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ABSTRACT
The covariance of the matter power spectrum is a key element of the analysis of galaxy clus-
tering data. Independent realisations of observational measurements can be used to sample
the covariance, nevertheless statistical sampling errorswill propagate into the cosmologi-
cal parameter inference potentially limiting the capabilities of the upcoming generation of
galaxy surveys. The impact of these errors as function of thenumber of realisations has been
previously evaluated for Gaussian distributed data. However, non-linearities in the late time
clustering of matter cause departures from Gaussian statistics. Here, we address the impact
of non-Gaussian errors on the sample covariance and precision matrix errors using a large
ensemble of N-body simulations. In the range of modes where finite volume effects are negli-
gible (0.1 . k [hMpc−1] . 1.2) we find deviations of the variance of the sample covariance
with respect to Gaussian predictions above∼ 10% atk > 0.3 hMpc−1. Over the entire range
these reduce to about∼ 5% for the precision matrix. Finally, we perform a Fisher analy-
sis to estimate the effect of covariance errors on the cosmological parameter constraints. In
particular, assuming Euclid-like survey characteristicswe find that a number of independent
realisations larger than5000 is necessary to reduce the contribution of sampling errors to the
cosmological parameter uncertainties at sub-percent level. We also show that restricting the
analysis to large scalesk . 0.2 hMpc−1 results in a considerable loss in constraining power,
while using the linear covariance to include smaller scalesleads to an underestimation of the
errors on the cosmological parameters.

Key words: Methods: data analysis, cosmological parameters, large-scale structure of Uni-
verse

1 INTRODUCTION

The next generation of galaxy surveys will map the distribution
of matter in the universe with unprecedented accuracy over large
cosmic volumes. Surveys such as the Large Synoptic Survey Tele-
scope1 (LSST) and the Euclid mission2 are designed to detect mil-
lions of galaxies over a wide range of scales and redshifts, poten-
tially providing measurements of the clustering of matter to few
per-cent statistical uncertainty. In order to infer unbiased cosmo-
logical parameter constraints the analysis of these data will require
theoretical model predictions that account for the non-linearities
of the late time gravitational collapse of matter. As an example,
on the scales of the Baryon Acoustic Oscillations (BAO) devia-
tions from linear predictions are at a few per-cent level (see e.g.

⋆ linda.blot@obspm.fr
1 www.lsst.org
2 www.euclid-ec.org

Rasera et al. 2014). However, even the availability of such ac-
curate predictions may not suffice to correctly analyse the data,
since non-linearities induce mode-couplings which cause errors on
band powers to become increasingly correlated (Meiksin & White
1999; Scoccimarro, Zaldarriaga & Hui 1999). Because of this, fu-
ture galaxy survey measurements will require accurate estimation
of covariance matrices.

In the case of the matter power spectrum the covari-
ance matrix can be estimated from large ensembles of N-
body simulations (Takahashi et al. 2009; Harnois-Déraps & Pen
2012; Blot et al. 2015). However, due to finite sampling, the
estimation of the covariance is affected by statistical errors
that propagates into the cosmological parameter uncertainties.
The impact of such errors has been evaluated in a num-
ber of studies assuming Gaussian distributed data (see e.g.
Taylor, Joachimi & Kitching 2013; Dodelson & Schneider 2013;
Percival et al. 2014; Taylor & Joachimi 2014). However, as shown
by Blot et al. (2015) deviations from the linear clustering regime
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2 Blot, Corasaniti, Amendola & Kitching

induce increasingly larger non-Gaussian errors already atthe
BAO scale. In principle the use of analytical models of the co-
variance avoids sampling errors (see e.g.Takada & Hu 2013;
Mohammed & Seljak 2014, for work in this direction). Nonethe-
less, such models still need to match numerical simulation results
and as shown byWu & Huterer (2013) in the context of the halo
model, model calibration uncertainties will propagate in the esti-
mation of parameter errors.

