:1 and 1:2,

and then with pure Embed 812, and polymerized in dishes at 60˚C. Silver-gold serial ultrathin

sections (~0.1μm) were picked up using coated one-hole copper slot grids (Pella, USA) or

uncoated H7 Hexagonal Maxtaform grids (EMS), stained with uranyl acetate and lead citrate,

and imaged by electron microscopy as described above (for details see S8 Method).

CM/TEM overlay of doubly-tagged HeLa cells

To merge identical ROI imaged by CM and EM within the same cell, a modified CTO tech-

nique was utilized [56]. For merging of the two images it is essential that the ultrathin and opti-

cal sections are at approximately the same depth and orientation of a given nucleus/nucleolus.

Thus we used serial ultrathin sectioning; the block face, trimmed for ultramicrotomy, was

adjusted relative to the knife so that every point of the surface containing the COI was at the

same distance from the knife edge. Further sectioning provided sections beginning at the top

surface of the block and penetrating the cell in the Z direction to a depth of several tens of μM.

Thus the appropriate plane of interest containing nucleoli could be chosen during examination

of serial sections in TEM and its depth was noted. Then the corresponding depth on LSM

image stacks was calculated and appropriate planes were visualized using virtual serial slicing.

Overlays were performed using Corel Draw software. Serial fluorescent and EM images were

adjusted to the same magnification and nuclei/nucleoli, FCs, ICCs, and NVs were contoured

in different colors on transparent plastic sheets using fine permanent markers, overlaid, and

roughly aligned with the TEM image below and the confocal image above. The transparency

of the confocal image was adjusted so that the TEM image was seen and the images were pre-

cisely aligned by adjusting their orientation and magnification.

A total of 21 different experiments were performed. In each of them, a minimum of 10 cells

were observed and different ROI were imaged. For example, although ROI shown on S9 Fig

contains 9 interesting cells, only 4 cells from this series (marked by numbers) were used for

CLEM. Altogether, twenty double-labeled cells belonging to different experimental series were

fully analyzed using the CLEM approach. In order to display nucleolar changes accompanying

the gradual decrease in number of FCs, we show the three most demonstrative cases that

appeared after treatment with AMD for 1 h. These were: cells N˚1 and N˚2 containing pre-seg-

regated nucleoli with several FCs from series shown on S9 and S14A–S14E Figs and one cell

from another series, containing one ring-shaped nucleolus with one FC (S14F–S14I Fig).

Additionally, two nucleoli were analyzed in cell N˚2.

Results

Nucleoli remain independent units upon inhibition of rRNA synthesis

Time-lapse imaging of cells containing fibrillarin-GFP was performed to study the 3D dynam-

ics of nucleoli during inhibition of rRNA synthesis by AMD. Fibrillarin was chosen because: i)

it is present at high concentration within the DFC where its rRNA methyl transferase activity

is required for rRNA processing, and ii) it is also present but at lower concentration within the

other nucleolar compartments and within the nucleoplasm. These characteristics allowed the

simultaneous imaging of DFC, whole nucleoli, and nucleoplasm and the study of their 3D

modifications during time series. Thus, 100 z-stacks containing 60 optical sections each were
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acquired every 5 min for 8 h. Projection of the sections in each z-stack was performed to create

a movie (S1 Movie) showing the modifications arising in a representative cell, so that we were

able to simultaneously visualize: i) the reorganization of DFC within each nucleolus, ii) all

nucleoli, and iii) the contour of the nucleus. Using surface visualization we observed that each

nucleolus, which was initially extended and irregularly shaped, became spherical during inhi-

bition of rRNA synthesis (for example, nucleolus N˚2 in Fig 1, S3 Fig and S1 and S2 Movies;

see Fig 1 for numbering).

Using Rev4D software, we simultaneously visualized the 3D organization of DFC (high

threshold, solid red), of nucleoli (medium threshold, transparent orange) and of whole nuclei

(low threshold, transparent) yellow (Fig 1). To analyze the behavior of nucleoli, we identified

their center of mass at each time-point and calculated their trajectories in space and time, their

relative distance, and their volume. These analyses showed that during AMD treatment, nucle-

oli maintained their relative distance although they rotated by around 90˚ in the nucleus (the

center of rotation is close to nucleolus N˚2) and they lost half of their initial volume (S3–S5

Movies).

Altogether, these data demonstrate that inhibition of rRNA synthesis induces a strong

internal reorganization of nucleoli (and of the DFC in different nucleoli) but never induces

their fusion. Moreover, they show that nucleoli keep constant positions relative to one another

during this process.

This analysis also showed that the re-organization of the DFC (S5 Movie) was a sequential

process during which its cord-like structure was first broken into several fragments. Then,

these fragments became spherical, came close together, and finally fused to constitute 1 to 3

caps at the border of each reorganized spherical nucleolus. As the DFC is the site of early steps

of rRNA processing, we can hypothesize that its spatiotemporal behavior could be different

from that of rDNA genes and of chromatin. Thus, in the following we investigated how active

rDNA genes and condensed chromatin reorganize when rRNA transcription is inhibited by

AMD.

Inhibition of rRNA synthesis induces enlargement of nucleolar structures

containing UBF

As UBF is specifically associated with active undercondensed rDNA genes [17–19] we used

confocal microscopy of UBF-GFP within fixed KB cells to analyze the behavior of active rDNA

genes (S4 Fig). In control cells (S4A–S4C Fig), GFP-UBF was present in numerous nucleolar

spheroidal foci ~ 0.3–0.5 μm in diameter, disposed as so-called “necklaces” by 3D visualization.

After 1 h with AMD (S4D–S4F Fig), all nucleoli became smaller and ovoid. They contained

several prominent UBF-GFP positive spheres ~ 0.5–1 μm in diameter located within areas of

low phase contrast. After 2 h of inhibition (S4G–S4I Fig), UBF-GFP fluorescence was present

within 1–3 cap-like structures ~ 1–2 μm in their larger axis located on the outer part of sphe-

roidal nucleoli within large caps of low phase contrast.

Time-lapse confocal microscopy shows a sequential gathering and

fusion of nucleolar structures containing UBF during inhibition of rRNA

synthesis

To understand exactly how structures containing UBF are reorganized during AMD treat-

ment, we studied living cells by time-lapse confocal microscopy. Thus, 100 z-stacks containing

60 optical sections each were acquired every 5 min for 8 h. For each z-stack, a projection of

optical sections and 3D visualization were performed (for example Fig 2 and S6 Movie). Before

AMD treatment, UBF-GFP fluorescence appeared as numerous spherical entities ~0.3–0.5 μm

Spatio-temporal reorganization of the nucleolus

PLOS ONE | https://doi.org/10.1371/journal.pone.0187977 November 30, 2017 8 / 37

https://doi.org/10.1371/journal.pone.0187977


in diameter disposed as a 3D chain-like structure within 4 nucleoli (Panels A1 and A6 in Fig

2). From 30 min to 2.5 h of AMD treatment, all fluorescent UBF spots came close to each

other but maintained their number and size.

Between 2.5 and 5 h, UBF-positive spots strongly reorganized within smaller and roundish

nucleoli. Their number decreased due to their coalescence, whereas their individual size and

fluorescence intensity increased markedly. Four to five hours after beginning AMD treatment,

nucleoli contained a few large and brightly fluorescent aggregates which shifted toward the

nucleolar periphery and fused to constitute two to three brightly fluorescent caps 0.7–3.5 μm

in size. At 8 h, the four nucleoli contained UBF caps

To better analyze the step-by-step coalescence of UBF-GFP structures, we chose to zoom

and orientate 5 of these structures during the period between 2 h 45 min and 7 h 30 min (Fig

3). Here, five UBF-positive spheroids (N˚1—N˚5) contained in a ROI (delimited by the blue

dotted line) successively gathered to form a typical cap. Between 2 h 45 min and 7 h 30 min,

spheroids N˚1and N˚2 fused to give structure A; the latter gathered with N˚3 to give B and,

finally, N˚4 and N˚5 gathered with B to give C. At the end of this process, C had a typical 3D

cap structure which resulted from both fusion and gathering of the different spheroids and

which was much more compact than the initial ROI.

Fig 1. 4D evolution of nucleolar volume and topography during AMD treatment in living KB cells. One

hundred Z-stacks were acquired during 8 h and images were generated by Rev4D software. (A–H) Gallery of

3D reconstructions displaying nuclear and nucleolar evolution and showing the whole nucleus (low threshold,

transparent yellow), the nucleoli (medium threshold, transparent orange) and the DFC (high threshold, solid

red) (same cell as in S8 Fig and S1–S5 Movies). (F–H) Trajectories of the center of mass of each nucleolus,

demonstrating that their relative position is fixed, that there is no nucleolar fusion, and that all nucleoli rotate

around nucleolus #2 (see traces of nucleoli 1 to 6 on H). The scale bars represent 10 μm in (A); 8 μm in (F). (I,

J) Changes of volume and topography of six nucleoli within the same nucleus, shown in different colors.

