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Abstract: Ribosomal RNAs, the most abundant cellular RNA species, have evolved as the structural
scaffold and the catalytic center of protein synthesis in every living organism. In eukaryotes, they
are produced from a long primary transcript through an intricate sequence of processing steps that
include RNA cleavage and folding and nucleotide modification. The mechanisms underlying this
process in human cells have long been investigated, but technological advances have accelerated
their study in the past decade. In addition, the association of congenital diseases to defects in
ribosome synthesis has highlighted the central place of ribosomal RNA maturation in cell physiology
regulation and broadened the interest in these mechanisms. Here, we give an overview of the current
knowledge of pre-ribosomal RNA processing in human cells in light of recent progress and discuss
how dysfunction of this pathway may contribute to the physiopathology of congenital diseases.

Keywords: ribosomal RNAs (rRNAs); endonucleases; exonucleases; RNA processing;
ribosomopathies; Diamond–Blackfan anemia; ribosomal stress

1. A Renewed Perspective on Pre-rRNA Processing in Human Cells

Initially described by Georges Palade in 1955 from electron microscopy micrographs [1], ribosomes
have been the focus of continuous research for the past 60 years. In addition to their key role in protein
synthesis, the complex mechanisms of the synthesis of these prototypic ribonucleoprotein particles
have been under constant investigation. The picture of the ribosome structure gradually emerged from
pioneering biochemical and structural works, until its observation by X-ray crystallography at the
turn of the century delivered an atomic view of the intricate relationships between the RNAs and the
proteins composing the ribosome, first in prokaryotes [2–4] and later in eukaryotes [5–7]. The advent
of cryo-electron microscopy (cryo-EM) as a high-resolution technique for structural biology recently
bypassed the need for crystals and delivered stunning images of ribosomes and their maturation
precursors, both from unicellular organisms [8–17] and human cells [18–20] (Figure 1).

Confirming decades of biochemical studies, these images highlight the central role of ribosomal
RNAs (rRNAs) as the scaffold of the ribosomal subunits, but also as the hub of the catalytic activities
of ribosomes in protein synthesis. Eukaryotic ribosomes are made of four RNAs that share a large
degree of conservation, but have acquired additional domains, called extension segments, during
evolution. In human ribosomes, the 18S rRNA assembles with 33 ribosomal proteins (RPSs) to form
the 40S ribosomal subunit or small subunit (SSU), while the 5S, 5.8S, and 28S rRNAs associate with
47 ribosomal proteins (RPLs) to assemble the 60S or large subunit (LSU). The 18S, 5.8S, and 28S
pre-rRNAs are formed from a common polycistronic transcript following several RNA processing
steps, which generate multiple intermediate RNAs called pre-rRNAs (Figure 2). Pre-rRNAs were
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initially described in mammalian cells, but the intricate molecular mechanisms underlying their
maturation were largely deciphered in yeast Saccharomyces cerevisiae, which became the gold standard
for these studies [21,22]. The wealth of results obtained in yeast on this conserved process, together
with the development of new molecular genetic tools, high-content screening methods, and proteomics
analyses, has recently allowed significant advances on the study of pre-rRNA processing in human cells
and revealed a higher complexity of these mechanisms when compared to yeast [23–27]. This renewed
interest in human pre-rRNA maturation has also been fueled by the discovery of a growing class of
inheritable diseases, called ribosomopathies, that are characterized by defects in ribosome production
or function [28,29]. Recent reviews have described in great details our current knowledge of pre-rRNA
processing in various organisms, including yeast, mammalian cells, and plants [30–32]. Here, our aim
is to propose an overview of pre-rRNA processing in human cells, and discuss how dysfunctions of
this process are linked to human diseases.
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of the five acrocentric chromosomes 13, 14, 15, 21, and 22. Synthesis of pre-rRNAs triggers self-
assembly of the nucleolus around these genomic loci, also called nucleolar organizer regions (NORs), 
through the recruitment of a large array of proteins and noncoding RNAs taking part in pre-rRNA 
processing. Within this primary pre-rRNA transcript, the 18S, 5.8S, and 28S rRNAs are flanked by 
the 5′ and 3′ external transcribed spacers (ETS) and two internal transcribed spacers (ITS1 and ITS2; 
Figure 2). The transcribed spacers contain several cleavage sites targeted by endonucleases that act 
sequentially to free the rRNAs. While the rRNA sequences are conserved among eukaryotes, the 
sequence and the length of the transcribed spacers strongly diverge. Despite these differences, 
bioinformatic analyses indicate that folding of the transcribed spacers positions the endonucleolytic 
cleavage sites in similar secondary structure elements, which favors their processing. For example, 
the A0 and 1 cleavage sites in 5′-ETS are predicted to frame the base of a large stem in humans [33], 
as observed in yeast [12,14,15], although the sequence separating these two sites is over 20 times 
longer in humans (2010 nucleotides (nt)) than in yeast S. cerevisiae (92 nt). 

Figure 1. Structure of the human ribosome solved by cryo-electron microscopy. The figure shows the
ribosomal RNAs in the large subunit (28S: pink, 5.8S: green, 5S: blue) and in the small subunit (18S:
purple). (a) Structure with the ribosomal proteins (grey). (b) Ribosomal RNAs only. Adapted from
Protein Data Bank (PDB) file 4UG0 [19].

2. Human Pre-rRNA Processing Is Both Hierarchical and Modular

The human primary pre-rRNA, or 47S pre-rRNA, is synthesized by RNA polymerase I from the
~400 head-to-tail tandem repeats of ribosomal DNA (per diploid genome) located on the short arm of
the five acrocentric chromosomes 13, 14, 15, 21, and 22. Synthesis of pre-rRNAs triggers self-assembly
of the nucleolus around these genomic loci, also called nucleolar organizer regions (NORs), through
the recruitment of a large array of proteins and noncoding RNAs taking part in pre-rRNA processing.
Within this primary pre-rRNA transcript, the 18S, 5.8S, and 28S rRNAs are flanked by the 5′ and 3′

