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1 Introduction

Weakly interacting massive particles (WIMPs) with electroweak-scale masses are among

the best-motivated candidates for particle dark matter. In WIMP models, the dark mat-

ter particle is in equilibrium with the thermal bath of Standard Model particles at early

cosmic times, until the rates of WIMP-number changing processes drop below the Hubble

expansion rate. Below the temperature of this so-called freeze-out, the dark matter number

density becomes effectively constant.

It has long been known that the presence of additional states ψ whose masses are

close to the dark matter mass can significantly affect the prediction for the dark matter

relic density. This is the case when these states are able to coannihilate with the dark

matter particle χ [1]. It is also well known, but perhaps less universally appreciated,

that coannhilations can lead to the observed relic density even when the actual χχ →
X and χψ → X annihilation cross-sections are several orders of magnitude below the

typical electroweak cross-section. All that is needed is for the coannihilation partners ψ

to annihilate efficiently among themselves, and for the dark matter particle to remain in

equilibrium via inelastic scattering χX → ψX ′, such that any χ overdensity is rapidly

converted into a ψ overdensity which is subsequently washed out.

It is interesting to study scenarios where such inelastic scattering processes start be-

coming inefficient before ψψ → X annihilations does [2, 3]. In that case, the usual

coannihilation formalism [1, 4, 5] fails, since one of its core assumptions is that χ is always

in equilibrium with ψ. Having the dark matter relic abundance dictated by the freeze-out

of inelastic scattering processes rather than of coannihilations has been dubbed “coscat-

tering” in [2]. This mechanism has since been explored in the context of several different

models [6–9].
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The conditions for coscattering to occur are thus that (1) the dark matter particle χ is

in equilibrium with the thermal bath at early times, (2) there exists one or more state(s) ψ

carrying the same charge as χ under the symmetry which stabilizes χ, (3) the couplings and

masses are such that χψ → X annihilations as well as χχ → X annihilations decouple

earlier than χX → ψX ′ conversions, and these in turn decouple earlier than ψψ → X

annihilations.1 It has been argued [2] that, in the case that ψ and χ are coupled via an extra

mediator particle φ with mφ +mψ > 2mχ, the dark matter mass should be exponentially

below the weak scale. While this could open up interesting directions for model building,

in the present work our example models are closer to standard WIMP models: mχ and

mψ are both of the order of a few 100 GeV, and no mediators are present other than the

Standard Model particles.

More specifically, we will study coscattering in one of the simplest models where it can

occur, namely, the singlet-triplet next-to-minimal dark matter model of [10, 11]. A spe-

cial case of this model is split supersymmetry [12, 13] with a bino-like lightest neutralino

and a large higgsino mass parameter. Besides the Standard Model particles, the model

contains only two multiplets with electroweak-scale masses, namely, a fermionic singlet χ

and a fermionic SU(2) triplet ψ. We will give Majorana masses of the order of the elec-

troweak scale to both these fields, with χ being slightly lighter than ψ, and impose a Z2

symmetry under which they are odd. This latter symmetry forbids any renormalizable

interactions between χ and the Standard Model states, but allows for the dimension-5 op-

erator 1
ΛχψH

†H which mixes the neutral components of χ and ψ (here H is the Standard

Model Higgs doublet and Λ is a cutoff scale). At large Λ, or equivalently small mixing an-

gles, χχ → X annihilations as well as χψ → X coannihilations quickly become negligible

as the temperature drops below the dark matter mass. However, ψψ → X annihilations

as well as χX → ψX ′ scattering remain efficient at first, the former because they are

not suppressed by the mixing angle and the latter because of its less severe Boltzmann

suppression (taking X and X ′ to be relativistic Standard Model particles). Depending on

the masses and the mixing angle, either ψψ annihilation or inelastic scattering may be the

first process to start decoupling as the temperature drops further, thus giving rise to either

coannihilation or coscattering.

A subtlety of the coscattering phase is early kinetic decoupling, as local (or “kinetic”)

equilibrium is lost through the decoupling of the very same inelastic scattering processes

which determine the dark matter relic abundance. Therefore, another key assumption of

the usual coannihilation formalism is violated in coscattering scenarios, since the momen-

tum distribution of dark matter at freeze-out is not necessarily an equilibrium (Maxwell-

Boltzmann) distribution. This needs to be taken into account properly when predicting

the thermal relic density, as emphasized already in [2, 3], and may significantly change the

result in certain cases [14, 15].

The aim of this paper is to establish a framework allowing for an accurate computation

of the dark matter relic abundance in coscattering models, including the effects of early

kinetic decoupling, building on the formalism proposed in [3]. We will apply our method

1Decays and inverse decays may or may not be active [3].
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to analyze the singlet-triplet model at and beyond the transition between coannihilation

and coscattering.

After briefly recalling the essential properties of singlet-triplet next-to-minimal dark

matter, we will proceed to review and to further develop the formalism for calculating the

dark matter relic density. We will then present some numerical results in the singlet-triplet

model, and as a special case, we will discuss the parameter space for bino-like dark matter

in split supersymmetry. We will conclude with some remarks about present constraints and

possible future experimental signatures relevant to these models, and with a brief summary.