In this work we set to assess what is the impact of non-
linearities on the statistical errors associated with the sample co-
variance estimator and what are the effects on the cosmological pa-
rameter uncertainties expected from future galaxy surveys. To this
purpose we use a large ensemble of N-body simulations to compare
covariance matrix estimation errors against model predictions for
Gaussian distributed data. Then, assuming Euclid-like survey char-
acteristics, we perform a Fisher matrix analysis to forecast the im-
pact of non-Gaussian errors on cosmological parameter constraints.

The paper is organised as follows: in Section2 we introduce
the N-body simulation ensemble used in the analysis; in Section 3
we discuss Gaussian prediction of the sample covariance andpreci-
sion matrix errors and present the comparison with estimates from
the N-body simulation ensemble; in Section4 we present the re-
sults of the Fisher analysis and finally we discuss the conclusion in
Section5.

2 N-BODY SIMULATION ENSEMBLE

We consider the simulation ensemble Set A from the Dark
Energy Universe Simulation - Parallel Universe Runs (DEUS-
PUR) project presented inBlot et al. (2015). This set consists of
12288 Adaptive Mesh Refinement (AMR) N-body simulations of
(656.25 h−1 Mpc)3 volume with2563 particles (corresponding to
a mass resolution ofmp = 1.2 × 1012 M⊙ h−1 at coarse level) of
a flatΛ-Cold Dark Matter (ΛCDM) best-fit model to the WMAP-
7 years data (Spergel et al. 2007). For each simulation the matter
power spectrum is computed in the rangekmin ≈ 0.01 h Mpc−1

(corresponding to the fundamental mode of the simulation box) to
kmax ≈ 1.22 h Mpc−1 (half the Nyquist frequency of the grid
used to compute the spectra). The spectra have been corrected for
mass resolution errors as described inBlot et al.(2015) using sim-
ulation Set B consisting of 96 N-body simulations of identical vol-
ume with10243 particles corresponding to a mass resolution of
mp = 2× 1010 M⊙ h−1 at coarse level.

In Fig. 1 we plot the average matter power spectrum and the
standard deviation at several redshifts in the interval0 ≤ z ≤ 2.
The standard deviation is largest nearkmin due to cosmic variance
and reduces to less than10% for k & 0.03 h Mpc−1. Thus, to be
conservative from now on we setkmin = 0.03 h Mpc−1 unless
otherwise specified.

Using this ensemble of spectra we compute the covariance ma-
trix at each redshift with the sample covariance estimator:

Ĉij =
1

Ns − 1

Ns∑

n=1

[P̂n(ki)− P̄ (ki)][P̂n(kj)− P̄ (kj)], (1)

whereNs is the number of independent realisations andP̄ (k) =∑Ns

n=1
P̂n(k)/Ns is the sample mean, witĥPn(k) the matter power

spectrum of then-th realisation. This is an unbiased estimator of
the covariance but, as we later explain, its inverse is not anunbiased
estimator of the inverse of the covariance matrix, also called the
precision matrix.
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Figure 1. Average and standard deviation of the non-linear matter power
spectrum at2 ≥ z ≥ 0 (bottom to top) from DEUS-PUR simulations Set
A corrected for mass resolution errors using Set B as described inBlot et al.
(2015). The vertical dotted line indicates the point where cosmicvariance
errors reduce to less than10%.

3 COVARIANCE AND PRECISION MATRIX ERRORS

Let us consider a set of data consisting of measurements of the
matter power spectrum,P d

ki
collected ini = 1, ..Nd bands. A

standard likelihood analysis will use these measurements to infer
constraints on a set of parameters~θ given a model prediction of
the power spectrumP t

ki
(~θ). Assuming that the density contrast in

Fourier space is Gaussian distributed, the power spectrum in each
bin of width∆k follows aχ2 distribution with a number of degrees
of freedom given by the number ofk-modes contained in the bin,
i.e.Nk ≈ k2∆k V/(2π2), whereV is the volume. In linear regime
and in the limit of largeNk the power spectrum distribution tends
to a Gaussian distribution. In non-linear regime deviations from the
χ2 distribution arise (Blot et al. 2015) that may bias the inferred pa-
rameter values. Here we concentrate on the effect of non-linearities
on the covariance estimator and we leave the study of the impact of
the shape of the likelihood on parameter inference for future work.