During inhibition, nucleoli decrease in size (I) and are positioned at a constant distance from each other (J).

https://doi.org/10.1371/journal.pone.0187977.g001
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Fig 2. 4D dynamics of UBF-GFP during inhibition of rRNA synthesis in living KB cells. (A–D), gallery of

fluorescence maximum intensity projections and 3D reconstructions displaying the dynamics of UBF-GFP

during nucleolar segregation. Reorganization of UBF-GFP spots was based on their successive gathering,

fusion, enlargement, and final grouping into two or three caps localized at the nucleolar periphery. Blue and

red arrowheads identify two large nucleoli to demonstrate their rotation within the nucleus during the step-by-

step reorganization of UBF-GFP spots and (E1-E4) their 3D visualization at times 0 and 8 h respectively. The

scale bars represent 10 μm.

https://doi.org/10.1371/journal.pone.0187977.g002
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Altogether, as UBF-GFP is a marker of under-condensed rRNA genes, we conclude that

during AMD treatment fusion of rRNA gene clusters is restricted to each nucleolus and never

occurs between clusters located in different nucleoli. To further question if condensed nucleo-

lar chromatin behaves in the same way, we investigated its 3D reorganization by confocal

microscopy in fixed and in living cells.

Fig 3. 4D visualization of UBF-GFP dynamics during inhibition of rRNA synthesis in the same living

KB cells as presented on Fig 2. (A–T) An example of 4D dynamics demonstrating successive fusion and

gathering of five UBF positive spheroids (N˚1 –N˚5) contained in a ROI (delimited by the blue dotted line).

Between 2 h 45 min and 7 h 30 min, we noticed the following steps: spheroids N˚1and N˚2 fused to give

structure A; the latter gathered with N˚3 to give B, and N˚4 and N˚5 finally gathered to B to give C. Note that

the cap resulting from the fusion and gathering of the different spheroids is more compact than the initial

region limited by the blue dotted line. The scale bar represents 2 μm.

https://doi.org/10.1371/journal.pone.0187977.g003
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The intra- and perinucleolar condensed chromatin network reorganizes

strongly during AMD treatment

3D organization of the ICC network in control HeLa cells. In fixed control KB and

HeLa cells transiently or stably expressing histone H2B-GFP, we imaged a 3D network of

nucleolar chromatin (Fig 4, S1C and S2 Figs) constituted of a shell of PCC in continuity with

strands of ICC.

Fig 4. ICC network inside the nucleolar volume of one control HeLa cell expressing histone H2B-GFP.

(A) X/Y plane section of the nucleus. (B–D) Three consecutive optical sections (sections 27 (S27), 29 (S29)

and 30 (S30) passing through the nucleolus. The ICC network was clearly seen (red arrow on C). (E) Y/Z

plane section of the nucleus. (F-I) Two consecutive Y/Z (F, G) and X/Z (H, I) plane sections at higher

magnification. Red arrows indicate strands of ICC localized in the depth of the nucleolar volume. The scale

bars represent 7 μm in (A); 4.5 μm in (B-D); 5.5 μm in (E); 4.5 μm in (F-I).

https://doi.org/10.1371/journal.pone.0187977.g004
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In cells fixed at different times during the action of AMD, we observed that the ICC net-

work became less and less extended compared to control cells (Fig 5A–5E). After 3 h of treat-

ment (I), the ICC was seen as a small single nucleolar spheroid which was often in contact

with the inner surface of the nucleolar cap (Fig 5F) or PCC.

4D dynamics of ICC and PCC during AMD treatment. To further understand the pre-

cise reorganization of nucleolar chromatin, we performed time-lapse imaging of living HeLa

Fig 5. AMD-induced remodeling of ICC as revealed in fixed HeLa cells stably expressing H2B-GFP.

(A–E) Gradual transition of ICC from a network-like organization (red arrows) to coarse clumps during 1.5 h of

AMD treatment. (A) After 15 min the ICC network was more prominent than in control cells. (B) After 30 min

the ICC network began coarsening. (C) After 45 min gradual shrinkage of the ICC network and fusion of

individual ICC areas into large clumps became obvious. (D, E) During the next 45 min, ICC areas transformed

into single large spheroids, often in contact with the PCC shell. (F) Nucleolar capping after 3 h; only tiny ICC

inclusions (red arrows) attached to the inner margin of the nucleolar cap were observed. The scale bars

indicate 6 μm in (A, B); 5 μm in (C); 4.5 μm in (D); 4 μm in (E); 4.5 μm in (F).

https://doi.org/10.1371/journal.pone.0187977.g005
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cells expressing histone H2B-GFP. The displacement of ICC inside the nucleolus during

AMD treatment is shown in movies (S7 and S8 Movies) and a gallery displaying 2D images

of the corresponding movie (Fig 6). Initially (start of experiment, Fig 6A) all nucleoli revealed

fluorescence mostly dispersed in the form of a fine meshwork, consisting of intermittent thin

filaments and small clumps that always contacted the PCC. Within the first 15 min drastic

changes in the localization and morphology of chromatin were observed; the filamentous

structure began to condense into coarse aggregates (15 min, Fig 6B) and we observed a pro-

gressive condensation and increase of thickness of the PCC shell. After 30 min, we observed a

significant disorganization of the intranucleolar meshwork: the filamentous appearance of

histone H2B-GFP labeling was replaced by large clumps (30 min and 45 min, Fig 6C and

6D). Simultaneously these large clumps shifted from the nucleolar interior towards the PCC.

During this migration several clumps approached each other and fused before they coalesced

with the PCC shell (45 min, 60 min and 90 min). Thus, the number of GFP labeled intranu-

cleolar structures decreased gradually. Next, the ICC shifted completely to the periphery and

appeared like PCC protrusions into the nucleolar body (105–180 min). Frequently, fluores-

cence of H2B-GFP was no longer visible in the nucleoli.

The intra- and perinucleolar condensed chromatin network is always in

contact with structures containing UBF during nucleolar reorganization

To analyze the 3D relationships between the nucleolar condensed chromatin and structures

containing UBF (termed UBF spots hereafter) we imaged immunolabeled UBF and H2B-GFP

(or UBFdsRed and H2B-GFP) in fixed cells. In 3D views of control cells (Fig 7; S5 Fig), ICC

appeared as an intra-nucleolar network connecting UBF spots with the PCC shell. This clearly

demonstrated the proximity of ICC and UBF spots and the spatial integration of the latter into

the whole network of NAC.

This spatial interaction between UBF spots and histone H2B-GFP could be also demon-

strated on 3D reconstructions of nucleoli of cells treated with AMD during 1 h (Fig 8). More-

over we also observed that ICC clumps, which were linked to UBF spots, were also in contact

with a PCC shell and created a bridge between all these components. On the other hand, the

same analysis performed on fully segregated nucleoli (2 h of AMD treatment) confirmed that

there was no more ICC and that the convex side of the large UBF-positive caps was in contact

with PCC.

Altogether, this analysis of fixed cells shows the permanent contact between UBF spots and

ICC clumps during nucleolar reorganization.

Ultrastructural imaging shows that UBF is always contained within FCs

during inhibition of rRNA synthesis

To identify the nucleolar structures which contain UBF during the reorganization induced by

AMD, we immunolocalized UBF-GFP molecules and imaged them by electron microscopy,

using a pre-embedding technique [35]. In control cells (Fig 9), numerous silver/gold particles

identifying UBF-GFP were localized in FCs (limited by a dotted line) lined by a discontinuous

cord of DFC (delimited by a black line on Fig 9C). Very few particles were identified within

the DFC, granular component (GC), nucleoplasm, or cytoplasm.

After 1 h of treatment with AMD (Fig 10A), silver/gold particles identifying UBF-GFP were

exclusively localized within FCs which were positioned close to each other and were frequently

linked to vacuoles or interstices (arrows) containing small clumps of ICC. Contrary to control

cells, the DFC partly surrounded the FC and was thicker; moreover the GC was more homoge-

neous and compact. After 2 h (Fig 10B), UBF-GFP labeling was found in cap-shaped FCs
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Fig 6. The dynamics of histone H2B-GFP during inhibition of rRNA synthesis in living HeLa cells. This

gallery of optical sections was extracted from z-stacks of corresponding time series and displayed with 15–45

min intervals to fix the main stages of ICC evolution (corresponds to S8 Movie). The nuclei of three cells in the

white rectangle on the initial image (“Start of experiment”) were enlarged to visualize the evolution of the ICC in

more detail. In the course of AMD treatment we observed a gradual condensation of filamentous structures of

the ICC into coarse clumps during 120 min with their migration from the nucleolar interior towards the PCC shell

(165 min). During this movement several ICC clumps approached each other and fused just before the
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located on the periphery of ovoid and compact nucleoli. A direct contact between these FCs

and large clumps of PCC was frequently observed.

