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Sacha Davidson”
LUPM, CNRS, Université Montpellier Place Eugene Bataillon, F-34095 Montpellier, Cedex 5, France

Martin Gorbahn'

Theoretical Physics Division, Department of Mathematical Sciences, University of Liverpool,
Liverpool L69 3BX, United Kingdom

® (Received 2 October 2019; published 21 January 2020)

Nonstandard neutrino interactions (NSI) are vector contact interactions involving two neutrinos and two
first generation fermions, which can affect neutrino propagation in matter. SU(2) gauge invariance suggests
that NSI should be accompanied by more observable charged lepton contact interactions. However, these
can be avoided at tree level in various ways. We focus on lepton flavour-changing NSI, suppose they are
generated by new physics heavier than myy, that does not induce (charged) lepton flavor violation (LFV) at
tree level, and show that LFV is generated at one loop in most cases. The current constraints on charged
lepton flavor violation therefore suggest that y <> e flavor-changing NSI are unobservable and 7 <> ¢
flavor-changing NSI are an order of magnitude weaker than the weak interactions. This conclusion can be
avoided if the heavy new physics conspires to cancel the one-loop LFV, or if NSI are generated by light new

physics to which our analysis does not apply.

DOI: 10.1103/PhysRevD.101.015010

I. INTRODUCTION AND REVIEW

Nonstandard neutrino interactions (NSI) are four-fermion
interactions induced by physics from beyond-the-Standard
Model, constructed from a vector current of two Standard
Model (SM) neutrinos of flavor p and o, and two first
generation fermions f € {e, u,d}. Below the weak scale,
such interactions can be included in the Lagrangian as

_zﬁGFé?a(l_/p}/aPLyrf)(f}/aPXf) (11)
where G = 1/(2v/2v?) is the Fermi constant, the dimen-
sionless coefficient £’ parametrizes the strength of these
new interactions, Py is a chiral projector Py /g = (1%75)/2,
and f will be referred to as the “external” fermion.

NSI were introduced [1] as “new physics” that can be
searched for in neutrino oscillations. Indeed, in matter,
the first generation fermion current can be replaced by the
fermion number density in the medium: (fy*Pyf) —
5%n #/2. At finite density, NSI therefore contribute an
effective mass to the oscillation Hamiltonian of neutrinos:
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Charged current NSI, involving a v, a charged lepton and
differently charged external fermions, are also studied
because they affect the production and detection of neu-
trinos. However, they are not considered in this manuscript,
where “NSI” is taken to mean neutral current NSI.
The phenomenology of NSI has been widely studied (for
a review, see e.g., [2]), because they can contribute in
neutral current neutrino scattering [3—5], and via the matter
effect to neutrino oscillations in long baseline experiments
[6], the sun and the atmosphere [7,8], supernovae [10],
neutron stars [11], and the early Universe [12,13]. In
particular, the effects of NSI in terrestrial neutrino oscil-
lation experiments have been carefully studied, in order to
explore the prospects of disentangling NSI from the
minimal set of mixing angles, masses and phases [6,14].
More recently, “generalized neutrino interactions”(GNI)
have been discussed [15-18], which involve two light
neutrinos, and two first generation fermions. Since the
neutrinos are only required to be light, but not members of
an SM doublet, GNI include scalar and tensor four-fermion
operators involving sterile “right-handed” neutrinos:
(UrpVLo) (fPxf), (TRp0v16) (FOupPLE),
where 6% = £[y*, y"]. Such scalar (and tensor) interactions
are interesting, because the COHERENT experiment [19]

Published by the American Physical Society
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measured neutrino scattering on nuclei at momentum
transfer ~30-70 MeV, where the cross section is coher-
ently enhanced o A% (where A = atomic number). Unlike
the “matter effect,” which is a forward scattering amplitude
so only a vector current of SM neutrinos can contribute,
the COHERENT cross section is sensitive to the scalar
interaction (which is coherently enhanced), as well as
having reduced sensitivity to the tensor interaction.' In
this manuscript, we focus on NSIL.

The bounds on NSI from neutrino scattering experiments
[3.,4], are of order |s§"| <0.1 - 1. A recent combined

fit [8] to current oscillation data and the results of the
COHERENT experiment gives bounds [£}’| < 0.01, except

on the diagonal, where NSI large enough to flip the sign of
the SM contribution are allowed.” The authors of this study
assume that the flavor structure of NSI on es, us or ds is the
same (so 8/;6 = £7¢"°), and that NSI are a small perturbation

around the standard parameters that give best fit solutions
in the absence of NSI. With these assumptions, they set
constraints on NSI, meaning that larger values are
excluded. The results of the COHERENT experiment are
an important input to this analysis, because the oscillation
data is sensitive to differences in the eigenvalues of the
propagation Hamiltonian, whereas the COHERENT results
constrain the neutral current scattering rate. So large flavor-
diagonal NSI are constrained by COHERENT. The
COHERENT constraints alone, without assumptions about
the flavour structure of &, are discussed in [9].

In the Standard Model, neutrinos share a SU(2) doublet
with charged leptons, so that SM gauge-invariant operators
that mediate NSI may also mediate stringently constrained,
charged lepton flavor changing processes. For instance,
the contact interaction of Eq. (1.1), for f = e;, could be
generated by the dimension six operator

_2\/§GF8§G(2/J7(1£0)(Z@7/(1£€) (12)
where 7 is the SU(2) doublet (7,e;). However, this
operator also induces the four-charged-lepton interaction
(e,y*Pre,)(ey,Pre) whose coefficient would be strictly
constrained by decays e, — ¢,ee. These concerns can be
avoided by instead constructing NSI at dimension eight
in the Standard Model effective theory (SMEFT), for
instance as

'"The literature contains various statements about coherent
components of the tensor. Reference [20], at zero-momentum-
transfer, showed that the tensor in a polarized target can flip
the helicity of relativistic Dirac neutrinos, without the m,/E
suppression factor arising with the axial vector. This is not
enhanced « A”. However, in the nonrelativistic expansion of the
nucleon current [21], there is a coherently enhanced piece,
suppressed by momentum-transfer. It was discussed for u — e
conversion in [22].

*Oscillations are sensitive to the sign of the matter contribu-
tion, but only for flavor differences.

— 2\/§GF€}M(D/)701V5) (]_cyaf)
e

i (ZhepoH ra HR ert3) (1)
NP

(1.3)

where €, is the antisymmetric SU(2) contraction given in
Eq. (A1). When the Higgs H = (H™, H)) takes a vacuum
expectation value (H,) = v, the dimension eight operator
reproduces the contact interaction on the left (this is
discussed in more detail in Sec. II), with

oo 1.4

/ f A?V » (14)
It is clear that to obtain £ > 1073, the new physics scale
Ayp cannot be far above the weak scale and is likely to be
within the reach of the LHC.

Models that generate such large effects in the neutrino
sector, while avoiding the stringent bounds on charged
lepton flavor violation(LFV) [23], have been explored by
various authors.’ The authors of [25] considered the case
where NSI were generated at tree level by the exchange of
new particles of mass Zmy, and required that the heavy
mediators not induce tree-level LFV interactions at dimen-
sion six or eight. They allowed for cancellations among
the mediators of operators of a given dimension, but not
for cancellations between the coefficients of operators of
different dimension, and found various viable models.
Similarly, Ref. [26] considered models with heavy new
particles that induced NSI at tree level, however these
authors did not allow cancellations among the contributions
of different mediators to LFV interactions. They showed
that their allowed models induced additional, better con-
strained operators, so that £ > 107> was excluded. In this
manuscript, we review this question from an EFT perspec-
tive allowing arbitrary cancellations, also between oper-
ators of dimension six and eight,4 in order to find linear
combinations of operators that induce NSI but not LFV at
tree level.

Models with light mediators have also been constructed
[27-29]. Such models are motivated, because a detectable
e cannot be small, suggesting that any heavy mediator
could be within the range of the LHC. The models of
[27,28] involve a light (=10 MeV) feebly coupled Z/,
which can avoid tree-level LFV constraints by a suitable
choice of couplings; in [29], the SM neutrinos share mass
terms with additional singlets, which are charged under
the U’(1).

3Reference [24] is a recent study of tree-NSI models that are
not engineered to avoid tree-level LFV.

Cancellations between operators of different dimension occur
already in the SM: the Higgs potential minimization relates the
dimension two operator —M>H'H to A(H H)?/2.

