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ABSTRACT

The covariance of the matter power spectrum is a key elenfeéhe@nalysis of galaxy clus-
tering data. Independent realisations of observationa@semements can be used to sample
the covariance, nevertheless statistical sampling emtdlfropagate into the cosmologi-
cal parameter inference potentially limiting the capaieti of the upcoming generation of
galaxy surveys. The impact of these errors as function ofitheber of realisations has been
previously evaluated for Gaussian distributed data. Hewewn-linearities in the late time
clustering of matter cause departures from Gaussiantgtatislere, we address the impact
of non-Gaussian errors on the sample covariance and preaisatrix errors using a large
ensemble of N-body simulations. In the range of modes wheite fiolume effects are negli-
gible (0.1 < k[h Mpc~!] < 1.2) we find deviations of the variance of the sample covariance
with respect to Gaussian predictions abevé0% atk > 0.3 h Mpc~'. Over the entire range
these reduce to about 5% for the precision matrix. Finally, we perform a Fisher analy
sis to estimate the effect of covariance errors on the casgizdl parameter constraints. In
particular, assuming Euclid-like survey characteristiesfind that a number of independent
realisations larger thas000 is necessary to reduce the contribution of sampling erootise
cosmological parameter uncertainties at sub-percent l¥ealso show that restricting the
analysis to large scalds< 0.2 h Mpc~! results in a considerable loss in constraining power,
while using the linear covariance to include smaller sckdads to an underestimation of the
errors on the cosmological parameters.

Key words: Methods: data analysis, cosmological parameters, largle-structure of Uni-
verse

1 INTRODUCTION Rasera et al. 2034 However, even the availability of such ac-
curate predictions may not suffice to correctly analyse ta,d
since non-linearities induce mode-couplings which causm®on
band powers to become increasingly correlatddiksin & White
1999 Scoccimarro, Zaldarriaga & Hui 1999Because of this, fu-
ture galaxy survey measurements will require accuratenaitn
of covariance matrices.

The next generation of galaxy surveys will map the distidout
of matter in the universe with unprecedented accuracy argel
cosmic volumes. Surveys such as the Large Synoptic Surdey Te
scopé (LSST) and the Euclid missidrare designed to detect mil-
lions of galaxies over a wide range of scales and redshifternp
tially providing measurements of the clustering of matterfew
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per-cent statistical uncertainty. In order to infer unbthgosmo- In the case of the matter power spectrum the covari-
logical parameter constraints the analysis of these ddtasguire ance matrix can be estimated from large ensembles of N-
theoretical model predictions that account for the noediities body simulations Takahashi et al. 2009Harnois-Déraps & Pen

of the late time gravitational collapse of matter. As an eplm 2012 Blotetal. 2015. However, due to finite sampling, the

on the scales of the Baryon Acoustic Oscillations (BAO) devi  estimation of the covariance is affected by statisticalorsrr

tions from linear predictions are at a few per-cent levek (say. that propagates into the cosmological parameter uncégsin
The impact of such errors has been evaluated in a num-
ber of studies assuming Gaussian distributed data (see e.qg.

* linda.blot@obspm.fr Taylor, Joachimi & Kitching 2013 Dodelson & Schneider 2013
L www.Isst.org Percival et al. 2014Taylor & Joachimi 201% However, as shown
2 www.euclid-ec.org by Blot et al. (2015 deviations from the linear clustering regime

(© 0000 The Authors


http://arxiv.org/abs/1512.05383v2

2  Blot, Corasaniti, Amendola & Kitching

induce increasingly larger non-Gaussian errors alreadyhat
BAO scale. In principle the use of analytical models of the co
variance avoids sampling errors (see €elgkada & Hu 2013
Mohammed & Seljak 2014for work in this direction). Nonethe-
less, such models still need to match numerical simulag&snlts
and as shown bWu & Huterer (2013 in the context of the halo
model, model calibration uncertainties will propagatetie esti-
mation of parameter errors.

In this work we set to assess what is the impact of non-
linearities on the statistical errors associated with tiage co-
variance estimator and what are the effects on the cosnualqus-
rameter uncertainties expected from future galaxy survByshis
purpose we use a large ensemble of N-body simulations toa@mp
covariance matrix estimation errors against model prixtistfor
Gaussian distributed data. Then, assuming Euclid-likeeuchar-
acteristics, we perform a Fisher matrix analysis to forettasim-
pact of non-Gaussian errors on cosmological parametetreimts.