external transcribed spacers (ETS) and two internal transcribed spacers (ITS1 and ITS2; Figure 2).
The transcribed spacers contain several cleavage sites targeted by endonucleases that act sequentially
to free the rRNAs. While the rRNA sequences are conserved among eukaryotes, the sequence and the
length of the transcribed spacers strongly diverge. Despite these differences, bioinformatic analyses
indicate that folding of the transcribed spacers positions the endonucleolytic cleavage sites in similar
secondary structure elements, which favors their processing. For example, the A0 and 1 cleavage sites
in 5′-ETS are predicted to frame the base of a large stem in humans [33], as observed in yeast [12,14,15],
although the sequence separating these two sites is over 20 times longer in humans (2010 nucleotides
(nt)) than in yeast S. cerevisiae (92 nt).
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highly-repeated ribosomal DNA (rDNA) genes (also called nucleolar organizer regions or NORs) 
located in the cell nucleoli. The sequences of 18S (1870 nucleotides (nt)), 5.8SS/L (157 and 162 nt, 
respectively), and 28S rRNAs (>5000 nt) are flanked by external (5′-ETS, 3656 nt; 3′ ETS, 345 nt) and 
internal transcribed spacers (ITS1, 1090 nt; ITS2, 1155 nt), which are gradually removed by endo- and 
exonucleases. Depending on the relative kinetics of endoribonucleolytic cleavage, various rRNA 
precursors are formed. In the main maturation pathway (pre-rRNAs colored in violet), cleavage at 
site 2 occurs prior to cleavage at site A0. Less abundant precursors are characteristic of alternative 
(pale lavender) or minor (pink) routes. The 5S rRNA (121 nt) is transcribed by RNA polymerase III 
from repeated gene copies located on chromosome 1. As little is known about the maturation of 5S 
precursors in humans (depicted in orange) [34], data recently obtained in Drosophila were used [35]. 
When identified, endoribonucleases are quoted in black, and 5′-3′ or 3′-5′ exoribonucleases in grey. 
Question marks refer to uncertain enzymatic activities (UTP23), or enzymes found in other organisms 
which could putatively play similar functions in humans (REXO5, ERI1). Site E is also called 2a by 
some authors. 

Figure 2. Pre-ribosomal RNA processing in human cells. Three of the four ribosomal RNAs arise
from a long primary transcript (47S pre-rRNA) synthesized by RNA polymerase I from loci containing
highly-repeated ribosomal DNA (rDNA) genes (also called nucleolar organizer regions or NORs)
located in the cell nucleoli. The sequences of 18S (1870 nucleotides (nt)), 5.8SS/L (157 and 162 nt,
respectively), and 28S rRNAs (>5000 nt) are flanked by external (5′-ETS, 3656 nt; 3′ ETS, 345 nt) and
internal transcribed spacers (ITS1, 1090 nt; ITS2, 1155 nt), which are gradually removed by endo-
and exonucleases. Depending on the relative kinetics of endoribonucleolytic cleavage, various rRNA
precursors are formed. In the main maturation pathway (pre-rRNAs colored in violet), cleavage at
site 2 occurs prior to cleavage at site A0. Less abundant precursors are characteristic of alternative
(pale lavender) or minor (pink) routes. The 5S rRNA (121 nt) is transcribed by RNA polymerase III
from repeated gene copies located on chromosome 1. As little is known about the maturation of 5S
precursors in humans (depicted in orange) [34], data recently obtained in Drosophila were used [35].
When identified, endoribonucleases are quoted in black, and 5′-3′ or 3′-5′ exoribonucleases in grey.
Question marks refer to uncertain enzymatic activities (UTP23), or enzymes found in other organisms
which could putatively play similar functions in humans (REXO5, ERI1). Site E is also called 2a by
some authors.
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Figure 2 depicts the gradual elimination of the transcribed spacers in the human primary
ribosomal transcript by the sequential action of endo- and exoribonucleases. Several nucleases involved
in pre-rRNA processing were initially discovered in yeast. Human orthologs of these enzymes are
also involved in rRNA maturation and the overall processing scheme has been conserved through
evolution [31,32]. However, pre-rRNA processing in mammalian cells turns out to be more complex
than in yeast, as it requires exonucleolytic steps following almost all endonucleolytic cleavages [36–39].
The intricacy of the maturation scheme is also increased by the modularity of the processing events:
while some processing steps obey a hierarchical order, others appear to be independent from one
another. For example, after initial cleavage of the 47S pre-rRNA at sites A’ in the 5′-ETS and 02 in the
3′-ETS, the 45S pre-rRNA is processed either by further elimination of the 5′-ETS, or by cleavage of
the ITS1 at site 2 (Figure 2). Most defects in 5′-ETS processing neither block site 2 cleavage nor affect
subsequent maturation of the 5.8S and 28S rRNAs [40]. Conversely, partial or full removal of the 5′-ETS
may occur before ITS1 cleavage, which produces the characteristic 43S or 41S pre-rRNAs. But while
partly flexible, the cleavage order also includes clear hierarchical links. For example, endonucleolytic
processing at site E (also called 2a) in the ITS1 only occurs after full removal of the 5′-ETS by cleavage
at sites A0 and 1. Hence, cleavage of the ITS1 may also directly take place at site E, albeit infrequently,
which produces the 36S precursor [37,38], but this requires prior removal of the 5′-ETS. Similarly,
endonucleolytic cleavage of the ITS2 requires prior cleavage of the ITS1. Because of these coexisting
pathways, the ratio between the rRNA precursors may vary among cell types and are drastically
modified in some pathological contexts [41,42] or during viral infection [43]. These modified pre-rRNA
patterns indicate changes in the relative kinetics of the processing steps and may reflect defects in
ribosome biogenesis. Further work is needed to demonstrate whether changing the order of cleavages
may impact ribosome maturation per se and lead to structural variability in ribosomes, for example by
modifying the kinetics, and thereby the pattern, of rRNA post-transcriptional modifications [44].

3. Pre-rRNA Processing Is Coordinated with RNA Folding and Modification

Cleavage of pre-rRNAs is paralleled by chemical modification of around 200 nucleotides within
the emerging rRNA sequences. Most of these modifications are pseudouridylations and 2′-O-ribose
methylations that are guided and catalyzed by two families of small nucleolar RNPs, respectively
called H/ACA box and C/D box snoRNPs [45]. Each modification is performed by a particular
snoRNP that combines a set of core proteins with a specific small guide RNA (snoRNA) hybridizing
around the position to modify. Each complex includes either the pseudouridyl synthase dyskerin
(H/ACA box snoRNPs), or the methyltransferase fibrillarin (C/D box snoRNPs). In addition, a few
modifications are catalyzed by specific enzymes [44,46]. As a general rule, modifications take place
early in the maturation process. They target nucleotides located in functionally important regions of the
ribosome, including the peptidyl transferase center or the decoding center [47]. Human rRNAs contain
an additional layer of nucleotide modifications when compared to yeast [47]. New modifications were
even proposed based on the recent determination of the human ribosome structure at high-resolution
by cryo-EM [48], but they were not confirmed by RNA mass spectrometry [47]. The function of these
modifications is not fully understood, but they appear to take part in the structure and the reactivity of
the rRNAs [44,46]. SnoRNAs that guide modifications were not found to be required for cell viability;
however, knockdown of some of them prevents normal development of zebrafish embryos [49].