015010-2
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Even if the new physics responsible for NSI does not
induce LFV at tree level, loop effects could mix NSI
and LFV operators. Reference [4] considered a particular
dimension eight NSI operator, and erroneously argued that
the exchange of a W boson between the two neutrino legs
would transform them into charged leptons, thereby induc-
ing a contact interaction that was severely constrained by
experimental bounds on charged lepton flavor violation
(LFV). However, it was pointed out in [30], that the log-
enhanced, one-loop mixing of this NSI operator into LFV
operators vanished. The apparent conclusion was that at
one loop, there is no model-independent constraint on NSI
from LFV.

In this manuscript, we revisit the EFT description of NSI,
and the LFV it induces via electroweak loops. We are
therefore neglecting models with light mediators, and our
results apply when NSI are present as a contact interaction
above the weak scale, where the usual SMEFT can be
applied. In Sec. II, we introduce the two sets of operators
that we will use in the analysis: SU(2)-invariant operators
for the EFT above the weak scale, and QED x QCD
invariant operators below my,. Also, the matching between
the bases is given and the operator combinations that
induce either NSI, or LFV, at low energy are listed.
Section III is about renormalization group equations
(RGEs), which encode the Higgs and W loops that mix
NSI and LFV at scales above myy. In this manuscript, we
limit ourselves to one-loop RGES.,5 which describe the
log"-enhanced part of all n-loop diagrams. The one-loop
RGEs are known for dimension six operators [31], and
those for our dimension eight operators are obtained in
Sec. III. Finally, in the results Sec. IV, which should be
accessible without reading the more technical Sec. III, we
show that in most cases, the operator combinations that
at tree level match onto NSI without LFV, induce LFV at
one loop via the RGEs. The resulting sensitivities of LFV
processes to NSI are given. We summarize in Sec. V.

II. OPERATORS
A. In the SU(3) x SU(2) x U(1) theory above my,

We suppose a new physics model at a scale Ayp > my,
that induces lepton-flavor-changing vector operators of
dimension six and eight, which at tree level generate
(neutral current) NSI but no LFV. We want to know
whether Higgs or W loops could mix such operators into
LFV operators, so we need a list of NSI/LFV vector
operators of dimension eight and six. These operators will
be added to the SM Lagrangian as Lqyy — Loy + 6L, with

*Recall that the loop corrections obtained with one-loop RGEs
occur in all heavy-mediator models, and are independent of the
renormalization scheme used for the operators that are introduced
to mimic the interactions induced by high-scale particles.

¢

SL = Z[\Cf 0% +He. (2.1)

0o; NP
where n = 1 or 2 for respectively dimension six or eight
operators, {O} is the basis of operators with Lorentz
structure y, ® y*, and ¢ represents the flavor indices
poff. To avoid cluttering the notation, the flavor indices
are sometimes reduced to po or suppressed. Greek
indices from the beginning of the alphabet (a,f...) are
Lorentz indices, and those from the end of the alphabet
(0, p...) are charged lepton flavor indices. The new physics
scale Ayp is required to be above my, but is otherwise
undetermined, being one of the parameters controlling the
size of e?" [see Eq. (1.4)]. In later sections, loop effects
containing In(Ayp/my) will arise, which we conserva-
tively take ~1.

The Higgs doublet is written

H* 0
H = —
H 0 v
where after the arrow is the vacuum expectation value with

1/v* = 2v/2Gy, and the Higgs is included in the Standard
Model Lagrangian (in the mass eigenstates of charged
leptons) as

(2.2)

Loy = Cipt + ... —{yet,Hey + He} + (D,H)'D'H

, A

- M*H'H + 3 (HTH)?2. (2.3)

where the physical Higgs mass ~125 GeV is m3 = 12,

which corresponds to 1~ 1/2. At tree level, the minimum

of the Higgs potential is given by
M? — % =0, (2.4)

and the one-loop minimization is discussed in Appendix C.

Since we will write RGEs for operators of dimension six

and eight, which can mix due to Higgs mass insertions, we
will frequently use a parameter

M? noov?
=—, —=—. 2.5
"N 1 N =
Consider first to construct operators involving doublet
leptons and SU(2) singlet external fermions f. The dimen-
sion six vector operator of the “Warsaw” basis [32] is
Ol}i/‘;Z,f = (2p7al/ﬁa)(}yaf)’ (26)
referred to as “M2,” because the dimension eight
operators will mix into it via insertions of the Higgs mass
parameter M2. At dimension eight, a convenient basis is

015010-3
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Olsrp = (£,eH )7, (Het o) (F7°f).

Oy s = (€, HyH'E ) (frf), (2.7)
where € is the totally antisymmetric tensor in two dimen-
sions. There could be additional operators with derivatives,
but we neglect the Yukawa couplings, in which limit the
derivative operators vanish by the equations of motion.

For the case where the external fermions are SU(2)
doublets, the Warsaw basis (of dimension six operators)
contains Oy, » for f € {¢, ¢}, and also the triplet con-
traction (z?p?yafa)(c'] 7y%q). The analogous four-lepton
triplet contraction is not included, because it can be
rewritten:

(€, 71al ) (A7) = 2Ly al o) (Eer™Es)
- (2ﬂy(lf7:)(2€yaf€)‘

The singlet operators are more convenient for matching to
low-energy four-fermion operators than the triplets, so we
make a similar transformation for the triplet operator
involving quarks, and take at dimension six for external
doublet quarks:

O/Ii/(;Q .q O/ZTQMQ,q = (;ﬂ/ﬁ/aqquafa)'

(2.8)

= (2,7.%5)(@r"q).

At dimension eight, Rossi and Berezhiani [3] propose
five operators

= (Zyral,)(ar"q)(H'H)
OI}HLH = (£,7Vals)(@r"q)(H't"H)
TQH =(¢ Valo)(Gr*t®q)(H't"H)
o = (€71l ) (qry"q)(H'H)

(,77al )@ty q) (H T H)ewpe = O (2.9)
where to be concrete, the external fermion is taken to be a
first generation quark doublet. The first two operators
would be present for singlet external currents.

In order to count the number of operators, notice that it
corresponds to the number of independent SU(2) contrac-
tions for an operator constructed from the fields:

(@) (@ v ") (HMHN)

where {i,j, k,Il,M,N} are SU(2) indices. The possible
contractions involve three zs, one § and two s, one 6 and
two ¢s, or three 6s. But the rz7, érr and dee contractions
can be rewritten as three Js using the Fierz or SU(2)
identities given in Eq. (A2). Then there are six 666
contractions, among which we find one relation, leaving

five independent operators (This is discussed in more detail
in Appendix B).

It is convenient to use an alternative basis without triplet
contractions 0477, to simplify the matching onto the
Higgsless theory below my. The dimension six operators
in our basis, in the case where the external fermion is the
first generation quark doublet ¢, are

Oﬁ;z q O[L},UQMLq = (2/)}/(161) (Zlyafﬁ)

(2.10)

= (£,7ul5)(@a4)-

where the SU(2) contractions are inside parentheses. At
dimension eight, we take

Qg = (£,H" )yo(Het ;) (ar"q),
Oy = CH)ra(H ¢,)(ar"q)
O/éUCLFVq ( p}’aCI)(CIH)}’a(H s,
[OCCLFVq] = (¢,H)y(H'q)(qr.t,)

Otensig = (Ocenstg + + [OLcs, A7)

?,729)(GeH" )y, (Het )

= (
+ (£,eH")yo(Heq)(qyat 5) (2.11)

where the SU(2) contractions are inside the parentheses.
The relation of this basis to the Berezhiani-Rossi basis is
discussed in Appendix B.

The operators Oy, and Oyg; are Hermitian (as matrices
in lepton flavor space), as is the combination O¢ccys +

OTCCNS, (which corresponds to one of the 666 contractions
discussed above). The remaining two operators, Occpry

and O, py. are not Hermitian, but appear in the one-loop

RGE:s in the combination Occrpy + = Occpry + (’)TCCL Fy-
As a result, our basis of dimension eight operators for
external doublets contains only four operators that mix with

each other. An additional operator, Occppy — OTCCL Fvs
decouples from the operator mixing but is included in
our basis for completeness. The matching of these oper-
ators onto low energy operators is given in Table 1.

Finally, if the external doublets are leptons Z,, the flavor
indices of the operators can be {p, o} € {u, 7}, or one of p,
o can be e. In the case {p,o} = {u,r}, there are no
identical fermions, and the basis given above for doublet
quarks can be used.

