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Abstract  

 

The influence of increasing ZrO2 content on the structural features of a rare earths (RE = 

Nd, La) bearing soda-lime aluminoborosilicate glass was investigated through a multi-

spectroscopic approach (Raman, Zr-EXAFS, 
29

Si, 
11

B, 
27

Al and 
23

Na MAS NMR). 

Particular attention was paid to the modifications occurring in the glassy network and on 

the distribution of Na
+
 and Ca

2+
 ions. Zr

4+
 ions were shown to be located in (ZrO6)

2- 
sites, 

connected to the silicate network,
 
and preferentially charge compensated by Na

+
 ions. A 

favorable competition of Zr
4+

 ions against RE
3+

 ions and (BO4)
-
 entities for charge 

compensators was observed, but no effect was detected on the environment of (AlO4)
-
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entities. This competition resulted in a modification of the RE
3+

 ions environment with 

the ZrO2 content that may affect their solubility in the glassy network. 

 

1. Introduction 

 

Because of its beneficial properties on silicate glasses alteration and controlled 

crystallization, zirconium is an element that frequently enters into the composition of 

industrial glasses and glass-ceramics. For instance, ZrO2 is known to increase the 

chemical durability of glasses [1,2,3] and can be used to prepare alkali-resistant glass 

fibers for reinforcement of cement products [4,5]. Depending on glass composition, ZrO2 

may also act as an efficient nucleating agent in silicate glasses [6,7,8,9,10]. It is also well 

known that ZrO2 associated with TiO2 induces the crystallization in the bulk of 

transparent lithium aluminosilicate (LAS) glass-ceramics with very low thermal 

expansion [11,12,13,14]. Moreover, ZrO2 is known to lead to the crystallization of 

zirconolite (CaZrTi2O7) in the bulk of calcium aluminosilicate glass-ceramics that have 

been developed for actinides immobilization [15]. Besides, zirconium is one of the main 

constituent of fluorozirconate glasses that are well known for their good transmission in 

the visible and infrared ranges [16]. 

ZrO2 is also present in borosilicate glasses used to immobilize highly radioactive 

nuclear wastes arising from the reprocessing of spent nuclear fuels. In these glasses, 

zirconium originates both from the highly radioactive waste solutions (as fission product 

and as fine metallic particles of zirconium alloy cladding material used to enclose the fuel 

in reactors and that are generated during the cutting of the cladding tubes) and from the 

glass frit added to the wastes for glass preparation (ZrO2 is present in the glass frit 

composition to improve the nuclear glass chemical durability) [17,18]. A small fraction 

( 10%) of all the Zr occurring in waste solutions as fission product is radioactive (
93

Zr is 
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a weak -emitter with a half-life time close to 1 500 000 years) [19] but this is not a 

problem because of the very low solubility of ZrO2 in water and of the very low mobility 

of Zr
4+

 ions in geologic environment. Nevertheless, the presence of significant amount of 

zirconium in the final containment matrix should be considered with great interest when a 

good mastering of the waste form performance is required. In this frame, achievement of 

a comprehension of the effect of the presence of zirconium on the properties and behavior 

of the glass is strongly recommended. This is why extensive studies have been performed 

on simplified borosilicate nuclear glasses to improve the understanding of the role of 

ZrO2 on their alteration mechanisms in water [2,3,20,21,22].  

In order to reduce the volume of glass needed to immobilize radioactive wastes, new 

glass compositions able to immobilize higher concentrations of wastes than today are 

under development in different countries [17,23,24,25,26,27,28]. For instance, 

aluminoborosilicate glasses have been envisaged in France for the immobilization of the 

highly concentrated waste solutions that would arise from the reprocessing of high burn-

up UO2 spent fuels [17,19,23,26,27]. In previous works, we investigated the effect of 

composition changes (RE2O3 [23,29], Al2O3 [23] and B2O3 [30] contents, RE nature [31], 

Na/Ca ratio [32], alkali and alkaline earth nature [33]) on the structure and crystallization 

tendency of a simplified 7-oxides version of such glasses (glass Zr1, Table 1). In this RE-

rich soda-lime aluminoborosilicate glass, RE simulates all the rare earths and actinides 

occurring in the wastes. We focussed our studies on the environment of RE
3+

 ions, on the 

structure of the glassy network and on the crystallization tendency during cooling of the 

melt of a RE silicate apatite phase (Ca2RE8(SiO4)6O2) that may incorporate minor 

actinides in its structure [34,35]. 

The aim of the present study was to complete these previous works by focusing the 

investigation on the structural role of zirconium in this RE-rich soda-lime 
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aluminoborosilicate glass system. For this, we studied the effect of zirconia content (from 

0 to 5.7 mol%) on the glassy network structure. The resulting effect of composition 

changes on the glass structure at an atomic scale, as regards to the glassy network 

arrangement and cation species distribution was investigated using a multi-spectroscopic 

approach (NMR, EXAFS and Raman spectroscopies). Special attention was paid to the 

local environment of Zr
4+

 ions. To clarify the impact of ZrO2 addition on the structure of 

the 7-oxides glass, a series of ternary sodium silicate glasses with increasing ZrO2 content 

was also prepared and studied (NMR, Raman). To complete this work, the effect of 

zirconia content on RE
3+

 (RE = Nd) environment and glass crystallization tendency (RE-

apatite crystallization) has also been investigated and is presented in another paper [36]. 

 

2. Structural role of Zr
4+ 

ions in silicate glasses and its impact on glass properties  

In alkali-rich silicate and borosilicate glasses (i.e. in glasses with high non-bridging 

oxygen atoms (NBOs) content), Zr
4+

 ions are 6-fold coordinated (CN=6) and (ZrO6)
2-

 

octahedra share corners with SiO4 tetrahedra as shown by EXAFS spectroscopy and bond 

valence - bond length considerations [37,38 ,39,40,41,42,43,44]. The existence of Zr-O-

Si bonds in these glasses was also shown directly by 
17

O MQMAS NMR experiments 

[45].
 
Nevertheless, a local charge compensation (brought for instance by alkali or 

alkaline-earth ions) is needed to stabilize the negative charge excess of (ZrO6)
2-

 

octahedra. Because of the strong bonding between Zr and the silicate network and of the 

increasing presence of alkali or alkaline-earth ions close to the oxygen atoms connecting 

Zr and Si when the ZrO2 content is increased, ZrO2 can be considered as a reticulating 

oxide in such glasses. Moreover, 
11

B MAS NMR results obtained on soda-lime 

borosilicate glasses containing Zr showed that (ZrO6)
2- 

octahedra are charge compensated 

at the expense of a part of (BO4)
- 
tetrahedral units (a drop of the proportion of (BO4)

- 
units 
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was observed when ZrO2 was added to the glass composition) [45,46]. The same MAS 

NMR study suggested that both (ZrO6)
2-

 and (BO4)
-
 entities were  preferentially charge 

compensated by Na
+
 rather than by Ca

2+
 ions [46]. A more recent Zr L2,3-edge and K-

edge EXAFS study performed on soda lime borosilicate glasses with increasing ZrO2 

content suggests that (ZrO6)
2-

 octahedra are charge compensated by 2Na
+
 and have 4Si 

and 2B second neighbors, with mainly 4-coordinated boron [44]. According to aqueous 

alteration tests and Monte Carlo modelling methods to simulate the alteration of soda-

lime borosilicate glasses, the effect of zirconium on glass chemical durability appeared 

rather complex [2,47,48]: the presence of Zr-O-Si bonds in the glass structure would 

improve the glass alteration resistance by limiting the dissolution of the neighboring Si 

atoms (which is favorable in terms of alteration kinetics) but the presence of increasing 

zirconium content in glass would inhibit the recondensation of silicon atoms in the gel 

layer formed during alteration thus preventing the closure of the gel porosity. Adding 

ZrO2 to soda-lime borosilicate glasses would thus increase the surface area of the gel 

layer (thus decreasing its protective properties) and would thus increase the amount of 

glass altered on the long term. In accordance with these studies, 
17

O MQMAS NMR 

results suggested that the octahedral coordination of zirconium remained unchanged in 

the alteration gel recovered after glass alteration in static mode (presence of Zr-O-Si 

bonds in the gel) [45]. This last result was confirmed by comparing Zr XAS spectra of 

Zr-bearing pristine and altered glasses in near-saturation conditions [22,48]. 

In more polymerized glasses - i.e. in glasses with lower non-bridging oxygen 

atoms (NBOs) content - such as albite glass (6SiO2.Al2O3.Na2O), EXAFS results 

suggested that a significant amount of zirconium ions would occur in 8-fold coordinated 

(CN=8) sites (sharing edges with SiO4 tetrahedra as in zircon ZrSiO4) but the majority of 

zirconium ions would occur in 6-fold coordinated sites [37]. Such an increase of the Zr 
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coordination (CN > 6) with silicate glass polymerization was confirmed by XANES and 

EXAFS results obtained on glasses belonging to the SiO2-Al2O3-MgO-ZnO-ZrO2 system 

[6,7]: in such glasses Zr would be in 7-fold coordination, edge-sharing linkages with SiO4 

tetrahedra and forming bonds with other Zr polyhedra [7]. According to [6,7,49], such a 

high Zr coordination due to a lack of efficient local charge compensation by modifier 

ions, would prefigure the local organization existing in Zr-rich crystalline phases which 

would explain the Zr instability in these glasses during heat treatment (crystallization of 

ZrO2 nano-particles [7,49]) and then its nucleating effect on glass crystallization. 