In the case of Gaussian distributed data the likelihood reads as

L ∝ exp

{
−
1

2

Nd∑

i,j=1

[
P d
ki

− P t
ki
(~θ)

]
C−1

ij

[
P d
kj

− P t
ki
(~θ)

]}
,

(2)
whereC−1

ij is the precision matrix. Notice that in writing Eq. (2) we
have assumed that the covariance is independent of the parameters
~θ, in such a case we can neglect the normalisation factor whichdoes
not play any role in the determination of the parameter constraints.
Nevertheless, it is worth remarking that the power spectrumco-
variance matrix may indeed vary with the cosmological parameters
(see e.g.Labatie, Starck & Lachièze-Rey 2012, who have studied
the impact of a cosmological model dependent covariance obtained
from simulations of a lognormal galaxy field). However, the ex-
tent to which the cosmological parameter inference is affected by
cosmological model dependencies of the covariance due to non-
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Non-Linear Matter Power Spectrum Covariance Matrix Errors3

linearities is still not known and will require a dedicated study
which is beyond the scope of this work.

The point that we want to address here is how non-linearities
of the density field impact the estimation errors of the sample co-
variance and precision matrix. These errors arise from the fact that
the true covarianceC is unknown, we only have an unbiased esti-
mate of it as given by Eq. (1). This has the consequence that the
inverse of the sample covariance,P̂ ≡ Ĉ−1, is not an unbiased
estimator of the precision matrix due to the noise in the sample
covariance (Anderson 2003). Moreover the noise in the sample co-
variance propagates in the cosmological parameter inference via
Eq.(2).

3.1 Precision Matrix Bias

Let us first consider the problem of the bias of the precision ma-
trix estimator. This can be built by inverting the sample covariance
estimator such that̂P ≡ Ĉ−1 provided thatNs > Nd + 1 other-
wise the sample covariance is not full rank and the inverse isunde-
fined (Hartlap, Simon & Schneider 2007). For Gaussian distributed
data the expectation value of the inverse of the sampled covariance
matrix, assuming that the mean of the precision matrix distribu-
tion is unknown, is given by (see e.g.Press 1982; Anderson 2003;
Taylor, Joachimi & Kitching 2013):

〈P̂ij〉 =
Ns − 1

Ns −Nd − 2
Pij , (3)

whereNs is the number of simulations used to estimate the sample
covariance. It follows that an unbiased estimate of the precision
matrix is given by:

P̂unbiased

ij =
Ns −Nd − 2

Ns − 1
P̂ij , (4)

which is the only unbiased estimator of the precision matrix
(Taylor, Joachimi & Kitching 2013). This estimator is defined for
Ns > Nd + 2. We test the validity of Eq. (3) using the ensemble
of Nt = 12288 spectra from the DEUS-PUR Set A corrected for
mass resolution errors and sampled overNd = 250 bands in the
range0.03 . k [hMpc−1] . 1.22 at z = 0.