For the case where one of p, o is e, there are some
redundancies. First, notice that in this case, the operator
only carries one flavor index, which can be taken to be
o € {u,7}. Then inequivalent operators that annihilate £,
can be constructed, and the +H.c. will look after the
operators which create ¢,. One finds the following
equalities:

015010-4
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TABLE L

SMEFT operators used in the RGEs of this paper, and four-fermion operator below my, onto which they match. For

concreteness, the external fermion f is taken to be a quark doublet g. The first three operators are present for all external fermions; those

below the double line are only required for external doublets when the

y are quarks, or leptons with (p, 6) € {(z, ), (u, 7)}. For external

doublet leptons (¢ — 7, in the table), when p = e or ¢ = ¢, only the operators with a cross in the second column are required, and notice
that below my, (u — v, and d — e in the table), Occys; o, Matches onto a 4v operator, an NSI operator and a CC operator after a Fierz

transformation.
Name Operator Below my,
Of\/aSl,q X (ZpGH*)ya(Hﬂ’ﬁa)(qyuq) _Uz(ﬂpyaPLl/o)(qyaCI)
Oing X (¢, H)ra(H'¢5)(ar"q) v2(e,y4Pres)(Gr*q)
Olng X (€prats)(@r°q) (@raPLes + DpYate)(@r°q)
OZTQMZ(] (2/17(161) (anfﬂ) (ﬂpyaPLVfr)(ﬁyaP_Lu) + (épyaPLe(r)(ayaPLd)
+(D/)J/{ZPL€0) (dYaPLu) + (é/)yaPLl/o)(ﬁyaPLd)

(,)(éaCLFV,q + [OZ‘CLFV,q}pG (‘_IH)Za(HTf )(f 4 _‘]) 2U2(é Vz_xPLea)(d?/u_PLd) B B

+(f H)ya( )(q}/ 4 ) +v (epyaPLl/ﬁ)(uyaPLd) + Uz(yp}/aPLeﬂ)(d}/aPLu)
O‘LgYCNSI.q + [(Q'IZ‘CNSI,q]/”r X ( eH ) a(Hef (f _q) _2vng/iYaPLya)(m_/aPLu) 9/ _

+( peH*)ya(Heq)(qV Zs) —v*(8,1aPLVs) (ay*Prd) — v (0,7 PLe,) (dy* PLu)
OﬂCo—CLFV.q - [OECLFV,q]pg ( H)?_’a( )( 4 ‘I) yz(ﬂpga_PLen’)(dyaf_)Lu)

(fp )ya(HT )(q},af ) —v (epYaPLVﬂ)(uyaPLd)

o — (Neo ec — (Meo
OCCNSI,I,” - ONSI,K’ OCCLFV./ - OHZ,K’

O%Mz,f = (’);}‘M (2-12)
and the relation
ECUCNSI,f - [OTCCNSI/]M = eC%LFV,f - TCCLFV,f]w
(2.13)
so that a sufficient basis in this case should be
i/l[’Qf - ( o‘)( eyafe)
Olilds‘lt’ = ( €H*)}’a(H€f )(Ee}/afe)
H2f = ( )ya(HTf )(feyafe)
OCCNSH- 14 = ( ela o‘)(f €H*)}/a(H€l’ﬂe)
+ (Corale)(CoeH yo(Het )  (2.14)

with o ranging over {u,7}.

B. In the QCD x QED theory below my,

At my, the SU(3) x SU(2) x U(1)-invariant SMEFT is
matched onto an effective theory that is QCD x QED
invariant, where NSI operators can no longer mix to
LFV operators. The dimension six and eight SMEFT
operators all match onto four fermion operators of the
low energy theory, which, for LFV (and charged current)
operators, are defined with Lorentz structure and chirality
subscripts, and flavor superscripts:

I
Oyxy =

(@ Pxu) (fr,Pyf). (2.15)

and are added to the Lagrangian as &L = 2v2Gy

Oy O, However, the low energy NSI coefficients
are deﬁned w1th opposite sign to agree with the convention
that NSI operators have the same sign as the Fermi
interaction [see Eq. (1.1)].

The third column of Table I gives the combination of
low-energy operators onto which a given SMEFT operator
is matched at tree level. This table shows that for external
fermions other than the quark doublet, there is at low
energy only one LFV operator, and one NSI operator (for an
external quark doublet, there are two of both, involving u;,
and d;) in the theory below my,. The coefficients of the
low-energy operators will be a sum of SMEFT coefficients,
so for a given external fermion f € {e;, eg, uy, ug, d;,dg}
there is only one combination of SMEFT coefficients that
needs to be nonzero, and another than should vanish, in order
to have NSI without LFV at tree level. In the remainder of
this subsection, for each possible external fermion, we give
these combinations of SMEFT coefficients.

Three comments about these directions in coefficient
space: first, in the low energy theory, we allow tree-level
charged current operators, in the perspective that the
bounds on flavor-changing charged current processes are
not more restrictive than the £ < 0.01 bounds on NSI [8].

Second, arbitrary cancellations among operators of same
and different dimension are allowed. This differs from the
studies of, e.g., Refs. [25,26], who constructed the new
physics models to generate the SMEFT operators, then
restricted to the cancellations that the authors considered
natural. In the EFT perspective of this manuscript, can-
cellations among operators of the same dimension are
allowed because they just reflect the choice of operator
basis. Cancellations among four-fermion operators of

015010-5
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dimension six and eight are also allowed because a similar
cancellation between operators of different dimension
occurs in minimizing the Higgs potential [see Eq. (2.4)].
Cancellations between contributions of different power of
log(Ayp/my) are however not allowed (this is further
discussed in Sec. IV C).

Thirdly, the results listed here are well known; the
purpose of this discussion is to give the conditions in
the operator basis used here. For instance, low-energy LFV

cancels between Cyy, , and Cy 0 if Chpy o = =Clopn -
This could be written as
UT T
5J3,ff = _S;K

in a basis® which included Oy = (2,714 0) (€ 7r°C,)
and O, = (£,74¢:)(¢.y°¢,). This cancellation reflects
the model-building possibility of putting an L = 2 scalar
dilepton D, with vertices y,,Z°,e¢,D and y,¢°.ef,D,
which generates the contact interaction (£/y,%)(Zly,t")
€; € transformable to either of the cancelling combination
of operators by using the identities of Eq. (A2).

In the case of operators with singlet external fermions,
Onsis induces only NSI, Oy, r only LFV, and Oy,
induces both. The tree-level LFV and NSI coefficients can
be read from Table I:

NC 1}2 No NG ’7
%‘ A2( Chr + Clist /‘1>

where we used the tree-level Higgs minimization condition
v?/A%* = n/A. So low energy LFV vanishes at tree level if

(2.16)

A third interesting coefficient combination, independent of
those that induce NSI and LFV, is nCpyy, = —nCns1 =
—AC)y», which induces no low-energy interactions.

For external fermions that are doublet quarks, NSI are
proportional to

2
n

e = (-l + 1, )
2

e = e+ (=l + 21 i )+ (218)

Low-energy LFV is induced on u,, currents by Oy, , and

Oun,q» and on and d;, currents by Occrpvy g Onzgs Omg

and O g 4> s0 the LEV coefficients are

6Although the “triplet” 4¢ operator is absent from the Warsaw
basis, it is not redundant in a basis where the first generation
indices are required to be in the second operator current.

C/)rmu _ UZ n C/m C/m
V.LL — A2 /_1 H2.q + M2.,q

2
podd poul e
C/ LL — C/V LL A2 (2/1CICCLFV+ q + CLQMZ q) (2 19)

It is straightforward to check from Table I that there are two
other independent combinations, that do not induce any
low-energy operators, due to cancellations.

Finally, when the external fermion is a doublet lepton
and the flavor indices are p,o € {(z,u), (4,7)}, the low
energy NSI and LFV coefficients are

Spa Uz PO n o
e, — p _CMz,f + z CNSI,K (2-20)
poee 1}2 Tl
Cv LL — Az /1 (C e T 2CCCLFV+ f)
+ e + i ). (221)

In the case where one of p, ¢ is an electron, LFV vanishes
when the condition (2.17) applies, and

’[]2 n
geL A2 <_Ci/72.q + /_1 (Cle\TGSI,q + CE?C'NSIJr,q)) . (222)

III. LOOP DIAGRAMS AND THE ANOMALOUS
DIMENSION MATRICES

We consider the mixing among the operators listed in
the first column of Table I, due to the one-loop diagrams
induced by W or Higgs exchange that are illustrated in
Figs. 1-4. There are additional wave function diagrams that
are not illustrated. The loops involve the SU(2) gauge
coupling g and Higgs self-interaction 1; Yukawa couplings
are neglected because they are small for leptons and first
generation fermions. The hypercharge interactions are less
interesting, because they cannot change the SU(2) structure
of the operators. They are included, for illustration, for
external singlet fermions. The calculation is performed
in MS in R; gauge, with the Feynman rules of unbroken
SU(2), partially given in Appendix A.