2 Singlet-triplet next-to-minimal dark matter

We will proceed with a brief review of the singlet-triplet model studied in [10, 11], em-

phasizing its possible origins in split supersymmetry. We add to the Standard Model a

fermionic singlet χ as well as its fermionic coannihilation partner ψ with quantum num-

bers (1,3)0 under SU(3) × SU(2) × U(1). The most general Lagrangian compatible with

this particle content and a Z2 symmetry under which χ and ψ are odd is

L = LSM + iχ†σ̄µ∂µχ+ iψ†σ̄µDµψ +
1

2
(mχχ+Mψψ + h.c.) + L5 + L≥6 (2.1)

where L5 contains the dimension-5 operators

L5 =
1

2

κ

Λ
ψψH†H +

1

2

κ′

Λ
χχH†H +

λ

Λ
χψaH†τaH + h.c.+ . . . (2.2)

Here H is the Standard Model Higgs doublet. Apart from the Standard Model Weinberg

operator these are the only possible dimension-5 terms. We will assume that dimension-6

and higher operators are negligible in the following. We will restrict our study to real

parameters and choose M > 0 without loss of generality. Since the dark matter particle is

to be χ-like, we assume that M > |m|.
This model can be UV-completed with a Z2-odd Dirac fermion doublet Ψ with hyper-

charge 1
2 whose mass is of the order of Λ. Identifying χ ∼ B̃, ψ ∼ W̃ , Ψ ∼

(
H̃†u, H̃d

)
,

the particle content is then exactly the low-energy particle content of split supersymmetry,

except for a gluino which will play no role in our considerations (assuming that it is heavy

enough not to conflict with collider bounds).2 In split supersymmetry, the cutoff scale Λ

is identified with the Higgsino mass scale |µ|, the singlet and triplet masses m and M with

the supersymmetry-breaking gaugino mass parameters M1 and M2, and the Wilson coef-

ficients λ, κ and κ′ in eq. (2.2) are given at the renormalization scale |µ| by the matching

conditions

λ =
(
g̃ug̃
′
d + g̃dg̃

′
u

)
signµ , κ = g̃ug̃d signµ , κ′ = g̃′ug̃

′
d signµ . (2.3)

Here g̃u,d and g̃′u,d are the usual gaugino-Higgsino-Higgs Yukawa couplings of split super-

symmetry [13]. It is understood that the split supersymmetry model will be embedded in

2Here, as usual in the supersymmetric literature, B̃, W̃ and H̃u,d denote the fermionic superpartners of

the B, W and Higgs bosons respectively.
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a fully supersymmetric model at an even higher scale MSUSY which is the mass scale of

the remaining superpartners. Hence we are assuming the mass hierarchy

MSUSY � |µ| �M2 > |M1| . (2.4)

Since we are not assuming any particular model of supersymmetry breaking, this is a

possible choice of parameters. In fact, the origins of the µ parameter being supersymmetric,

there is no a priori reason for it to be correlated with any of the supersymmetry-breaking

parameters (up to the issue of radiative corrections, which we will comment on in section 4).

Regardless of the nature of the UV completion, after electroweak symmetry breaking

and upon replacing the Higgs field by its vacuum expectation value

〈H〉 =

(
0

v

)
, v = 174 GeV , (2.5)

the first two terms in eq. (2.2) will induce a shift in the effective χ and ψ mass parameters

respectively, which we will absorb in the definitions of m and M . The third term will cause

the neutral component of ψ to mix with χ. The mixing angle is

θ =
|λ| v2

2Λ(M −m)
. (2.6)

We will study . O(1) Wilson coefficients λ and mass differences M − m which are not

parametrically smaller than the electroweak scale, such that the mixing angle is roughly of

the order v/Λ.

The mass eigenstates in the dark matter sector are then a neutral Majorana fermion χ0

which is mostly χ-like, a neutral Majorana fermion ψ0 which is mostly ψ-like, and a purely

ψ-like charged Dirac fermion ψ±. (In split supersymmetry, these would correspond to a

bino-like lightest neutralino χ0
1, a wino-like next-to-lightest neutralino χ0

2 and a wino-like

chargino χ±1 respectively, with the higgsino-like states at the higher mass scale |µ|). In the

limit of sending the cutoff scale to infinity, χ0 becomes purely χ-like and completely inert.

The mass degeneracy between ψ0 and ψ± is lifted by ψ0 − χ0 mixing and by electroweak

loops, the latter inducing a mass difference of around 160 MeV between the neutral and

the charged ψ-like states [16]. The mixing-induced mass difference is even smaller for the

mixing angles of interest to us.

3 Coannihilation and coscattering in the singlet-triplet model

The fermionic singlet-triplet model described in section 2 is a prime example of a model

which can produce the dark matter relic density via either coannihilation or coscattering.

While coannihilation in the singlet-triplet (or wino-bino) model has been extensively dis-

cussed in the literature (see e.g. [10, 17–22]), the coscattering phase has not been studied

previously.

We take M and m of the order of a few 100 GeV and degenerate within < 10%.

The effective dark matter number density will be depleted by χχ → X, χψ → X and

– 4 –
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ψψ → X annihilation processes (where ψ is any of the triplet-like states ψ0, ψ+ or ψ−,

and here and in the following we write χ instead of χ0 to simplify notation — it should be

understood that we are dealing with a mass eigenstate which contains a small admixture of

ψ0). As the cutoff scale Λ becomes large and the mixing angle becomes small, θ � 1, the

annihilation cross-sections involving χ become subdominant, while ψψ → X annihilations

are independent of Λ. The dark matter particle χ is kept in chemical equilibrium as long

as χX → ψX ′ scattering remains efficient; these processes are also suppressed by Λ but,

in contrast to annihilations, they are only singly-Boltzmann suppressed if X and X ′ are

relativistic Standard Model states.