Removal of the transcribed spacers and nucleotide modifications take place concomitantly with
the folding of pre-rRNAs and their assembly with ribosomal proteins (RPs). Most of the nucleotides in
rRNAs are base-paired within the numerous helices that shape the subunits (45 helices in the human 18S
rRNA and over 100 in the 60S subunit rRNAs, Figure 3). These helices form several structural subdomains
that interlock in a highly controlled manner during maturation of the subunits. Hence, the tertiary structure
of the 18S rRNA requires formation of a “pseudoknot”, in which distant sites in the 18S rRNA sequences
hybridize with each other (Figure 3). As the nexus of 18S rRNA architecture, folding of this pseudoknot
is tightly coordinated with pre-rRNA processing. Similarly, it was shown in yeast that folding of the 25S
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rRNA (equivalent to the human 28S rRNA) operates gradually through the constitution of subdomains that
assemble together like petals around a central node. Timing of folding must be tightly controlled to allow
the hierarchical association of these subdomains, which starts with long-range interactions between 5′ and
3′ regions of the 25S rRNA [50,51]. Pre-rRNA folding in turn can directly control the activity of nucleases.
Hence, the endonuclease NOB1, which cleaves at the 18S rRNA 3′ end (site 3), is found in pre-40S particles
but is maintained out of reach of its cleavage site, as shown in yeast [16,52,53] or humans [18,20]. Structural
remodeling of the pre-40S particle at the very end of the maturation process brings NOB1 close enough to
its substrate, thus triggering the final step of 18S rRNA formation [20].
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Figure 3. Folding of the human 18S rRNA. The 18S rRNA folds into 45 helices that distribute into four
structural domains distinguished here by different colors. These domains assemble around the pseudoknot
(red) formed by nucleotides located at the 5′ end that hybridize with nucleotides located ~1200 residues
farther down in the primary sequence, at the junction between the central domain and the 3′ major domain.
(a) Secondary structure of the 18S rRNA. (b) Structure of the 18S rRNA within the 40S subunit. (c) Enlarged
view of the pseudoknot. The 3D structure in (b,c) was generated from PDB file 4UG0 [19].

4. The Role of Ribosomal Proteins and Ribosomal Assembly Factors

Folding and processing of the nascent pre-rRNAs is controlled by both association with RPs
and sequential interaction with a large number of ribosomal assembly factors (RAFs). As primary
constituents of the ribosome, most RPs are necessary for the synthesis of the subunits and their
incorporation is intimately linked to pre-rRNA folding and recruitment of the RAFs [21,22]. Hence,
depletion of 31 out of 33 human RPs of the small subunit with small interfering RNAs (siRNAs)
blocks pre-rRNA maturation of the 18S rRNA [18,40]. RAFs temporarily associate with the forming
subunits and play multiple enzymatic, structural, and regulatory functions. They include nucleases
catalyzing the removal of the transcribed spacers, helicases and chaperones participating in the
folding of RNA molecules, modifying enzymes (methyl- or acetyltransferases) catalyzing a subset
of nucleotide modifications, ATPases providing mechanical energy for structural remodeling of
the particles, GTPases acting as molecular switches, as well as nuclear export factors to transport
pre-ribosomal particles to the cytoplasm at the end of the maturation process. Structures of
pre-ribosomal intermediates in bacteria and eukaryotes have also shown that RAFs pace the maturation
steps, for example by isolating pre-rRNA domains that must fold independently, by assessing the
correct folding of the structure, or by acting as place holders to prevent premature interactions with
late-associating RPs or components of the translation machinery [8,54]. Several RAF modules were
identified from the determination of the composition of ribosomal particles at various maturation
stages. For example, a large subset of factors associates co-transcriptionally with the emerging 5′ part
of the pre-rRNA (5′-ETS and 18S domains) and forms a large RNP particle, called the SSU processome,
which is mostly required for elimination of the 5′-ETS and maturation of the 18S rRNA [55–58].
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The SSU processome includes the U3 C/D box snoRNP, whose RNA base-pairs both with the 5′-ETS
and the 18S rRNA. By bridging these distant domains, U3 is instrumental in coordinating formation of
the 18S rRNA pseudoknot with the early cleavages in the 5′-ETS and ITS1 (A0, 1, and E). This crucial
role makes U3 essential for 18S rRNA production and cell viability, unlike most snoRNAs. Similar to
U3, a few other snoRNPs (U8, U14, U17, and U22) do not catalyze nucleotide modification, but play a
crucial role at some pre-rRNA processing steps by chaperoning the pre-rRNAs [45]. For example, the
U17/snR30 snoRNA contains two evolutionarily conserved sequence elements that hybridize within
the 18S rRNA and are critical for removal of the 5′-ETS, as shown in yeast [59]. U17 may serve as a
platform to recruit several RAFs, including the putative endonuclease UTP23 [60].

5. A Tour of the 18S rRNA Maturation Scheme

In the main pre-rRNA processing pathway observed in mammalian cells, cleavage of the 45S
pre-rRNA at site 2 separates the 30S pre-rRNA, precursor to the 18S rRNA, from the large subunit
RNAs (Figure 2). This cleavage is performed by RNase MRP (mitochondrial RNA processing) or
RMRP [61]. Due to its similarity with RNase P, RNase MRP likely acts as a ribozyme. Site 2 cleavage
also requires several RAFs, including a set of them that are involved in formation of the 60S subunit
and associate with the ITS1 [38,62,63]. Formation of the 18S rRNA then requires elimination of the
5′-ETS and the ITS1 at the 3′ end. The 5′-ETS contains three cleavage sites: A’ (also called 01) and A0
located within the 5′-ETS, and site 1, which defines the 5′ end of the 18S rRNA. As indicated above,
cleavage at A’ takes place very early, before processing at site 2 and independently from cleavage at A0
and 1 [40,58]. The enzyme that cleaves A’ is unknown, but is likely to be found among the components
of the SSU processome. This cleavage site, only found in metazoans so far, is located upstream of a
conserved binding site for snoRNA U3 [64], but its functional role remains unclear. Unlike A’, cleavages
at sites A0 and 1 are coordinated with one another, as indicated by the low abundance of 43S and 26S
pre-rRNAs relative to other precursors (Figure 2), two species in which the 5′-ETS is cleaved at site A0
but not at site 1. Although separated by approximately 2000 nucleotides, sites A0 and 1 are predicted
to be in close spatial proximity after formation of a very large stem in the 5′-ETS [33]. In addition,
cleavage of the ITS1 at site E is subordinated to cleavage at site 1. A component of the SSU processome,
hUTP24, was recently identified as the endonuclease for sites 1 and E [62,65,66]. hUTP24 contains
a PIN (PilT N-terminus) domain, which is present in several endonucleases. Presence of hUTP24 is
essential for processing at sites A0 and 1, as well as site E in the ITS1, but its catalytic activity is only
required for processing at sites 1 and E, and not A0 [65,66]. The endonucleolytic activity of hUTP24
was evidenced in vitro on an RNA template containing yeast site A2, the equivalent to site E [65].
Interestingly, the 5′ end of the 18S rRNA was still residually processed after hUTP24 knockdown,
but started 2 nucleotides downstream of the normal extremity, which may indicate the involvement
of a 5′–3′ exonuclease [65,66]. The endoribonuclease that cleaves site A0 has not been identified yet.
Mutation of protein hUTP23, which bears an incomplete PIN domain, leads to accumulation of 30S
pre-rRNA, indicating that processing at site A0 is impaired [60]. It remains to show whether hUTP23
is a bona fide endonuclease or a cofactor required for cleavage.