Nevertheless, a very recent study
 
showed that Zr could also have a strong nucleating 

effect even in 6-fold coordination in a glass belonging to the SiO2-Al2O3-Li2O system due 

to existence of direct Zr-Zr polyhedra linkages [10]. 

 

3. Experimental procedure 

 

 

3.1. Glass synthesis 

Two glass series referred to as ZrxRE with RE = Nd or La and with ZrO2 content 

varying from 0 to 5.69 mol% have been prepared for this study (Table 1). The 

composition of these 7-oxides glass series derives from that of a more complex nuclear 

glass studied in [23]. In all glasses of these series the total RE2O3 concentration was close 

to 3.4-3.7 mol% (15-16 wt%). The ZrxLa series was prepared as a complement of the 

ZrxNd series to perform NMR studies. Indeed, NMR cannot be performed on ZrxNd 

glasses because of the presence of a high concentration of paramagnetic species (Nd
3+

). 

Nevertheless, to decrease the relaxation time during NMR experiments, a very small 

amount of Nd2O3 (0.15 mol%) was introduced in all ZrxLa glasses. The ZrxNd series was 

prepared to follow the evolution of the environment of Nd
3+

 ions with zirconia content by 

optical absorption spectroscopy (indeed, because of the lack of f electrons, La
3+

 (4f
0
) ions 
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cannot be studied by this spectroscopy) and Nd-EXAFS as shown in another paper [36]. 

The Zr1RE glass (with 1.9 mol% ZrO2) corresponds to the simplified version of an 

inactive reference waste containment glass already studied in other papers 

[23,32,33,50,51]. All glasses were melted from the appropriate quantities of SiO2, 

H3BO3, Al2O3, Na2CO3, CaCO3, ZrO2, La2O3 and Nd2O3 reagent grade powders 

previously dried for one night (except for H3BO3) at 400°C or 1000°C. 50g of mixed 

powders were melted in air at 1300°C in Pt crucibles for 3h (heating rate at 100°C/h from 

room temperature to 1300°C). Then, the melt was heated for 15min at 1400°C in order to 

decrease its viscosity, before being poured into cold water. The glass frit obtained was 

then dried, ground in an agate mortar and melted again at 1300°C for 2h to ensure 

homogeneity. The melt was then cast in steel moulds at room temperature to form glass 

cylinders (14 mm diameter and 10 mm high). All ZrxRE glass samples were transparent 

and amorphous according to X-ray diffraction. They were analysed by Inductively 

Coupled Plasma Atomic Emission Spectrometry (ICP AES) and the compositions are 

given in Table 1. By comparison with the nominal compositions, only a relatively slight 

depletion in B2O3 (1 - 14 %) and Na2O (4 - 6 %) - that are the most volatile oxides present 

in these glasses - was observed. 

To complete the structural study (Raman, NMR) of the effect of ZrO2 addition on the 

structure of the silicate network of the glasses of the ZrxRE series, a complementary Zrx 

series of simple sodium silicate glasses with increasing ZrO2 content (0 - 10 mol%) and 

without RE was also prepared (Table 2). All glasses of the Zrx series were melted from 

the appropriate quantities (nominal compositions) of SiO2, Na2CO3 and ZrO2 reagent 

grade powders previously dried for one night at 400°C. 20g of mixed powders were 

melted at 1565°C in Pt crucibles for 2 h (heating rate at 300°C/h from room temperature 

to 1565°C). To increase glasses homogeneity, melts were then quenched to room 



8 

 

temperature, ground in an agate mortar and melted again at 1565°C for 3h before 

quenching again to room temperature. Zrx glasses were not annealed after quenching 

because they were not cut for optical absorption characterization. The higher temperature 

used to melt Zrx glasses (1565°C) in comparison with ZrxRE glasses (1300°C) was both 

due to the lack of B2O3 and to the higher SiO2 and ZrO2 amounts in glasses of the Zrx 

series. It is important to note that during melting at such a high temperature, a high 

proportion of Na2O evaporates. Indeed, ICP AES revealed that the true Na2O content is 

about 8% lower than the theoretical content for all Zrx glasses (Table 2). Nevertheless, 

the relative proportion of Na2O to SiO2 remains close to 0.17 for the three glasses and the 

Na2O/ZrO2 ratio always remains higher than 1 for Zr5 (2.36) and Zr10 (1.19) glasses 

(Table 2). In this paper, we will thus use the true composition taking into account Na2O 

evaporation rather than the nominal one for the glasses of the Zrx series.  

 

3.2. Characterization methods 

ZrxNd glasses structural characterization was performed by Zr-EXAFS and Raman 

spectroscopy. Zr-EXAFS measurements (Zr1Nd and Zr3Nd glasses) were performed at 

300K at Zr K-edge (17998 eV) at ANKA synchrotron (Karlsruhe, Germany), using the 

INE beamline. Glass samples were grounded, diluted with cellulose and pressed into 

pellets. Spectra were acquired in transmission mode. For each sample, 4 scans were 

accumulated to improve the signal to noise ratio with a k step of 0.03Å
-1

 and the spectra 

were measured up to 16Å
-1

 above the edge. For the analysis of the data, amplitude and 

phase diffusion factors were calculated with the help of FEFF8 and the simulations were 

carried out with the UWXAFS program. In the simulations, coordination numbers were 

constrained to the mean Zr-O first shell distance to satisfy the bond valence principle 

[42].  
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Raman study of ZrxNd and ZrxLa glasses was carried out on a T64000 Jobin-Yvon 

confocal microRaman spectrometer equipped with a CCD detector cooled by nitrogen 

and using the 488 nm line of a Coherent 70 Ar
+
 laser as excitation source operating at 

approximately 2W. Raman spectra of Zrx glasses were recorded with a HORIBA Jobin-

Yvon Aramis microspectrometer using a He-Cd laser as excitation source (325 nm, 30 

mW). In all cases, unpolarized Raman spectra were collected at room temperature and 

were corrected for temperature and frequency dependency of the scattering intensity 

using a correction factor of the form proposed by Long [52]. A third order polynomial 

baseline was fitted directly to the corrected Raman spectra which were then normalized to 

unit total area. 

MAS NMR studies were only performed on ZrxLa and Zrx glasses. 
11

B, 
23

Na, 
27

Al 

MAS and 
29

Si NMR experiments and spectra simulations to extract the proportion of BO4 

units and the 
27

Al and 
23

Na NMR mean isotropic chemical shift (iso parameters) and 

mean quadrupolar coupling constant (CQ) were performed as described in [32] with a 

Bruker Avance II 500 WB spectrometer (11.75 T). A Bruker CPMAS BL4 WVT (stator 

made of MgO to avoid the 
11

B background signal) probe with 4 mm outside diameter 

ZrO2 rotors and a spinning speed of 12.5 kHz was used. 
11

B, 
23

Na, 
27

Al and 
29

Si chemical 

shifts are reported in ppm relative respectively to an external sample of 1.0M aqueous 

boric acid at 19.6 ppm, 1.0M aqueous NaCl at 0 ppm, 1.0M aqueous Al(NO3)3 at 0 ppm 

and tetrakis(trimethylsilyl)silane  powder characterized by two lines at -9.9 ppm and -

135.3 ppm with respect to tetramethylsilane. For more details on NMR experimental 

conditions, see reference [32]. 

Glass transition temperature Tg was measured by differential thermal analysis 

(DTA) for all glasses of the ZrxNd and ZrxLa series. About 200 mg of glass powders 
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(particle size 80-125µm) were heated with a Netzsch STA409 apparatus in Pt crucibles 

using α-Al2O3 as reference material (heating rate 10°C/min).  

 

 

4. Results and discussion 
 

 

4.1. Physical properties of glasses 

 

The evolution of the density of ZrxRE glasses with ZrO2 concentration is shown 

in Fig. 1a. The glass density measurements have been performed at room temperature by 

the Archimedes’principle using distilled water as the immersion liquid (6 repeated 

measurements were performed for each glass). The monotonous increase of the density 

observed is due to the high molecular weight of ZrO2 (123.2 g/mol). It is also the higher 

molecular weight of Nd2O3 (336.5 g/mol) in comparison with La2O3 (325.8 g/mol) that 

explains the relative position of the two curves in Fig. 1a. Knowing the composition of 

glasses and their density it was possible to calculate their oxygen molar volume Vm(O) 

[32,53] that represents the packing of the glass structure (Fig. 1b). It appears that the 

oxygen atoms network becomes more and more compact with ZrO2 content (Vm(O) 

decreases). No significant effect of the nature of the RE on Vm(O) was observed for the 

highest ZrO2 concentrations.  