Successive time-lapse confocal microscopy and ultrastructural imaging

of the same cells shows that condensed intranucleolar chromatin and

fibrillar centers are close together and are contained within nucleolar

vacuoles

To analyze the ultrastructure of nucleolar components in which ICC clumps observed in living

cells are localized during the pre-segregated stages of AMD action, we developed a correlative

coalescence with the PCC. Note that at the end of the experiment (180 min) there was no more chromatin within

the nucleolus. The scale bars represent 12 μm.

https://doi.org/10.1371/journal.pone.0187977.g006

Fig 7. Spatial proximity of intranucleolar chromatin (ICC), perinucleolar chromatin (PCC), and UBF spots in fixed control

cells. (A) 3D reconstruction of the nucleus in a HeLa cell stably expressing histone H2B-GFP using volume rendering. A virtual

cube inserted into the nuclear volume delineates the nucleolar territory (nl) extracted in order to analyze its interior. (B) The

nucleolar volume reconstructed using simultaneous volume rendering and surface visualization of intranucleolar H2B-GFP for

better visualization of ICC. After volume extraction, the nucleolar interior revealed a network of ICC interconnected with the PCC

shell. (C, D) Relationships between ICC (green) and UBF spots (red) within the nucleolus of KB cells cotransfected with H2B-GFP

and UBF-dsRed. These 3D views demonstrate, inside the nucleolus, the presence of the ICC network in contact with UBF spots.

The scale bar represents 3.5 μm in (A, B); 5 μm in (C) and 3.5 μm in (D).

https://doi.org/10.1371/journal.pone.0187977.g007
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Fig 8. Interaction between UBF spots, ICC, and PCC within the pre-segregated nucleoli of HeLa and KB cells. (A-C) Consecutive

optical sections (S.21-23) of nucleoli in HeLa cells stably expressing histone H2B-GFP. Note the prominent ICC clumps within the nucleolar

interior after rRNA synthesis inhibition. These cells were immunolabeled for UBF at the end of time-lapse imaging (the corresponding nuclei

are marked by red stars on A, D). (D-F) The same optical sections merged with 3D surface rendering of UBF spots (red). Note the direct

contact between UBF spots and ICC inclusions. At the same time UBF spots that shifted to the nucleolar periphery became incorporated into

the solid PCC shell. (G-I) 3D reconstructions of enlarged UBF spots extracted from the nucleolus of a KB cell doubly transfected with

H2B-GFP and UBF-dsRed plasmids, fixed and imaged. A typical pre-segregated nucleolus containing five large UBF spots reconstructed

using volume rendering (green) and surface visualization (red). Incorporation of peripherally-located UBF spots into the massive PCC shell

as well as their contact with ICC can be readily recognized. Note the ICC clump that is in contact with two UBF spots. After extraction

according to the virtual cubes in H, images were rotated at an appropriate angle to exemplify how UBF spots can be linked to each other by

ICC. The scale bars represent 10 μm in (A); 5 μm in (G, H); 2 μm in (I).

https://doi.org/10.1371/journal.pone.0187977.g008
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light and electron microscopy (CLEM) approach (Fig 11, S6 and S17 Figs). The different steps

of this approach were:

1. step 1 (S6 and S7 Figs): a group of COI (red circle on S6A–S6F and S7 Figs) was imaged by

time-lapse confocal microscopy to analyze the AMD-induced 3D reorganization of intra-

nucleolar chromatin tagged with H2B-GFP;

Fig 9. Ultrastructural pre-embedding localization of UBF within the nucleolus of control KB cells. (A)

An abundant labeling (silver/gold particles) inside several fibrillar centers (fc) (outlined by a white dotted line).

A few particles (black arrows) were visible within the nucleolar dense fibrillary component (dfc), nucleolar

granular component (gc), nucleoplasm, or cytoplasm. (B, C) At high magnification, numerous particles were

located within fibrillar centers (fc) (outlined by white dotted lines). The dfc is outlined by a black line on C. The

scale bars represent 500 nm.

https://doi.org/10.1371/journal.pone.0187977.g009
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Fig 10. Ultrastructural pre-embedding localization of UBF within the nucleolus of KB cells treated

with AMD for 1 h (A) or 2 h (B). (A) Abundant labeling (silver/gold particles) inside two large ovoid fcs

(outlined by a white dotted line). White arrows point to electron-transparent vacuoles (or interstices)

containing small clumps of intranucleolar condensed chromatin (icc). The dfc is outlined by a black line. (B)

Numerous silver/gold particles were located within three cap-shaped fcs (outlined by white dotted lines)

positioned at the nucleolar periphery. Note the direct contact between large clumps of perinucleolar

condensed chromatin (pcc; outlined by a dark dotted line) and two fcs. Very few particles were found on the

dfc (outlined by a black line) and the gc. Scale bars represent 500 nm.

https://doi.org/10.1371/journal.pone.0187977.g010
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Fig 11. CLEM approach: Step 4. Within cells treated with AMD during 1 h, the contours of nucleolar

components identified on serial ultrathin sections were superposed to build 3D models of four different

nucleoli (nl). Confocal images of the same nucleoli were used to confirm the identification of ICC (GFP

fluorescence) and of FC (UBF fluorescence). The color-code is: nuclear and nucleolar contours—black and light

blue lines; FCs—red and brown lines; ICC—black shading; NVs—green lines; DFC—dark blue lines. (A) 3D

reconstruction of the equatorial part of the nucleolus in cell N˚1(serial ultrathin sections on S10 Fig and serial
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2. step 2 (S8 Fig, S9 Movie): after 1 h of AMD treatment, cells were fixed and immunostained

for UBF. The same COI were then imaged by confocal microscopy to perform a simulta-

neous 3D visualization of ICC and UBF;

3. step 3 (S9 Fig): the cells were processed for electron microscopy and the COI were identi-

fied and trimmed; these cells were then cut through numerous 0.1 μm serial ultrathin sec-

tions and their nuclei were imaged at high magnification (S10–S13 Figs);

4. step 4 (Fig 11, S14–S17 Figs): the contours of nucleolar components identified on the serial

ultrathin sections were superposed to build 3D models of different nucleoli treated with

AMD during 1 h. Confocal images of the same nucleoli were used to confirm the identifica-

tion of ICC (GFP fluorescence) and of FCs (UBF fluorescence)

Altogether, this overlay technique (CTO) allowed the demonstration that ICC clumps and

FC are always close together during all the steps of nucleolar reorganization and are contained

within a complex network of nucleolar vacuolar channels.

Discussion

There is substantial evidence attesting that the nucleolus is largely involved in some specific

events far beyond its key function as a pre-ribosome factory; it appears to house and integrate

many versatile functions, playing a central role in the control of gene expression during cell

cycle progression, aging, apoptosis, cellular stress signaling and responses, malignant transfor-

mation, viral infection, etc. [9–11, 63–77]. Over the past 15–20 years the nucleolus has become

also recognized as a unique model to study the spatial organization of actively transcribing

mammalian genes in the functional and dynamic association with overall structure and com-

paction of interphase chromatin. The molecular organization of the nucleolus is well docu-

mented at the genome and proteome levels. Conversely, it is still unknown how a giant

tandem array of r-gene sequences associated with r-chromatin protein machineries is folded

three-dimensionally to be structurally and functionally integrated within interphase NOR-

bearing chromosomal territories. It remains much more problematic to understand how the

structure and proper territorial arrangement of r-chromatin domains reorganize upon tran-

scriptional inactivation of r-genes and how this is reflected in the dynamics of nucleolar com-

ponents. Meanwhile, it has become generally accepted that the sophisticated spatial system of

naDNA comprises transcriptionally active rDNA loops packed as non-nucleosomal structures

and folded into FCs, along with nucleolar nucleosomal chromatin with still undetermined

structure (genome map), functional activity and territorial organization. Once constituted, the

nucleolus remains intimately associated with the physiological state of NAC, whose structural

remodeling can affect the spatial arrangement of active r-genes and the global organization of

the nucleolar factories.