To compute the average of the sample precision matrix which
appears in the left-hand-side of Eq. (3) as function of the num-
ber of simulationNs we divide the ensemble of spectra inNg =
int(Nt/Ns) groups, where int(Nt/Ns) indicates the quotient of
Nt andNs, in each group we estimate the sample covariance us-
ing Eq. (1) and computing the inverse we obtain the biased esti-
mate of precision matrix. Then, we compute the average biased
precision matrix over theNg groups as〈P̂〉 = 1/Ng

∑
k P̂k

which we compare to that obtained using the entire ensemble of
Nt spectra,P , on the right-hand-side of Eq. (3). To compare
the numerical results against the theoretical prediction we fol-
low Taylor, Joachimi & Kitching(2013) and compute the fractional
bias defined as:

BP ≡
Tr 〈P̂〉 − TrP

TrP
=

Ns − 1

Ns −Nd − 2
− 1, (5)

which we plot in Fig.2 as function ofNs from the ensemble of
spectra atz = 0. In the upper panel the solid black line is the scal-
ing expected for Gaussian distributed data, while the blue points
are the numerical results, the relative difference is shownin the
lower panel. We can see that forNs > 500 the analytical predic-
tion agrees to the N-body simulation results to better than0.5%.

Figure 2. Fractional bias of the trace of the mean of the sample precision
matrix atz = 0 as function of the number of simulations,Ns. The solid
black line is the predicted scaling for Gaussian distributed data, Eq. (5),
while the dots are the estimates from the N-body simulations. The vertical
dashed line indicates the minimum number of simulations forwhich the
sample covariance is positive definite. In the bottom panel is shown the
relative difference.

3.2 Variance of Sample Covariance

Let us now consider the errors on the sample covariance. For Gaus-
sian distributed data the statistics of the sample covariance is de-
scribed by the Wishart distribution (Wishart 1928; Press 1982).
Taylor, Joachimi & Kitching(2013) have derived an analytical ex-
pression for the variance which reads as:

σ2(Ĉij) =
1

Ns − 1

(
C2

ij + CiiCjj

)
. (6)

As for the estimation of the fractional bias we estimate the average
and standard deviation of the covariance overNg = int(Nt/Ns)
groups of simulations as function ofNs. We can test the validity of
Eq. (6) along the diagonal elements by computing the ratio:

ǫC =

√√√√
∑

i σ
2(Ĉii)

∑
i〈Ĉii〉2

=

√
2

Ns − 1
, (7)

which we plot in Fig.3 as function ofNs having taken the sum
over the diagonal elements for three differentk-intervals. We can
see that deviations from the expected scaling in Eq. (7) are largest
(& 20%) for 0.03 < k [hMpc−1] < 0.11 and decrease for in-
creasing values ofkmin. These deviations are due to finite volume
effects which as shown in Fig.1 manifest in a larger standard de-
viation of the estimated power spectra at lowk. If we sum over
the entire diagonal the cumulative error is dominated by these ef-
fects, as can be seen by comparing black octagons and magenta
stars in Fig.3. Fork > 0.11 h Mpc−1 this sample variance effect
is reduced to less than5% on the matter power spectrum and corre-
lates with the reduced discrepancy from the scaling of Eq.(7) (blue
dots). Nonetheless, we may still notice deviations up to∼ 10%

MNRAS 000, 000–000 (0000)



4 Blot, Corasaniti, Amendola & Kitching

in the higherk-interval (yellow hexagons). This can be seen more
clearly in Fig.4 where we consider larger wavenumbers. In particu-
lar, we may notice increasing departures from Eq. (7) above∼ 10%
level for Ns > 1500. We interpret this systematic trend as an in-
dication of deviations from the Wishart distribution due tothe non-
linearities of the matter density field which cause non-Gaussian er-
rors. If we exclude the bins dominated by sample variance andwe
sum over the remaining diagonal elements we can see that the cu-
mulative error is dominated by the errors on non-linear scales, as
shown in Fig.4.