The paper is organised as follows: in Sectiwe introduce
the N-body simulation ensemble used in the analysis; ini@est
we discuss Gaussian prediction of the sample covariancpracd
sion matrix errors and present the comparison with estisrfaden
the N-body simulation ensemble; in Sectidwe present the re-
sults of the Fisher analysis and finally we discuss the caraiuin
Sectionb.

2 N-BODY SIMULATION ENSEMBLE

We consider the simulation ensemble Set A from the Dark
Energy Universe Simulation - Parallel Universe Runs (DEUS-
PUR) project presented iBlot et al. (2015. This set consists of
12288 Adaptive Mesh Refinement (AMR) N-body simulations of
(656.25 h~' Mpc)® volume with256* particles (corresponding to

a mass resolution ofi, = 1.2 x 10'2 Mg, h™! at coarse level) of

a flat A-Cold Dark Matter A\CDM) best-fit model to the WMAP-

7 years datapergel et al. 2007 For each simulation the matter
power spectrum is computed in the rarigg, ~ 0.01 h Mpc™!
(corresponding to the fundamental mode of the simulatiot) tm
kmax ~ 1.22 h Mpc™! (half the Nyquist frequency of the grid
used to compute the spectra). The spectra have been cdrfecte
mass resolution errors as describe®lat et al.(2015 using sim-
ulation Set B consisting of 96 N-body simulations of ideaticol-
ume with 1024° particles corresponding to a mass resolution of
mp =2 x 10'° Mg h™! at coarse level.

In Fig. 1 we plot the average matter power spectrum and the
standard deviation at several redshifts in the intetval >z < 2.
The standard deviation is largest néar., due to cosmic variance
and reduces to less than% for k > 0.03 h Mpc™'. Thus, to be
conservative from now on we séf,i, = 0.03 h Mpc™' unless
otherwise specified.

Using this ensemble of spectra we compute the covariance ma-

trix at each redshift with the sample covariance estimator:

Co = 5 DoPulh) = PRIEACK) — ()], ()

where N, is the number of independent realisations dhd) =
SN | P (k)/Ny is the sample mean, with, (k) the matter power
spectrum of then-th realisation. This is an unbiased estimator of
the covariance but, as we later explain, its inverse is nondmsed
estimator of the inverse of the covariance matrix, alsoedathe
precision matrix.
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Figure 1. Average and standard deviation of the non-linear matterepow
spectrum aR > z > 0 (bottom to top) from DEUS-PUR simulations Set
A corrected for mass resolution errors using Set B as destiiiBlot et al.
(2019. The vertical dotted line indicates the point where coswaidance
errors reduce to less than%.

3 COVARIANCE AND PRECISION MATRIX ERRORS

Let us consider a set of data consisting of measurementseof th
matter power spectrunf?,fi collected ini = 1,..N4 bands. A
standard likelihood analysis will use these measuremenitsfer
constraints on a set of parameté?given a model prediction of
the power spectrurﬂ?,ﬁi (5). Assuming that the density contrast in
Fourier space is Gaussian distributed, the power spectmugacdh
bin of width A% follows ax? distribution with a number of degrees
of freedom given by the number éfmodes contained in the bin,
i.e. Ny, =~ k*Ak V/(2n?), whereV is the volume. In linear regime
and in the limit of largelV,. the power spectrum distribution tends
to a Gaussian distribution. In non-linear regime deviatifsom the
x? distribution ariseBlot et al. 2015 that may bias the inferred pa-
rameter values. Here we concentrate on the effect of naalities
on the covariance estimator and we leave the study of thedngba
the shape of the likelihood on parameter inference for &utuork.

In the case of Gaussian distributed data the likelihoodsead

> [rt - @] eg' [t - o]

L x exp {—%
ij=1
2

WhereCi;1 is the precision matrix. Notice that in writing EQ)(we
have assumed that the covariance is independent of the ggam
g, in such a case we can neglect the normalisation factor vauek
not play any role in the determination of the parameter cairgs.
Nevertheless, it is worth remarking that the power spectoom
variance matrix may indeed vary with the cosmological patans
(see e.gLabatie, Starck & Lachieze-Rey 201@ho have studied
the impact of a cosmological model dependent covariancsrod
from simulations of a lognormal galaxy field). However, the e
tent to which the cosmological parameter inference is &ffbby
cosmological model dependencies of the covariance duerte no

Ng
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Non-Linear Matter Power Spectrum Covariance Matrix Errors3

linearities is still not known and will require a dedicatetlidy
which is beyond the scope of this work.