In the coannihilation phase of the model, the mixing angle is large enough to keep χ

in equilibrium until ψψ → X annihilations freeze out. For this phase, the resulting dark

matter relic density can be reliably computed using standard public codes. By contrast, in

the coscattering phase, the mixing angle is so small that the χX → ψX ′ scattering rate

drops below the Hubble rate before the ψψ → X annihilation rate does. The χ number

density will then decrease much more slowly and eventually become constant, while the

ψ-like particles will continue to annihilate until the freeze-out temperature Tf ≈ M/25 is

reached. At even lower temperatures, the few remaining ψ-like particles will ultimately

slowly convert or decay into χ, thus increasing the final dark matter relic abundance by a

small amount.

We proceed by presenting the details of the calculation of the thermal relic abundance,

reviewing and extending the formalism developed in [3] as we go along. Our starting point

is the Boltzmann equation in a Friedmann-Robertson-Walker universe,(
∂t −H pχ · ∇pχ

)
fχ(pχ, t) =

1

Eχ
C[fχ] . (3.1)

Here t is cosmic time and H is the Hubble parameter, which, in a radiation-dominated

universe, is given as a function of temperature by

H =
T 2

MP
π

√
g∗
90

(3.2)

with g∗(T ) the effective number of degrees of freedom and MP = 2.435 × 1018 GeV the

reduced Planck mass. Moreover, fχ is the dark matter phase space distribution which

depends on the 3-momentum pχ (more precisely, it depends only on its modulus pχ by

isotropy), Eχ is the corresponding energy, and C[fχ] is the collision operator governing the

interactions between χ and the other particle species.

In the coannihilation phase at small mixing angle, as well as in the coscattering phase,

the only processes contributing sizeably to C[fχ] are inelastic scatterings off the ther-

mal bath,

χX ↔ ψX ′ , (3.3)

where X and X ′ are Standard Model particles and ψ can be either ψ0, ψ+ or ψ−. Therefore,

the collision operator C[fχ] is given by

C[fχ] =
∑

ψ,X,X′

1

2

∫
d̃pX d̃pX′ d̃pψ δ

(4)
(∑

pi

)
|M |2 (fψfX′ − fχfX) (3.4)
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with M the matrix element for the process (3.3), suitably summed and averaged over final

and initial internal degrees of freedom, and d̃pi the Lorentz-invariant phase space measure

d̃pi =
d3pi

(2π)3 2Ei
. (3.5)

We can safely assume that X and X ′ are in chemical and kinetic equilibrium throughout.

Moreover, we can assume that at least kinetic equilibrium is maintained for ψ because of

efficient elastic and inelastic scattering processes with the thermal bath. However, we allow

for the integrated number density

nψ(t) = 4πgψ

∫
p2
ψdpψ

(2π)3
fψ(pψ, t) (3.6)

to deviate from its equilibrium value, which in the Maxwell-Boltzmann approximation

(f eq
ψ = e−Eψ/T , neglecting quantum statistical factors) is given by

neq
ψ =

gψ T m
2
ψ

2π2
K2

(mψ

T

)
. (3.7)

Hence for ψ we use the standard ansatz

fψ(pψ, t) = f eq
ψ (pψ, t)

nψ(t)

neq
ψ (t)

, (3.8)

where nψ(t) is an unknown function to be determined. Detailed balance allows to replace,

in eq. (3.4),

fψfX′ = f eq
ψ f

eq
X′
nψ
neq
ψ

→ f eq
χ f

eq
X

nψ
neq
ψ

(3.9)

so that the collision term becomes

1

Eχ
C[fχ] =

∑
ψ,X,X′

(
f eq
χ

nψ
neq
ψ

− fχ

)
1

2Eχ

∫
d̃pX d̃pX′ d̃pψ δ

(4)
(∑

pi

)
|M |2 f eq

X

=
∑

ψ,X,X′

(
f eq
χ

nψ
neq
ψ

− fχ

)
1

Eχ

∫
pXdpXdφXd cos θX

(2π)3
e−EX/T w(s) .

(3.10)

Here we have again neglected quantum statistical factors, setting f eq
X = e−EX/T . The

function w(s) [23] is related to the unpolarized cross-section σ(s) by

w(s) =
1

2

√
s− (mχ +mX)2

√
s− (mχ −mX)2σ(s) , (3.11)

and can be obtained from the matrix element by integrating over the final state solid angle:

w(s) =

√
s− (mψ +mX′)2

√
s− (mψ −mX′)2

128π2 s

∫
|M |2 dΩψ . (3.12)

– 6 –
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By changing integration variables from cos θX to s = m2
χ +m2

X + 2EχEX − 2pχpX cos θX ,

and carrying out the φX and pX integrations, eq. (3.10) becomes

1

Eχ
C[fχ] =

∑
ψ,X,X′

(
f eq
χ

nψ
neq
ψ

− fχ

)
C̃(T, pχ) (3.13)

where

C̃ =
T

8π2Eχpχ

∫
ds w(s)

(
e−E−(s)/T − e−E+(s)/T

)
,

E±(s) =
s−m2

χ −m2
X

2m2
χ

(
Eχ ± pχ

√
1− 4

m2
χm

2
X

(s−m2
χ −m2

X)2

)
.