A significant and progressive increase of Tg is observed with the ZrO2 content 

(Fig. 1c, Table 1) that can be explained by the structural role of zirconium in glass 

structure (reticulating effect). Indeed, according to the results that will be presented 

below (Sections 4.2.1 and 4.2.2.4), the progressive introduction of ZrO2 induces the 

formation of strong Zr-O-Si bonds and the moving of an increasing amount of Na
+
 ions 

from a modifier position (close to NBOs) to a charge compensator position close to 

(ZrO6)
2-

 units. The increase of Tg with the nature of the RE (Tg (ZrxNd) > Tg (ZrxLa)) 

observed in Fig. 1c can be explained by the higher field strength of the Nd
3+

 ion in 
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comparison with the La
3+

 ion due to the lower size of the Nd
3+ 

ion. This is in accordance 

with our previous results on glasses with RE varying from La to Lu [31]. A higher 

increase of Tg with ZrO2 content was reported in SiO2-Na2O-CaO-ZrO2 glasses [54] 

probably due to the presence of B2O3 and the decrease of the proportion of BO4 units in 

our glass (see Section 4.2.2.3).  

 

4.2. Structural investigation of glasses 

 

4.2.1. Zirconium environment 

The immediate Zr environment was investigated through EXAFS experiments. Fig. 2 

reports the modulus of the Fourier transforms of the Zr K-edge k
3
-weighted EXAFS 

function (k) of glasses Zr1Nd and Zr3Nd and Table 3 presents the fitting results. These 

data clearly show that the Zr environment remains unchanged in the first and second 

coordination shell while ZrO2 content increases from 1.9 to 5.69 mol%. The results are 

consistent with Zr occupying a position 6-fold coordinated to oxygen in glass structure 

with a small radial disorder (low 
2
 values, Table 3). Attempts to simulate the second 

shell contribution of Zr to determine the nature of the second neighbors were done. 

Trying Zr as second neighbor revealed unsuccessful which precludes the existence of Zr-

O-Zr linkages in our glasses for all ZrO2 contents which is accordance with the fact that 

no significant change of the second shell contribution occurred with ZrO2 content (Fig. 

2). On the contrary, best results were obtained by considering Si as second neighbor 

(existence of Zr-O-Si linkages). Comparison of EXAFS parameters of Zr in ZrxNd 

glasses with those of the crystalline alkali Zr-rich silicate zektzerite (LiNaZrSi6O15) 

shows great similarity (Table 3). In zektzerite, almost regular ZrO6 octahedra share 

corners with SiO4 Q3 units (Qn units correspond to SiO4 tetrahedra bonded to n SiO4 

tetrahedra) and alkali ions insured local charge compensation (see the inset in Fig. 4) 

[55]. In the rest of the paper, we will refer this kind of SiO4 tetrahedra to as Q3(Zr). In 
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zektzerite there is just enough alkali ions to compensate all (ZrO6)
2-

 entities and just 

enough SiO2 to enable to these entities to be connected to 6 SiO4 units (Si/Zr = 6). This 

result suggests that similar connectivity of Zr with the surrounding silicate network 

should be found in our glasses. Similar results were obtained by McKeown et al. on their 

Zr-rich borosilicate glasses by comparison with zektzerite EXAFS data [38].
 

The 

presence of a small fraction of B or Al as second neighbors of Zr can also be envisaged 

[44].  

The Zr-O mean distance in ZrxNd glasses was also compared with that of various 

other ZrO2-bearing silicate glass compositions. Our glasses exhibit Zr-O mean distance 

(2.09 Å) close to that of ZrO2-bearing soda aluminosilicate (2.07Å) [37,39] and soda-lime 

aluminoborosilicate (2.08-2.09Å) [40,44] glasses. This distance is significantly lower 

than the Zr-O mean distance (≥ 2.14Å) in ZrO2-bearing calcium aluminosilicate and 

calcium silicate glasses (G1 and G2 glasses, Table 3). In these glasses containing mainly 

calcium as charge compensator, the Zr-O-Si linkages are mainly or totally charge 

compensated by Ca
2+

 ions (as Ca
2+

 has higher field strength than Na
+
 it induces a 

lengthening of the Zr-O distance, probably associated to an increase in average 

coordination number). This comparison suggests that in ZrxNd glasses, ZrO6 octahedra 

are preferentially charge compensated by Na
+
 ions rather than by Ca

2+
 ions (see the inset 

in Fig. 2) which is in accordance with [44,46]. Consequently, (ZrO6)
2-

 entities behave 

similarly to (AlO4)
-
 and (BO4)

-
 entities that are preferentially charge compensated by 

alkali ions (Na
+
) rather than by alkaline-earth ions (Ca

2+
) in aluminoborosilicate glasses 

[33]. This behavior can be explained by the preferential acid-base reaction of the acid 

oxides (Al2O3, B2O3, ZrO2, i.e. MxOy oxides where M
(2y/x)+

 are high field strength ions) 

with the most basic oxides available in the silicate melt (Na2O). Indeed, the basicity of 

oxides (related to their electron donor power and oxygen polarisability) is known to 



13 

 

increase with decreasing the cation–O
2-

 bond strength (related to the cation 

electronegativity) [56] and for instance, according to the scale of Duffy and Ingram [57], 

alkali and alkaline earth oxides can be ranked in the following order of decreasing optical 

basicity : Cs2O > K2O > Na2O ≈ BaO > SrO > Li2O ≈ CaO > MgO. The acid-base 

reaction between ZrO2, SiO2 and Na2O in the silicate melt can be ideally written as: ZrO2 

+ 6Q4 + Na2O → ((ZrO6)
2-

,2Na
+
)-6Q3(Zr). Thus, the reaction of ZrO2 with Na2O both 

reduces the formation of NBOs (oxygen atoms belonging to Si-O-Zr bonds are not 

considered as a NBOs, this why ZrO2 is considered as a reticulating agent) and affects the 

distribution of Na
+
 ions within the glassy network.  

As the molar ratio Na2O/ZrO2 is systematically greater than 1 for all glasses of the 

ZrxRE series (Table 1), the amount of Na2O is largely sufficient to enable the 

incorporation of zirconium only as (ZrO6)
2-

 octahedra in glass structure. As it will be seen 

later, even by considering the aluminum and boron charge compensation requirements by 

Na
+
 ions ((AlO4)

-
 and (BO4)

-
 entities), the sodium content is still sufficient to charge 

compensate all (ZrO6)
2-

 entities for all the glasses of the ZrxRE series. Thus, for all 

glasses of the series, the (ZrO6)
2-

 entities can exist as isolated species in the silicate 

network because they do not need to share NBOs to dissolve in the network. 

 

4.2.2. Structure of the aluminoborosilicate glass network 

 

The structure of the glassy network was examined with both Raman and MAS 

NMR (
27

Al, 
11

B, 
23

Na, 
29

Si) spectroscopies.  

4.2.2.1. Raman study 

Fig. 3 shows the Raman spectra of ZrxNd glasses in the 100-1600 cm
-1

 range. A 

very similar evolution of Raman spectra was observed with the ZrO2 content for the 

glasses of the ZrxLa series (spectra not shown) which indicates that the nature of the RE 
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has not significant impact on the effect of zirconium addition on the silicate network 

structure at least for the RE of the beginning of the lanthanide series. In the low 

frequency range (100-800 cm
-1

) an increasing and wide contribution attributed to the 

bending and stretching vibration modes of Si-O-Si bonds
 
[58] is observed near 525 cm

-1
 

whereas the intensity of the band close to 635 cm
-1

 seems to decrease when the ZrO2 

content increases (Fig. 3). A similar, narrow band around 630 cm
-1

 appears in alkali 

borosilicate glasses [46,59,60]  and is generally attributed to the breathing mode of 

borosilicate rings with 
IV

B–O–Si bonds. It has been proposed that this band was related to 

danburite rings composed of 2 (BO4)
-
 and 2 (SiO4) tetrahedral [48,60] by comparison 

with the Raman spectrum of the danburite mineral [60]
 
(CaO.B2O3.2SiO2, showing an 

intense Raman peak at 615 cm
-1

). The decrease of the “danburite-like” contribution could 

be explained by the decrease of the amount of boron in tetrahedral coordination [46] (see 

Section 4.2.2.3). The intensity of the large Si–O–Si bending band at about 525 cm
-1

 

remains constant, indicating that the polymerization degree of the silicate network is 

hardly affected by the ZrO2 content increase. A slight increase in intensity of the low-

frequency edge (around 360 cm
-1

) of this band may be possibly due to the contribution of 

Si–O–Zr bending modes. Indeed, the rising of such a contribution is put in evidence in 

the Raman spectra of the Zrx glass series in Fig. 7. This contribution is also observed in 

the spectra of reference [46].  