However, the response of the whole naDNA system to the selective transcriptional arrest of

r-genes in living cells remains completely unexplored. Therefore, the primary goal of this

study was to demonstrate the structural and functional interplay between r-gene inactivation

and large-scale modifications of intranuclear and intranucleolar structure including: (i) possi-

ble territorial reorganization of rDNA genes; (ii) nucleolar movement and intranucleolar

fluorescent images shown on S14D and S14E Fig). (B, C) Two pre-segregated nucleoli in cell N˚2 (serial

ultrathin sections on S11 and S12 Figs and serial fluorescent images shown on S14A–S14C Fig). (D) 3D

reconstruction of a nucleus with a ring-shaped nucleolus with one FC (serial ultrathin sections on S13 Fig and

serial fluorescent images shown on S14F–S14I Fig).

https://doi.org/10.1371/journal.pone.0187977.g011
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dynamics of r-chromatin within FCs, and (iii) the role of NAC in the mechanism of intranu-

cleolar reformation during segregation and capping.

Are nucleoli “immobile” due to the fixed position of rDNA genes within

NOR-bearing chromosomal territories?

It is known that active r-DNA genes occupy and share, together with mRNA genes, a central

position in the nucleus [19, 78]. In the present study we showed that during segregation and

capping, nucleoli do not change their initial relative positions within the nuclear volume, so

that nucleolar relocation and fusion was never observed. In addition, FC and DFC from differ-

ent nucleoli never gathered or fused, always staying within the limits of their own nucleolar

territory. Consequently, each nucleolus may represent a separate compartment emerging

due to the spatial interplay between r-chromatin loop(s) and nucleolar associated chromatin

belonging to distinct NOR-bearing chromosomal territories that include ribosomal and non-

ribosomal genomic regions. These findings imply that active and inactive nucleoli have a

similar central location within the nucleus. This could result from the attachment of corre-

sponding NOR-bearing chromosomal territories to the nuclear matrix that plays a key role in

the compartmentalization and therefore in the function of the nucleus [79].

Concerted contraction of nucleolar associated chromatin puts nucleolar

components in motion

The ability of FCs and DFCs to move and fuse within a crowded nucleolar volume was

revealed by early EM studies on artificial inactivation of r-genes, including the first experi-

ments where AMD was used as an inhibitor [1–3, 52–54]. However, the mechanisms underly-

ing spatial displacement of r-genes and transcription sites, as well as the sites of pre-rRNA

processing at molecular and structural levels, have not been elucidated so far. Our interpreta-

tion of the dynamics of intra-nucleolar inactivation involves the mobility of the whole nucleo-

lar-associated chromatin system on the one hand, and its structural integrity with the FC and

adjacent DFC (hereafter FC/DFC assembly) on the other. It is the simultaneous contraction of

the ICC and PCC and perinucleolar dislocation of ICC that induce the motion of the FC/DFC

assembly ending in the form of cap-shaped structures tightly adherent to the PCC rim.

Contrary to a relatively fixed position of rDNA genes in response to their selective inhibi-

tion, we observed clear intradomain dynamics. Therefore, together with strong rotational

movement of the nucleolus we traced the intranucleolar dynamics of FCs, particularly, their

initial (within 1 h) confluence into larger structures, and followed up their further migration

from the center of the nucleolus to its periphery. The motion of individual FCs was apparently

asynchronous.

As a rule, large FCs localized on the periphery of the nucleolus remained immobile for a

long time until their final transformation into caps. At the same time, smaller FCs, more dis-

persed throughout the nucleolar volume, were continuously migrating. The structures result-

ing from the fusion of single small FCs gradually moved up to approach the larger “immobile”

FCs, first coming closer and then merging with them.

ICC clumps also demonstrated similar trajectories and asynchrony, whereas large peripher-

ally located ICC blocks bound to the PCC rim exhibited low mobility. Analysis of the movies

shows that the disorganization of the intra-nucleolar chromatin network involved the gradual

gathering of the filamentous structure of ICC into coarse aggregates and their shift from the

nucleolar interior towards the PCC. Like FCs, in later steps of AMD action, ICC clumps gradu-

ally shifted to a perinucleolar location. However, peripherally located ICC clumps, before they

completely merged with the PCC rim, were capable of keeping a long-lasting contact with the
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PCC and although relatively “immobile”, they still remained clearly visible as distinct intranu-

cleolar structures. At the same time, new blocks from the inner regions of the nucleolus started

to move closer to them because of further condensation of the unit ICC network. They either

merged with larger ICC clumps or, having reached the nucleolar periphery, stayed “immobile”

and visible within a certain period of time until incorporated into PCC. These live cell observa-

tions strongly support our proposition that gradual coalescence events are largely involved in

the mechanisms of nucleolar segregation and capping.

Is intranucleolar dynamics of FCs restricted due to attachment to PCC

via DJ heterochromatin?

The dynamics of FCs observed during time-lapse imaging can be explained by the progressive

condensation of nucleolar-associated chromatin in response to inactivation of r-gene tran-

scription. The physical bond between FCs and ICC may provoke their movement due to the

dynamics of nucleolar-associated chromatin constituents. Thus within incompletely segre-

gated nucleoli, FCs were always in contact with intranucleolar blocks of chromatin, which in

turn were connected with PCC that forms a thick layer around an inactivated nucleolus. The

position of peripherally shifted ICC blocks is reminiscent of that of flanking rDNA heterochro-

matin protrusions, DJ in particular [25]. This suggests that ICC may represent protrusions of

PJ and DJ into nucleolar territory whereas PCC blocks surrounding the nucleolar territory

may be constituted by centromeric and telomeric heterochromatin. Finally, the disappearance

of ICC (observed on Figs 5 and 6) could result from its incorporation into PCC. After this

step, FCs spread onto the surface of the residual nucleolus and we propose that they acquired a

crescent-like shape due to their squeezing between the PCC rim and the spherical body of the

residual nucleolus.

Dynamic model of the nucleolus

Now, our aim is to formulate a dynamic model embracing the data about a possible structural

and functional impact of nucleolar-associated chromatin and of the vacuolar component in

the global organization and inactivation dynamics of the nucleolus. By merging fluorescence

and EM images we reached the conclusion that r-chromatin of FCs, together with intra- and

perinucleolar condensed chromatin, is part of a unit system structurally integrated into the

network of nucleolar vacuoles. Importantly, during the selective inactivation of r-gene tran-

scription this system reacts in a concerted manner, so that 3D reorganization of the vacuolar

system proceeds in parallel with the rearrangement of the FC/NAC unit. Therefore we con-

sider nucleolar vacuoles rather as an active nucleolar constituent, crucial for the spatial

distribution of ICC and FCs. In this context we hypothesize that continuous ICC strands, ema-

nating from the PCC shell, are interconnected with FCs through the network of united chan-

nels attributed on ultrathin sections to the vacuolar component.

The unit system described comprises the UBF-positive non-nucleosomal segments of r-

chromatin, loosely folded at the transcription sites, as well as nucleosomal chromatin located

between FCs and at the border with PCC. In contrast to nucleosomal chromatin, the relaxed

state could be considered as ubiquitous, facilitating transcription and replication within FC.

Meanwhile, nucleosomal intra- and peri-nucleolar condensed chromatin regions are physi-

cally connected with r-chromatin and may contain silenced r-genes as well as non-ribosomal

genes. At least the portion of intra-nucleolar chromatin seems to be constructed from centro-

meric and telomeric heterochromatin segments linking respectively to the proximal and the

distal rDNA flanking regions.
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Thus, the functional organization of r-chromatin within the nucleolar space can exist due

to the spatial interplay between rDNA and heterochromatic blocks emanating from peri-cen-

tromeric and peri-telomeric segments of the short chromosome arms. We can also propose

that during nucleologenesis [80] the centromeric and telomeric heterochromatin blocks of sev-

eral juxtaposed NOR-bearing chromosomal territories can interact, forming a PCC shell sepa-

rating the nucleolar volume from the nucleoplasm. Then, it could be well assumed that the

permanent repressive and heterochromatinized state of ICC or of the entire NAC may appear

to provide the force ensuring the global integrity of the nucleolus.

Furthermore, peripherally-shifted ICC clumps directly linked to the surrounding PCC can

be attributed to the peri-telomeric DJ regions, while ICC localized inside the nucleolar volume

corresponds to peri-centromeric PJ chromatin. This sophisticated structure provides the struc-

tural support for spatial organization of the nucleolus.