The point that we want to address here is how non-linearities
of the density field impact the estimation errors of the sango-
variance and precision matrix. These errors arise fromabethat
the true covarianc€ is unknown, we only have an unbiased esti-
mate of it as given by Eq.1j. This has the consequence that the
inverse of the sample covarian(i@, = 5‘1, is not an unbiased
estimator of the precision matrix due to the noise in the $amp
covariance Anderson 2008 Moreover the noise in the sample co-
variance propagates in the cosmological parameter infereia

Eq.@).

3.1 Precision Matrix Bias

Let us first consider the problem of the bias of the precisiaa m
trix estimator. This can be built by inverting the samplear@nce
estimator such thaP = C ! provided thatN, > N, + 1 other-
wise the sample covariance is not full rank and the inversadtg-
fined Hartlap, Simon & Schneider 20D7#or Gaussian distributed
data the expectation value of the inverse of the sampledieovae
matrix, assuming that the mean of the precision matrix iistr
tion is unknown, is given by (see elgress 1982Anderson 2003
Taylor, Joachimi & Kitching 2018

Ny —1

(Pi) =5y —7,—2 P ®)
whereN; is the number of simulations used to estimate the sample
covariance. It follows that an unbiased estimate of the ipi@t

matrix is given by:

Ns—Ng—2 =

73 biased P

7‘511/] = ij

J 179
Ns —1

4
which is the only unbiased estimator of the precision matrix
(Taylor, Joachimi & Kitching 201B This estimator is defined for
Ns > Ny + 2. We test the validity of Eg.3) using the ensemble
of Ny = 12288 spectra from the DEUS-PUR Set A corrected for
mass resolution errors and sampled o&r = 250 bands in the
range0.03 < k[h Mpc™'] < 1.22atz = 0.

To compute the average of the sample precision matrix which
appears in the left-hand-side of E®) @s function of the num-
ber of simulationN, we divide the ensemble of spectraiy, =
int(N:/Ns) groups, where irftV: /N, ) indicates the quotient of
N, and Ny, in each group we estimate the sample covariance us-
ing Eq. @) and computing the inverse we obtain the biased esti-
mate of precision matrix. Then, we compute the average thiase
precision matrix over theV, groups as(P) = 1/Ng>, Pk
which we compare to that obtained using the entire ensentble o
N, spectra,P, on the right-hand-side of Eq3) To compare
the numerical results against the theoretical predictian fol-
low Taylor, Joachimi & Kitching2013 and compute the fractional
bias defined as:

Tr(P)-—TrP  N,—1
TrP Ny, —Ng—2

BP = 1, (5)
which we plot in Fig.2 as function of Ny from the ensemble of
spectra at = 0. In the upper panel the solid black line is the scal-
ing expected for Gaussian distributed data, while the bhiatp
are the numerical results, the relative difference is shawthe
lower panel. We can see that fdf; > 500 the analytical predic-

tion agrees to the N-body simulation results to better thaf.

MNRAS 000, 000—-000 (0000)
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Figure 2. Fractional bias of the trace of the mean of the sample preTisi
matrix atz = 0 as function of the number of simulationd/s. The solid
black line is the predicted scaling for Gaussian distridutata, Eq. §),
while the dots are the estimates from the N-body simulatidhe vertical
dashed line indicates the minimum number of simulationswhich the
sample covariance is positive definite. In the bottom pasehiown the
relative difference.

3.2 Variance of Sample Covariance

Let us now consider the errors on the sample covariance. &as-G
sian distributed data the statistics of the sample covegias de-
scribed by the Wishart distributionA(shart 1928 Press 198p
Taylor, Joachimi & Kitching(2013 have derived an analytical ex-
pression for the variance which reads as:

1
ij) = N1 (6)
As for the estimation of the fractional bias we estimate therage
and standard deviation of the covariance oigr = int(V: /Ns)
groups of simulations as function &f;. We can test the validity of
Eq. (6) along the diagonal elements by computing the ratio:

02(0 (C,’Qj JrCiiij) .