Removal of the 5′-ETS and ITS1 cleavage at site 2 yields the 21S pre-rRNA. This precursor
is processed at its 3′ end through the sequential action of endo- and exonucleases [23,36–39,67].
First, the 3′ end of the ITS1 is trimmed by the exosome, and more specifically by RRP6 [23,37,38],
which yields the 21S-C. Progression of the exonuclease appears to be stopped by a highly conserved
domain in mammalian ITS1 sequences that may adopt a particular fold and/or bind RAFs, thus
forming a roadblock [37]. It was also proposed that exonucleolytic trimming could continue past
this point. Next, endonucleolytic cleavage of the 21S-C pre-rRNA at site E generates the 18S-E
precursor. This step, likely catalyzed by hUTP24 (as is site 1), leaves around 80 nucleotides of ITS1 [37],
which are gradually shortened by a 3′–5′ exonuclease. Recent reports have identified Poly(A)-specific
ribonuclease (PARN) [39,67] as the enzyme catalyzing this step. PARN was initially characterized as a
deadenylase involved in mRNA turnover, but this conclusion has been recently questioned [68,69].
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More recent works have shown the implication of PARN in the maturation of several noncoding RNAs,
including snoRNAs [70], small Cajal body-specific RNAs (scaRNAs) [68], micro RNAs (miRNAs) [71],
Piwi-interacting RNAs (piRNAs) [72,73], and the telomerase RNA component [74–76]. Despite the high
G/C content of the ITS1, PARN can trim the ITS1 in vitro and its conspicuous nucleolar localization is
fully consistent with a major role in ribosome biogenesis [39]. PARN action appears to be primed by
oligoadenylation of the 18S-E 3′ end in the nucleolus by PAPD5 [39]. The pre-40S particles then leave the
nucleus and are exported to the cytoplasm [77]. Nuclear export does not strictly depend on 18S-E trimming
by PARN, but it is delayed upon PARN depletion [39]. In the cytoplasm, the 18S-E pre-rRNA is cleaved
by the endonuclease NOB1 to generate the 18S mature rRNA [37,38,78]. However, this endonucleolytic
cleavage is preceded by further trimming of the 18S-E 3′ end by a yet-to-be identified exonuclease [37].
Interestingly, the 3′ end of cytoplasmic 18S-E pre-rRNA is oligouridylated [37,39]. The exact function of
oligouridylation in 18S rRNA maturation remains to be established, but it could prime the action of the
exonuclease processing the ITS1, as shown for the turnover of mRNAs and miRNA let-7 by DIS3L2 [79].

6. Processing of the Large Subunit rRNAs

In addition to the 18S rRNA precursors, ITS1 cleavage at site 2 generates the 32.5S pre-rRNA,
which contains the 5.8S and 28S rRNAs. The ITS1 is rapidly removed by the 5′–3′ exoribonuclease
XRN2, which forms the 5′ ends of the long and short forms of the 5.8S rRNA [37,38,80]. Cleavage of
the ITS2 at site 4 in the 32S pre-rRNA by endonuclease Las1 then gives rise of the 12S and the 28.5S
pre-rRNA [81], the precursors to the 5.8S and the 28S rRNAs, respectively. Cleavage at site 4 is then
followed by exonucleolytic processing of the resulting precursors. The ITS2 domain forming the 5′

end of the 28.5S pre-rRNA is trimmed by XRN2 to form the 28S rRNA [80]. The 12S pre-rRNA in
turn is sequentially digested by several 3′–5′ exonucleases to form the mature 3′ end of the 5.8S rRNA.
Depletion of exosome subunits, including its catalytic subunit DIS3, or of the exosome cofactors leads
to accumulation of intermediate processing fragments between the 12S and 7S pre-rRNAs [82]. The
exonuclease ISG20L2 was also proposed to take part in the 3′–5′ trimming of the 12S pre-rRNA [83].
Another mechanism was also proposed to generate the 7S precursor through endonucleolytic cleavage
by a yet unknown enzyme [84,85]. Then, conversion of the 7S precursor to 6S depends on the nuclear
exosome [23]. The last nucleotides in 3′ of the 5.8S rRNA precursor are likely to be removed by
exonuclease ERI1, as shown in mouse [86]. In yeast and in Xenopus laevis, this 5.8S rRNA final
maturation step takes place in the cytoplasm, which still needs to be demonstrated in mammalian cells.

7. 5S rRNA, the Fourth Musketeer

Unlike the 47S pre-rRNA, the precursor to the 5S rRNA is transcribed by RNA polymerase III.
In humans, the RNA5S genes encoding 5S rRNA are tandemly repeated on chromosome 1. While this
chromosome is distinct from ribosomal DNA, the RNA5S genes are localized in close proximity to
nucleoli [87]. Synthesis of the 5S rRNA requires a specific regulatory factor called transcription factor
IIIA (TFIIIA). TFIIIA associates with the general class III initiation factors TFIIIB and TFIIIC on the 5S
gene promoter and stimulates transcription [88,89]. Notably, the basal promoter element necessary for
5S rRNA gene transcription is located in the transcribed region. Transcription starts directly at the
5′ end of the 5S rRNA, but the primary transcript bears a uridine-rich 3′ extension [90,91]. This 5S
precursor, called 5S*, is recognized by the La protein, which associates with diverse RNA polymerase
III transcripts [92]. La has affinity for uridylates in 3′ and acts as a chaperone. The 5S* RNA 3′