The obvious implication of this model is the possibility of schematizing the pathway of

nucleolar reorganization during inhibition of rRNA synthesis. During this inhibition the size

of the nucleolus gradually decreases. Moreover, we propose that the density of compaction

within intra-nucleolar chromatin increases with the inactivation of r-genes. Thus we can

hypothesize that the chromatin of DJ origin positioned in the peripheral sites of intra-nucleo-

lar condensed chromatin meshwork becomes more condensed, then shortened and shifted to

PCC due to its contraction. During their migration towards PCC they also pull the connected

FCs to the nucleolar periphery. Peri-centromeric intra-nucleolar condensed chromatin from

the nucleolar interior, localized between FCs, becomes more condensed as well. As a result,

the distance between FCs also decreases, so that FCs may juxtapose within the pre-segregated

nucleoli. The juxtaposed FCs can be readily recognized as individual entities because they are

still separated by ICC clumps. Very likely the physical/chemical state and therefore the dynam-

ics of individual FC/DFC assemblies, enriched by UBF and pre-rRNA, can be similar to those

of self-assembling soft active aggregates that are characterized by a high concentration of pro-

teins and RNAs [81]. Hence, by using a targeted cryo-correlative nano-imaging approach, we

recently demonstrated that DFC and FC of control cells contained around 70% and 80% of

water, respectively [82]. In the same study, we also quantified the water content in cells treated

with AMD for 3 h and found an increase of water content in all compartments of the nucleus

and cytoplasm and, more particularly, that segregated DFC and FC (caps) contained around

80 and 90% of water, respectively. Thus, we propose that the increase of water content induced

by AMD treatment could decrease the viscosity of nuclear compartments and facilitate the

reorganization and fusion of chromatin clumps, of DFC and FCs as described for different

types of protein- and RNA-rich NBs considered as condensed liquid-like droplets [29, 81].

Finally, ICC clumps inserted between FCs fused with the PCC shell, provoking coalescence of

individual FCs and their gathering as nucleolar caps on the nucleolar periphery. This suggests

that each nucleolar cap might be composed of several FCs juxtaposed on the margin of the

nucleolar remnants.

Concluding remarks

In the present study we used several complementary cell imaging approaches to provide new

insights into the spatial reorganization of r-genes upon AMD inactivation, relative to con-

densed chromatin with a canonical structure. Time-lapse confocal microscopy showed that: i)

nucleoli remain independent units upon inhibition of rRNA synthesis, ii) in each nucleolus,

structures containing UBF gather during a sequential process and are always in contact with

the condensing network of intra and peri-nucleolar chromatin. Successive time-lapse confocal

microscopy and ultrastructural imaging of the same cells demonstrate that all FCs contain
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UBF and are always in contact with condensing intra-nucleolar chromatin. Finally, the finding

that FCs and intra-nucleolar chromatin are contained within large nucleolar vacuoles suggest

that they are in continuity and belong to the same chromatin entity.

Supporting information

S1 Fig. Structural and ultrastructural features of nucleoli in control KB and HeLa cells.

(A) KB cells imaged by phase-contrast microscopy. Note the prominent light zones (outlined

by white circles) within the large dense nucleoli (nl). (B) In EM images, nucleoli of KB cells

exhibit a clear tripartite organization that includes: (i) large, pale-stained fibrillary centers

(FC); (ii) a well-developed rim of dense fibrillary component (DFC) tightly encircling FCs

(FC/DFC assembly); and (iii) an abundant granular component (GC) of moderate density.

Numerous electron lucent interstices (arrows) containing intra-nucleolar condensed chro-

matin (ICC) fibrils and clumps penetrate the GC. All nucleoli were found in association

with large blocks of perinucleolar condensed chromatin (PCC). (C) Confocal microscopy

imaging of nuclei in HeLa cells stably expressing histone H2B-GFP. Note the profound rim

of PCC (arrows) surrounding the nucleolar territory (nl). Nucleoli contain numerous ICC

inclusions that link to the PCC shell. The scale bars represent 4.5 μm in (A); 1.5 μm in (B);

10 μm in (C).

(TIF)

S2 Fig. Presence of the ICC network inside nucleolar volume of KB cells. (A, B) X/Y and Z/

Y optical sections of the nucleus in a cell transiently expressing H2B-GFP. C) X/Y section of

the nucleus in the same cell as (A) showing the nucleolus (nl) at higher magnification. Arrows

indicate strands of ICC. (D, E) Two consecutive Z/Y sections of the nucleus shown on the pre-

ceeding images. Arrows point to ICC strands localized in the depth of the nucleolar volume.

The scale bars represent 5 μm in (A, B); 3 μm in (C); 3.5 μm in (D, E).

(TIF)

S3 Fig. 4D evolution of nucleolar volume in the course of AmD treatment. Corresponds to

the cell presented on S1–S5 Movies. (A—H) Gallery of 3D reconstructions displaying nucleo-

lar changes during the inhibition of rRNA synthesis. These reconstructions were performed

using surface rendering at medium threshold to show nucleolar limits. Nucleoli, with an initial

irregular shape, became spherical during inhibition. The scale bar represents 2 μm.

(TIF)

S4 Fig. 2D/3D organization of UBF-GFP in control KB cells (CTRL) and cells treated with

AMD for 1 h (AMD 1H) or 2 h (AMD 2H). (A, D, G) phase contrast. (B, E, H) merged phase

contrast and fluorescence. (C, F, I) 3D reconstruction of UBF-GFP fluorescence. In control

cells, UBF was localized exclusively in the form of brightly fluorescent spots juxtaposed in a

chain-like manner. In cells treated with AMD, UBF was localized strictly within large nucleolar

regions with a low phase contrast (arrows on D and G). The scale bars represent 5 μm.

(TIF)

S5 Fig. Continuity of UBF-positive structures and of nucleolar associated chromatin

(NAC) in fixed control HeLa cells. (A) 3D reconstruction of the nucleus (green) and immu-

nolabeled UBF (red) in cells stably expressing H2B-GFP (transparent surface rendering). Black

circles delineate the nucleoli (nl). (B, C) Two successive virtual sections (X/Y planes) revealing

a strong PCC shell surrounding the nucleolus. Profound ICC strands (blue arrow) which are

in a close structural link with UBF-positive NCs (S3B Fig) look like protrusions of PCC into

the nucleolar space (S3C Fig). (D–L) Gallery of successive virtual sections cut in X/Y (S.28-32;
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S3D–S3H Fig) and X/Z (S.253-256; S3I–S3L Fig) planes shows the incorporation of ICC

clumps with UBF-positive NCs on one side and ICC with PCC on another side. The close

structural link between ICC (blue arrows) and UBF-positive NCs is obvious when imaged at

different depths of cutting (yellow arrows). The scale bars represent 5 μm.

(TIF)

S6 Fig. Correlative Light and Electron Microscopy (CLEM) approach: Step 1. (A–F) Start of

experiment HeLa/H2B-GFP cells imaged before addition of AMD. Cells selected for CLEM

are localized in red circles. (G, H) At higher magnification, the nucleoli (nl) were seen dis-

tinctly by Nomarsky contrast; fluorescence imaging of H2B-GFP revealed intranucleolar

clumps of ICC. Four cells were identified (#1 to #4). The scale bars represent 100 μm in (A-C);

50 μm in (D-F); 10 μm in (G, H).

(TIF)

S7 Fig. Correlative Light and Electron Microscopy (CLEM) approach: Step 1 (continued

from S6 Fig). (A–F) End of experiment: the same ROI as on Fig 6A–6H imaged after treat-

ment with AmD during 1 h. The topography of cells selected for CLEM (red circles) remains

unchanged. (G, H) At higher magnification, the nucleoli (nl) were seen distinctly by Nomarsky

contrast; fluorescence imaging of H2B-GFP revealed coarse intranucleolar clumps of ICC.

Four cells (N˚1 to N˚4) were selected for CLEM. The scale bars represent 100 μm in (A-C);

50 μm in (D-F); 10 μm in (G, H).

(TIF)

S8 Fig. CLEM approach: Step 2 (continued from S6 Fig). (A-H) The COI on S6 Fig was fixed

after 1 h of AMD treatment (S8A–S8G Fig), immunolabeled for UBF (S8H Fig), and imaged

by confocal microscopy. The localization of cells within the target group was the same as dur-

ing living cell imaging. (G, H) At higher magnification after fixation the nucleoli, imaged in

Nomarsky contrast, became prominent (G). All pre-segregated nucleoli (nl) reveal several

UBF-positive red label (H). All the nucleoli revealed UBF-positive red label (H). The same four

cells (N˚1 to N˚4) were selected for CLEM. The scale bars represent 100 μm in (A-C); 50 μm in

(D-F); 10 μm in (G, H).

(TIF)

S9 Fig. CLEM approach: Step 3 (continued from S6 Fig). (A, B) After dehydration and plas-

tic embedding, serial ultrathin sections of the same group of cells were imaged by electron

microscopy. (A) H2B-GFP is green and UBF is red. All the nucleoli revealed UBF-positive red

label. Note the structural continuity of ICC and UBF-positive spots. (B) On this section cells 1

to 4 are clearly identified (compare with S9A Fig). Nucleolar sub-components of cells N˚1 and

N˚2 (marked by yellow stars) are shown in more detail in S10–S12 Figs. The scale bars repre-

sent 12 μm in (A); 16 μm in (B).