In the high frequency range (1300-1600 cm
-1

), the band at about 1435 cm
-1

 is 

assigned to the B–O stretching mode in (BO3)
-
 metaborate groups. This band gets broader 

towards the low-frequency side.  It is possible that new (BO3)
-
 units, bonded to high-field 

strength second neighbours (Ca
2+

, Nd
3+

…), and thus experiencing a lower B-O bond 

strength (lower B-O stretching frequency), appear with the ZrO2 content increase.  
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In Fig. 4 is detailed the 800-1250 cm
-1

 range of the Raman spectra (ZrxNd series) 

corresponding to the Si-O stretching modes within the SiO4 Qn units. For all spectra, 

fitting procedure was performed with four Gaussian bands associated with the stretching 

vibration of different Qn units [61] (examples of fits are presented in Fig. 5 for the Zr0Nd 

and Zr3Nd glasses). The attribution of the bands was performed taking into account the 

fact that the stretching vibration of Qn-1 units appears at lower frequency than that of Qn 

units [62]. Band positions are given in Table 4 and the evolution of their relative areas 

with the ZrO2 content is reported in Fig. 6 for both ZrxNd and ZrxLa series. It clearly 

appears that the total replacement of Nd by La in glass composition has not significant 

effect on both bands position and relative intensity when the ZrO2 content increases 

(Table 4, Fig. 6). In this energy range, Raman spectra reveal a strong evolution as 

zirconia content increases (Fig. 4). Indeed, a rising contribution of the band (e) located at 

about 990 cm
-1

 at the expense of the bands assigned to Q3(Na,Ca) (i.e. Q3 units associated 

with Na
+
 and Ca

2+
 ions) and Q4 units is observed (Fig. 3 and 6). Comparison of the 

Raman spectra of ZrxNd glasses (x > 0) with that of zektzerite NaLiZrSi6O15 (Fig. 4), 

shows coincidence of this new band at 990 cm
-1

 with a strong peak present on the 

zektzerite spectrum, located at 984 cm
-1

. In zektzerite, this peak can be unambiguously 

assigned to the stretching mode within Q3(Zr) units as this mineral phase only contains 

such units (existence of Zr-O-Si bonds locally charge compensated by Na
+
 and Li

+
 ions) 

[55]. As a result, it can logically be suggested that the growing band (e) in ZrxNd and 

ZrxLa glass series corresponds to a stretching mode within Q3 units associated with ZrO6 

octahedra (Q3(Zr)). This is consistent with the increasing number of Si-O-Zr linkages as 

ZrO2 content grows up as shown above by Zr-EXAFS. In other Zr-rich silicate crystalline 

phases such as vlasovite (Na2ZrSi4O11), zirconium is also 6-fold coordinated but in this 

case, as there is not enough SiO2 to enable (ZrO6)
2-

 entities to be connected only to Q3 
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units (Si/Zr = 4), Q2 units are formed that connect to 2 (ZrO6)
2-

 entities (existence of 

Q2(Zr,Zr) units) [63]. In vlasovite the (ZrO6)
2-

 entities are thus more distorted than in 

zekzerite and the vibration bands associated with both Q3(Zr) and Q2(Zr,Zr) units can be 

observed on its Raman spectrum at 989 and 954 cm
-1

 respectively [64]. The band at 989 

cm
-1

 in vlasovite that can be associated with Q3(Zr) units is thus very close to that of 

zektzerite (984 cm
-1

). It is interesting to note that the presence of a large band at 975 cm
-1

 

was also observed in binary SiO2-ZrO2 glasses prepared by sol-gel process and was 

assigned to a vibrational mode involving mainly Si-O-Zr linkages [65]. 

For comparison with the complex 7-oxides glasses of the ZrxNd and ZrxLa series 

(Table 1), we studied the effect of the addition of increasing ZrO2 amounts on the Raman 

spectra of simple sodium silicate glasses (Zrx series, Table 2). The composition of this 

glass series derives from that of a ZrO2-rich alkali-resistant glass by totally removing 

Al2O3 and replacing all CaO by Na2O. In comparison with the ZrxRE series, the Zrx 

series does not contain B2O3, Al2O3, CaO and RE2O3. The evolution of the spectra is 

shown in Fig. 7. When ZrO2 content increases, the evolution of the band corresponding to 

the stretching vibration of the Qn units is similar for ZrxRE (Figs. 3 and 4) and Zrx series: 

an increasing contribution is detected on the low energy side of the band (900-1050cm
-1

) 

at the expenses of the contribution on its high energy side (1050-1200 cm
-1

). Similarly to 

ZrxRE glasses, the Qn band (800-1250cm
-1

) was simulated with 3 or 4 Gaussian 

components for all Zrx glasses (Fig. 8). The position and the attribution of the Gaussian 

components used for the simulations are given in Table 5 and the evolution of their 

relative intensities is presented in Fig. 9. For the binary glass Zr0 without ZrO2, no 

contribution is observed close to 990 cm
-1

 whereas contributions corresponding to Q4, 

Q3(Na) and Q2(Na) units are detected. As soon as ZrO2 is added, a new band of growing 

intensity appears at about 990cm
-1

, at the same position as the one detected for the ZrxRE 
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glasses (Fig. 5, Table 4). This band can be unambiguously assigned to the stretching 

vibration of Q3(Zr) units which confirms our band attribution for the ZrxRE series. 

Simultaneously, a shift towards low energy (from 980 to 936 cm
-1

) along with an 

increasing intensity of the band assigned to the Q2 units is observed (Fig. 9) whereas the 

contribution of the Q4 and Q3(Na) bands significantly decreases. All these results 

concerning the Zrx series can be explained by the progressive incorporation of ZrO2 in 

the silicate network (formation of Si-O-Zr bonds) at the expense of Q4 and Q3(Na) 

entities. Zr can be connected to Q3 units (forming the Q3(Zr) units at 990 cm
-1

) and to Q2 

units. In this latter case, we propose that the Q2 units can be connected to both Zr and Na 

(Q2(Zr,Na) units) or to two Zr (Q2(Zr,Zr) units) as in the vlasovite structure presented 

above. The presence of Zr in these new Q2 units would explain the band shift towards low 

energy values (44 cm
-1

) when ZrO2 is introduced in glass composition (x > 0). In all cases 

(Q3(Zr), Q2(Zr,Na), Q2(Zr,Zr)), Na
+
 ions insure the local charge compensation close to 

Si-O-Zr bonds.   

 Angeli et al. [46] in their study on the impact of SiO2 substitution by ZrO2 on the 

structure of soda-lime borosilicate glasses also observed an increasing and important 

contribution on their Raman spectra at wavenumbers slightly lower than 1000 cm
-1

 that 

was attributed to the formation of Si-O-Zr linkages. McKeown et al. [58] also put in 

evidence the increasing contribution of a band at 975 cm
-1

 that they attributed to Q2 units, 

in their work on the impact of the addition of ZrO2 with other waste in alkali borosilicate 

glasses. In their Raman study on the effect of ZrO2/K2O substitution in potassium silicate 

glasses, Ellison et al. [62] also noticed the presence of a new band near 1010 cm
-1

 that 

they attributed to the formation of Q3(Zr) species charge compensated by K
+
 ions as in 

the dalyite mineral phase (K2ZrSi6O15) [66] and not to the formation of Q2 species 

because their vibrational frequencies would occur at lower frequencies. These authors 
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explained the fact that the band associated with these Q3(Zr) units was very intense, well 

resolved and remained at the same position with increasing ZrO2 content in their glasses 

by the formation of a relatively well defined local arrangement of Zr
4+ 

and K
+
 ions near 

Q3 units with a more or less fixed stoichiometry. In their work, Ellison et al. [62] also 

explained the progressive shift towards lower frequency of the stretching vibration of the 

Qn(M) bands with the increasing valence of the M cation by the increase of the M-O bond 

strength that would then weaken the Si-O bond in M-O-Si linkages (M would shift the 

electron density out of the Si-O bond). In addition to the effect of the mass (Zr being 

heavier than Na), this would explain why the frequency of the Q3(Zr) units occurs at a 

lower value than that of the Q3(Na,Ca) (ZrxRE series) and Q3(Na) (Zrx series) bands 

(Figs. 5 and 8).  

According to all previous results, the modifications observed on the Raman spectra 

of the ZrxRE glass series (Fig. 3 and Fig. 6) can be explained both: 

- By the diversion of a fraction of Na2O (and to a less extent CaO), to react with ZrO2 and 

form the (ZrO6)
2-

 coordination sphere, instead of depolymerizing the network by forming 

Q3(Na,Ca) units. This structural effect of ZrO2 on glass structure is probably mainly 

responsible of the increase of Tg (Fig. 1c) because Zr-O-Si bonds are stronger than 

(Na,Ca)-O-Si ones.  

- By the introduction in the melt and the incorporation in the silicate network of O
2-

 

anions at the same time as Zr
4+

 ions (2O
2-

 anions are brought by each Zr
4+

 ion according 

to the ZrO2 formula) that induces a decrease of the amount of Q4 units (decrease of Si-O-

Si linkages) and an increase of Q3(Zr) (increase of Zr-O-Si linkages). As Zr-O-Si bonds 

are strong, the impact on Tg of the disruption of the Si-O-Si connections is limited and 

compensated by the decrease of (Na,Ca)-O-Si(Q3) connections. 



19 

 

For Zr0Nd and Zr0La glasses without ZrO2 it was necessary to add a small 

contribution near 1000 cm
-1

 to simulate the spectra in the 800-1250 cm
-1

 range (Fig. 5a 

and Table 4). Nevertheless, the contribution of this band becomes insignificant when 

ZrO2 is introduced in the glass composition (Fig. 6). By considering both the network 

modifying role of RE2O3 in silicate glasses [17] and several studies reporting the impact 

of the addition of RE2O3 on the Raman spectra of silicate glasses [61,67], it is reasonable 

to assume that this small contribution is due to the vibration of RE-O-Si(Q3) units (that 

can also be referred to as Q3(RE) units as in Table 4). It is interesting to note that, 

although the molar amount of RE2O3 is similar to the amount of ZrO2 in the ZrxRE 

series, the intensity of the Q3(RE) band is very low compared to the intensity of the 

Q3(Zr) band. One possible origin of this effect may lie in the high symmetry of the 

(ZrO6)
2-

 octahedron [41], inducing a well-defined structure for the Q3(Zr) units. Their 

Raman contributions may add up to form an intense, quite narrow band. Such well-

defined structural arrangements may not be found around RE
3+

 centers, because they 

have a lower field-strength, and because their coordination sphere is surrounded by a 

larger number of alkali or alkaline earth ions as charge compensators.   