A. Diagrams and divergences for gauge bosons

Consider first the diagrams of Fig. 1, which could
contribute to the running and mixing of all dimension
eight operators. The fermion wave function diagrams are
& (the parameter of R — & gauge), and the W corrections
to a scalar leg give a divergence

B+l et G
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FIG. 1.

W loop corrections to operators represented by the grey circle; there is also a current of external fermions f present in the

operator, but these lines are not drawn because they do not participate in the loop. These diagrams occur for all dimension eight
operators; there are in addition wave function diagrams. Only the fourth diagram (without the Higgs legs), and wave function diagrams
are present for dimension six operators. Superscripts are SU(2) indices, subscripts are flavor indices.

L

0 7 0 o

N vM Y HM
R _)_ - R R

qf ¢ qf ¢

I 4 I &

HN H]W HN H]V[
— _)_ - — -

@ g g qi

FIG. 2. W loops that can arise when the external fermion is an SU(2) doublet. Superscripts are SU(2) indices, subscripts are flavor

indices.

We systematically check that the coefficients of £ vanish
in our calculation, so in the following, we drop all the
diagrams which are proportional to . Indeed, all the vertex
diagrams in Fig. 1 are « £, so they do not contribute. Only
the divergence from the scalar wave function remains,
which renormalizes operators but does not mix them
among each other.

When the external fermions are SU(2) doublets, for
instance the first generation quark doublet ¢;, additional
diagrams arise. First, there will be wave function correc-
tions on the external doublet lines, and all but the third
vertex diagram of figure 1 will occur, but with the W
attached to the external doublet line—these diagrams all
vanish. In addition, there will be diagrams, illustrated in
Fig. 2, where the W is exchanged between the external
fermion lines, and the flavor-changing lepton lines. These
do not vanish, and correspond to the one-loop diagrams that
renormalize and mix vector four-fermion operators.

The spinor contractions and momentum integral for
the first two diagrams, at zero external momentum, give
a divergence

g C i

L 32
4 AL, 167% (3.2)

X (34 &)y Prug) ity Pru;)

whereas the last two diagrams give the cancelling term « &.
It remains to perform the SU(2) contractions, that define
which operator mixes to which; these can be read off the
anomalous dimension matrices given in Sec. III D.

For the case where there are identical fermions (7,
as external fermions), the operator basis is smaller [see
Eq. (2.14)], so the divergences due to W exchange among
fermions look different. It is straightforward to check that
the same divergences are generated by operators that
become identical in the presence of identical fermions.

Finally, the W bosons can mediate penguin diagrams,
as illustrated in Fig. 3. For operators without identical

. o L 1z
- > > - >
-
f le,m leyt
n m
f'k £ £k £

FIG. 3. W penguin diagrams that occur when the external
fermion is a doublet. The right penguin only occurs if the operator
involves identical fermions, such as two 7, fields.
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fermions, only the left penguin can occur, and vanishes
for Onst, O and Oy, due to a trace over the SU(2)
generator. For W penguins, there is only a sum over the
colour of quarks in the loop, never a 2 for tracing over
SU(2) doublets, because the loop vanishes as the trace of a
generator in this case. These diagrams can change the
external fermion, e.g., £, <> q;, thereby mixing operators
with different external fermions; for simplicity, this mixing
is neglected in the RGEs of Sec. III D. (It does not give
additional constraints when the external fermion is a quark
doublet; it is interesting for external lepton doublets and is
briefly rediscussed in Sec. IV B.)

In the case of identical fermions (the external fermions
are Z,, and p or o is e), there could be two penguin
diagrams, due to the identical fermions. However, since
we consider vector operators, which can be rearranged
according to Fierz, the spinor contractions and momentum
integrals for the two possible diagrams are the same; only
the SU(2) contractions can differ. In particular, the relative
sign between the amplitudes is +, because the two diagrams
are Fierz transformations of each other.

The different SU(2) contractions for the two penguin
diagrams should correspond to the penguin contributions
of two operators which become identical when there are
identical fermions. For instance, for external g, Oy, has
no penguin diagram, but Oy, generates divergences
x 2010m2 — Oz via the penguin. For the operators with
external #, and identical fermions, Oy, and Oy, are
identical, so the “different” SU(2) contraction that allows
Oy to have a penguin diagram is just the SU(2) con-
traction that allowed a penguin to Oy gy,. We conclude that
in the reduced basis of operators with identical leptons,
one must sum the penguin divergences of the different
operators that become identical.

B. The Higgs loops

Closing the Higgs legs and inserting AH* can renorm-
alize and mix the dimension eight operators. Inserting
instead M? on the scalar line, as in the right diagram of
Fig. 4, mixes the dimension eight operators into O, and
OLom- These loops are straightforward to calculate, have
no subtleties in the presence of identical fermions, and
give rise to the anomalous dimensions given in the
following sections.

C. Deriving RGEs
We wish to obtain the one-loop RGEs for our operator
coefficients, which, for a choice of lepton flavor indices p,
o, and external fermion f are assembled in a row vector
C= (Clpii(syl,fv Cll)ég,fv Cﬁ/;;,f)’ (3'3)

where ... is the additional coefficients that could arise if f is
an SU(2) doublet. It is convenient, during this derivation,

H' < 4 H’ M?
y N y N
HM v | HN H]V[ v | HN
i/ N i i/ N )i
0y 12 Ly 2,

FIG. 4. H loops that mix and renormalize dimension eight
operators, and mix them to dimension six via the Higgs M?
insertion. The external fermion is f.

to multiply Oy, and Oy g0 by M2, so that all the operators
are of dimension 8. With this modification, the Lagrangian
in 4 — 2¢e dimensions can be expressed in terms of running
fields and parameters as

1 > " De A
L=t Y {CulZlas - (2 ZuP " 0p)}  (3.4)
f

where n € {0,2} is the number of Higgs legs of the
operator Op. The bare coefficients Cpye = C [Z]pu>me
should satisfy d—iébm =0, which gives renormalization
group equations for the Cys:

0 -
/'la_ﬂCA = —4eCy +2¢(C - [Z]) y26a.m2
= 0y 8[2] _])
—(C. =2 7
< Haﬂ 9g; 2 A

= C-[r]

(3.5)

(3.6)

The operator O, has dimension 8 — 4¢, whereas Oy, and
Ong1 are 8 — 6e-dimensional, which gives different O(e)
terms in the RGEs. These terms give the anomalous
dimensions mixing Op, and Oyg; to Oy, because the
counterterms in the M2 column of [Z] are independent of 4
and ¢,, so the last term vanishes. As a result, the off-
diagonal anomalous dimensions, as usual at one loop, are
twice the coefficient of 1/¢ in the counterterms. For the
diagonal anomalous dimensions, wave function contribu-
tions should be subtracted in the usual way (because the
counterterms for an amputated operator are represented by

C-[C] = C-[Z|Z!/*Z,, but we only want [Z]):

M4y = 2[CW],, — 22 — 225, /5

Clag = 2[C(1)}AB7 A#B (3.7)
where Z(1) is the coefficient of 1/¢ in Z.

Neglecting the running of the couplings (g,,y;, 4), the
solution is
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Clug) = Cln) - (10 + Mg + 5 10 ) (3)

where, by analogy with running masses, the couplings in [y] are to be evaluated at uy.

D. The anomalous dimension matrix

For singlet external fermions, in the basis (Cnsi, Cia, Cup2), the anomalous dimension matrix is

N N
Ir] :% 0 —18 0| +—| 21 —41 29
K K
0 0 0 0 0 0
[-6+24Y, 4 16N ¥3/3 0 0
n % 0 —6424Y, + 16N, Y2/3 0
0 0 24Y; + 16N,Y2/3
1 P +42  4d  dp-2(d+d)
=] 4 P+ 422 —4+2(d+d) (3.9)

0 0 d?

where k = 162%, n = M*/A?, and d = =(9¢°/2 + 44+ ¢*[1.5 = 6Y; — 4N ;Y7/3]) ~ —4 is the diagonal anomalous
dimension of Oyg; and Oy, and d' that of Oy,.