(TIF)

S10 Fig. CLEM approach: Step 3 (continued from S6 Fig). The pre-segregated nucleolus of

the cell N˚1 (yellow star on S9 Fig) was analyzed by electron microscopy through 21 serial

0.1 μm ultrathin sections. (A-J) Ten of these sections are shown. This ultrastructural analysis

clearly identified four FCs (FC N˚1 to N˚4; outlined by dotted black lines) which appeared

as circular structures surrounded by NVs and only partly in contact with reorganized dense

fibrillary component (dfc). Note that clumps of intranucleolar condensed chromatin (icc)

were observed within vacuoles. Granular component (gc); peri-nucleolar condensed chroma-

tin (pcc). The scale bars represent 0.5 μm.

(TIF)
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S11 Fig. Seven serial ultrathin sections (of a total of 17) of one of the two nucleoli in the

cell N˚2 submitted to CLEM analysis. (A–G) The nucleolus localized in the left part of the

nucleus (see S9 and S14A–S14C Figs) contains 5 FCs, but only 3 appear within the serial sec-

tions shown. Note that two FCs (FC N˚3 and FC N˚4) are connected by an ICC strand local-

ized within the narrow channel belonging to the NV (D). The scale bar represents 0.5 μm.

(TIF)

S12 Fig. Seven serial ultrathin sections (a total of 17) of one of the two nucleoli in the cell

N˚2 submitted to CLEM analysis (continued). (A–G) The nucleolus localized in the right

part of the nucleus (see S9 and S14A–S14C Figs) contains 4 FCs. The nucleolus is entirely pen-

etrated by the system of expanded NV in which FCs and ICC are localized. The structural link

between FCs and intravacuolar ICC inclusions is obvious. The scale bar represents 0.5 μm.

(TIF)

S13 Fig. Six serial ultrathin sections (of a total of 28) of a nucleus containing a ring-shaped

nucleolus. (A-F) Successive ultrathin sections (S.10–S.15) crossing the “equatorial” segment of

the nucleolus that shows a so-called ring-shaped organization of NCs. Corresponds to the cell

presented on S14F–S14I Fig (matched by red star). The large FC was separated by a black dot-

ted line on (B-F). Note that the FC is localized within a large, round NV filled with ICC. Thus

the unity of FC, ICC and NV seems to be a common feature for all nucleolar types. The scale

bar represents 1.5 μm.

(TIF)

S14 Fig. CLEM study: Spatial relationship between FCs and ICC in pre-segregated nucleoli.

These images represent HeLa cells treated with AMD during 1 h. To correlate FCs and ICC

with the structures fluorescently marked by anti-UBF antibody and H2B-GFP, we applied the

confocal-transmission electron microscopy overlay technique (CTO) on the same cells (cells N

˚1 and N˚2 in S9 Fig). To arrest the nucleolar transformation before segregation we fixed cells

after 1 h or 1.5 h and performed anti-UBF immunolabeling. (A-C) Serial optical sections were

combined with surface rendering for UBF-positive NCs (red) to follow the link between FCs

and ICC in light and electron microscopy. (D, E) The nucleus of the cell N˚1 selected for

CLEM analysis at higher magnification. (F-I) Serial optical sections of the nucleus with a so-

called ring-shaped nucleolus. Serial sections revealed one large UBF-positive FC in contact

with prominent ICC clump. The scale bar represents: 12 μm in (A, C); 6 μm in (D, E); 8 μm in

(F-I).

(TIF)

S15 Fig. Identification of nucleolar components by superposition of corresponding struc-

tures/ultrastructures on fluorescence and EM images. To perform CLEM, fluorescence

images of the cell N˚1 (S9 and S14A–S14E Figs) were rotated 90˚ to be properly aligned with

the corresponding TEM images (S10 Fig). 3D reconstructions were performed by accurate

matching as described in Materials and methods. (A1–4) Demonstration of structural relation-

ship between condensed chromatin labeled by H2B-GFP (black) and anti-UBF antibody (red)

using a successive colocalization approach. (A1) H2B-GFP forms a massive clump crossing

the nucleolar volume (corresponds to S14D and S14E Fig). (A2) Due to lower resolution, only

two UBF-positive NCs were distinguished at the LM level while in EM the corresponding cell

reveals four FCs. (A3, A4) The structural link visible on the merged contours of H2B- and

UBF-positive NCs repeats the picture observed on S14D and S14E Fig. (B1–5) 3D reconstruc-

tions performed by a successive colocalization of the contours taken from serial ultrathin

sections of a corresponding nucleolus. (B1, 2) Colocalization of ICC and NVs (green): the

massive ICC clump appears completely immersed in the complex network of NVs. (B3, 4)
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Colocalization of FCs (brown) with the network of NVs: FCs are always in contact with NVs.

(B5) Colocalization of ICC, FCs and NVs (green): the unity of these NCs within the nucleolar

volume is clear. (C1–3) The nuclear and nucleolar contours taken from the fluorescence

images are marked in black and the nucleolar contours from serial ultrathin sections are

marked in light blue. (C1) Localization of the fluorescent label (black) within the unit system

of NVs (green) proves the identity of intra-nucleolar H2B-positive inclusions with ICC. (C2,

C3) Perfect colocalization of the anti-UBF fluorescent label (red) with three FCs (brown) and

NVs (green) definitively attributes UBF-positive structures to FCs. The 3D reconstruction in

(D1) was constructed using the sections cut at the same depth along the z-axis as (A4). In both

cases the massive ICC clump appears to be inserted between two FCs.

(TIF)

S16 Fig. Identification of NCs by superposition of the corresponding structures/ ultra-

structures on fluorescence and EM images (continued). 3D reconstructions according to the

nuclear and nucleolar contours outlined on fluorescence and EM images of two nucleoli (nl N

˚1 and nl N˚2) inside the cell N˚2 (corresponds to the S14A–S14C Fig). (A1, 2) Visualization

of the structural link on the merged contours of the nucleus and NCs fluorescently labeled by

H2B-GFP (black) and UBF (red), using a successive colocalization approach. (B1–4) 3D recon-

structions obtained by the successive colocalization of contours taken from serial ultrathin sec-

tions of the nucleoli N˚1 and N˚2 (corresponds to S9 and S14A–S14C Figs). Colocalization of

FCs (red) with the network of NVs (green): FCs are largely in contact with the vacuolar com-

ponent of the nucleolus. (C1–3) Colocalization of ICC (black) and NVs (green) performed for

nucleolus N˚1 (C1) as well as ICC, FCs and NVs in nucleolus N˚2 (C2, C3) in order to demon-

strate the unity of these NCs. (D1–4) CTO of fluorescent and TEM images adjusted to the

same magnification. The nuclear and nucleolar contours taken from fluorescence images are

marked in black and the nucleolar contours on ultrathin sections in light blue. Colocalization

of fluorescent H2B-GFP label (black) within the unit system of NVs (green) proves the identity

of intra-nucleolar histone H2B-positive inclusions and ICC (D1). The colocalization of fluo-

rescent anti-UBF label (red) with FCs (brown) and NVs (green) indicates the identity of UBF-

positive structures and FCs (D2, D3). At the same time the colocalization of the fluorescent

histone H2B-GFP and anti-UBF labels with ICC, FCs and NV (D4) demonstrates the unity of

these NCs.

(TIF)

S17 Fig. Identification of NCs by superposition of corresponding structures/ultrastruc-

tures on fluorescence and EM images (continued). 3D reconstruction of the pre-segregated

nucleolus in S13 and S14F–S14I Figs. Because of the presence of a large FC and a still profound

NV these nucleolar modifications represent a suitable model to demonstrate the unity of the

NCs. (A1–3) Successive colocalization approach to demonstrate the structural link between

the massive intra-nucleolar block labeled by H2B-GFP (black) and UBF (red). (B1–3) EM

colocalization of FCs (red), NV (green) and ICC (black): a massive ICC clump and FC are

completely immersed in the NV (B3). (C1 –D3) merge of fluorescence and TEM images using

a successive colocalization approach. The nuclear and nucleolar contours taken from the fluo-

rescence images are marked by black, whereas identical contours outlined on the TEM images

are light blue. Perfect colocalization of black and red fluorescence labels with ICC, FC and NV

(green) proves the idea that these structures compose the unit system.

(TIF)

S1 Movie. Dynamics of fibrillarin-GFP labeling: 8 h AMD treatment of living KB cells.

This 2D movie was created using z-/time-series collected at 5 min intervals by a Bio-Rad
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MRC-1024E LCM and Amira 5.5 software. Corresponds to the cell in Fig 1 and S3 Fig.