end is processed by a 3′–5′ exonuclease, which was recently identified as REXO5 in Drosophila [35].
This exonuclease is evolutionary conserved, and its human ortholog is located in the nucleolus [35,93],
which supports a similar role in human 5S* RNA processing. However, in mouse, Rexo5 is not essential
to viability and fertility, and it does not concentrate in the nucleolus [93]. After processing of the 3′ end,
the 5S rRNA is associated with the ribosomal protein L5 (RPL5) in a complex that does not include
La [94]. In mammalian cells, formation of this 5S-RPL5 complex was proposed to take place in the
cytoplasm, but this point remains to be fully clarified [94]. This complex is then addressed to the
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nucleolus where it is incorporated into the 60S particles. In yeast, incorporation of the 5S rRNA into the
nascent ribosome requires that the 5S RNP includes both Rpl5 and Rpl11 [95]. A specialized importin
called Syo1 mediates nuclear import of Rpl5 and Rpl11 and likely chaperones the assembly with the
5S RNA [96]. Incorporation of the 5S RNP into pre-60S particles depends on association with two
RAFs, Rpf2, and Rrs1 [97,98]. After binding to the pre-60S particle, the 5S RNP operates a remarkable
180◦ rotation to reach its final position [10]. The human orthologs of Rrs1 (RRS1) or Rpf2 (BXCD1)
do not appear to be strictly required for the recruitment of the 5S into pre-60S particles in human
cells [99], but knockdown of these proteins strongly alters nucleolar integrity [100], suggesting that
they also play a role in ribosome biogenesis, putatively in 5S RNP final positioning within the subunit.
In contrast, the human 5S RNP must include RPL11 to be incorporated into the 60S precursors [99].
Importantly, mammalian cells contain a large pool of free 5S-RPL5 RNPs, representing ~30–50% of
total 5S rRNA [94,99,101]. Large amounts of ribosome-free 5S RNA in 7S and 42S RNPs were also
evidenced in the cytoplasm of amphibian oocytes and likely correspond to storage (discussed in a
previous paper [94]). In mammalian cells, the free 5S-RPL5-RPL11 RNP has ribosome-independent
functions in cell cycle regulation, as shown by its capacity to modulate the action of p53 [99,102]
(discussed below). This potentially important function, together with the essential role of the 5S RNP
in ribosome formation, contrast with the relative lack of knowledge on the maturation, processing,
and intracellular dynamics of the 5S rRNA in human cells.

8. Defects of Pre-rRNA Processing in Congenital Diseases: The Case of Diamond–Blackfan Anemia

Ribosomopathies constitute a growing class of diseases characterized by impaired ribosome
production and/or impaired ribosome function (Table 1). Such disorders are likely to affect the quantity
of ribosomes, when dysfunction of specific pre-rRNA maturation steps alters the production of one of the
ribosomal subunits, or their quality by changing protein composition or rRNA modification pattern in
at least a subset of ribosomal subunits. Although ribosome biogenesis is ubiquitous, these disorders are
characterized by tissue and lineage-specific manifestations, including several inherited bone marrow failures.
Patients can suffer from various developmental abnormalities and may present an increased risk of cancer.
Diamond–Blackfan anemia (DBA; OMIM #105650) is the archetype of congenital ribosomopathies, not only
for historical reasons, but also because its link to defects in ribosome biogenesis was clearly established.
This rare disorder (5–7 new cases per million live births) is characterized by pure red cell aplasia [28,103]
and patients usually present with severe anemia in the first year of life. Approximately 40 to 50% of affected
individuals have growth retardation and may bear congenital abnormalities, such as craniofacial, upper
limb, heart, or genitourinary defects. This disease, inherited in an autosomal dominant pattern, is primarily
caused by haploinsufficiency of several RP-encoding genes [104,105]. The spectrum of DBA mutations
includes missense, nonsense, frameshift, or splice site mutations (accounting for <60% of patients), as well
as larger genomic deletions affecting RP loci (10–20% of patients). Most of these mutations prevent mRNA
synthesis or stability, or result in protein degradation, thus leading to a net deficit in the production of
the corresponding RP. It was shown that missense mutations in RPS19 that do not destabilize the protein
affect domains interacting with the rRNA and hamper incorporation of the mutated protein in nascent
ribosomal subunits, thereby again leading to deficit in functional RP for ribosome biogenesis [106,107].
So far, we do not know of any case of a mutated RP incorporated in ribosomal subunits in DBA. Most RPs
are essential for ribosome biogenesis in yeast [50,108] as in human cells [26,40,100]. Their deficit impedes
specific pre-rRNA processing steps and provokes accumulation of pre-ribosomal particles blocked at a
particular maturation step (Figure 4). Accordingly, the impact of DBA mutations in RP genes on ribosome
biogenesis can be demonstrated by assessing changes in pre-rRNA processing. Analysis by northern blot of
total RNAs from DBA patient cells reveals unbalanced pre-rRNA profiles (relative to unaffected individuals),
providing molecular signatures specific to each haploinsufficient RP [41,42,109,110]. This analysis is central
when characterizing new DBA-linked mutations, and can contribute to the molecular diagnosis of the
disease [111–113]. Deficit of the ribosomal subunit corresponding to the mutated RP gene can be confirmed
by centrifugation analysis of ribosomes on sucrose gradient [112].
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Figure 4. Impairment of ribosome production in human diseases. (a) Ribosome production is
impaired in a growing number of human diseases through global reduction of rRNA synthesis by RNA
polymerase I (yellow ochre), defective pre-rRNA processing steps (purple), decrease of nucleotide
chemical modifications (blue), or assembly of 60S ribosomal subunits (pink). The pre-rRNA maturation
step that is affected is indicated (see also Table 1). (b) Examples of modification of the pre-rRNA pattern
in HeLa cells after knockdown of various RPs with siRNAs. Total RNAs were analyzed by northern
blot as previously described [40]. Pre-rRNA precursors to the small and large ribosomal subunits were
revealed with probes complementary to ITS1 or ITS2.

To date, nineteen RP genes have been linked to DBA (Table 1), four of which (RPS7, RPS28,
RPS27, and RPL27) still lack formal functional validation that ribosome biogenesis is impaired in
these patients. It should be mentioned that three non-RP genes have been identified in a few rare
DBA pedigrees. First, a missense mutation affects the X-linked TSR2 gene [114]. The homonymous
RAF encoded by this gene is required for incorporation of RPS26 into 40S subunits, which easily
explains why loss-of-function of TSR2 phenocopies haploinsufficiency of RPS26, one of the most
frequent RP genes affected in DBA. The second one is GATA1, which encodes a transcription factor
essential for erythrocyte differentiation [115–117]. DBA mutations in GATA1 do not affect pre-rRNA
processing (our unpublished results), but affect GATA1 translation by affecting its initiation codon.
While the classification of these patients as DBA cases is debated, their clinical picture is close enough
to suggest that defects in GATA1 translation in this disease may explain the erythroid lineage-specific
phenotype [118,119]. Finally, a recent study has reported nine individuals diagnosed with DBA with
biallelic mutations in CECR1, encoding the adenosine deaminase ADA2 [105]. The involvement
of ADA2 in nucleotide metabolism may provide a link with rRNA synthesis, which is the most
demanding mechanism in ribonucleotides. However, ADA2 is a secreted enzyme, which does not
plead for a direct role in intracellular nucleotide production. Mutations in CECR1 could define a
distinct disorder that phenocopies DBA.
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Table 1. Pathologies linked to mutations in genes encoding ribosomal proteins or ribosomal assembly factors (ribosomopathies).