For doublet external fermions, in the basis (Cnsp Cros (Cocrpy + CTCCLFV) /2, (Ceenst + CECNSI) /2,
(Cecrpy — CTCCLFV) /2, Crom2. Cy2), the anomalous dimension matrix is

50 0 -10 0 0
0o 3 -1 0 0 0 0
3922—2g—1000
M=-—>|-2 2 -1 3 0 0 0
0 0 0 0 3 0 0
O 0 0 0 0 1 =2
L0 0 0 0 0 -2 1
[0 0000 O] [—44 22 0 0 0 0 =-29]
0 0 0000 O 20 —42 0 0 0 0 2
, 0 22000 0 0 0 —412 20 0 47 0
+g3—IZC =20 0200 0+-| 0 0 20 -4 0 -4 0 (3.10)
0 0 0020 0 0 0 0 0 =22 0 0
0O 0 0002 -1 |0 o0 0 0 0 0 0
0 0 0000 O o 0 0 0 0 0 0

where k = 1672, n = M?*/A?, and the first matrix is from W exchange, the second is the W penguins and the last is
the Higgs.

In the case with external lepton doublets and identical fermions, several operators are identical [see Eq. (2.12)],
so the anomalous dimension mixing operator A into operator B is the > 5 I'yp over all the operators {B’} who are

015010-9



SACHA DAVIDSON and MARTIN GORBAHN

PHYS. REV. D 101, 015010 (2020)

identical to B. This rule applies to the second matrix
of Eq. (3.10). Then for the penguins, the rule is to sum
also over the identical operators in the column: I'yp =
> a.p g Then the anomalous dimension matrix, in the

basis (Cxsi» Cras Coenstss Cun)s 18

% 0O -1 O
392 2 1
r=-%|0 T
koo L o0
0O 0 0 -1
0 0 07
N 1 0 0
_|_g_C
3k |:5 1 4 0
0O 0 0 1]

42 22 0 -2
1|22 -42 0 29
x4 441 -2 -4y

0 0 0 0

(3.11)

IV. RESULTS

This section presents the LFV that is induced by electro-
weak loop corrections to NSI operators. Section IVA
summarizes relevant experimental constraints on LFV, then
Sec. IV B applies these constraints to the LFV coefficients
induced by loop corrections to NSI. Possible cancellations
allowing to avoid these constraints are discussed in Sec. IV C.

A. Experimental sensitivity to LFV operators

Loop corrections to NSI can induce vector four-fermion
operators [as given in Eq. (2.15)], that involve two charged
leptons of different flavor, and two first generation fer-
mions e, u, or d. This section lists the experimental
sensitivity to such coefficients. Since all the operators
considered here are Hermitian (on doublet lepton flavor
indices po), we do not distinguish between bounds on
croff ys C°P/7, and quote bounds on only one.

If the lepton flavors p, o are p and e, then y — eee
and y — e conversion are sensitive to the LFV induced
by loop corrections to NSI operators. Current bounds from
SINDRUM [33,34] at 90% C.L. are BR(uAu — eAu) <
7.0 x 10713, and BR(u — e2e) < 107'2, and give sensitiv-
ities (to the operator coefficients at my,)

e <78 x 1077 4.1
V.,LL

% <93 x 1077 (4.2)

4l <53 %1078 4.3
V.,LL

Cll% <54 %1078 (4.4)
Cylp <6.0x 1078 (4.5)
clem <63 x 1078 (4.6)

Experiments under construction (COMET [35], Mu2e [36],
Mu3e [37]) will improve these sensitivities by two orders
of magnitude in a few years.

For one of p, ¢ a 7, and the other y or e, current bounds
ont— Zete” at 90% C.L. give [38]

Ciess <2.8x 107 (4.7)
Cye% <40x 107 (4.8)
cee <32 x 107 (4.9)
CPo% <32x 107 (4.10)

These sensitivities again apply to the operator coefficients
at myy.

The operators with u or d quarks as external fermions
can be probed by the LFV 7 decays BR(z — {u, e}n°) <
{1.1x1077,8 x 1078} [39,40], BR(z — {u,e}p) <
{1.2x107%,1.8 x 1078} [41] and BR(z — {u,e}n) <
{6.5x1078,9.2 x 108} [40] (all limits at 90% C.L.).
As noted in [42], these three decays given complemen-
tary constraints, because the #x is an isospin singlet
(e il'u + dT'd) whereas the pion and p are isotriplets
(o #T'u — dT'd), and the decays to pions or ps are respec-
tively sensitive to LFV operators involving the axial or
vector quark current.

It is convenient to normalize the pion decays to the
SM process 7 — vz~ (with BR(z — vz™) = 0.108 [43]), in
order to cancel the hadronic and phase space factors:

BR(r ¢n') _|CYih=CYii = CYl CEHP (|
BR(t—>uvr™) 2|Vl '
where the 2 is because v/2(0|iy%ysu|zo) = (O|ay®ysd|z™).
This gives

(Citty = Cirty — Cigd+ Cpfd] <12 x 107

(CYIR = CVIL = CUip + Uzl S 14 X107 (4.12)

These sensitivities apply to the coefficients at the exper-
imental scale [not the weak scale as for Egs. (4.10)
and (4.6)].

The trick of normalizing by an SM decay is more subtle
in the case of 7 — ¢p, because the p decays to two pions, SO
the 7 — £p bounds are obtained by selecting a range of
#tx~ invariant-mass-squared appropriate for the p(770).
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The corresponding SM decay is BR(r — va'z~) = .255,

studied by Belle [44] over a wide invariant-mass-squared.
The fit to the spectrum performed by Belle suggests that
~80% of the events are due to the p(770), so for simplicity’
we suppose:

BR(r = ¢p)  |C¥i% + Yy - Cis — CYid?
BR(‘L’ - yn’oﬂ_) o 2

(4.13)
which gives
[CViR + CViL — CViR - OV <38 107
Y+ CY1L = O = O] < 3.1 x 107

(4.14)

For the n, we approximate f, ~ F, ~92 MeV (see [46]
for a detailed discussion), so that

Tl uu Tl uu ttdd ttdd |2
['(z—7) B ‘CV,XR —CyxL TCVxR—CVL ‘

, 4.15
INCESY o) 2 (4.15)
and the current bounds on I'(z — £7) imply
Citl = Ce + Cidhe - Cird| < 65 x 107

THUU TUUU Tudd Tudd _
|CV'xk = C‘;I,XL + C\%XR - C\%XL' <54 %107 (4.16)

In coming years, Belle II could improve the sensitivity to
LFV 7 decays by one or two orders of magnitude [47].
|

For models that induce LFV on left-handed, or right-
handed quarks, but not both, the bounds of Egs. (4.14) and
(4.16) can be combined in a covariance matrix to obtain

|Cy 1% < 7.1 x 107

|CV 4] <59 x 107 (4.17)

where ¢ € {u,d} and X =L or R.

B. LFV due to NSI

We consider combinations of operator coefficients
which, at tree level, induce NSI but not LFV (these were
given Sec. II), and use the RGEs obtained in Sec. III to
estimate the effect of loops. For example, the one-loop [or
two-loop] mixing of a given combination of tree-level
coefficients, can be obtained from the second [or third] term

-

of Eqn (3.8), with C(y;) the input (tree) coefficients at the
new physics scale y; = Ayp, and C(us) the loop-induced

combination at the weak scale my. By matching C(u/)
onto the low-energy theory, one obtains the LFV induced
by the one-loop RGEs.

The case of singlet external fermions is simple to discuss
as an explicit example. Equation (2.16) implies that NSI
can arise at tree-level from Cygy and/or Cyy, (subdominant
loop contributions to coefficients induced at tree level
are neglected in the following.) For only Cysi(Ayp) # 0,
Eq. (3.9) gives

2 A 42d A
" = C%%. NP 2 IA\NP
ACHz,f(mW) = CNSI,f(ANP) X <(16ﬂ2)10g - + 2(167z2)210g - + .. >
2n Ayp A4 —2n(d +d') Ayp
Yo __ PO )
ACirarUmw) = Cusay (e x <_ (16”2)10g my 2(167%)? log my L

where d and d’ are defined after Eq. (3.9). Matching onto
the low-energy operators according to Eq. (2.16) with
Table I, gives, at first order in 1/(167?), a vanishing LFV
coefficient Cf/7% = 0, due to potential minimization con-
ditions. However, at second order in the one-loop RGEs,

Ongsr induces LFV at low energy:

pors _ Ot (Ane)v* 2(d = d') + 42, Ayp
ACv.Lk = A% 2(1672)2 log
NP (1672) my
~ 10_48f, (4'18)

where d — d' = —(9¢% /2 + 44) if hypercharge is neglected,
and for the numerical estimates in this section, we con-
servatively take Ayp ~250-300 GeV in the logarithm.