(MOV)

S2 Movie. 4D dynamics of nucleoli: 8 h AMD treatment of living KB cells. This movie was

created using z-/time-series collected at 5 min intervals by a Bio-Rad MRC-1024E LCM and

Rev4D software. Corresponds to the cell in Fig 1, S3 Fig and S1 Movie. During the experiment

the shape of nucleoli changes from complex to spheroid but they retain their fixed position

within the nuclear volume. No nucleolar fusion was observed.

(MOV)

S3 Movie. 4D dynamics of nucleoli: 8 h AMD treatment of living KB cells. This movie was

created using z-/time-series performed as in S2 Movie. Corresponds to the cell in Fig 1, S3 Fig

and S1 Movie. The trajectory of the center of mass of each nucleolus is traced in space and

time from left to right. During the last second of the movie, time is contracted in order to

show the true 3D trajectory of each nucleolus within the nuclear volume. No nucleolar fusion

was observed.

(MOV)

S4 Movie. 4D dynamics of nucleoli: 8 h AMD treatment of living KB cells. This movie was

created using z-/time-series performed as in S2 Movie. Corresponds to the cell in Fig 1, S3 Fig

and S1 Movie. Trajectories of three nucleoli are traced in space and time from left to right.

During the same time, the evolution of the volume of each nucleolus is traced showing a strong

decrease beginning at time 1 h.

(MOV)

S5 Movie. 4D dynamics of fibrillarin-GFP labeling within dense fibrillary component: 8 h

AMD, treatment of living KB cells. This movie was created as S2 Movie. Corresponds to the

cell in Fig 1, S3 Fig and S1 Movie.

(MOV)

S6 Movie. Dynamics of UBF-GFP labeling: 8 h AMD treatment of living KB cells. This 2D

movie was created using z-/time-series collected as in S1 Movie. Corresponds to the cell in

Figs 2 and 3.

(MOV)

S7 Movie. Dynamics of histone H2B-GFP labeling: 3 h AMD treatment of living HeLa

cells. This 2D movie was created using z-/time-series collected at 5 min intervals by a Zeiss

710 NLO LSM and Zen 2011 and Quick Time software. Corresponds to the cells in Fig 6.

(MOV)

S8 Movie. Dynamics of histone H2B-GFP labeling: 3 h AMD action on living HeLa cells

(continued). This 2D movie was created using z-/time-series collected at 1 min intervals by a

Spining Disk ILAS2 CS, Amira 5.5 and Quick Time software.

(MOV)

S9 Movie. Correlative study: spatial relationship between FCs and ICC during nucleolar

segregation. This 2D movie demonstrates the dynamics of intra-nucleolar histone H2B in the

cells shown in S14D and S14E Fig. To show that during the entire process of segregation the

ICC remains attached to FCs, observation was ended with fixation and anti-UBF/Alexa568

immunolabeling. To create this movie we used z-/time-series collected with a Zeiss 710 NLO

LSM at 5 min intervals. Consecutive orthogonal slices of X/Y planes prepared for each acquisi-

tion point using Amira 5.5 were mounted by Quick Time software. After post-fixation immu-

nolabeling the UBF-positive FCs were 3D reconstructed with Amira and visualized on the
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background of orthogonal sections of the histone H2B-GFP labeled nucleus. The correspond-

ing image is shown at the end of the movie.

(MOV)

S1 Method. Transient transfection/co-transfection. To prevent formation of aggregates the

cell suspension was agitated in different directions and by circular motion during a few min.

Cells were incubated for 24 h at 37˚C to reach 50–60% confluence, examined on an inverted

microscope to select samples, rinsed with PBS, and immersed in fresh medium for 2–4 h. The

transfection complex containing 4.8 μg cDNA and 7.2 μl Fugene-6 was prepared in 200 μl

serum-free medium, incubated 15 min at room temperature, and poured over the cells grow-

ing in the last change of medium.

(DOCX)

S2 Method. Observation and imaging of fixed KB cells. Using a Bio-Rad MRC-1024ES/

Olympus IX70 CM, GFP fluorescence was induced by excitation at 488 nm at 3–10% of Kr/Ar

laser power in combination with VHS and Open filter blocks. Emission was recorded at 515

nm with an OG515 filter. In GFP/DsRed doubly-labelled preparations excitation was at 488

and 568 nm using 10% of laser power and T1 and T2 filter blocks, enabling simultaneous

transmission of both bands and their recording through green and red channels (PMT2 and

PMT1, respectively) with the following emission filters: for green 522DF35 (blocks 513 and

540 nm bands) and for red 605DF32 (blocks 589–621 nm). Images were acquired by Laser

Sharp 3.2 software at zoom x4 corresponding to a pixel size of 0.080 μm, slow scanning speed

mode (3 sec for each 512x512 image), and Kalman digital filtering (x3) to ameliorate signal/

noise ratio. Phase contrast and fluorescence images were digitalized simultaneously. Consecu-

tive optical sections (70–100 slices) were collected using 0.2 μm z-steps yielding stacks ~14–

20 μm thick including entire KB cell nuclei. 3D localization of UBF and fibrillarin in fixed cells

was reconstructed and visualized by Amira 5.5 software using two methods: (i) the “Isosurface”

mode, displaying the exterior morphology (shape, number, and size) by surface rendering and

(ii) the “Voltex” mode, representing interior organization by the rendering of the whole vol-

ume. 2D images were presented in “Maximum Intensity Projections” (MIP) mode after being

processed using regular image-treatment and graphic software such as ImageJ, Corel Draw,

and Photoshop.

(DOCX)

S3 Method. Observations and imaging of living KB cells. Using a Bio-Rad MRC-1024ES/

Olympus IX70 CM, series of 60 optical slices with a z-step of 0.35 μm were recorded at zoom

x3 and Kalman x2 digital filtering to ameliorate the signal/noise ratio. Recording of one Z-

stack took 75 sec at fast scanning speed, including time for displacement along the z-axis. To

prevent bleaching and/or photo damage we reduced illumination by around 20%, exciting

GFP by 3% power of the Kr/Ar laser with B1/Open filter blocks. Emission was recorded as for

fixed cells. Time-/z-series were recorded every 5 mins for 8 h. After 30 min the cells were per-

fused with AMD which was replaced by fresh medium after 2 h and collection was continued

for 5.5 h. To demonstrate the general features in the behavior of the components containing

fibrillarin and UBF we used simple visualization tools in the form of 2D movies provided by

ImageJ or QuickTime.

(DOCX)

S4 Method. Preparation of KB cells for anti-GFP immunolabeling and silver enhancement.

Cells were briefly rinsed with PBS, fixed for 10 min in 4% paraformaldehyde in PBS adjusted

to pH 7.2–7.4, rinsed repeatedly in PBS 3x5 min, and processed for CM and pre-embedding

anti-GFP-fluoronanogold immuno-EM. Cells were incubated in 0.5% Triton X-100 in PBS for
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5 min, in 10% normal goat serum (NGS) (Jackson, USA) in PBS for 30 min, and then with

mouse monoclonal anti-human GFP antibody (Roche Diagnostics) (1:50 in PBS) for 30 min.

The cells were rinsed repeatedly (15 min) in the above solution of NGS and incubated with

goat anti-mouse biotinylated secondary antibody (Jackson) (1:100) for 30 min. Secondary anti-

bodies were detected by a 15 min exposure to streptavidin-fluoronanogold conjugate (1:20 in

PBS). Labeled cells were then postfixed in 1.6% glutaraldehyde and washed 3x10 min in PBS to

remove glutaraldehyde completely. Importantly, when silver enhancer was used all procedures

were at room temperature in light-tight boxes. Before silver enhancement cells were washed

extensively (10x2 min) in deionized water. Silver enhancement was carried out at room tem-

perature (about 20˚C) for 7–9 min; the quality of staining is strongly temperature/time-depen-

dent. To eliminate background staining enhancement was arrested by rapid immersion in ice-

cold deionized water. The cells were thoroughly washed again (10x2 min) in deionized water

and treated for 10 min in 5% aqueous sodium thiosulphate to quench residual metallic silver.

The quality of labeling was controlled by phase contrast microscopy at 40x10 magnification

with, removing the RS40 diaphragm. In properly stained cells the UBF positive nucleolar sites

are clearly recognizable as dark brown, folded bead-like chains or relatively large distinct spots

in sharp contrast against the pale yellow color of the nucleoplasm.