@)

Ny —1’

which we plot in Fig.3 as function of N; having taken the sum
over the diagonal elements for three differénintervals. We can
see that deviations from the expected scaling in Epafe largest
(= 20%) for 0.03 < k[hMpc™'] < 0.11 and decrease for in-
creasing values dfmin. These deviations are due to finite volume
effects which as shown in Fid. manifest in a larger standard de-
viation of the estimated power spectra at léwlf we sum over
the entire diagonal the cumulative error is dominated bgpehef-
fects, as can be seen by comparing black octagons and magenta
stars in Fig3. Fork > 0.11 h Mpc™" this sample variance effect
is reduced to less th&i% on the matter power spectrum and corre-
lates with the reduced discrepancy from the scaling of Bdlue
dots). Nonetheless, we may still notice deviations up-ta 0%
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in the higherk-interval (yellow hexagons). This can be seen more
clearly in Fig.4 where we consider larger wavenumbers. In particu-
lar, we may notice increasing departures from Ejjapove~ 10%
level for Ny > 1500. We interpret this systematic trend as an in-
dication of deviations from the Wishart distribution duette non-
linearities of the matter density field which cause non-Geuser-
rors. If we exclude the bins dominated by sample variancensnd
sum over the remaining diagonal elements we can see thatithe c
mulative error is dominated by the errors on non-lineares;ahs
shown in Fig 4.

The same trends can be seen in the off-diagonal components of

the variance of the sample covariance. To this purpose Wwaaist
the ratio of the sum of the left and right-hand side of Ej: (

(Ne = 1) 3, Somts (Cij,m - <@j>)2
Re = — Pa— (8)
(Ng = 1) 32,5 ((%‘)2 + <Cii><cjj>)

over off-diagonal elements for which the correspondingnelets
of the matter power spectrum correlation matrix:

Gy
rl] - o~ o~ )

Cii Cjj

9)

are below and above tH#®% level. We plot the results in Fic.

In the case of off-diagonal elements with correlatior).5 we can
see that the ratio is of order unity, while for off-diagonfraents
characterised by larger correlations (.5) the ratio deviates from
unity by more thari0% for N, > 1500. In the latter case the scat-
ter at low N, values is large due to large sampling error in the ele-
ments of the covariance, but fof; > 1500 the deviation exceeds
the level of scatter. This clearly shows that on scales where).5
the non-Gaussian errors due to the non-linearities of teetime
clustering of matter cause deviations of the sample cavegiar-
rors from expectations of the Wishart distribution. It isritonotic-
ing that even with large ensemble of simulations availableg,
from the numerical analysis we are unable to asses whetase th
deviations saturate for very larg€; values, suggesting a signifi-
cant departure from the Wishart distribution.

3.3 Variance of Sample Precision Matrix

The estimator of the precision matrix is distributed as tivelise-
Wishart distribution Yishart 1928 Press 198pand an analytical
expression for the unbiased variance of the precision maas
been derived iTaylor, Joachimi & Kitching(2013):

0*(Pi) = A [(Ns — Na)P}; + (Ns — Na — 2)PuPi;], (10)

whereAd = (Ns — Ng — 1)} (Ns — Ny — 4) ', As in the case of
the covariance errors we test this relation along the dialgoom-
ponents and compute the ratio

2
Ny — Ny —4’

> Ui(ﬁn’) _
> (Pia)?

in the ranged.11 < k [h Mpc™!] < 1.22 which we plot in Fig.6
as function of N;. Differently from the covariance errors we no-
tice that deviations from the expected scaling do not exégéd
level for N, > 1200. Similarly the off-diagonal components do not
show significant departures abd¥% independently of the level of
correlation as shown in Fig.

(11)

ep =

0.5 ; ; T
o kyin = 0.03 - kmar = 1.23
o kpin = 0.03 - ke = 0.11
0.4 Eonin = 0.11 = Eppaw = 0.30
Emin = 0.30 - Kmar = 0.50
0.3
&
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Figure 3. Relative sample covariance errqf as function ofN; in differ-
ent wavenumber intervals with increasing valueggf, = 0.03 (magenta
stars),0.11 (blue dots) and.30 » Mpc—? (yellow hexagons). Black solid
line is the expected scaling from the Wishart distributiomthe bottom
panel is shown the relative difference with respect to theeeted scaling.
The error on the whole diagonal (black octagones) is domihbay the finite
volume errors in the interval.03 < k [h Mpc~!] < 0.11.