"A detailed fit and discussion of the form factors for 7 —
Cnta is given in [45].

|

For Cyn(Ayp) # 0, the tree contribution to LFV must
be canceled by Cpo(Ayp) = —(4/n)Cyn(Ayp) as given
in Eq. (2.17). Then the RGEs generate corrections to Cy,
and Cy,:

o o d Anp
AClmw) = Ciipy (Awr) X gz logs,

o d =22, Ayp
Al = o (e ) X g aytossy

which match onto low-energy LFV at one loop:

Cuia(Ayp)v? A
acrelf - b Dwe —(d—d) —2A11 NP
Cyvir (16”72)/\]2\,}) [-(d-d) 7 Og—mw

~=2x107%;. (4.19)
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1073 1072 107! 1
(N (Axp)/Cnsi(Anp)

1073 1072 107! 0.5
(N RH (Anp)/Csi(Axp)

FIG.5. The loop-induced LFV coefficient, normalized to the NSI coefficient &4, for SU(2) singlet external fermions f, as a function of
the ratio of the two independent operator coefficients that can induce NSI: Cy;»(Ayp) and Cysi(Anp). Cra(Ayp) is determined as a
function of Cy, (Ayp) by the cancellation of tree-LFV given in Eq. (2.17). The left plot is for negative Cy;,/Cnsi» and positive values are

in the plot to the right.

So a heavy New Physics model that gives NSI on singlet
fermions will induce LFV via loops, which is the sum of
Egs. (4.19) and (4.18).

In Fig. 5, the magnitude of the LFV coefficient is
plotted against the ratio Cy ;A?/Cysy v, for e = 1.0
and assuming tree-level LFV cancels according to
Eq. (2.17). For |Cyp s| > [Cnsipv?/A?], it is clear from
Egs. (2.16), (4.19), (4.18) that &7~ —Cyp ;v*/A%, and
Cyrp~—2x 10‘2sf, so the plots illustrate the regions
|Cha sl < |Cnsipv?/A?| (For Cypnp= Cnsifp0? /A% &
vanishes so Cy /€, diverges.). At Cy ; = Cygppv? In/
(327°A?), the figure shows an “accidental” cancellation
between the contributions to the LFV coefficient from
Egs. (4.19) and (4.18); we are reluctant to admit this
loophole in the LFV constraints on NSI, because it is
difficult to build models that tune Lagrangian parameters
against logarithms of mass scales.

The experimental bounds on LFV from Sec. IVA can
now be applied to the loop-induced LFV coefficient,
obtained by summing Eqs. (4.19) and (4.18). This gives
an upper bound on the NSI coefficient, that depends
on the ratio A’Cy/(v*Cys): €7 the value given in

TABLE II. Bounds on flavor-changing NSI parameters from
the nonobservation of LFV processes among charged leptons,
obtained from Eq. (4.18) for SU(2) singlet external fermions.
Comparable limits apply to the {e’;’i} for doublets, as discussed
after Eq. (4.20). These bounds, which are almost unavoidable,
arise from two-loop contributions [O(a?log?)] of the NSI
operators to LFV processes.

£J5§§9><10_3 g S4 82’253
e 4 U

e $5%x10 e <7 €y S6
€ -4 Te H

E‘ZR,§6X10 e <7 ey <6

the plot must be smaller than the experimental constraint.
For instance, for Cy(A) <1072 Cxsi(A), € must be

<1073 — 1072 as given in the first column of Table II,
and 7 <> e, NSI can be O(1). The 7 decay bounds are
given in the second two columns of Table II. On the
other hand, as soon as Cy, strays away from 0, the LFV
bounds on NSI are more restrictive (this is illustrated in
figure 5)—then the LFV is O(107%¢;), and the constraints
on LFV are given in Table III. Notice however, that
all these estimates are approximate because our EFT
calculation only allows to obtain the log”-enhanced part
of n-loop diagrams, and since the logarithm cannot be
large, our results should give the order of magnitude, but
not two significant figures.

If the external fermion is an SU(2) doublet, the situation
is more involved. It is again the case that Cyg; first mixes
into LFV at O(a?log?), but for external doublet quarks, the
other five coefficients all induce LFV at O(alog). In order
to avoid tree-level LFV, those five coefficients must satisfy
two constraints, obtained by setting Eqs. (2.19) to zero.
Then they will induce LFV as given by the RGEs of
Eq. (3.10):

TABLE III. Bounds on flavor-changing NSI parameters from
the nonobservation of LFV processes among charged leptons,
obtained from Eq. (4.19) for NSI on SU(2) singlet external
fermions. Comparable limits apply to the {¢}; } for doublets, as
discussed after Eq. (4.20). These bounds arise from one-loop
contributions [O(alog)] of the NSI operators to LFV processes,
and can be avoided in models that generate particular patterns of
coefficients as discussed in the text.

Eey S5 107 e <2x 1072 e <2x1072
it <3%x 107 € <S4 x 1072 el <3x 1072

e <3x107° ¢ <4x1072 et <3x1072
dR dR dR
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pouu Uz log(A/mW) 9 e
AC/V,LL = FT <|:§g2 + 2/1:| Cl;l/IZ,q

2
v
2 0o 2 PO
— 6g A2 Ceenstr g T 9 CLQMZ,q)

2
podd v log(A/mW) g 0o 9 2
ACy; = O (Chng T Clomny) 59 +24
(4.20)

If NSI are due to some subset of Ceensiyg» Cung and
Cromn,q» and the LFV coefficients of Eq. (4.20) do not
vanish, then the bounds of Table III would generically
apply. (We do not make plots in this case, because there are
four independent coefficients).

On the other hand, the above equations contain three
coefficients, so it is possible for the new physics model to
arrange them such that the O(alog) LFV on u; and d;
currents  vanishes: the coefficients Cp ., Ceocrpvy g
Ccenst+g» Cuzg and Cpgpypn , must all be nonzero, and
satisfy the four relations obtained by setting Eqgs. (4.20)
and (2.19) to vanish. If a model could be constructed to
implement this cancellation, it is possible that there would be
not-log-enhanced one-loop contributions to LFV operators;
however, to verify that in EFT would require going beyond
our leading-log analysis. It is however sure, from our one-
loop RGEs, that LFV will be induced at O(a? log?), so that
constraints of order those in Table II would apply. As in the
case of external SU(2)-singlet fermions, these constraints
also apply if the model matches only onto Oyg; , at the scale
A, with all the other coefficients relatively suppressed by
~1072. The exact formulas for these O(a?log?) contribu-
tions are straightforward to obtain from the third term in
Eqgs. (3.8); they are not quoted here because they are lengthy.

It is interesting to resurrect the “external-fermion-
changing” W-penguin diagrams of Fig. 3, before giving
results for the case where the external fermion is a lepton
doublet. These penguins can change the external fermion
Z, < q, so, for instance, an operator with external Z, could
generate one-loop LFV on u; and d;. Requiring that the
model choose its parameters to cancel this LFV gives
an additional constraint on NSI for doublet leptons when
po € {u, 7} that is given in Eq. (4.22).

For external Z,, the NSI and LFV are different if one of p,
o is first generation. When yes, tree level NSI and LFV are
respectively generated by the coefficient combinations
given in Egs. (2.22) and (2.17). For p,o € {u, 7}, the
combinations are given in Eqgs. (2.21) and (2.20). In the
following, we suppose that the tree-LFV combinations of
Egs. (2.17) and (2.21) vanish.

The operator Oyg; o, Which contributes to tree-level NSI,
first induces LFV at O(a? log?). NSI can also arise due to
Cy2.¢» In which case the one-loop LFV is different depend-
ing if one of p, o is first generation. When yes, then the one-
loop LFV on electrons is

poee
ACV.LL -

o2 log(A/my) ({125

A 162 —g + 24 Chior

e
T3 C%%NSH,K) ; (4.21)
and the W-penguin-induced LFV on quarks vanishes when
Eq. (2.17) does. So if NSI are induced by Cy,, », then the
model can tune coefficients to cancel tree and one-loop
LFV, by ensuring that Eqgs. (2.17) and (4.21) vanish.