(DOCX)

S5 Method. Preparation of He-La cells stably expressing fibrillarin-GFP and histone

H2B-GFP for time-lapse imaging. The concentration of cells must be adjusted to yield a cul-

ture sparse enough to facilitate localization of single cells or small groups. A satisfactory den-

sity on the finder grid was obtained if cells were seeded by the following 2 protocols (S6–S8

Figs). (i) The bottom glass surface was pre-conditioned by filling the well with a few drops of

medium at 37˚C for 15 min. The same amount of meticulously homogenized cell suspension

(~15.000–30.000 cells/ml) was placed in the well and after 15–30 min incubation at 37˚C the

density and distribution of the cells were observed on an inverted microscope by phase-con-

trast. Medium (1.5–2 ml) was added by pouring on the wall to avoid disturbing settled cells. If

necessary, one can rehomogenize cells in the well repeatedly using a syringe. Using ~30.000

cells/ml we obtained a working culture after around 24 h incubation, and with ~15.000–20.000

cells/ml after 48 h. Attached/flattened cells are in small groups distributed sparsely enough to

orient and map their positions relatively to squares on the finder glass. (ii) The finder glass sur-

face was pre-conditioned as above and 1.5–2 ml of a thoroughly homogenized cell suspension

(~15.000–30.000 cells/ml) was poured starting from the well with a glass bottom. We agitated

the cells in different directions and by circular motions during 5 min. After incubation at 37˚C

for 5–10 min the density and distribution of the cells was examined; this procedure shows less

evenly distributed cells but good enough to find appropriate areas and mark position of indi-

vidual cells and small groups. The results were significantly better if cells were repeatedly re-

suspended using a 1 ml pipette.

(DOCX)

S6 Method. Observations and imaging of living HeLa cells. We selected and examined single

cells or groups by phase-contrast, Nomarski differential interference, and fluorescence at opti-

cal zooms of 100x and 200x (S6–S8 Figs). We registered timelapse z-series by SDCS using (i)

Plan-Apochromat/63x/ with 1.4 numerical aperture and (ii) Plan-Apochromat/100x/1.46

objectives. Coordinates of appropriate COI were noted to enable their detection during time-

lapse CM and imaging of the same cells after post-fixation immunolabeling. Exact cell location

is especially important for CLEM analysis when the resin block must be trimmed to put the

targeted cell in the central area of the pyramid and serial ultrathin sections. Before the cells

were treated with AMD the nuclei of selected cells were examined by high magnification 3D
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LSM imaging by Nomarski and fluorescence. Histone H2B-GFP fluorescence was induced

and recorded using 5% power of a 840 nm Chameleon Titanium/Sapphire biphoton pulsed

laser. Fluorescent and Nomarski images were digitized simultaneously by Zeiss ZEN 2012 soft-

ware. Volumes (512x512) were collected with 0.3 μm Z-steps using slow scanning mode and

1.3–1.5 digital zoom. Cells were briefly rinsed 3x during 5 min with PBS, immersed in fresh

medium containing 0.05 μg/ml AMD, and the dish was immediately returned to the micro-

scope plate holder and 4D images were collected as soon as possible. The cells were washed in

PBS 3x during 5 min, prefixed for 10 min in 4% PAF in PBS, washed repeatedly and processed

for anti-UBF immunolabeling, embedding in epoxy resin, and serial sectioning. Cultures for

imaging by SDCS were previewed at 400x magnification and suitable cellular groups were

identified in SDCS at low magnification and then used for high magnification 3D imaging of

control stacks. Cultures were then rinsed 3x during 5 min with PBS and incubated in medium

contained AMD for time-lapse imaging. Dishes were placed on the microscope stage and

moved until COI were at their initial position. We collected images during 1–3 h, exciting GFP

by 3% of Ar laser power at 491 nm using a BP530/50 emission filter with a 1 min interval

between acquisitions. To distinguish the behavior of the ICC during nucleolar segregation

time series were visualized in the form of 2D movies provided by ZEN 2011 or Quick Time

software. Moreover, to visualize moving and coalescence of ICC clumps during the action of

AMD the most significant points were extracted from the complete data-set and displayed one

by one in chronological order as a gallery (Fig 6).

(DOCX)

S7 Method. Post-fixation anti-UBF immunolabeling of He-La cells. Immediately after time-

lapse imaging, AMD-treated samples were fixed in 4% PAF and rinsed (3x during 5 min) in

PBS, permeabilized with 0.1% Triton X-100 in PBS during 5 min, and extensively washed in

PBS. To block nonspecific binding they were incubated in 10% NGS (Jackson) in PBS during

30 min. After removing NGS the cells were covered by mouse anti-UBF/F-9 primary antibod-

ies (1:50 in PBS) containing 1% NGS for 30 min and rinsed with PBS (3x5 min), then repeat-

edly incubated (15 min) in 10% NGS and for 30 min with biotinylated goat anti-mouse

secondary antibodies (Jackson) (1:200 in PBS) containing 1% NGS. Secondary antibodies were

detected by incubation for 15 min with streptavidin-Alexa568 (Invitrogen Molecular Probes,

USA) (1:2000 in PBS) followed by washing in PBS overnight and examination under low mag-

nification to locate previously imaged COI and to verify the quality of immunostaining. Vol-

umes were recorded by LSM in simultaneous green-red regime using 1% of 840 nm Ar laser

power, 488 nm excitation, and 561 nm emission. When post-fixed anti-UBF immunolabeled

cells were imaged by SDCS, to excite GFP we used 3% laser power with 491 nm and a BP530/

50 emission filter. SimultaneouslyAlexa568 was excited by 4% laser power at 591 nm using a

BP 609/70 emission filter.

(DOCX)

S8 Method. Preparation of double-labeled HeLa cells for CLEM. The area containing previ-

ously visualized COI was marked approximately on the opposite side of the finder grid, using

a super fine permanent pen with dark color. Dehydration was in a graded series of ethanol-

deionized water mixture, starting from 30% ethanol and then 50% (30 min), 70% (30 min),

80% (30 min), 90% (2 changes; each 15 min) and 96% (2x15 min). Impregnation was preceded

by 2 changes of pure ethanol (30 min each). Impregnation was at room temperature in an etha-

nol-Embed 812 mixture containing Embed 812, DDSA, MNA and DMP30 in proportions to

obtain hard embedding. The cells were immersed for at least 1.5–2 h at room temperature in

1:1 ethanol-Embed 812, then overnight at room temperature in ethanol-Embed 812 (1:2), then

in Embed 812 (2 h each). The Embed 812 mixture was drained during 5–10 min to eliminate
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impregnation medium from the well and glass surface as much as possible. A droplet of resin

was placed on the previously-marked ROI, drops of resin were used to glue the flat base of the

resin cylinder over the ROI, and the assembly was transferred to a 60˚C oven for 24 h. The

resin containing flat embedded cells could be removed easily from the cover glass by careful

bending and lifting of the cylinder. This technique is delicate because embedding media

trapped in the gap under the resin cylinder contains air bubbles, so that the COI can be lost

after polymerization. Bubbles could be slightly decreased by pre-incubation of the dish with a

few drops of embedding medium to cover the cells for 1–2 h at 60˚C. The best way to avoid

bubbles is a two-step polymerization method, which is longer, but absolutely safe. The well

was filled with embedding media and polymerized during 24 h at 60˚C, and a droplet of resin

was placed on the block over the marked area to attach the resin cylinder by a second polymer-

ization for 24 h at 60˚C. As a rule, after two-step embedding we needed to cut/scrape the resin

block around the well edge as deeply as possible using a scalpel. The block carrying the COI

flattened on its surface was detached from the finder glass as described above. If the coverslip

broke while detaching, its fragments could be removed from the embedded cells by incubation

in hydrofluoric acid (30–60 min in a plastic tube) to dissolve the glass [83]. After the resin had

been detached from the glass the block was trimmed to eliminate resin and a pyramid was pre-

pared with the COI in its center under the stereomicroscope of the ultramicrotome so that a

global view of the finder grid could be seen at 0.7x magnification. Using a GEM single edge

blade (EMS) we cut off excess resin to adjust the Ø14 mm block to the size of the cylinder.

After identifying the ROI we continued trimming the block at 1.5-2x magnification to a ~ 1x1

mm pyramid with the selected cell approximately in its center and then at 3.5-4x magnifica-

tion. For final trimming we used a fresh blade to leave a ~0.1–0.3 mm pyramid with the COI

in its center. For sections collected on 1x2 mm formvar/luxfilm coated copper slot grids the

pyramid had to be as narrow as possible, and for Maxtaform grids it was trimmed to fully

cover the central hexagonal mesh to make sections tightly stretched around the COI close to

the center of the section plane. During sectioning the trimmed face must be adjusted so that

every point of the surface containing the COI is at the same distance from the knife edge to

ensure the collection of sections beginning at the top surface of the block and penetrating the

cell in the z direction to a depth of several tens of μM. Thus, the appropriate plane of interest

containing nucleoli may be chosen during examination of serial sections in TEM and its depth

noted. Then the corresponding depth may be readily calculated on 3D models constructed

using LCM image stacks.

(DOCX)
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