4 COVARIANCE ESTIMATION ERRORSAND
PARAMETER FORECAST

We perform a Fisher matrix analysi§ggmark, Taylor & Heavens
1997 to investigate the impact of sample covariance errors
on the cosmological parameter uncertainties. As alreadg- me
tioned in Section3 non-linearities induce deviations of the like-
lihood of the power spectrum from a Gaussian distribution
(Blot et al. 2015, (for the case of primordial non-Gaussianity
seeKalus, Percival & Samushia 2015Moreover, when inferring
parameters from a likelihood constructed with an estimaied
variance the likelihood function is not Gaussian even foussa
sian distributed data Sgllentin & Heavens 2035 Understand-
ing the impact of these effects will require a full likelihdo
data analysis or an extension to the Fisher matrix formalism
(Sellentin, Quartin & Amendola 20}4hat are beyond the scope
of this work. Here, we want to focus on the impact of the covari
ance errors on the cosmological parameter uncertaintias, we
limit for simplicity to a Gaussian approximation of the likeood.

We consider a survey with the same volume of the simula-
tions (656.25 = Mpc)® and a mean galaxy density similar to the
one expected by the Euclid surveysa(reijs et al. 201)L Despite
the fact that we use a much smaller volume than the Euclid sur-
veys, this analysis allows us to understand what is the impfac
non-linearities in a shot noise regime that is compatibké fiture
galaxy surveys. In the following we assume as fiducial cosgol
the flat ACDM model best-fit to the WMAP-7 years used for the
DEUS-PUR simulations (see Takhlg We consider measurements
of the galaxy power spectrum &. = 5 redshifts in the range

MNRAS 000, 000—-000 (0000)



Non-Linear Matter Power Spectrum Covariance Matrix Errorsb
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Figure4. As in Fig. 3 for largerk values withkmin = 0.50 (light blue trian-

gles). Black solid line is the expected scaling from the \&fskdistribution.

In the bottom panel is shown the relative difference withpees to the ex-
pected scaling. When removing the modes betow 0.11 h Mpc~! the

error on the whole diagonal (grey squares) deviates fronptediction at
~ 10% level due to non-linearities.
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-4-- r=0.0-05
—— 1=0.51.0
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Figure 5. Ratio of the sum of the left-hand side of the off-diagonal eom
ponents of Eq.®) relative to that of the right-hand side for wavenumber
configurations corresponding to correlation matrix eletaevith values in
the ranged < r < 0.5 (black points) and).5 < r < 1 (blue points).
Error-bars indicate the dispersion.
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Figure 6. Relative sample precision errep as function ofN in the range
0.11 < k [AMpc~1] < 1.22. Black solid line is the expected scaling from
the inverse-Wishart distribution. The vertical dashed limdicates the min-
imum number of simulations for which the sample covariareeasitive
definite. In the bottom panel is shown the relative diffeeendth respect to
the expected scaling.
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Figure 7. As in Fig. 5 for the variance of the precision matrix.
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h Quh?  Quh? ns o8
0.72 0.1334 0.02258 0.963 0.801

Table 1. DEUS-PUR cosmological model parameter values.

Z ng(z)

0.5 42x1073
0.7 299 x 1073
1.0 1.81x1073
1.5  0.77 x 1073
2.0 0.15x 1073

Table 2. Redshifts and mean galaxy number densities as expectedafrom
Euclid-like survey (aureijs et al. 201)L

0.5 < z < 2 and mean galaxy number densitieg(z) as given
in Table 2. At each redshift we conside¥; = 250 band power
measurements in the ran@®3 < k [h Mpc™'] < 1.22.
We model the galaxy power spectrum at a given redstefs:
Py(k; z) = b2P(k; 2), (12)
whereb. is a constant bias parametd?(k; z) is the non-linear

matter power spectrum at redshiftwhile we model the galaxy
power spectrum covariance matrix asTekahashi et al2009:

(2)
(13)