 

4.2.2.2. Aluminum environment 

27
Al MAS NMR spectra and simulations of ZrxLa glasses are presented in Fig. 10. 

No spectra evolution is noticeable with increasing ZrO2 concentration. This clearly 

demonstrates that the aluminum environment is not significantly affected by increasing 

ZrO2 content. The Al environment, characterized by the NMR parameters iso = 61.3 - 

61.8 ppm and CQ = 4.5 - 4.7 MHz deduced by simulation (Table 6), is consistent with 

aluminum occurring mainly as (AlO4)
-
 units which is accordance with other WAXS and 

Molecular Dynamics (MD) studies on aluminoborosilicate glasses [68].
 
Generally, it is 
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always observed that in peralkaline aluminoborosilicate glass compositions (i.e. in 

glasses for which the ratio alkali/Al >1) a great majority of aluminum always occurs in 4-

fold coordination and the (AlO4)
-
 units are always preferentially charge compensated by 

alkali ions at the expense of (BO4)
-
 units [32,33,68]. This last tendency may be probably 

explained by the fact that boron can be easily incorporated in the silicate network either 

as trigonal or tetrahedral species which is not the case for aluminum.  

Comparison of the 
27

Al parameters of ZrxLa glasses with those of reference glasses 

(Table 7) containing only Na
+ 

or Ca
2+

 ions as charge compensators (Fig. 11) reveals the 

strong impact of the nature of the (AlO4)
-
 unit charge compensator on NMR parameters. 

Both quadrupolar coupling constant and chemical shift of 
27

Al in ZrxLa glasses are 

similar to the parameters of 
27

Al in glasses without Ca
2+

 ions. This shows that (AlO4)
-
 

units always remain totally charge compensated by Na
+
 ions in all the glasses of the 

ZrxLa series. As both Na
+
 and Ca

2+
 ions are present in the composition of these glasses 

(Table 1), this shows that (AlO4)
-
 units are preferentially charge compensated by Na

+
 

rather than by Ca
2+

 ions which can be explained by the preferential reaction in the melt of 

Al2O3 (acid oxide) with the most basic oxide available (Na2O). This is in accordance with 

previous results obtained on a similar glass composition where it was shown that (AlO4)
-
 

units were preferentially charge compensated by Na
+ 

ions rather than by alkaline earth 

ions (Mg
2+

, Ca
2+

, Sr
2+

, Ba
2+

) probably because Na2O was more basic than the other 

oxides [33]. Besides, CaO being less basic than Na2O, prefers to associate to NBOs. This 

was confirmed by MD simulation results on soda lime silicate [69] and RE-bearing soda 

lime aluminosilicate [70] glasses that pointed out the fact that Ca
2+

 ions show greater 

tendency to be surrounded by NBOs than Na
+
 ions.  

 

4.2.2.3. Boron environment 
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Fig. 12 displays the 
11

B MAS NMR spectra recorded for the ZrxLa samples. 

Contrary to the results obtained by 
27

Al MAS NMR (Fig. 10), a strong evolution is 

observed here which indicates important rearrangement of boron surroundings with 

increasing ZrO2 amount. 
11

B MAS NMR spectra have been simulated considering two 

contributions for the BO3 band and a single contribution for the
  

band associated with  

(BO4)
-
 units [20,71]. The proportion N4 of (BO4)

-
 units, indicated in Table 8 and reported 

in Fig. 13 as a function of ZrO2 content (analyzed content, Table 1), decreases almost 

linearly with the ZrO2 concentration. This demonstrates the existence of a competition 

between (BO4)
-
 and (ZrO6)

2-
 entities for association with charge compensators, which 

was also reported in [3,46]. At this stage, it should be pointed out that in ZrxLa glasses, 

preferential charge compensation by sodium rather than by calcium ions occurs for 

(BO4)
-
 entities. Greater affinity of (BO4)

-
 entities towards Na

+
 ions was shown in [32] and 

was confirmed in other studies [3,46]. The competition between ZrO2 and B2O3 in favor 

of ZrO2 for their association with modifier oxides such as Na2O and leading to their 

incorporation in the silicate network as (ZrO6)
2-

 and (BO4)
-
 entities respectively can be 

explained by the fact that Zr is efficiently solubilized in the glass silicate network only in 

6-fold coordination, whereas B easily enters the silicate network as BO3 units [72].  

By considering the composition of Zr0La glass without ZrO2 (Table 1) and the 

value of N4 for this glass (46.6%), the hypothetic evolution of N4 with ZrO2 content in 

ZrxLa glasses can be estimated if we assume that ZrO2 “pick up” Na2O to B2O3. This 

evolution is shown in Fig. 13 (curve (b)) at the same time as the experimental evolution 

of N4 (curve (a)). It appears that above approximately 3.6 mol% ZrO2 added to Zr0La 

glass, all the charge compensator of (BO4)
-
 entities would be consumed by the (ZrO6)

2-
 

entities (Fig. 13). The strong divergence between curves (a) and (b) demonstrates that 

when x > 0, Na2O both contribute to form (ZrO6)
2-

 and (BO4)
-
 units reflecting an 
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equilibrium between these species. In other terms, the Na2O amount necessary to form 

the (ZrO6)
2-

 entities is in part taken to the amount that would have reacted with B2O3, and 

in part taken to the amount that would have depolymerized the silicate network.  

 

4.2.2.4. Sodium environment   

23
Na MAS NMR is a useful technique to follow the evolution of the distribution 

of the Na
+ 

ions in glass structure [32,73] either in the NBOs-rich regions where they act 

as modifiers or in the BOs (bridging oxygen atoms)-rich regions where they act as charge 

compensators near (BO4)
- 
or (AlO4)

-
 units for instance. Indeed, 

23
Na NMR parameters δiso 

and CQ are sensitive to sodium local environment in glass. Firstly, δiso(
23

Na) is linearly 

correlated to the mean Na-O distance in Na-bearing silicate, aluminosilicate and borate 

crystalline compounds [17,74,75,76] and generally decreases with the mean Na-O 

distance. More precisely, recent results coupling 
23

Na NMR, molecular dynamics and 

density functional calculations have shown that δiso(
23

Na) correlates with the mean Na-O 

distance in glasses only when the coordination number of sodium is taken into account 

[73]. Secondly, CQ is linked to the electric field gradient induced by the negative charge 

owned by the oxygen atoms present in the neighborhood of the 
23

Na nuclei (CQ increases 

with the negative charge owned by oxygen atoms). According to these considerations, it 

is expected that when Na
+
 ions act as modifiers near NBOs, their iso and CQ parameters 

are higher than when they act as charge compensators near (BO4)
- 

or (AlO4)
-
 units for 

which the negative charge is delocalized on four oxygen atoms. This is verified in Fig. 14 

where is presented the evolution of the iso and CQ parameters for a set of simple Na2O-

bearing silicate, borate, borosilicate and aluminosilicate reference glasses in which the 

environments of Na
+
 ions are significantly different (Table 9, blue circles in Fig. 14). The 
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23
Na MAS NMR spectra and simulations of these reference glasses are presented in Fig. 

15. Among these reference glasses two kinds of compositions can be distinguished: 

- Glasses for which Na
+
 ions only play the role of charge compensators near (AlO4)

-
 units 

(this is the case of the SiAlNa glass, for which there is just enough Na2O to compensate 

all (AlO4)
-
 tetrahedra) or (BO4)

-
 units (this is the case of the B0.2Na glass, for which 

there is no NBO and all Na2O is used to compensate (BO4)
-
 tetrahedra). These glasses 

correspond to the domain at the bottom left in Fig. 14 (low iso and CQ). 

- Glasses for which all or at least a great proportion of Na2O act as modifier by forming 

NBOs on SiO4 (SiNa, SiNaCa, SiNaLa glasses) or BO3
 
(B0.7Na glass) units. In silicate 

glasses structure, Na
+
 ions are surrounded by both NBOs (from Qn units with n < 4) and 

BOs (from Si-O-Si bonds). These reference glasses correspond to the domain at the top 

right in Fig. 14 (high iso and CQ).  

In Fig. 14 is also reported the evolution of the 
23

Na NMR parameters of Zrx glasses 

(Table 9, green triangles in Fig. 14). The corresponding MAS NMR spectra are presented 

in Fig. 16. It appears that the introduction of ZrO2 (5-10 mol%) in the Zr0 glass (a binary 

sodium silicate glass in which all Na
+
 ions play a modifier role as in the SiNa reference 

glass, Fig 14) induces a significant decrease of the values of iso and CQ of 
23

Na. This 

evolution can be explained by an increasing amount of Na
+
 ions acting as charge 

compensators near (ZrO6)
2-

 units. Indeed, an increasing amount of Na2O (close to 42 and 

84% respectively in the Zr5 and Zr10 glasses, Table 9) is expected to be mobilized as 

charge compensator in these ZrO2-bearing glasses which induces an increase of the mean 

Na-O distance (decrease of δiso) whereas the mean electric field gradient at 
23

Na nuclei 

decreases (decrease of CQ). The increase of the mean Na-O distance is expected to 

increase according to bond valence - bond length considerations [37,43] Indeed, the bond 
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valence between a Na
+ 

ion and a NBO is higher than the bond valence between a Na
+
 ion 

and an oxygen atom in a Zr-O-Si bond. 