The same trends can be seen in the off-diagonal components of
the variance of the sample covariance. To this purpose we estimate
the ratio of the sum of the left and right-hand side of Eq. (6):

RC =
(Ns − 1)

∑
ij

∑Ng

m=1

(
Ĉij,m − 〈Ĉij〉

)2

(Ng − 1)
∑

ij

(
〈Ĉij〉2 + 〈Ĉii〉〈Ĉjj〉

) (8)

over off-diagonal elements for which the corresponding elements
of the matter power spectrum correlation matrix:

rij =
Ĉij√
Ĉii Ĉjj

, (9)

are below and above the50% level. We plot the results in Fig.5.
In the case of off-diagonal elements with correlation< 0.5 we can
see that the ratio is of order unity, while for off-diagonal elements
characterised by larger correlations (> 0.5) the ratio deviates from
unity by more than10% for Ns > 1500. In the latter case the scat-
ter at lowNs values is large due to large sampling error in the ele-
ments of the covariance, but forNs > 1500 the deviation exceeds
the level of scatter. This clearly shows that on scales wherer > 0.5
the non-Gaussian errors due to the non-linearities of the late-time
clustering of matter cause deviations of the sample covariance er-
rors from expectations of the Wishart distribution. It is worth notic-
ing that even with large ensemble of simulations available to us,
from the numerical analysis we are unable to asses whether these
deviations saturate for very largeNs values, suggesting a signifi-
cant departure from the Wishart distribution.

3.3 Variance of Sample Precision Matrix

The estimator of the precision matrix is distributed as the inverse-
Wishart distribution (Wishart 1928; Press 1982) and an analytical
expression for the unbiased variance of the precision matrix has
been derived inTaylor, Joachimi & Kitching(2013):

σ2(P̂ij) = A
[
(Ns −Nd)P

2

ij + (Ns −Nd − 2)PiiPjj

]
, (10)

whereA = (Ns −Nd − 1)−1(Ns −Nd − 4)−1. As in the case of
the covariance errors we test this relation along the diagonal com-
ponents and compute the ratio

ǫP =

√√√√
∑

i σ
2(P̂ii)

∑
i〈P̂ii〉2

=

√
2

Ns −Nd − 4
, (11)

in the range0.11 < k [hMpc−1] < 1.22 which we plot in Fig.6
as function ofNs. Differently from the covariance errors we no-
tice that deviations from the expected scaling do not exceed5%
level forNs > 1200. Similarly the off-diagonal components do not
show significant departures above5% independently of the level of
correlation as shown in Fig.7.

Figure 3. Relative sample covariance errorǫC as function ofNs in differ-
ent wavenumber intervals with increasing values ofkmin = 0.03 (magenta
stars),0.11 (blue dots) and0.30 h Mpc−1 (yellow hexagons). Black solid
line is the expected scaling from the Wishart distribution.In the bottom
panel is shown the relative difference with respect to the expected scaling.
The error on the whole diagonal (black octagones) is dominated by the finite
volume errors in the interval0.03 < k [hMpc−1] < 0.11.

4 COVARIANCE ESTIMATION ERRORS AND
PARAMETER FORECAST

We perform a Fisher matrix analysis (Tegmark, Taylor & Heavens
1997) to investigate the impact of sample covariance errors
on the cosmological parameter uncertainties. As already men-
tioned in Section3 non-linearities induce deviations of the like-
lihood of the power spectrum from a Gaussian distribution
(Blot et al. 2015), (for the case of primordial non-Gaussianity
seeKalus, Percival & Samushia 2015). Moreover, when inferring
parameters from a likelihood constructed with an estimatedco-
variance the likelihood function is not Gaussian even for Gaus-
sian distributed data (Sellentin & Heavens 2015). Understand-
ing the impact of these effects will require a full likelihood
data analysis or an extension to the Fisher matrix formalism
(Sellentin, Quartin & Amendola 2014) that are beyond the scope
of this work. Here, we want to focus on the impact of the covari-
ance errors on the cosmological parameter uncertainties, thus we
limit for simplicity to a Gaussian approximation of the likelihood.