(3.14)

The dominant contribution to scattering in the singlet-triplet model is given by W -

mediated processes where X and X ′ are relativistic Standard Model fermions.3 Neglecting

Standard Model fermion masses one obtains

w(s) =
g4

2θ
2

64π

(
s−m2

ψ

)(1

s
+

2

m2
W

+
m2
W − (mψ −mχ)2

(s−m2
ψ)(s−m2

χ) + sm2
W

+
2s+ 2m2

W − (mψ −mχ)2

(s−m2
ψ)(s−m2

χ)
log

sm2
W

(s−m2
ψ)(s−m2

χ) + sm2
W

)
,

(3.15)

where g2 is the SU(2) gauge coupling and θ is the singlet-triplet mixing angle. Summing

over the possible channels, i.e. setting ψ = ψ+ and X = `+, ν`, u, d̄, c, s̄ (where ` is

any lepton) or the respective charge-conjugate states, gives an overall factor of 36 in the

final expression for the collision term. The contribution of third-generation quarks will be

Boltzmann-suppressed and therefore subdominant, since the top quark is non-relativistic at

the temperatures of interest, provided that m is below the TeV scale. Other subdominant

contributions come from processes where X and X ′ are electroweak gauge bosons and Higgs

bosons, as detailed in the appendix.

We note that, if χ were guaranteed to be in kinetic equilibrium such that fχ(pχ, t) =

f eq
χ (pχ, t)

nχ(t)
neq
χ (t)

, eq. (3.1) could be further simplified by integrating over pχ on both sides,

thus obtaining an ordinary differential equation for the integrated number density nχ(t), as

in the standard formalism in usual coannihilation scenarios. However, in the coscattering

phase of our model, kinetic equilibrium is lost at the same time as chemical equilibrium

(and due to the decoupling of the same process), hence we need to solve eq. (3.1) for all

momentum modes separately, even if the final quantity we are interested in is the overall

χ abundance.

To solve eq. (3.1), we integrate over the solid angle of pχ and change variables from

(t, pχ) to
(
x =

mχ
T (t) , q =

pχ
T (t)

)
. In terms of these variables,

pχ
∂

∂pχ
= q

∂

∂q
,

∂

∂t
=

H

1− x δg(x)

(
x
∂

∂x
+ q

∂

∂q

)
, (3.16)

3See the appendix for a more detailed discussion.
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where we have defined

δg(x) = − 1

3 g∗

∂g∗
∂x

. (3.17)

The Boltzmann equation eq. (3.1) becomes

(∂x + δg(x) q∂q) fχ(x, q) = B(x, q)

(
f eq
χ (x, q)

nψ(x)

neq
ψ (x)

− fχ(x, q)

)
(3.18)

where

B(x, q) =
1− x δg(x)

Hx
C̃(x, q) . (3.19)

On each of the characteristic curves

qρ(x) = ρ exp

(∫ x

x0

δg(y)dy

)
. (3.20)

Eq. (3.18) becomes an ordinary differential equation

d

dx
fχ (x, qρ(x)) = B (x, qρ(x))

(
f eq
χ (x, qρ(x))

nψ(x)

neq
ψ (x)

− fχ(x, qρ(x))

)
. (3.21)

Here the family of characteristics is parameterized by ρ such that qρ(x0) = ρ. The initial

conditions for these ODEs are obtained by imposing that at early times, i.e. at some x0 ≈ 1,

χ is in equilibrium:

fχ(x0, q) = f eq
χ (x0, q) = e−

√
x20+q2 , hence fχ(x, qρ(x))|x=x0

= f eq
χ (x0, ρ) . (3.22)

The solution of eq. (3.21) subject to these initial condition is

fχ(x, qρ(x)) = f eq
χ (x0, ρ) exp

(
−
∫ x

x0

B(y, qρ(y)) dy

)
+

∫ x

x0

nψ(y)

neq
ψ (y)

f eq
χ (y, qρ(y))B(y, qρ(y)) exp

(
−
∫ x

y
B(z, qρ(z)) dz

)
dy .

(3.23)

The right-hand side of eq. (3.23) depends on the ψ+ abundance nψ(x), which is itself

given by the solution of a Boltzmann equation whose collision operator depends on fχ.

At sufficiently large temperatures, or equivalently at small x, one may set nψ(x) ≈ neq
ψ (x)

and use eq. (3.23) to find the solution for fχ(x). In general, this is no longer true at

larger x, so the coupled system of Boltzmann equations for the χ modes as well as for the

momentum-integrated ψ number densities needs to be solved.

The Boltzmann equations governing the ψ abundances are most conveniently expressed

in terms of the dimensionless quantities

Yψ(x) =
nψ(x)

ŝ(x)
, (3.24)

where

ŝ =
2π2

45
g∗ T

3 (3.25)
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is the entropy density.4 Following the steps in the standard coannihilation formalism [5]

one obtains

d

dx
Yψ+ =

1

3Hx

dŝ

dx

[∑
X

(
〈σvψ+ψ0→X〉

(
Yψ+Yψ0−(Y eq

ψ )2
)

+
(
〈σvψ+ψ−→X〉+〈σvψ+ψ+→X〉

) (
Y 2
ψ+−(Y eq

ψ )2
))

−
∑
XX′

(
〈σvψ0X→ψ+X′〉Y

eq
X

(
Yψ0−Yψ+

)
+

1

ŝ

∫
d3q

(2π)3
C̃

(
f eq
χ

Yψ+

Y eq
ψ

−fχ

))]
,

d

dx
Yψ0 =

1

3Hx

dŝ

dx

[∑
X

(
2〈σvψ+ψ0→X〉

(
Yψ+Yψ0−(Y eq

ψ )2
)

+〈σvψ0ψ0→X〉
(
Y 2
ψ0−(Y eq

ψ )2
))

+
∑
XX′

2 〈σvψ0X→ψ+X′〉Y
eq
X

(
Yψ0−Yψ+

)]
.