For p and ¢ € {y, 7}, the one-loop LFV is induced on u;
and d; by the W penguins

2,2
cuu g v log(A/mW) n c o
AC/\)/,LL = ?Pim,ﬂ E C'?Jz,f + waz,f
2,2
odd g v log(A/mW) n c o
AC@,LL = gp‘ 1672 2; C/éCLFVJrf + CiQMz.f

(4.22)

and on leptons:

v_zlog(/\/mw)
A?  16x°
7 2,0

+ 3 Crome + 39 2 CZ'UCLFV+,K>

oee 9 (o3 (o3
ACYTL = ([5 g+ 2/1] (Char + Clome)

(4.23)

So if NSI arise due to an operator other than Oyg;, then at
least two coefficients must be cancel against each other to
avoid tree LFV [as shown in Eq. (2.21)], and LFV will arise
at one loop unless the model arranges Eqs. (4.23), (4.22) to
vanish.

In summary, for external lepton doublets, the LFV
constraints are similar the case of an external quark doublet:
generically, the bounds of table III would apply; in the case
where the model matches only onto Oyg, or where it
arranges its coefficients to cancel the LFV at O(alog), then
the bounds of II would apply.

C. Cancellations

The results given in Tables III and II are not in reality
“bounds” on NSI from LFV processes, but rather “sensi-
tivities”: NSI coefficients larger than the given value could
mediate LFV rates above the experimental limit, but not
necessarily, in the case where their contribution to LFV
is cancelled by other coefficients. This section lists some
possible cancellations that could allow NSI to evade the
LFV constraints.

(1) As already discussed, for external fermions that are
SU(2) doublets, there are enough operators such
that, not only the combination of coefficients which
contributes at tree level to LFV can be chosen to
vanish, but also the coefficient combination that
contributes at alog. But the two-loop O(a?log?)
bounds of Table II would still apply.
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(ii) We neglected possible cancellations between flavors
or chiralities of quarks8 in the experimental sensi-
tivities of Sec. IVA.

In the case of NSl involving 7 <> ¢ flavor change,
the 7 decay bounds quoted do not constrain the
isosinglet vector combination Ci 4% + Ci/ +
Cy/44 + C/4%. The authors are unaware of restric-
tive bounds on this combination; if indeed they
are absent, then tree LFV bounds for 7 <> #NSI
would not apply to an NSI model where the low-
energy LFV coefficients are equal for external fer-
mions f = q;, ug, dg. This equality could substitute
for imposing the tree cancellations of Eq. (2.19).
However, the coefficients of operators with external
fermions q,up and dy all run differently (the last two
due to different hypercharge), so LFV would still
arise at one loop, and the one-loop bounds would
apply, unless further cancellations are arranged.

In the case of u <> e NSI, the y — e conversion
bounds apply to a weighted sum of the u and d vector
currents, where the weighting factor depends on the
target nucleus. It is not possible to avoid the bound by
cancelling u vs d coefficients, because there are
restrictive bounds on u — e conversion on Gold
[Z =79, used to obtain Eq. (4.6)] and Titanium
(Z =22, BR(uTi— eTi) <42x107'%), which
have different n/p ratios, so together constrain the
u — d combination a factor of 2 less well than u + d.
However, the sensitivity of 4 — e conversion to the
axial vector LFV operator (ey*Pru)(qrarsq), is ~
three orders of magnitude weaker (below myy, the
axial vector mixes via the RGEs of QED to the vector
operator). So if loop corrections to NSI generated
LFV on the axial quark current, the LFV bound on
NSI would be weakened by 10°.

This requires NSI on doublet and singlet quarks
(involving operators other than Oysp), whose coef-
ficients satisfy the zero-tree-LFV conditions, and
where the external doublet coefficients are of com-
parable magnitude and opposite sign to the singlet
coefficients. Then U(1) and SU(2) penguin diagrams,
that could mix these operators to those with external
electrons, vanish due to the zero-tree-LFV condition,
and the bounds in the second and third row of the first
column of Table II could be relaxed by three orders of
magnitude.

(iii) We neglected the possibility that the model induces
“other” LFV not included in our subset of opera-
tors (for instance, tensor or scalar four-fermion
operators), that could mix into it and cause cancel-
lations at low energy.

The experimental bounds on leptonic decays constrain
individually the coefficients of different chirality.

(iv) We do not allow cancellations between Wilson
coefficients at A (expressed in terms of parameters
of the high-scale theory), against other Wilson
coefficients multiplied by log(v/A), because this
would be “unnatural” in EFT (In principle, the
model predicts the couplings, but the observer
chooses the scale at which experiments are done,
and therefore the ratio in the log.). However, such
“accidental” cancellations can occur and be numeri-
cally important; an example would be a model
whose coefficients sit in the valley of Fig. 5.

V. DISCUSSION/SUMMARY

We consider new physics models whose mass scale A is
above my,, that induce neutral current, lepton flavour-
changing nonstandard neutrino interactions [see Eq. (1.1)],
referred to as NSI. In effective field theory (EFT), we study
the lepton flavor violating (LFV) interactions that such
models can induce both at tree level, and due to electroweak
loop corrections.

Section II discusses the operator bases for the two EFTs
used in this manuscript. Above the weak scale is the
SU(3) x SU(2) x U(1)-invariant SMEFT with dynamical
Higgs and W-bosons, and below my, is a QED x QCD-
invariant theory where NSI cannot mix to LFV. The
dimension six and eight operators that we use above my,
are given in Egs. (2.10) and (2.11), and their matching onto
low-energy NSI, LFV and charged current operators is given
in Table I. We refer to the not-v fermions of the interaction as
“external” fermions; if these are SU(2) singlets, the operator
basis above myy contains only three operators. The additional
operators required for external doublet quarks or leptons are
discussed in Sec. IT A and Appendix B.

We require that at tree level, the model induces only NSI
or charged current interactions, so the coefficients of LFV
operators are required to vanish. The coefficients of low-
energy LFV operators, induced at tree level by the operators
from above myy, are given in Sec. II B, for the various
possible external fermions. They vanish if the model only
matches onto the operators Oygy or Ocensiy at A, or if there
are cancellations among the coefficients of other operators,
as given in Sec. IIB. We allow arbitrary cancellations
among coefficients of four-fermion operators of dimension
six and eight, because such cancellations are natural in the
Standard Model, where the potential minimization con-
dition —M + Av* = 0 relates operators of different dimen-
sion and different number of Higgs legs.

Section III calculates one-loop renormalization group
equations (RGEs) for the operators above my,. These one-
loop RGEs encode the W and Higgs-induced mixing
between NSI and LFV operators. The SU(2) gauge inter-
actions (o g, ~2/3) and Higgs self-interactions (e A~
1/2) are included; Yukawa couplings are neglected because
they are small for the external fermions which are first
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generation, and hypercharge is neglected because it does
not change the SU(2) structure of the operators.

The EFT performed here is an expansion in a" log"™",
where the one-loop RGEs give the m = 0 terms for all n,
the two-loop RGEs would give the m = 1 terms for all n,
and so on. This differs from model calculations, which are
usually expansions in the number of loops or in «”. The
EFT expansion gives a numerically reliable result when the
logarithm is large, being the numerically dominant term at
each order in a. In the case of NSI models studied here,
the log is not large, so may not be the only numerically
relevant loop contribution to LFV in a particular model.
(Appendix C discusses additional log-enhanced contribu-
tions to the mixing of NSI to LFV that arise from using one-
loop minimization conditions for the Higgs potential.)

However, in this study, we are interested in the (alog)”
terms for three reasons: first, they are “model-independent,”
meaning we can calculate them in EFT and they arise in all
heavy new physics models. Second, they are independent of
the renormalization scheme introduced for the operators in
the EFT. This is important, because there are no operators in
a renormalizable high-scale model, so results that depend on
the operator renormalization scheme can not be a prediction
of the model. Thirdly, the log A/my, terms are interesting
because it is not obvious to cancel a log against non-
logarithmic contributions. So we anticipate that the logs give
a reliable model-independent estimate of the size, or loop
order, of the LFV induced in models that give NSI.

Section III calculates the one-loop anomalous dimen-
sions for the three relevant cases: external fermions which
are SU(2) singlets (eg, ug and dg), SU(2) doublets that are
not identical to the lepton doublets participating in the NSI
(so doublet quarks ¢, and #, when the NSI involve £, and
Z,), and finally external fermions which are lepton doublets
¢, when the NSI current involves #,. The anomalous
dimension matrices are respectively given in Egs. (3.9),
(3.10) and (3.11).