We consider a survey with the same volume of the simula-
tions(656.25 h−1 Mpc)3 and a mean galaxy density similar to the
one expected by the Euclid surveys (Laureijs et al. 2011). Despite
the fact that we use a much smaller volume than the Euclid sur-
veys, this analysis allows us to understand what is the impact of
non-linearities in a shot noise regime that is compatible with future
galaxy surveys. In the following we assume as fiducial cosmology
the flatΛCDM model best-fit to the WMAP-7 years used for the
DEUS-PUR simulations (see Table1). We consider measurements
of the galaxy power spectrum atNz = 5 redshifts in the range

MNRAS 000, 000–000 (0000)



Non-Linear Matter Power Spectrum Covariance Matrix Errors5

Figure 4. As in Fig.3 for largerk values withkmin = 0.50 (light blue trian-
gles). Black solid line is the expected scaling from the Wishart distribution.
In the bottom panel is shown the relative difference with respect to the ex-
pected scaling. When removing the modes belowk = 0.11hMpc−1 the
error on the whole diagonal (grey squares) deviates from theprediction at
∼ 10% level due to non-linearities.

Figure 5. Ratio of the sum of the left-hand side of the off-diagonal com-
ponents of Eq. (6) relative to that of the right-hand side for wavenumber
configurations corresponding to correlation matrix elements with values in
the range0 < r < 0.5 (black points) and0.5 < r < 1 (blue points).
Error-bars indicate the dispersion.

Figure 6. Relative sample precision errorǫP as function ofNs in the range
0.11 < k [hMpc−1] < 1.22. Black solid line is the expected scaling from
the inverse-Wishart distribution. The vertical dashed line indicates the min-
imum number of simulations for which the sample covariance is positive
definite. In the bottom panel is shown the relative difference with respect to
the expected scaling.

Figure 7. As in Fig.5 for the variance of the precision matrix.

MNRAS 000, 000–000 (0000)



6 Blot, Corasaniti, Amendola & Kitching

h Ωmh2 Ωbh
2 ns σ8

0.72 0.1334 0.02258 0.963 0.801

Table 1. DEUS-PUR cosmological model parameter values.

z n̄g(z)

0.5 4.2× 10−3

0.7 2.99× 10−3

1.0 1.81× 10−3

1.5 0.77× 10−3

2.0 0.15× 10−3

Table 2. Redshifts and mean galaxy number densities as expected froma
Euclid-like survey (Laureijs et al. 2011).

0.5 ≤ z ≤ 2 and mean galaxy number densitiesn̄g(z) as given
in Table2. At each redshift we considerNd = 250 band power
measurements in the range0.03 < k [hMpc−1] < 1.22.

We model the galaxy power spectrum at a given redshiftz as:

Pg(k; z) = b2zP (k; z), (12)

wherebz is a constant bias parameter,P (k; z) is the non-linear
matter power spectrum at redshiftz while we model the galaxy
power spectrum covariance matrix as inTakahashi et al.(2009):

covg(ki, kj ; z) = b4z Ĉij(z) + 2b2z [P (ki; z)P (kj ; z)]
1/2n̄−1

g (z)

+ n̄−2

g (z), (13)

where we use the matter power spectrum covariance matrix at red-
shift z computed from the DEUS-PUR simulations asĈij(z) and
the mean of the matter power spectra over the simulation set as
P (k; z). Here we have neglected the effect of Redshift Space Dis-
tortions (RSD), the study of which would require a modellingof
the anisotropic power spectrum in the non-linear regime that is be-
yond the scope of this work (seeGrieb et al. 2015, for a model of
Gaussian covariance for the anisotropic galaxy power spectrum).