(3.26)

Here we have set Y eq
ψ+ = Y eq

ψ0 ≡ Y eq
ψ , neglecting the small difference between mψ0 and

mψ+ . It is understood that Yψ− = Yψ+ , and the factors of 2 in the fourth and fifth line

of eqs. (3.26) are to account for terms where ψ− appears instead of ψ+. The thermally

averaged annihilation cross-sections are defined as usual:

〈σvij→ k`〉 =
gigj

512π6neq
i n

eq
j

T

∫
ds dΩk

pijpk`√
s
|M |2K1

(√
s

T

)
, (3.27)

pij =

√
s− (mi −mj)2

√
s− (mi +mj)2

2
√
s

. (3.28)

Finally, 〈σvψ0X→ψ+X′〉 conversions are always efficient, which allows to work with a single

effective ψ abundance Yψ = Yψ+ = Yψ0 , similarly as in the standard coannihilation for-

malism. Summing the Boltzmann equations for Yψ+ , Yψ− and Yψ0 , the ψ → ψ conversion

terms cancel and one obtains

d

dx
Yψ =

1

3

1

3Hx

dŝ

dx

[
2

ŝ

∑
XX′

∫
d3q

(2π)3
C̃

(
f eq
χ

Yψ
Y eq
ψ

−fχ

)

+
∑
X

(
4〈σvψ+ψ0→X〉+2〈σvψ+ψ−→X〉+2〈σvψ+ψ+→X〉+〈σvψ0ψ0→X〉

)(
Yψ

2−(Y eq
ψ )2

)]
.

(3.29)

Eqs. (3.21) and (3.29) constitute a coupled system of ordinary differential equations

which we need to solve, subject to the initial conditions at some suitably small x0

fχ(x0, qρ(x0)) = f eq
χ (x0, ρ) , Yψ(x0) = Y eq

ψ (x0) . (3.30)

4We use the symbol ŝ to distinguish the entropy density from the Mandelstam variable s introduced

earlier. Since we are only concerned with temperatures far above neutrino decoupling, we do not distinguish

between effective degrees of freedom contributing to entropy and energy.
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For a numerical solution of this system, we discretize q and work with N = 30 char-

acteristic curves. The initial values of q at x = x0 = 1 are chosen to lie between ρ = 0

and ρ = 50, at suitable points for efficient computation of the q-integral in eq. (3.29) via

N -point Gauss-Legendre quadrature. Since δg is numerically small, the range of q covered

by these curves diminishes by only about 10% between x = 1 and x = 400, see eq. (3.20).

We extract the annihilation cross-sections for the ψ-like states from micrOMEGAs [24, 25].

Using CalcHEP [26] to compute the subdominant contributions to the χX → ψX ′ scatter-

ing cross-sections (i.e. all contributions except those involving light fermions, for which we

have the analytic expression eq. (3.15)), we find that including these corrections changes

the results at the sub-percent level for M = 500 GeV and by < 2% for M = 1000 GeV. To

speed up the computation, we impose that ψ remains in equilibrium between x0 = 1 and

an intermediate temperature xint = 15, which allows to calculate fχ(xint, qρ(xint)) directly

from eq. (3.23). For x > xint the full system of 31 differential equations is then solved using

a standard adaptive fourth-order Runge-Kutta method.

Figure 1 shows the evolution of Yχ and Yψ as a function of x for two representative

points, one in the coannihilation phase and the other in the coscattering phase. In the

coannihilation phase, the χ number density evolves along with the ψ number density,

departing from equilibrium around x = xf ≈ 25, where ψψ → XX ′ annihilations freeze

out. At larger x it becomes approximately constant, while Yψ continues to decline due to

ψX → χX ′ conversion which is still efficient (and energetically favored over the reverse

process). In the coscattering phase, the dark matter abundance departs from its equilibrium

value at relatively small x, whereas the ψ abundance remains in equilibrium until x = xf .

Its slow decline at larger x is due to the now marginally efficient conversion processes.

Eventually all remaining ψ-like states will decay into χ, but since these decays are three-

body phase-space suppressed and therefore happen on a much larger timescale, we do not

take them into account here. (The final relic abundance is nevertheless calculated from the

total number density Yχ + Yψ0 + Yψ+ + Yψ− = Yχ + 3Yψ.)

As is evident from the right panel of figure 1, the freeze-out of the scattering processes

happens gradually, the deviation from the equilibrium number density being noticeable

long before the number density ultimately settles and becomes constant. This is in marked

contrast to the freeze-out of ψ annihilations which happens relatively abruptly.