The experimental and simulated 
23

Na MAS NMR spectra of the glasses of the ZrxLa 

series are shown in Fig. 17. The parameters extracted from the simulation of these spectra 

are given in Table 9 and their evolution is presented in Fig. 14 (red circles). It appears 

that the δiso and CQ parameters of all these glasses are located on the bottom left of the 

figure. This can be explained by the fact that even for the glass without ZrO2 (Zr0La 

glass) a high proportion of Na
+
 ions is already used to compensate the (BO4)

-
 and (AlO4)

-
 

units (48 mol% if we assumed that these units are only compensated by Na
+
 ions, Table 

9). When adding ZrO2, as for the Zrx series the total amount of Na2O acting as charge 

compensator increases due to the formation of (ZrO6)
2-

 units (until 84% if we assumed 

that these units are only compensated by Na
+
 ions, Table 9) in spite of the decrease of the 

amount of (BO4)
-
 units (Table 8). This explains the shift of δiso towards lower values that 

is observed at the same time as the decrease of CQ for the ZrxLa glasses when adding 

increasing ZrO2 amount (Fig. 14).  

The effect of ZrO2 on the distribution of charge compensators and modifiers is 

summarized by the structural scheme shown in Fig. 18. It is interesting to note that 

according to our results, an increasing proportion of Na
+
 ions previously acting as 

modifiers in the NBOs-rich regions of the glass structure (DR in Fig. 18) for the lowest 

ZrO2 contents is progressively displaced towards the polymerized regions (PR in Fig. 18) 

where they act as charge compensators. This evolution is expected to affect the 

environment - and thus the solubilization - of RE
3+

 ions in the glass, these ions being 

preferentially located in the NBOs-rich regions of the glass structure where it is easier to 

satisfy their environment. This point is developed in another paper [36].  
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4.2.2.5. Silicon environment   

The 
29

Si MAS NMR spectra of the glasses of the ZrxLa series are shown in Fig. 

19. The spectra are very similar for all glasses, they are wide and not resolved (the 

contribution of different kinds of Qn units cannot be detected on the spectra) which can be 

explained by the existence of numerous kinds of different environments for the Qn units 

in the aluminoborosilicate glassy network that induces a widening of the spectra 

(existence of Si-O-Si, Si-O-Al, Si-O-B, Si-O-Zr, Si-O-Na, Si-O-Ca and Si-O-La bonds). 

Indeed, the chemical shift of Qn units depends both on their number (4-n) of NBOs and 

on the nature of their second neighbors [77]. Only a very slight variation of the maximum 

of the spectra towards high chemical shifts (about 1-2 ppm) is observed when the ZrO2 

content increases that could be due to the presence of Zr as second neighbor of Qn units in 

accordance with the results of the NMR study of Lapina et al. [78] on silica fiberglass 

modified by ZrO2. A slight shift of the 
29

Si NMR peak in the same direction was also 

observed by Angeli et al. [46] when they substituted SiO2 by ZrO2 in a soda-lime 

borosilicate glass. Nevertheless, it is very difficult to conclude with certainty because 

when the ZrO2 content increases, the variations of local environment in the surrounding 

of SiO4 units are very complex according to the previous sections and the relative 

proportions of the different kinds of Si-O-M bonds (M = Si, Al, B, Zr, Na, Ca, La) 

change: evolution of the coordination of boron atoms (BO4, BO3) connected to Si, 

redistribution of Na
+
 and Ca

2+
 ions in the neighbourhood of Qn units with n < 4 due to the 

preferential charge compensation of (ZrO6)
2-

 entities by Na
+
 ions, increasing amount of 

Si-O-Zr bonds. All these local structural changes may affect the chemical shift of 
29

Si in 

opposite directions finally leading to compensating effects [32,46,77,79] which probably 

explains the very slight evolution of 
29

Si NMR spectra with ZrO2 content (Fig. 19). 

However, it is interesting to compare the evolution of the 
29

Si MAS NMR spectra of the 
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ZrxLa glasses with that of the glasses of the Zrx series (without B, Al, Ca and La) shown 

in Fig. 20. For the Zrx series, a significant evolution of the spectra is put in evidence with 

the introduction of increasing ZrO2 content in the binary sodium silicate Zr0 glass. 

Whereas without ZrO2 the contributions of Q4 and Q3(Na) units are clearly resolved (Zr0 

glass) [80], the spectra of Zrx glasses (x = 5, 10) shift towards higher chemical shifts and 

become narrower when ZrO2 is added, showing a significant decrease of the contribution 

of Q4 units and the occurrence of an increasing contribution centred at about -98 ppm 

probably associated with the formation of Q3(Zr) units charge compensated by Na
+
 ions 

at the expense of Q4 and Q3(Na) units in accordance with the Raman results presented 

above for this series. A similar structural evolution probably occurs for the glasses of the 

ZrxLa series which would explain the slight shift of the spectra with ZrO2 content (Fig. 

19) but is not as obvious as that put in evidence for the Zrx glasses because of the higher 

chemical complexity of ZrxLa glasses.  

 

5. Conclusions 

 

Strong impact of ZrO2 addition on the structural features of a simplified RE-bearing 

aluminoborosilicate nuclear glass (RE = Nd, La) was put in evidence, demonstrating the 

important role of zirconium in this glass system. From a multi-spectroscopic approach 

(Zr-EXAFS, multinuclear (
11

B, 
23

Na, 
27

Al, 
29

Si) MAS NMR, Raman) specific focuses on 

the elements - formers and modifiers - constituting the glass structure have been 

performed and enabled to draw the structural changes occurring when ZrO2 is added to 

the glass in increasing amount. Zirconium appears intimately incorporated in the glass 

matrix, forming regular (ZrO6)
2-

 octahedra connected to the silicate network through Zr-

O-Si bonds and preferentially charge compensated by Na
+ 

rather than by Ca
2+

 ions. While 

aluminium remains unaffected as tetrahedral (AlO4)
-
 units charge compensated by Na

+
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ions, it was demonstrated that increasing Zr content induces significant changes in the 

borosilicate network structure: formation of Zr-O-Si(Q3) units at the expense of Q4 and 

Q3(Na) units and decrease of the proportion of (BO4)
-
 units due to the mobilization of Na

+
 

ions for (ZrO6)
2-

 charge compensation. The fact that the amount of Na
+
 ions released by 

partial transformation of (BO4)
-
 into BO3 units was not sufficient to charge compensate 

all (ZrO6)
2-

 units justifies partial transformation of Q3(Na) into Q3(Zr) units reducing at 

the same time the amount of NBOs in glass structure. 

 According to all the results presented in this paper, it may be expected that the 

preferential charge compensation mechanism of zirconium induces at the same time a 

decrease of the amount of NBOs and an increase of the relative proportion of Ca
2+

 ions in 

the depolymerized regions of the structure where are located RE
3+

 ions (Fig. 18). The 

environment of these ions is thus probably significantly modified and their stability 

affected by ZrO2 addition. This is confirmed in another paper [36] by following directly 

the evolution of the local environment of RE
3+

 ions and the glass crystallization tendency 

with ZrO2 content. 
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Table 1. (
a
) Theoretical composition of ZrxRE glasses (RE = Nd or La). (

b
) Analyzed 

compositions of all ZrxNd and ZrxLa glasses by ICP AES are also given for comparison. 

Increasing amount of ZrO2 was added to Zr0RE glass at the expense of all other oxides. 

For all glasses of the ZrxLa series, 0.15 mol% Nd2O3 was introduced to reduce the 

relaxation time during NMR study (the RE2O3 concentration given in Table 1 for RE = 

La corresponds to La2O3 + Nd2O3). The glass transformation temperature Tg (uncertainty 

+/- 3°C) determined by DTA is given in the last column.  

 

 

  

Glass 

(mol%) 

SiO2 B2O3 Al2O3 Na2O CaO ZrO2 RE2O3 Tg(°C) 

Zr0RE
a 

63.00 9.12 3.11 14.69 6.45 0 3.63  

Zr0Nd
b
 64.15 8.13 3.27 14.06 6.74 0 3.66 602 (Nd) 

Zr0La
b
 62.56 7.85 3.50 14.91 7.07 0 4.10 593 (La) 

Zr1RE
a 

61.81 8.94 3.05 14.41 6.33 1.90 3.56  

Zr1Nd
b
 60.39 8.56 3.31 14.93 7.04 2.04 3.73 611 (Nd) 

Zr1La
b
 60.91 8.63 3.14 14.50 6.88 1.93 4.00 600 (La) 

Zr2RE
a 

60.61 8.77 2.99 14.14 6.20 3.79 3.49  

Zr2Nd
b
 60.41 8.51 3.20 13.63 6.45 4.19 3.62 632 (Nd) 

Zr2La
b
 60.45 7.48 3.27 14.00 6.78 4.17 3.83 615 (La) 

Zr3RE
a 

59.42 8.60 2.94 13.86 6.08 5.69 3.42  

Zr3Nd
b
 58.41 8.51 3.15 13.65 6.48 6.24 3.56 642 (Nd) 

Zr3La
b
 57.45 7.34 3.40 14.34 6.96 6.57 3.91 640 (La) 
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Table 2. (
a
) Theoretical composition of sodium silicate glasses (Zrx series) with 

increasing ZrO2 content. (
b
) Analyzed compositions of Zrx glasses by ICP AES are given 

for comparison. For Zr5 and Zr10 glasses, increasing amount of ZrO2 was added to the 

Zr0 glass at the expense of all other oxides. Due to strong Na2O evaporation during 

melting at 1560°C, nominal and true Na2O/ZrO2 ratios are significantly different. The 

theoretical and analyzed Na2O/SiO2 and Na2O/ZrO2 ratios are also given. 