Disease Manifestation/Clinical Features Frequency Inheritance
Genes Involved in

Ribosome Biogenesis Proteins

Functional Validation of
Impact on Ribosome

Biogenesis
% of

Patients References

Patient Cells Models *

Diamond-Blackfan anemia

Aregenerative macrocytic anemia, high eADA levels, short stature,
craniofacial and upper limb anomalies, heart or genitourinary
malformations, predisposition to MDS, AML, and solid tumors

1:150,000–200,000 births Autosomal
dominant

RPS7 RPS7 no yes <0.1% [109,120–122]
RPS10 RPS10 yes yes 3% [123]

RPS15A RPS15A yes yes <1% [124]
RPS17 RPS17 yes yes 1% [109,125–128]
RPS19 RPS19 yes yes 25% [41,42,129]
RPS24 RPS24 yes yes 2.4% [110,130]
RPS26 RPS26 yes yes 6.6% [123]
RPS27 RPS27 no yes <0.1% [120]
RPS28 RPS28 no yes <0.1% [114]
RPS29 RPS29 yes yes <0.1% [131]
RPL5 RPL5 yes yes 7% [109]
RPL11 RPL11 yes yes 5% [109]
RPL15 RPL15 yes yes <0.5% [132]
RPL18 RPL18 yes yes <0.1% [133]
RPL26 RPL26 yes yes <0.1% [134]
RPL27 RPL27 yes yes <0.1% [120]
RPL31 RPL31 yes yes <0.1% [113]
RPL35 RPL35 yes yes <1% [133]

RPL35A RPL35A yes yes 3% [135]

One family X-linked
recessive TSR2 TSR2 no yes <0.1% [114]

5q-syndrome

MDS, severe macrocytic anemia 10–15% of patients with MDS
or AML Sporadic RPS14 RPS14 yes yes 100% [136]

Isolated congenital asplenia

Absence of spleen, high susceptibility to infections 1:60,000 births Autosomal
dominant RPSA RPSA no yes 100% [137]

Other syndromes caused by RP mutations

Intellectual disability, autism, microcephaly, hearing loss Two patients Autosomal
dominant RPS23 RPS23 yes yes n.a. [138]

Autism, microcephaly, mental retardation, growth retardation, seizures,
skeletal malformations Three families/Nine patients RPL10 RPL10 no yes n.a. [139–141]

Autism, microcephaly Two families/Four patients RPL10 RPL10 no n.a. [142,143]
Intellectual disability, epilepsy One patient RPL10 RPL10 no n.a. [144]

Schwachman-Diamond anemia
Neutropenia, exocrine pancreatic dysfunction, metaphyseal dysplasia,
osteopenia, mild mental retardation, high predisposition to MDS
and AML

1:77,000 births
Autosomal
recessive

SBDS SBDS yes yes >95% [145,146]
DNAJC21 DNAJC21 ** yes yes 2% [147–149]

EFL1 EFL1 no yes <0.5% [149,150]

Bowen-Conradi Syndrome
Growth retardation, psychomotor delay, microcephaly, micrognatia,
joint contractures, rockerbottom feet

1:355 in the Hutterite
populations

Autosomal
recessive EMG1 EMG1 no yes 100% [151–153]

North American Indian chilhood cirrhosis

Cirrhosis 1:250 in the Ojibway-Cree First
Nations population

Autosomal
recessive CIRH1A hUTP4 no yes 100% [154,155]
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Table 1. Cont.

Disease Manifestation/Clinical Features Frequency Inheritance
Genes Involved in

Ribosome Biogenesis Proteins

Functional Validation of
Impact on Ribosome

Biogenesis
% of

Patients References

Patient Cells Models *

Familial Aplasia Cutis Congenita

Scalp skin defect 1 patient Autosomal
dominant BMS1 BMS1 yes yes n.a. [156]

Cartilage-hair hypoplasia
Hypoplastic macrocytic anemia, neutropenia, defective T-cell, response,
short limb dwarfism, fine, sparse hair, skeletal abnormalities, nail
dysplasia, gastrointestinal malabsorption, abnormal dentition,
predisposition to non-Hodgkin lymphomas and other cancers

1–2:1000 in the Amish
population, 1:23,000 in the

Finnish population

Autosomal
recessive RMRP - yes yes 100% [61,157]

Diskeratosis congenita and Hoyeraal-Hreidarsson syndrome

Bone marrow failure, pancytopenia, aplastic anemia, mucocutaneous
defects, nail dystrophy, developmental delay, pulmonary fibrosis,
reduced telomere length, cancer predisposition, immunodeficiency

1:1,000,000 births X-linked
recessive DKC1 Dyskerin no yes 25% [158,159]

Autosomal
recessive

NOP10 NOP10 no no <1% [160]
NHP2 NHP2 no no <1% [161]
PARN PARN yes yes <1% [162,163]

Treacher-Collins syndrome

Severe craniofacial defects, mental retardation 1:10,000–50,000 births Autosomal
dominant TCOF1 Treacle no yes 78–93% [164]

Autosomal
dominant or

recessive
POLR1D RPA16 no yes 8% *** [165–167]

autosomal
recessive POLR1C RPA39 no yes [165]

Other RNA polymerase I-related diseases

Acrofacial dysostosis Three patients Autosomal
dominant POLR1A RPA194 no yes n.a. [168]

Severe neurodegenerative disease, psychomotor retardation,
intellectual disability Two patients POLR1A RPA194 no n.a. [169]

* Tissue culture of mammalian cells or vertebrate models; ** DnaJ homolog subfamily C member 21; *** Combined % for POLR1D and POLR1C mutations. eADA, erythrocyte adenosine
deaminase; MDS, Myelodysplastic syndrome; AML, Acute myeloid leukemia; n.a., not available.
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9. Do Pre-rRNA Processing Defects Contribute to Ribosomopathies?