The left panel of figure 2 shows the shape of the momentum distributions q2fχ(q)

at several x in the coscattering phase. One observes a marked departure from kinetic

equilibrium starting at x & 10, with the lower momentum modes decoupling earlier. This

can also be seen from the right panel, which shows the rescaled collision operator B of

eq. (3.18) for the same data point as a function of q; one observes that the effective collision

rate increases with q. When the momentum distribution is finally frozen (which is the

case at x & 100 for this choice of parameters), it bears little resemblance to a Maxwell-

Boltzmann equilibrium distribution, leaning noticeably towards the higher modes to the

right of the maximum. Consequently, the final relic abundance cannot be calculated reliably

with the momentum-integrated Boltzmann equations by setting fχ(q, x) ∝ f eq
χ (q, x). In

the coscattering phase, using this simplification may change the predicted result for the

relic density by factor of a few, and its use is justified only in the coannihilation phase.
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Figure 1. The abundances Yχ(x) (solid blue) and Yψ(x) (solid orange) as a function of x = m/T

for M = 500 GeV. The dashed lines correspond to the respective equilibrium abundances. Left

panel: at m = 471 GeV and θ = 1.56× 10−5, the model is in the coannihilation phase. Right panel:

a point in the coscattering phase at m = 490 GeV and θ = 1.22× 10−6.

Figure 2. Left panel, solid lines: the evolution of the normalized momentum mode distribution
1
N q

2fχ(q) in the coscattering phase, where N =
∫

dq q2fχ(q). Dashed lines: the corresponding

normalized equilibrium distributions 1
N q

2f eqχ (q). Right panel: the rescaled collision rate B(x, q)

defined in eq. (3.19) for various x. The model parameters are the same as for the right panel of

figure 1.

This is illustrated in figure 3, where we plot Yχ along with the prediction for Yχ
obtained by two approximations. The first approximation (the dotted curve) is to impose

fχ(q, x) ∝ f eq
χ (q, x) and to solve a momentum-integrated Boltzmann equation not just for

ψ but also for χ. The second approximation (the dashed curve) is to solve the momentum-

dependent Boltzmann equation but to impose nψ(x) = neq
ψ (x) for all x. Evidently, the use

of neither of these approximations is justified in the coscattering phase. We have verified,

however, that the χ abundance can be reliably calculated using the momentum-integrated

Boltzmann equations in the coannihilation phase, as expected.

Thus, in the singlet-triplet model, early kinetic decoupling leaves a significant imprint

on the final relic abundance. This is in contrast to the earlier study [3], which found

numerically similar results for the relic densities predicted with either the full Boltzmann
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Figure 3. In the left panel, the abundance Yχ for a point in the coscattering phase, calculated

using the formalism presented in the text (solid curve); assuming that ψ remains in equilibrium

throughout, i.e. nψ = neqψ in eq. (3.21) (dashed curve); and calculated by imposing fχ ∝ f eqχ and

solving a momentum-integrated Boltzmann equation for Yχ similar to eq. (3.29) (dotted curve). In

the right panel, the ratio Yχ/Y
approx
χ between the actual χ abundance and the abundance obtained

with these two approximations.

equations or the integrated ones, with a difference of the order of only 10%. However,

the model considered in that study differs from ours in one crucial aspect, namely, the

importance of decays and inverse decays ψ ↔ Xχ. In our model, these processes are

phase-space suppressed because the mass difference M −m is always below mW , whereas

in the model of [3] the mediator particle (the analogue of our ψ) can decay into χ and an

on-shell b quark, rendering decays and inverse decays efficient until rather late times and

thus helping to re-establish approximate kinetic equilibrium.

We illustrate the transition between the coannihilation and the coscattering phase in

the singlet-triplet model in figure 4, where the curve indicates the parameters for which the

observed dark matter relic density Ωh2 = 0.120 [27] is reproduced. Here we are assuming

m > 0, hence we can identify mχ = m and mψ± = mψ0 = M . In the coannihilation

phase, the predicted relic density is almost independent of the mixing angle but depends

sensitively on the mass difference M−m, whereas in the coscattering phase, it is the mixing

angle which determines at what time the dark matter density departs from its equilibrium

value.

4 Split supersymmetry with a bino LSP

The results of the previous section are valid for a general singlet-triplet model. However,

when supposing that the UV completion is split supersymmetry, we can use them to obtain

information on the value of the µ parameter. This is because the split supersymmetry

couplings g̃u,d and g̃′u,d are given by the electroweak gauge couplings and by tan β at the

scale MSUSY,

g̃u = g2 sinβ , g̃d = g2 cosβ , g̃′u =

√
3

5
g1 sinβ , g̃′d =

√
3

5
g1 cosβ at MSUSY .

(4.1)
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Figure 4. Left panel: the observed dark matter relic density is reproduced on the blue curve

for M = 500 GeV and on the green curve for M = 1000 GeV, shown in the plane of the mass

difference M − m (for positive m) and the mixing angle θ. The vertical sections on the right of

the curves correspond to the coannihilation phase (which extends to larger mixing angles), the

diagonal sections on the bottom left represent the coscattering phase. In the regions on the left

of the curves, the χ abundance is too low to account for all of the dark matter in the universe,

whereas in the regions on the right the model predicts too much dark matter. Right panel: in split

supersymmetry, the same constraint expressed in the plane of mχ0
2
−mχ0

1
and the µ parameter at

tanβ = 1, assuming µ > 0.