We aim to forecast the impact of covariance errors on the fol-
lowing set of cosmological parameters: the cosmic matter density
Ωm, the constant dark energy equation of statew, the normalisa-
tion of the power spectrumσ8, the scalar spectral indexns and
the cosmic baryon densityΩb. In addition we consider constant
bias parametersbzl with l = 1, Nz for each redshift with fiducial
value set to1. We define the following vector of model parameters
~θ = {Ωm, w, σ8, ns,Ωb, bz1 , .., bzNz

}.
In the case of Gaussian distributed data the likelihood is given

by Eq. (2). Expanding the likelihood to second order around the
fiducial model parameter values we can obtain a lower bound esti-
mate of the expected model parameter errors from the Fisher ma-
trix, that reads as:

Fαβ =

Nz∑

l=1

Nd∑

i,j=1

∂Pg

∂θα
(ki; zl)

∂Pg

∂θβ
(kj ; zl)cov−1

g (ki, kj ; zl),

(14)
where we have neglected correlations among different redshift bins.
We compute the derivatives of the non-linear matter power spec-

Figure 8. Fractional error contribution to the cosmological parameter er-
rors of the numerically estimated covariance as function ofthe number of
simulations relative to the errors obtained using the covariance from the full
DEUS-PUR sample.

trum using a five-point stencil approximation:

∂Pg

∂θα
≈

2

3

Pg(θ̂α +∆θα)− Pg(θ̂α −∆θα)

∆θα
+

+
Pg(θ̂α + 2∆θα)− Pg(θ̂α − 2∆θα)

12∆θα
, (15)

whereθ̂α is the fiducial parameter value and∆θα = 0.05 θ̂α. To
account for the effect of non-linearities in the finite derivatives we
compute the non-linearP (k; z) for the different cosmological pa-
rameter values using the emulator PkANN3 (Agarwal et al. 2014).
The emulator reproduces the non-linear matter power spectra of N-
body simulations to few percent accuracy over the range of scales
and redshifts of interest for different combinations of thecosmolog-
ical model parameters. Let us note here that the PkANN emulator
does not allow to fix the Hubble parameterh but, given the other
cosmological parameters, its value is computed by fitting the com-
bined WMAP 7-year and BAO constraints on the acoustic scale (for
more details seeAgarwal et al. 2014).

In Fig. 8 we plot the ratio of the1σ marginalised model pa-
rameter errorsσ~θ as function of the number of simulations with
respect to the errors obtained using the full DEUS-PUR sample.
We can see that the fractional error contribution of the sample co-
variance to the parameter errors reduces to sub-percent level for
Ns > 5000. Note that we have assumed here that the covariance
estimated with 12288 simulations is the true covariance, soto vali-
date this requirement one would need≫ 104 simulations.

4.1 On the linear approximation for the covariance

In the literature of Fisher forecasting it is common to consider the
power spectrum only on the largest scales, e.g.k < 0.2 hMpc−1,

3 http://zuserver2.star.ucl.ac.uk/fba/PkANN/

MNRAS 000, 000–000 (0000)



Non-Linear Matter Power Spectrum Covariance Matrix Errors7

kmax 0.2 0.4 0.6 1.22

Ωm 4.1× 10−2 2.1× 10−2 1.1× 10−2 1.6× 10−3

Ωb 5.2× 10−3 3.3× 10−3 2.3× 10−3 7.7× 10−4

ns 8.2× 10−2 4.6× 10−2 2.9× 10−2 6.9× 10−3

w 3.1× 10−1 1.5× 10−1 8.2× 10−2 1.3× 10−2

σ8 1.3× 10−1 5.8× 10−2 2.2× 10−2 3.4× 10−3

Table 3. Marginalised1σ Fisher matrix errors on the cosmological parame-
ters obtained using the DEUS-PUR covariance for different values ofkmax

[hMpc−1].

where it is believed to be well approximated by the linear power
spectrum. This is because accurate modelling of non-lineareffects
is necessary to push the analysis to smaller scales and the flat-
tening of the signal-to-noise ratio at largek values hints to a re-
duced information content in the power spectrum at these scales
(Angulo et al. 2008; Smith 2009; Takahashi et al. 2009; Blot et al.
2015). To show what is the impact of considering non-linear scales
we compare in Fig.9 the marginalised 2-parameter1 and2σ con-
tours for kmax = 0.2 hMpc−1 (dashed lines),kmax = 0.4
hMpc−1 (dotted lines),kmax = 0.6 hMpc−1 (dash-dotted lines)
andkmax = 1.22 hMpc−1 (solid lines). These contours are not
to be interpreted as forecasts, since as we stated above the volume
that we consider is much smaller than the one expected from future
galaxy surveys, nevertheless these show that pushing the analysis
to non-linear scales largely improves constraints on cosmological
parameters. The differences can be inferred more clearly inTable3
where we report the marginalised1σ errors on the cosmological
parameters for different values ofkmax.