CoVy (ki kij; 2) = b2 Cij(2) + 263 [P (ks 2) P(kj; 2)] 2y !
+75°(2),
where we use the matter power spectrum covariance matredat r

shift = computed from the DEUS-PUR simulationsé§(z) and
the mean of the matter power spectra over the simulationsset a

P(k; z). Here we have neglected the effect of Redshift Space Dis-

tortions (RSD), the study of which would require a modelliofg
the anisotropic power spectrum in the non-linear regimeighae-
yond the scope of this work (s&&rieb et al. 2015 for a model of
Gaussian covariance for the anisotropic galaxy power gjp@gt

We aim to forecast the impact of covariance errors on the fol-
lowing set of cosmological parameters: the cosmic mattasitie
Q., the constant dark energy equation of statehe normalisa-
tion of the power spectrumas, the scalar spectral index, and
the cosmic baryon densit§2,. In addition we consider constant
bias parameters., with [ = 1, N, for each redshift with fiducial
\ialue set tal. We define the following vector of model parameters
0 ={Qm,w, o8, ns, Qb7bzl7..7szz}.

In the case of Gaussian distributed data the likelihoodvisrgi
by Eq. @). Expanding the likelihood to second order around the
fiducial model parameter values we can obtain a lower boutid es
mate of the expected model parameter errors from the Fisher m
trix, that reads as:

N. Ny
_ oPy . 0P —1 .
Fop = 12:2”2::1 %(kilzl)a—gﬂ(kjlzl)covg (ki, kjs 21),

(14)
where we have neglected correlations among different it théfs.
We compute the derivatives of the non-linear matter powecsp

1.08

1.06 -

1.04+

1.02F

a(Ns) /o (Niot)

1.00+

0.98F

0-9G 52 107 107

Figure 8. Fractional error contribution to the cosmological parenetr-
rors of the numerically estimated covariance as functiothefnumber of
simulations relative to the errors obtained using the damae from the full
DEUS-PUR sample.

trum using a five-point stencil approximation:

OBy 2Py(0u + Aba) — Py(Ba — A0a)
90 3 Al
Py(0a + 2A04) — Py(6a — 210,)
* 1220, (19

whered,, is the fiducial parameter value anxt, = 0.05 6. To
account for the effect of non-linearities in the finite datives we
compute the non-lineaP (k; =) for the different cosmological pa-
rameter values using the emulator PkANMgarwal et al. 201%
The emulator reproduces the non-linear matter power spetix-
body simulations to few percent accuracy over the rangeaésc
and redshifts of interest for different combinations oftbhemolog-
ical model parameters. Let us note here that the PKANN eolat
does not allow to fix the Hubble paramefebut, given the other
cosmological parameters, its value is computed by fittimgchm-
bined WMAP 7-year and BAO constraints on the acoustic séate (
more details seAgarwal et al. 2011

In Fig. 8 we plot the ratio of thelo marginalised model pa-
rameter errorsr; as function of the number of simulations with
respect to the errors obtained using the full DEUS-PUR sampl
We can see that the fractional error contribution of the darop-
variance to the parameter errors reduces to sub-percegitfav
N, > 5000. Note that we have assumed here that the covariance
estimated with 12288 simulations is the true covarianceo sali-
date this requirement one would need10* simulations.

4.1 Onthelinear approximation for the covariance

In the literature of Fisher forecasting it is common to cdesithe
power spectrum only on the largest scales, &.g. 0.2 h Mpc™?,

3 http://zuserver2.star.ucl.ac.uk/foa/PKANN/
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kmax 0.2 0.4 0.6 1.22
Qm  41x1072 21x1072 1.1x1072 1.6x10-3
Q 52x 1073 33x107% 23x107% 7.7x107%
ns 82x1072 46x1072 29x1072 6.9x1073
w 31x1071 15x1071 82x1072 1.3x10°2
o8 1.3x 1071 58x1072 22x1072 34x103

Table 3. Marginalisedlo Fisher matrix errors on the cosmological parame-
ters obtained using the DEUS-PUR covariance for differahtes ofk,, ¢
[h Mpc~1].