Moreover, tan β and MSUSY are related by the condition

λH =
1

4

(
3

5
g2

1 + g2
2

)
cos2 2β at MSUSY , (4.2)

where λH is the Standard Model Higgs quartic coupling. The couplings g̃u,d and g̃′u,d
determine the Wilson coefficient λ of eq. (2.2) at the scale |µ| according the matching

condition eq. (2.3). Between |µ| and the electroweak scale, λ evolves according to its

renormalization group equation (RGE), which at the one-loop level reads

dλ

dt
=

λ

16π2

(
2 trY †e Ye + 6 trY †uYu + 6 trY †d Yd + λH −

3

2
g2

1 −
9

2
g2

2

)
. (4.3)

Finally, at the electroweak scale we have

θ =
|λ| v2

2|µ|(M −m)
. (4.4)

Therefore, given either MSUSY or tanβ, the mixing angle θ is fully determined by the bino,

wino and higgsino masses ±m = mχ0
1
, M = mχ0

2
and |µ| = mχ0

3,4
.

Fixing tan β, we can now pick any point in the space of θ, M and m which gives rise

to the observed relic density. We can then determine the corresponding µ by iteratively

solving the RGEs for λ and the Standard Model couplings between the electroweak scale

and |µ|, and the split supersymmetry RGEs [13] between |µ| andMSUSY, using the matching

conditions eqs. (2.3), (4.1) and (4.2) and the electroweak-scale relation eq. (4.4).
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The result for tan β = 1 is shown in the right panel of figure 4. To obtain this curve we

have used two-loop RGEs for the gauge couplings and one-loop RGEs with some dominant

two-loop corrections for the others, with tree-level matching. While the precision of this

calculation could be improved with state-of-the-art tools, we find that it is sufficient to

estimate µ in this scenario, given that the RG evolution of the relevant couplings tends to

be rather slow (a naive “tree-level” estimation of µ, using electroweak-scale values for all

couplings, is within 5% of our loop-corrected result). For this choice of parameters, the

scale MSUSY is given by the scale where the Standard Model Higgs quartic coupling λH
crosses zero. One finds that MSUSY tends to be about two orders of magnitude above µ,

but since the RG evolution of λH is subject to large uncertainties due to the uncertainty

on the top Yukawa coupling, this result should be taken with a grain of salt.

It is interesting to note that a bino-like LSP coannihilating or coscattering with a

wino-like neutralino and chargino remains an open and testable option for neutralino dark

matter in split supersymmetry, besides the much-studied almost-pure bino and almost-

pure higgsino cases which are not testable at present colliders (we remark that a sub-TeV

bino-like LSP coannihilating with a higgsino is ruled out by now, see e.g. [28]). Indeed,

our analysis shows that sub-TeV neutralino dark matter remains perfectly viable and nec-

essarily comes with a coannihilation partner within the kinematic reach of the LHC, see

section 5.

A few comments about split supersymmetry with a very large µ term are finally in

order. First, it is debatable to what extent the hierarchy |µ| � |M1,2| is natural and

whether or not that constitutes a problem. One might argue that the µ parameter is

allowed by supersymmetry, so whatever dynamics generates the higgsino masses need not

involve supersymmetry breaking, and the mass scales |µ| and |Mi| need not be correlated.

However, it is well known that in split supersymmetry the gaugino masses and µ are no

longer separately protected against additive renormalization. In fact, a large µ parameter

induces large one-loop threshold corrections to the gaugino masses at the higgsino scale:

∆M1 =
g̃′u g̃

′
d

8π2
µ log

µ2

m2
A

, ∆M2 =
g̃u g̃d
8π2

µ log
µ2

m2
A

. (4.5)

Here mA ≈ MSUSY is the mass scale of the heavy Higgs bosons. Hence, a hierarchy

|µ|/|M1,2| & 100 at moderate tan β requires some fine-tuning of the model parameters,

since large radiative corrections to the gaugino masses must be cancelled against large tree-

level values. We will not attempt to quantify the required fine-tuning here given that split

supersymmetry is unnatural by construction anyway (not to mention that the dark matter

relic density is also rather sensitive to the precise value of the mass difference M −m).

Second, note that the usual upper bound on the UV completion scale of split super-

symmetry from vacuum stability [29] does not apply to the case where higgsinos are heavy.

This is because, in the absence of dynamical higgsinos, the renormalization group running

of the Higgs quartic coupling λH is not modified at the one-loop level with respect to

the Standard Model. Therefore this coupling can remain positive up to high scales, as is

confirmed by our numerical analysis. In particular, a mass hierarchy MSUSY � |µ| with

|µ| ≈ 108 GeV is not excluded by vacuum stability.
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Lastly, the gauge couplings in split supersymmetry with heavy higgsinos will not unify

unless there are additional heavy states in incomplete GUT representations in the spectrum.

5 Constraints and signatures

As detailed e.g. in [10], next-to-minimal dark matter at small mixing angles evades the

constraints from both direct and indirect dark matter detection experiments, since the

dark matter particle is essentially singlet-like.

Big bang nucleosynthesis will place constraints on the singlet-triplet model if χ and ψ

are almost mass degenerate, since for sufficiently small mass splittings and mixing angles,

the ψ0 → χ decay width will be highly suppressed and the ψ0 lifetime can attain the

range of seconds to minutes or more. Depending on the ψ0 abundance after all scattering

processes have frozen out, these late decays can conflict with the successful prediction for

nuclear abundances. For example, taking θ = 1.22×10−6, M = 500 GeV and m = 490 GeV,

the ψ0 lifetime is about 10 s, which is still allowed by BBN constraints [30] given the

predicted number density (see figure 2). However, for lifetimes & 102 s, the constraints on

the abundance become much more severe and the model will likely be excluded. A detailed

analysis of the BBN constraints is beyond the scope of this work and left for a future study.