An estimate for low-energy LFV can be obtained by
matching the new physics model onto a vector of operator

coefficients at A, which is input as 6‘(;;,-) into the solution
of the RGEs given in Eq. (3.8), with the appropriate
anomalous dimension matrices from Sec. III. The output

vector of this equation, C (my), gives the coefficients that
can then be matching onto the LFV operators below my,
according to Table I. This is performed in Sec. IV B. The
example of SU(2)-singlet external fermions is discussed
in some detail because this case has the fewest free
parameters; a reader with a different selection of operator
coefficients can easily calculate the one-loop LFV from the
results in Sec. IV B, and the two-loop LFV from Eq. (3.8).
The predicted LFV can then be compared to current
constraints on LFV that are listed in Sec. IVA.

In this manuscript, we allow arbitrary cancellations
among coefficients at each order in the In /(1622) expan-
sion, but neglect possible cancellations between orders.

This is discussed in Sec. IV C. So we require low-energy
LFV to cancel at tree level, then enquire if it is induced at
one or two loop, and examine whether the coefficients can
be chosen to cancel the loop-induced LFV. We find that
almost all the operator combinations which at tree level
match onto NSI without generating LFV, will generate LFV
at one loop, suppressed with respect to NSI by a factor
O(log /(167%)) ~ 1072. So generically, NSI should satisfy
the bounds given in Table Il &°<107* - 107,
sjf < 10~'. However, there is one dimension eight oper-
ator, Oyg;, for which the log-enhanced one-loop LFV
vanishes. Also, for external doublet fermions, there are
enough operators that it could be possible to arrange the
coefficients to cancel the log-enhanced part of the one-loop
contribution to LFV. In both these cases,9 LFV is generated
at two-loop, so suppressed by a factor O(a? log?) ~ 1074,
and NSI should satisfy the bounds of Table II: £/ < 1072,

e}f < few. Some other cancellations that could allow NSI

to be compatible with the LFV bounds are briefly discussed
in Sec. IV C.
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APPENDIX A: IDENTITIES AND SM
FEYNMAN RULES

The relevant SM Fenyman Rules are given in Fig. 6.
Here the Pauli matrices and antisymmetric € are

R R A

(A1)
The following identities are useful:
2€i]€j./ = 5ij5l.] - T%TQJJ Fierz
1, 1 1
ZTijTa.kl = 551'15@' - Z5ij5kz SU(N)
€i7€k; = Ok (A2)
where the first two imply
€ij€x = 6ikbj1 — 616 . (A3)

°In the opinion of the authors of this manuscript, it could be
interesting to build a model that induces only Oyg;, or implements
the appropriate cancellations among operator coefficients. One
could then check whether the complete one-loop contribution to
LFV vanishes, or only the log-enhanced part.
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FIG. 6. Feynman rules for dimension-four interactions. For

APPENDIX B: DIMENSION EIGHT
FOUR-FERMION OPERATORS

1. Constructing all possible SU(2) contractions

The aim is to build all possible SU(2) contractions for an
operator constructed from the fields:

(oD (@ v q") (HMHN)

where {i,j,k,I,M,N} are SU(2) indices. For R in the
doublet representation of SU(2), invariants can be con-
structed as follows:

(B1)

R'R, ReR, R*¢R*, R"2°RR't°R, €,,,R'7"RR'?’ RR"°R.

Consider first the 77z contraction. Multiplying the
product of two Pauli matrices by >, , 77" gives:

0;0u0un = Os = S(—€imen; + 6ndum) = Omz — Onst

1 1 1
0i10kjOmn = 5 (61j0k + 781 Oun = EOS + 5 Orro
1

5iN5k15Mj = Oy = D) (511;5MN + T?jT%/]N)ékl - EOS =+ B OTLH

1 1 1
0ijOknOm1 = 3 (Sidmn + 474N )01 = 3 Os + 3 Oron
5i15kN5Mj = Occrrv

OinOy j5M1 - OTCCLFV

1
{511(5kN5M] - €kM€Nj) + 5k] (5 NOMI — €i M€Nl)} -3 (OCCLFV + OCCLFV = Ocenst —

Wy
~i 5[] jivuPr —iL[m) 51 (P} + pt)
DA
o, H . SoH
—iM36 7k
1// \\{
", OHE

the gauge boson propagator Pus = g,5 + (€ — 1)k,ks/ k.

§ :Tz I Tkl TMRTRN

ZTUTH (6 bSyn + ZleabchN>

a,b
(B2)
and using the identities of Eq. (A2), allows to write:
iSabCTUTkﬂmn 25:15M/5kN - 51/5M15kN - 51N6k16Mj
— 6i10kjOmn + 0ij0iOmn (B3)

so this operator can be exchanged for 666 contractions. The
77, and ee contractions can be rewritten as 6s using the
Fierz and SU(2) identities of Eq. (A2), so a complete set of
operators is the inequivalent 566 contractions.

There are six possible 656 contractions (the permutations
of three objects) for the fields of Eq. (B1):

Olenst)

(B4)

where after the arrows, the contractions are related to the bases of [3] and of this manuscript. We find one relationship

among these contractions:
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0i0k10mN — 6110k jOmn — SinOriOmj — 0ij0knOm

+ 8i10knOum;j + Sin0ijSm = 0, (B5)
which will be used to remove the fourth contraction of
Eq. (B4).

2. Alternate bases for SU(2) doublet external fermions

In this manuscript, we use a different basis of dimension
eight operators from Berezhiani and Rossi, constructed
such that the operators match at tree level onto either NSI,
or LFV.

These operators are constructed with doublet first gen-
eration quarks g as external fermions; they will also be
appropriate (for the lepton flavour indices {p, s} € {u,7})
when the external fermion is a doublet first generation
lepton. The dimension six operators in our basis are given
in Eq. (2.10), and the dimension eight operators are
in Eq. (2.11).

Comments on this basis:

(1) Ongp is the same operator as for singlet external
fermions, and can be exchanged for the first con-
traction of Eq. (B4). It matches at my onto low-
energy NSL

(i) The second contraction of Eq. (B4) is Hermitian,
so we exchange this 656 contraction for (Ocenst +
O cnsp)> Which will match at my, to NSI and CC
operators.

(iii) Similarly, Oy, is like for external singlets, matches
at my, only onto LFV four-fermion operators, and
corresponds to the third contraction of Eq. (B4).

(iv) The fourth contraction of Eq. (B4) would match onto
both NSI and LFV, so we use the identity (B5) to
remove it. It can be written as

(Z[,J/af”) (qH)ya(HTq)

1
= —Ongi + 5 (Occary + OTCCLFV)

1
+ 5 (Ocenst + OZCNSI)

(B6)
(v) The last two contractions of Eq. (B4) are Occppy

and OECLFV, who match onto charged current and
LFV operators below my.
The one-loop RGEs turn out to only involve the

combination Ceeppy 4 + C ECLFV, 4 S0 in the body of
the manuscript, these operators are combined into
OCCLFV+ = (OCCLFV + OECLFV)' The RGES are
calculated separately for Ciyppy [Cheiry. 7

Crensig [Chonsigl” then the coefficient C., of
O’ can be obtained by setting

C.(O+0)+C_(0O-0")=CO+COT,

which gives C, = (C+ C")/2.

APPENDIX C: MATCHING AT my,

In this study, we should in principle use the one-loop
minimization condition. This is because the coupling
constants of renormalizable interactions run, which should
be taken into account in solving the RGEs for the operator
coefficients. If one does so, g, 4 and # in the anomalous
dimension matrices of Eq. (3.8) are scale-dependent and,
in the solutions at py, should be evaluated at p. The
minimization conditions therefore should be expressed in
terms of running parameters at my,. Then, it is well known
(see e.g., [48]), that it is the sum of the tree potential,
expressed in terms of running parameters, + the one-loop
effective potential, that is independent of the renormaliza-
tion scale p.

However in practice, we often use the tree minimization
conditions, when the RGEs give loop contributions to LFV
at the same order as the one-loop matching conditions,
because we are only interested in the loop order at which
LFV is induced, and not in the precise value of the LFV
operator coefficients.

It is convenient to write the one-loop minimization
condition as

0= v{—Mz(,u) (1 +%LM2> +0? (A(y) +%LH2>}

= v(M?* = I?). (C1)

Minimizing the one-loop effective potential given in [48]
(with v,.. = v*/2|gy;, and Apere = Ays/3), and evaluating
at y*> = m3,, gives

942 m2 2 m? 1 g*
=2 (w7 2) (1) o

2 my, 3 W
3P+ 92 (,.my 1
_ —= 4= C2
T3 RPERR (€2)
31 %1
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