  

Glass (mol%) SiO2 Na2O ZrO2 Na2O/SiO2  Na2O/ZrO2 

Zr0
a 

77.77 22.22 0 0.285 - 

Zr0
b 

85.22 14.28 0 0.167 - 

Zr5
a 

73.68 21.05 5.26 0.285 4.00 

Zr5
b 

80.68 13.57 5.74 0.168 2.36 

Zr10
a 

70.00 20.00 10.00 0.285 2.00 

Zr10
b 

76.27 12.91 10.82 0.169 1.19 
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Table 3.  Zr K-edge EXAFS best-fit parameters of the Zr-O (1
st
 neighbors) and Zr-Si 

shells (2
nd

 neighbors) in Zr1Nd and Zr3Nd glasses (mean Zr-O distance, coordination 

number CN, Debye-Waller factor 
2
). EXAFS parameters taken from literature for 

synthetic crystalline zektzerite (LiNaZrSi6O15) [38] and (Zr,Ca)-bearing silicate glasses 

(G1 [81], G2 [82]) are also given (glass G1 (mol%): 48.8 SiO2 - 8.5 Al2O3 - 25.3 CaO - 

11.3 TiO2 - 5.0 ZrO2 - 1.1 Na2O; glass G2 (mol%): 55.70 SiO2 - 39.78 CaO - 4.52 ZrO2). 

Mean square deviations applying on last digits are indicated in parenthesis. 

  

Glass Zr-O(Å) CN 

(Å

2
) 

Zr1Nd 2.09(1) 6.0(0.9) 0.0050(5) 

Zr3Nd 2.09(1) 6.0(0.9) 0.0051(5) 

Glass Zr-Si(Å) CN 

(Å

2
) 

Zr1Nd 3.37(2) 1.4(1.0) 0.002(2) 

Zr3Nd 3.36(2) 1.7(1.2) 0.004(4) 

 Zr-O(Å) CN 

(Å

2
) 

Zektzerite 2.08 5.9 0.0036 

Glass G1 2.15 6.5 0.007 

Glass G2 2.14 5.5 0.006 
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Glass Zr0Nd Zr1Nd Zr2Nd Zr3Nd Zr0La Zr1La Zr2La Zr3La 

Q4 1150 1150 1150 1150 1150 1150 1150 1150 

Q3(Na,Ca) 1066 1065 1064 1064 1063 1062 1063 1061 

Q3(Zr,Nd,La) 1003 990 990 990 998 990 990 990 

Q2 957 934 935 937 953 936 937 938 

 

 

 

Table 4. Position (in cm
-1

) of the Gaussian components used to simulate the Raman 

spectra (800-1250 cm
-1

) of the glasses of ZrxLa and ZrxNd series (Fig. 5). For Zr0La and 

Zr0Nd glasses (without RE), the Q3 component around 1000 cm
-1

 corresponds to the 

stretching vibration of respectively Q3(La) and Q3(Nd) entities whereas for all glasses 

containing ZrO2 this component mainly corresponds to the stretching vibration of Q3(Zr) 

entities. For all simulations, the position of the Q4 band was fixed at 1150cm
-1

 and for all 

glasses with ZrO2, the position of the Q3(Zr) band was fixed at 990 cm
-1

. 
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Table 5. Position (in cm
-1

) of the Gaussian components used to simulate the Raman 

spectra (800-1250 cm
-1

) of the glasses of the Zrx series (Fig. 8). For Zr10 glass, it was not 

possible to separate the contribution of a band associated with the vibration of Q4 units, 

thus the Q3(Na) band probably includes the Q4 contribution.   

 

  

Glass Zr0 Zr5 Zr10 

Q4 1170 1170 - 

Q3(Na) 1095 1090 1076 

Q3(Zr) - 992 988 

Q2 980 940 936 
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Table 6. NMR parameters deduced from the simulation of 
27

Al MAS NMR spectra of 

glasses of the ZrxLa series (Fig. 10). δiso is the mean isotropic chemical shift. gb 

represents the dispersion of chemical shift (standard deviation value of the Gaussian 

distribution used in the simulation). CQ is the mean quadrupolar coupling constant. The 

mean asymmetry parameter η is constant and fixed to 0.6 in these simulations.  

 

 

  

Glass iso (ppm)  

(±0.1) 

gb CQ (MHz)  

(±0.1) 

η 

Zr0La 61.3 4.4 4.5 0.6 

Zr1La 61.6 4.4 4.5 0.6 

Zr2La 61.6 4.4 4.6 0.6 

Zr3La 61.8 4.3 4.7 0.6 
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Table 7. Composition (mol%) of the reference glasses A, B, C and D used for the 
27

Al 

MAS NMR study of the glasses of the ZrxLa series (Fig. 11). Glass A only contains Ca
2+

 

ions to charge compensate (AlO4)
-
 units and has a composition close to that of the 

industrial E-glass used as fibers to reinforce plastics. Glasses B and D are glasses of 

similar compositions but that contain either only Ca
2+

 or Na
+
 ions to charge compensate 

(AlO4)
-
 units and that were studied in [32,38]. Glass C only contains Na

+
 ions to charge 

compensate (AlO4)
-
 units. 

  

Glass SiO2 Al2O3 B2O3 Na2O CaO ZrO2 La2O3 

A 58.47 8.89 6.00 - 26.62 - - 

B 61.81 3.05 8.94 - 20.74 1.90 3.56 

C 76.92 11.54 - 11.54 - - - 

D 61.81 3.05 8.94 20.74 - 1.90 3.56 
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Table 8. NMR parameters and ratios (in %) of BO4 and BO3 species deduced from the 

simulation of 
11

B MAS NMR spectra of glasses of the ZrxLa series (Fig. 12). The two 

BO3 contributions required to get correct fitting of the spectra are consistent with BO3 

ring (BO3(1)) and BO3 non ring (BO3(2)) found in literature [46]. Contrarily to what is 

sometimes done in literature [46], the BO4 contribution was fitted by considering only 

one contribution. δiso is the mean isotropic chemical shift. CQ is the mean quadrupolar 

coupling constant. η is the asymmetry parameter. 

  

 BO4 BO3 (1) BO3 (2) 

Glass % iso 

(ppm) 

CQ 

(MHz) 

η % iso 

(ppm) 

CQ 

(MHz) 

η % iso 

(ppm) 

CQ 

(MHz) 

η 

Zr0La 46.6 -0.61 0.35 0.6 34.7 17.9 2.5 0.34 18.7 14.0 2.8 0.37 

Zr1La 41.6 -0.53 0.35 0.6 38.6 17.8 2.5 0.34 19.8 14.0 2.8 0.45 

Zr2La 37.0 -0.55 0.35 0.6 49.2 17.9 2.6 0.40 13.8 14.0 2.8 0.38 

Zr3La 29.2 -0.52 0.35 0.6 54.1 17.9 2.6 0.40 16.7 14.0 2.8 0.43 
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Table 9.  NMR parameters deduced from the simulation of 
23

Na MAS NMR spectra of 

glasses of the ZrxLa and Zrx series (Figs. 15 and 16). δiso is the mean isotropic chemical 

shift. gb represents the distribution of chemical shift (standard deviation value of the 

Gaussian distribution used in the simulation). CQ is the mean quadrupolar coupling 

constant. The mean asymmetry parameter η is constant and fixed to 0.6 in these 

simulations. The last column corresponds to the amount of Na2O (in mol%) acting as 

charge compensator of (BO4)
-
, (AlO4)

-
 and (ZrO6)

2-
 units in the ZrxLa series taking into 

account 
11

B and 
27

Al NMR results (showing that all is Al in four-fold coordination and 

giving %BO4) assuming that all these units are only compensated by Na
+
 ions. For the 

Zrx series, two Na
+
 ions were supposed to compensate one (ZrO6)

2-
 unit.     