The possible collider signatures for singlet-triplet models have been analyzed in detail

e.g. in [11, 17, 21, 31–35]. Therefore, here we will only briefly review the state of the most

important LHC search for the model in the coscattering phase, which is the search for

disappearing charged tracks. For this signature the dark matter particle χ plays practically

no role, but it is the coannihilation partner ψ which is being probed. In detail, the charged

states ψ± are produced by the Drell-Yan process. For sufficiently small mixing angles

θ . 10−4 they will preferentially decay into ψ0 rather than into χ; ψ0 is then stable on

collider scales. The mass splitting mψ+ − mψ0 is induced by electroweak loops and is

of the order of 160 MeV, which implies that ψ± has a macroscopic lifetime because its

decays are phase-space suppressed. It also implies that the only possible two-body decay

is ψ± → ψ0π± with a very soft pion. The signature is therefore a charged ionization track

left by ψ±, with a typical length in the cm — m range, which at some point seemingly

disappears (since the neutral ψ0 is invisible and the pion is too soft to be identified).

In this channel, present data excludes triplet mass parameters below about 500 GeV [36,

37], hence the benchmark points we have been using in section 3 are still viable, if by a

small margin. At 3000 fb−1 the projected LHC exclusion ranges up to M ≈ 900 GeV [38].

6 Summary

We have presented a precise calculation of the dark matter relic abundance from thermal

freeze-out in a scenario where the usual coannihilation formalism cannot be applied, as the

relic density is set by coscattering. Our example model is singlet-triplet next-to-minimal dark

matter (which can be realized in split supersymmetry), but the formalism could be applied

to other similar models with little modification. In particular, it might be interesting to

use it to study coscattering in models of light dark matter interacting via a light mediator.
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The particle abundances in the dark matter sector are governed by the full momentum-

dependent Boltzmann equations, which we have cast into a form amenable to a numerical

solution, properly taking into account the effects of early kinetic decoupling.

In the singlet-triplet model, the observed dark matter density can be reproduced by

coannihilations for mixing angles θ & 10−5 and by coscattering for smaller mixing angles.

The mass difference between the triplet-like and singlet-like states becomes smaller as the

mixing angle is reduced. Our analysis also allows to chart the parameter space for bino-

like dark matter in split supersymmetry with a very large µ parameter, where we find that

coscattering starts setting in at values of |µ| & 107 GeV. While we have not undertaken a full

phenomenological study of the coscattering phase, we anticipate that the most promising

experimental channel to constrain it will be LHC searches for disappearing charged tracks.
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A Contributions to the collision operator for χ

In the singlet-triplet model, the dark matter particle is coupled to the Standard Model via

the dimension-5 operators in eq. (2.2). After electroweak symmetry breaking, they induce

effective hhχ0χ0, hhχ0ψ0, hχ0χ0 and hψ0χ0 couplings (where h is the Higgs boson), and

the last term gives rise to χ − ψ mixing and thus a χ0ψ±Wµ vertex. These are the only

couplings between χ0 and the Standard Model at the order 1/Λ (note that the χ0ψ0Zµ
vertex is induced by a dimension-6 operator), and therefore the only ones relevant for the

collision operator C[fχ] if Λ is large.

Among the states in the spectrum, we have a mild mass hierarchy between the particles

of the dark matter sector (χ0, ψ0, ψ±) and the Standard Model particles with masses around

the electroweak scale (t, h, Z,W ). All other Standard Model particles can be treated as

effectively massless. At the temperatures relevant to freeze-out, the dark matter sector

states are of course non-relativistic, with their equilibrium number densities suppressed by

Boltzmann factors ∼ e−m/T . We can therefore neglect all processes of the type χ0χ0 → X

and ψ±χ0 → X because they are both doubly Boltzmann-suppressed and Λ-suppressed.

We can also neglect decays and inverse decays in the dark matter sector, since the mass

splitting M −m is below the W mass, and therefore all two-body decays are kinematically

forbidden.

What remains are 2 → 2 processes where dark matter sector particles scatter off the

thermal bath. The dominant one among these isW -mediated χ0f → ψ±f ′ inelastic scatter-

ing where f and f ′ are light Standard Model fermions (excluding third-generation quarks),
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since these are highly relativistic at the relevant temperatures. Note that Higgs-mediated

χ0f → ψ0f or χ0f → χ0f scattering is mf -suppressed.

All processes involving t, h, Z orW in the initial or final state give subdominant contribu-

tions which, however, become relatively more important as the dark matter mass increases.

For dark matter masses around 500 GeV, all these particles are already non-relativistic at

x ≈ 20, whereas for dark matter masses around 1000 GeV, they are only on the brink of be-

coming non-relativistic at the temperatures of interest. For M = 500 GeV we have checked

that including the subdominant processes changes the final relic abundance by less than 1%,

and we consequently neglect them. For M = 1000 GeV we include the numerically most

important ones among these corrections, specifically χ0t → ψ+b, χ0b̄ → ψ+t̄, χ0t → ψ0t,

χ0W+ → ψ+Z, χ0Z → ψ+W−, χ0W+ → ψ+γ, χ0γ → ψ+W−, χ0W+ → ψ+h,

χ0h → ψ+W− and χ0h → ψ0h as well as the respective charge-conjugate processes. We

find that their combined impact on the result is still at the < 2% level.

Open Access. This article is distributed under the terms of the Creative Commons At-

tribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any

medium, provided the original author(s) and source are credited.
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