where it is believed to be well approximated by the linear @ow
spectrum. This is because accurate modelling of non-lieffacts

is necessary to push the analysis to smaller scales and the fla
tening of the signal-to-noise ratio at largevalues hints to a re-
duced information content in the power spectrum at theskesca
(Angulo et al. 2008 Smith 2009 Takahashi et al. 200Blot et al.
2015. To show what is the impact of considering non-linear scale
we compare in Fig9 the marginalised 2-parameterand2o con-
tours for kmax = 0.2 hMpc™! (dashed lines)kmax = 0.4
hMpc™! (dotted lines)kmaz = 0.6 hMpc™! (dash-dotted lines)
andkmaz = 1.22 hMpc~! (solid lines). These contours are not
to be interpreted as forecasts, since as we stated aboveltirees
that we consider is much smaller than the one expected fraumefu
galaxy surveys, nevertheless these show that pushing digsan
to non-linear scales largely improves constraints on céosgial
parameters. The differences can be inferred more cleafigiite3
where we report the marginaliséd errors on the cosmological
parameters for different values bf,q .

In the linear regime the matter density field is Gaussian and
the power spectrum estimator at a givieris x>-distributed with
Ny, degrees of freedom, wherg, ~ k>AkV/(27?) is the num-
ber of modes in a bin of widtl\k. Moreover, each Fourier mode
evolves independently so that the matter power spectrurarisov
ance is diagonal and reads as:

_ 2

Nki Pl2in (kl)(slj ’

Cij (16)
where the diagonal components are proportional to the dinea
matter power spectrum of the fiducial cosmoloBy,, (see e.g.
Jeong & Komatsu 2009 Using this approximation in non-linear
regime, as it is often done, leads to an underestimationecéitiors

on the cosmological parameters. To show this, we perfornslaefi
analysis by substituting the matter power spectrum coveeié;;

with Eq.(16) and we compare the results to those obtained with the
covariance from the full ensemble of DEUS-PUR simulatidns.
Fig. 10 we plot the marginalised 2-parameteiand 20 contours
obtained with the linear approximation Etgj (dashed lines) and
with the fully non-linear covariance from the DEUS-PUR slaiu
tions (solid lines). The differences can be inferred moeady in
Table4 where we report the marginaliséd errors on the cosmo-
logical parameters for the two cases. The discrepancy ismahx

in the case of2,,, for which the use of a linear covariance under-
estimates thdo error by a factor ot~ 17.7. Smaller differences
occur foras and(, though still exceeding the 20% level.

5 CONCLUSION

Future measurements of the matter power spectrum will requi
accurate estimates of the covariance matrix. Independatisa-

MNRAS 000, 000—-000 (0000)

0 O’g; O’éVG
Qm  96x107% 1.7x103
Q, 6.1x107* 7.7x10°*
ns 7.5x1073 6.9 x 1073
w 1.4%x 1072 1.3x10°2
og  23x1073 3.4x1073

Table 4. Marginalisedlo Fisher matrix errors on the cosmological parame-
ters obtained using a linear covariance (second columnirendEUS-PUR
covariance (third column).

tions of the data can be used to estimate the covariance. téowe
sampling errors will propagate in the cosmological paramat-
ference, thus potentially limiting the expected perforoanf fu-
ture galaxy survey measurements. In this work we have studie
the impact of non-Gaussian errors on the sample covarianee d
to the non-linearities of the matter density field during thte-
time regime of clustering. To this purpose we have used @larg
ensemble of N-body simulations. We find that covariance $amp
errors increasingly deviate from Gaussian expectationseah0%
level on scaleg > 0.3 h Mpc~!. To assess the impact on the cos-
mological parameter uncertainties from future survey$ ascEu-
clid we have performed a Fisher analysis forecast. We hawersh
that including non-linear scales largely improves the t@irsts on
cosmological parameters. We have also shown that usingarlin
matter power spectrum covariance at these scales willfgigntly
underestimate errors, which emphasises the need of usinllya f
non-linear covariance to correctly analyse future datavéler,
our analysis also indicates that to reduce the effect of o
variance errors on parameter uncertainties at sub-peleesit a
very large ensemble of numerical simulations will be needet
vancements in numerical N-body simulations techniques meay
der this task tractable in the future. Nevertheless theldpueent

of theoretical approaches capturing the relevant featfrés non-
linear collapse of matter on the scale of interest shouldursyed

to facilitate the statistical analysis of future data aslaslto infer
information on the late-time clustering of matter.
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