 

  

Glass iso (ppm) gb CQ (MHz) η %Na2Ocomp  

Zr0La -7.2 8.3 2.4 0.6 48 

Zr1La -7.3 8.2 2.3 0.6 59.7 

Zr2La -8.4 8.1 2.2 0.6 72.9 

Zr3La -9.0 8.0 2.2 0.6 84.5 

Zr0 3.93 9.16 3.53 0.6 0 

Zr5 -0.95 9.69 3.18 0.6 42.3 

Zr10 -4.33 9.34 2.80 0.6 83.8 
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Table 10. Composition (mol%) of Na2O-bearing reference silicate, borate, 

aluminosilicate and borosilicate glasses prepared by the authors for various studies and 

used here for comparison of their 
23

Na NMR parameters with those of the glasses of the 

ZrxLa series. The experimental and simulated 
23

Na MAS NMR spectra of some of these 

glasses are shown in Fig. 15. The iso, gb and CQ parameters of these glasses determined 

by spectra simulation are reported in the Table. In SiNa, SiNaCa and SiNaLa glasses, Na
+
 

ions only play the role of modifiers near NBOs either alone or with Ca
2+

 and La
3+

 ions. In 

SiAlNa and B0.2Na glasses, Na
+
 ions only play the role of charge compensators near 

respectively (AlO4)
-
 and (BO4)

-
 units. In B0.7Na glass, Na

+
 ions play the role of 

modifiers near (BO3)
-
 units and the role of charge compensators near (BO4)

-
 units.  

  

Glass SiO2 Al2O3 B2O3 Na2O CaO La2O3 Nd2O3 δ
iso

 

(ppm) 
gb C

Q
 

(MHz) 
SiNa 80.93 - - 19.07 - - - 3.22 9.2 3.65 

SiNaCa 71.21 - - 16.78 12.01 - - -0.46 9.3 3.06 

SiAlNa 76.92 11.54 - 11.54 - - - -14.03 7.7 2.16 

SiNaLa 74.38 - - 21.29 - 4.18 0.15 -0.10 9.0 3.19 

B0.2Na - - 83.3 16.7 - - - -9.58 7.2 2.35 

B0.7Na - - 58.8 41.2 - - - 2.83 8.4 3.06 
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Figures captions 

 

 
 

 

Fig. 1. Evolution with ZrO2 content of the: (a) density (uncertainty < ± 0.004), (b) oxygen 

molar volume Vm(Ox) and (c) glass transformation temperature Tg for the glasses of the 

ZrxNd and ZrxLa series.  

Fig. 2. Modulus of the Fourier transform of the k
3
-weighted Zr K-edge EXAFS function 

for Zr1Nd and Zr3Nd glasses. The inset (top right) shows the local structure in the 

surrounding of Zr with preferential charge compensation by Na
+
 ions. 

Fig. 3. Raman spectra of ZrxNd glasses in the 100-1600 cm
-1

 range. After correction by 

Long formula and subtraction of a third-order polynomial baseline, the spectra were 

normalized to total unit area. 

Fig. 4. Raman spectra of ZrxNd glasses in the 800-1250 cm
-1

 range: (a) Zr0Nd, (b) 

Zr1Nd, (c) Zr2Nd, (d) Zr3Nd. The Raman spectrum (e) of natural zektzerite 

(LiNaZrSi6O15) is shown for comparison [83]. The inset (top left) shows the connection 

between Q3 and (ZrO6)
2-

 units in structure of zekzerite (LiNaZrSi6O15) with local charge 

compensation insured by Na
+
 or Li

+
 ions.  

Fig. 5. (top) Raman spectrum (a) and Gaussian fitting (b) of the Zr0Nd glass with four 

Gaussian bands associated with the following SiO4 units: Q4 (c), Q3(Na,Ca) (d), Q3(Nd) 

(e), Q2 (f). (bottom) Raman spectrum (a) and Gaussian fitting (b) of the Zr3Nd glass with 

four Gaussian bands associated with the following SiO4 units: Q4 (c), Q3(Na,Ca) (d), 

Q3(Zr) (e), Q2 (f). For clarity reason experimental spectra (a) have been slightly shifted 

towards the top of the figures.  

Fig. 6. Relative contribution of the different bands assigned to the SiO4 units in ZrxNd (a) 

and ZrxLa (b) glasses versus the ZrO2 nominal content, according to the fitting of the 

Raman spectra shown in Fig. 5. 
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Fig. 7. Raman spectra of glasses of the Zrx series in the 300-1300 cm
-1

 range. The spectra 

were normalized to their maximum intensity. 

Fig. 8. Raman spectra (a) and Gaussian fitting (b) of glasses of the Zrx series with three 

or four Gaussian bands associated with the following SiO4 units: Q4 (c), Q3(Na) (d), 

Q3(Zr) (e), Q2 (f).  

Fig. 9. Relative contribution of the different bands assigned to the SiO4 units in Zrx 

glasses according to the fitting of the Raman spectra shown in Fig. 8. 

Fig. 10.  Experimental (solid lines) and simulated (dashed lines) normalized 
27

Al MAS 

NMR spectra of the glasses of the ZrxLa series. 

Fig. 11. Evolution with the ZrO2 content of the mean CQ and iso parameters deduced 

from the simulation of 
27

Al MAS NMR spectra of glasses of the ZrxLa series (Fig. 10, 

Table 6). Glasses A, B, C and D (Table 7) are reference glasses for which aluminum 

mainly occurred in 4-fold coordination and is mainly or totally charge compensated by 

Ca
2+

 (glasses A and B) or Na
+
 (glasses C and D) ions. The domains surrounded by dotted 

lines in the figure separate glasses for which (AlO4)
-
 units are mainly charge compensated 

by Ca
2+

 ions or by Na
+
 ions. These reference glasses have been used to compare their 

NMR parameters after spectra simulation with those of the glasses of the ZrxLa series in 

order to identify the nature and follow the evolution of charge compensation mode of the 

(AlO4
-
) units in our ZrO2 bearing glasses.  

Fig. 12. Normalized 
11

B MAS NMR spectra of the glasses of the ZrxLa series. 

Fig. 13. (a) Evolution of the relative proportion of BO4 units versus the amount of ZrO2 

in glasses ZrxLa (a linear fit is also shown) as determined by 
11

B MAS NMR (Table 8) 

(b) Expected evolution of the relative proportion of BO4 units with ZrO2 content if all 

(ZrO6)
2-

 octahedra present in ZrxLa glasses are associated with charge compensators that 

initially compensate the (BO4)
- 
units in the Zr0La glass (i.e. the glass without ZrO2). 
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Fig. 14. Evolution of the mean CQ and iso parameters deduced from the simulation of 

23
Na MAS NMR spectra of the ZrxLa glass series (Fig. 17) as well as a set of Na2O- 

bearing reference and Zrx glasses (Figs. 15 and 16). This figure points out two domains 

grouping reference glasses in which Na
+
 ions are mainly present in the vicinity of NBOs 

(black dotted line) and glasses in which Na
+
 ions mainly act as charge compensator near 

(AlO4)
- 
or (BO4)

- 
 units (green dotted line).  

Fig. 15. Experimental (solid lines) and simulated (dashed lines) 
23

Na MAS NMR spectra 

of Na2O-bearing silicate, borate, aluminosilicate and borosilicate reference glasses (Table 

10).  

Fig. 16. Experimental 
23

Na MAS NMR spectra of the glasses of the Zrx series (Table 2).  

Fig. 17. Experimental (solid lines) and simulated (dashed lines) normalized 
23

Na MAS 

NMR spectra of the glasses of the ZrxLa series. 

Fig. 18. Schematic bidimensional representation of the structure of a peralkaline RE-

bearing aluminoborosilicate glass containing sodium, calcium and RE = Nd. This figure 

shows: SiO4 units without (Q4) and with NBOs (Qn n < 4) associated with Na
+
 and Ca

2+
 

ions; (AlO4)
-
 , (BO4)

-
 and (ZrO6)

2-
 units mainly charge compensated by Na

+
 ions and 

connected to the silicate network; BO3 triangles; Nd
3+

 ions connected to the silicate 

network with their nearest NBOs neighbors associated with Na
+
 or Ca

2+
 to locally 

compensate the negative charge excess of the Nd-O-Si bonds. Examples of bridging 

oxygen atoms (BOs) and non-bridging oxygen atoms (NBOs) are shown. Depolymerized 

regions (i.e. NBOs-rich regions) are indicated by DR in the figure and are separated by 

polymerized regions (i.e. BO-rich regions) that are indicated by PR in the figure. The 

dotted lines separate DR and PR regions in the figure. The possible presence of BO4 

tetrahedral units as next-nearest neighbors of Nd
3+

 ions is also proposed in the figure. The 

structural scheme shown in this figure (RE-bearing aluminoborosilicate glasses not 
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homogeneous at the nanometric scale) is inspired by the model proposed by Greaves for 

silicate glasses [84,85]. The green arrows indicate the effect of the formation of (ZrO6)
2-

 

units on the distribution of Na
+ 

ions in the surrounding of Nd
3+

 ions (decrease of the total 

amount of charge compensators available and increase of the Ca/Na ratio) and on the 

partial conversion of (BO4)
-
 into BO3 units. 

Fig. 19. Normalized 
29

Si MAS NMR spectra of the glasses of the ZrxLa series. Qn range 

of chemical shift in silicate glasses for Qn units connected to n silicon atoms and (4-n) 

NBOs are shown [77]. 

Fig. 20. Normalized 
29

Si MAS NMR spectra of the glasses of the Zrx series.  
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Figure 2 
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 Figure 6 
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Figure 8 
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Figure 9 
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Figure 11 
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 Figure 13  
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Figure 15 

 

 

 

 

-80-60-40-2002040

Chemical shift (ppm)

SiAlNa

B0.2Na

SiNa

SiNaCa

SiNaLa

B0.7Na



57 

 

 Figure 16 
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Figure 17 
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Figure 20 
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