In the linear regime the matter density field is Gaussian and
the power spectrum estimator at a givenk is χ2-distributed with
Nk degrees of freedom, whereNk ≈ k2∆k V/(2π2) is the num-
ber of modes in a bin of width∆k. Moreover, each Fourier mode
evolves independently so that the matter power spectrum covari-
ance is diagonal and reads as:

Cij =
2

Nki

P 2

lin(ki)δij , (16)

where the diagonal components are proportional to the linear
matter power spectrum of the fiducial cosmologyPlin (see e.g.
Jeong & Komatsu 2009). Using this approximation in non-linear
regime, as it is often done, leads to an underestimation of the errors
on the cosmological parameters. To show this, we perform a Fisher
analysis by substituting the matter power spectrum covarianceĈij

with Eq.(16) and we compare the results to those obtained with the
covariance from the full ensemble of DEUS-PUR simulations.In
Fig. 10 we plot the marginalised 2-parameter1 and2σ contours
obtained with the linear approximation Eq.(16) (dashed lines) and
with the fully non-linear covariance from the DEUS-PUR simula-
tions (solid lines). The differences can be inferred more clearly in
Table4 where we report the marginalised1σ errors on the cosmo-
logical parameters for the two cases. The discrepancy is maximal
in the case ofΩm, for which the use of a linear covariance under-
estimates the1σ error by a factor of∼ 17.7. Smaller differences
occur forσ8 andΩb though still exceeding the∼ 20% level.

5 CONCLUSION

Future measurements of the matter power spectrum will require
accurate estimates of the covariance matrix. Independent realisa-

θ σG
θ σNG

θ

Ωm 9.6× 10−5 1.7× 10−3

Ωb 6.1× 10−4 7.7× 10−4

ns 7.5× 10−3 6.9× 10−3

w 1.4× 10−2 1.3× 10−2

σ8 2.3× 10−3 3.4× 10−3

Table 4. Marginalised1σ Fisher matrix errors on the cosmological parame-
ters obtained using a linear covariance (second column) andthe DEUS-PUR
covariance (third column).

tions of the data can be used to estimate the covariance. However,
sampling errors will propagate in the cosmological parameter in-
ference, thus potentially limiting the expected performance of fu-
ture galaxy survey measurements. In this work we have studied
the impact of non-Gaussian errors on the sample covariance due
to the non-linearities of the matter density field during thelate-
time regime of clustering. To this purpose we have used a large
ensemble of N-body simulations. We find that covariance sampling
errors increasingly deviate from Gaussian expectations above 10%
level on scalesk & 0.3 hMpc−1. To assess the impact on the cos-
mological parameter uncertainties from future surveys such as Eu-
clid we have performed a Fisher analysis forecast. We have shown
that including non-linear scales largely improves the constraints on
cosmological parameters. We have also shown that using a linear
matter power spectrum covariance at these scales will significantly
underestimate errors, which emphasises the need of using a fully
non-linear covariance to correctly analyse future data. However,
our analysis also indicates that to reduce the effect of sample co-
variance errors on parameter uncertainties at sub-percentlevel a
very large ensemble of numerical simulations will be needed. Ad-
vancements in numerical N-body simulations techniques mayren-
der this task tractable in the future. Nevertheless the development
of theoretical approaches capturing the relevant featuresof the non-
linear collapse of matter on the scale of interest should be pursued
to facilitate the statistical analysis of future data as well as to infer
information on the late-time clustering of matter.
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