Other congenital disorders were shown to be linked to mutations in genes encoding
ribosome biogenesis factors, including Shwachman–Diamond syndrome (SBDS, DNAJC21,
and EFL1), Bowen–Conradi syndrome (EMG1), North American Indian childhood cirrhosis (UTP4),
Treacher–Collins syndrome (TCOF1, POLR1C, and POLR1D), cartilage-hair hypoplasia (RMRP),
dyskeratosis congenita (DKC1, NOP10, NHP2, and PARN), and aplasia cutis congenita (BMS1).
Depletion of CIRCH1A/UTP4 [154], a SSU processome component, EMG1 [152,153], RMRP [61],
PARN [39,67], or BMS1 [156] provokes pre-rRNA processing defects in cultured cells, but whether
patients cells display a similar defect was only formally shown so far for BMS1 mutation [156] (Figure 4
and Table 1). The genes mutated in Treacher–Collins syndrome are involved in rDNA transcription
rather than pre-rRNA processing. Similarly, mutations identified in Shwachman–Diamond syndrome
affect the last steps of pre-60S particle maturation in the cytoplasm, downstream of all RNA
processing events. Finally, proteins synthesized from DKC1, NOP10, and NHP2 are components
of the snoRNPs, some of which are required for pre-rRNA processing (see above), but there again,
the status of pre-rRNA processing or modification in these patients was not directly assessed.
While ribosome biogenesis is affected in one way or another by mutations in any of these genes,
the contribution of pre-rRNA processing defects per se to each of these diseases is therefore difficult
to evaluate. However, a deficit of rDNA transcription upstream of any processing steps, as observed
in Treacher–Collins syndrome, leads to a phenotypic spectrum that only partially overlaps with DBA
(skeletal abnormalities) and shows no hematopoietic deficit. Pre-rRNA processing defects may thus
contribute more specifically to some phenotypes in a subset of ribosomal diseases. Affecting ribosome
synthesis can lead to several major and not mutually exclusive molecular consequences (Figure 5).
First, mutations in genes encoding RPs or RAFs will reduce the number and/or the quality of the
ribosomes, which may impact translation regulation. Second, alterations of ribosome biogenesis
can trigger a cellular stress, called ribosomal or nucleolar stress, which affects cell cycle progression
independently of translation. In the last parts of this review, we will present the different data that
support these hypotheses and comment their relevance to ribosomopathies.

10. Insufficient Production of Ribosomes

Pre-rRNA processing defects are very likely to affect the efficiency of ribosome synthesis.
Cells tightly regulate their level of ribosomes by controlling their production, a phenomenon called
ribosome homeostasis. The amount of ribosomes can vary among different cell types and even different
cell stages. For example, a recent study has demonstrated that variations in ribosome homeostasis
during circadian rhythm correlate with changes in liver size [170]. In Xenopus, ribosome synthesis varies
during development and among tissues [171]. Such heterogeneity in ribosome concentration among
cell types may influence the repertoire of translated genes depending on the mechanisms regulating
their translation, e.g., the translation initiation mode (cap or IRES dependent), the presence of upstream
open reading frames (uORFs), the structure of the 5′ untranslated region, or the abundance of rare
codons [172]. Hence, it has been proposed that mRNAs with a high initiation rate can be translated at
low ribosome concentration, contrary to less efficiently translated mRNA such as IRES containing genes,
which would require a higher concentration of ribosomes [172,173]. Therefore, defects in ribosome
homeostasis may affect synthesis of specific differentiation or proliferation regulators, which could
explain the tissue specificity of phenotypes observed in ribosomopathies (Figure 5). This model is
supported by the genetic link established by mutations in DBA between ribosome deficit and defective
GATA1 translation [115,118,119]. While DBA appears to be caused in a few patients by mutations in the
GATA1 initiation start codon, GATA1 expression is affected in DBA patient cells that bear RP mutation
and overexpression of GATA1 in these cells rescues erythroid differentiation [118]. Ribosome profiling
experiments have shown that translation of GATA1 mRNA was one of the most sensitive to a drop in
ribosome production induced by partial knockdown of different DBA-linked RPs in human CD34+

cells [118,119]. Arrest of erythroid differentiation would thus be primarily explained by the negative
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impact of defective ribosome homeostasis on GATA1 synthesis, irrespective of the haploinsufficient
RP. This elegant model provides with a simple explanation as to why the large number of RP genes
mutated in DBA are associated with similar clinical outcomes. However, it remains to understand
why other disorders potentially affecting the levels of ribosomes, like the Shwachman–Diamond or
Treacher–Collins syndromes, do not result in red cell aplasia. Ribosome profiling analysis of tissues
from patient suffering from ribosomopathies should help to answer this question.
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Figure 5. The molecular effects of mutations affecting pre-rRNA processing and ribosome assembly.
Mutations in genes encoding RPs or RAFs can lead to pre-rRNA processing or ribosome assembly
defects. In human cells, different hypotheses may explain how these defects affect cell fate.
Ribosome deficit corresponds to reduction in the number/concentration of ribosomes per cell.
Depending on their translation initiation rate (Ki), mRNAs translation may be differently affected: (a)
Translation of mRNAs that have a modest initiation rate will be mildly affected; (b) mRNAs having a
high initiation rate may be more efficiently translated, as reduction in ribosome availability will reduce
ribosome crowding and thus improve elongation efficiency. (c) In contrast, reduced concentrations of
ribosomes will penalize translation of mRNAs that have low initiation rates [172]. Ribosome alteration
refers to the ribosomes that are still produced despite ribosome assembly defects. Quality of these
ribosomes (protein composition, RNA processing, and modification) may be suboptimal and change
their translational properties, so that translation of specific mRNAs is not properly ensured or regulated.
These different mechanisms are not mutually exclusive and may contribute in several ways to the
variety of symptoms presented by patients suffering ribosomopathies. Ribosomal stress is induced
by impairment of ribosome biogenesis, which promotes accumulation of free RPs that can assume
alternative function. The 5S RNP particle, in which the 5S rRNA associates with RPs RPL5 and RPL11,
plays a major role in this stress response. As a free complex, it binds and sequesters HDM2, the ubiquitin
ligase that constitutively targets the tumor suppressor p53 for degradation. Inactivation of HDM2
promotes stabilization of p53, which regulates progression through the cell cycle. Chronic stimulation
of p53 in ribosomopathies may also favor the selection of cells resisting p53 activity and prone to
develop a tumorigenic program.
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11. Alteration of Ribosome Quality by Pre-rRNA Processing Defects

Recent progress in powerful structural biology technologies such as cryo-EM, mass spectrometry,
or RNA analysis by next-generation sequencing (NGS) techniques has provided evidence
that ribosomes can be heterogeneous in their composition and/or modifications [48,174–177].
This heterogeneity comes in support of the idea that subsets of ‘specialized ribosomes’ would
be required for the spatiotemporal control of the translation of specific mRNAs, for example
during development [46,178,179]. A corollary of this concept is that changes in ribosome quality
(rRNA state and/or protein composition) consecutive to defects in ribosome biogenesis may affect
the fine-tuned mechanisms of translation and thereby impact tissue-specific biological pathways
(Figure 5). Quality of ribosome biogenesis is tightly controlled [180,181], which leads to the
degradation of misassembled intermediates [182]. It was shown in yeast that the ultimate steps
of the 40S subunit maturation involved a translation-like control, a kind of “test-drive” that
ensures that only translationally-competent ribosomal subunits follow the subsequent maturation
step [53,183]. In addition, ribosomes defective in translation are also targeted by quality-control
mechanisms [184–187]. These mechanisms, mostly documented in yeast, are expected to limit the
risk that aberrant ribosomal subunits impact translation. Nevertheless, it was shown in yeast that
particles lacking an RP or bearing misprocessed pre-rRNAs can escape these controls and join the pool
of translating ribosomes. Hence, when accumulated in high amounts in yeast expressing RAF mutants,
precursors to the 40S and 60S ribosomal subunits still containing pre-RNAs were found among
translating ribosomes [187–190]. While RPS26 is essential for pre-rRNA processing and 40S subunit
formation in yeast and humans [40,108], Ferreti et al. engineered yeast producing Rps26-depleted
ribosomes and found that such ribosomes preferentially translated mRNAs encoding stress response
proteins, most likely by promoting IRES dependent translation [191]. The authors propose that Rps26
normally promotes classical translation initiation by interacting with Kozak sequence residues in the
mRNA upstream of the start codon. Whether ribosomes containing immature rRNAs or displaying
abnormal RP composition interfere with translation in patients suffering ribosomopathies remains to
be demonstrated, but the potential impact of such changes in ribosome quality on the translational
capacities of some cells could account for some tissue-specific phenotypes.

Less prone to be targeted by quality control mechanisms, post-transcriptional modifications in
pre-rRNAs or post-translational modifications in RPs could also be altered upon pre-rRNA processing
defects. As described above, pre-rRNAs undergo a number of post-transcriptional modifications
catalyzed by snoRNPs as well as diverse enzymes. These modifications cluster in functional
centers of the ribosomal subunits and some are essential for embryonic development in zebrafish.
Recent advances in mapping pre-rRNA methylations by NGS have revealed that a subset of them
is only present in a fraction of the ribosomes [47,192,193]. These results suggest that the functional
properties of a ribosome may be modulated by its RNA modification pattern. Because nucleotide
enzymatic modifications are intimately coordinated with pre-rRNA folding and cleavage, defects
in pre-rRNA processing could perturb the modification pattern and thereby alter the behavior of
ribosomes in translation initiation (selection of translated mRNAs) or elongation (translation fidelity).
Ribosome activity also relies on post-translational modification of RPs [194–196]. While the cross-talk
between these modifications and pre-rRNA maturation is poorly documented, it is easy to conceive
that alterations of ribosome biogenesis may also alter protein modifications. Further work is needed to
examine the state of rRNA and RP modifications in ribosomopathies and assess their contribution to
pathophysiological processes.

12. Ribosomal Stress

As described above, many controls are present during ribosome synthesis to ensure degradation
of abnormal intermediates in order to avoid their potentially deleterious accumulation. Among the
different components of ribosomal particles, some are more resistant than others to degradation
and can participate in alternative cellular processes. The 5S particle was recently brought under the
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spotlight for its role in the regulation of the tumor-suppressor p53. The 5S rRNA-RPL5-RPL11 particle
integrates early into pre-60S particles in the nucleolus. However, defects in ribosome synthesis provoke
accumulation of 5S RNPs in the nucleus, where they can interact with the ubiquitin ligase HDM2,
thus impeding p53 targeting for degradation [99,102]. This leads to p53 stabilization, which in turn
promotes cell cycle arrest or apoptosis (Figure 5). Importantly, many phenotypes observed in animal
models for ribosomopathies are rescued by p53 knockdown or a p53-null genetic background [197,198].
Thus, developmental problems in ribosomopathies may be explained in part by p53 activation in
response to ribosomal stress. In the long run, chronic stimulation of p53 activity could lead to the
selection of cells insensitive to p53, which could contribute to the higher susceptibility to cancer
observed in several ribosomopathies. Because they directly affect ribosomal assembly and nucleolar
organization, pre-rRNA processing defects are expected to trigger ribosomal stress. Other RPs have
also been shown to interact with HDM2, but so far only RPL5 and RPL11 have proved essential for
p53 stabilization in response to ribosomal stress [199]. However, p53 activation by the 5S RNP is only
one component of the nucleolar stress response. Hence, ribosomal stress responses other than p53
stabilization have been evidenced, such as c-Myc activation or p53 translation regulation, but their
relevance to ribosomopathies needs to be explored further [200].

13. Concluding Remarks on Cross-Talks between Pre-rRNA Processing and Other Gene
Expression Processes

As highlighted in this review, human pre-rRNA maturation is a highly complex process intimately
linked to the multiple actions required for ribosome production. In recent years, unexpected pre-rRNA
maturation steps have been uncovered in mammals compared to yeast, and most nucleases that
catalyze pre-rRNA cleavages have been identified. More broadly, proteomic analyses and large-scale
genetic screens have revealed the potential involvement of hundreds of factors in human ribosome
biogenesis. In addition, the nucleolus, whose formation by self-assembly is driven by ribosome
synthesis, also hosts proteins acting in different nuclear processes. The high rate of ribosomal subunit
production, the exceptional number of factors involved in ribosome maturation, and the importance of
this process in the regulation of cell fate make it very likely that dysfunction of pre-rRNA processing
has far-reaching consequences on other cellular processes, starting with genome expression and
maintenance. One simple mechanism allowing cross-talk between two different processes is that they
share a common enzyme. Indeed, some nucleases involved in pre-rRNA processing are also required
for the synthesis or the turn-over of other RNAs, in particular small noncoding RNAs. For example,
the 3′–5′ exonuclease PARN, required for the maturation of the 18S-E pre-rRNA, takes part in the
maturation of several noncoding RNAs, including snoRNAs, scaRNAs, miRNAs, and the telomerase
RNA TERC (see above). The exosome is also involved in the catabolism of several RNAs, including
mRNAs [201]. Defects in pre-rRNA processing could perturb the activity of these enzymes in other
processes, for example by modifying their bioavailability (e.g., by retention in the nucleolus with
misprocessed pre-ribosomal particles) or by altering their capacity to interact with different partners.
This could contribute to pathogenic mechanisms in ribosomopathies, as functional defects of both
PARN and the exosome were linked to congenital disorders [162,201]. This hypothesis is not restricted
to nucleases, and can also be formulated for RAFs [63], and even RPs, some of which have moonlighting
activities. It is most likely that the continuous discovery of new links between ribosome synthesis
defects and human pathologies will bring important insight into the molecular mechanisms of human
ribosome formation and their connection with other cellular processes.
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