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Preface

With the discovery of the Higgs boson [1–6] at the Large Hadron Collider (LHC) [7,8], all the particles

predicted by the Standard Model (SM) of particle physics have now been observed. While for the

moment the SM has been able to successfully describe the experimental measurements obtained

in particle colliders, many predictions of the model still remain to be tested. Furthermore, the quest

for a more fundamental description of nature is still ongoing.

The LHC, running between Switzerland and France from the year 2009 to 2018, has provided

measurements of the Higgs boson couplings to the vector bosons W and Z , and to the heaviest

generation of quarks and charged leptons. The more elusive couplings to the first two generations

and to neutrinos are, however, still completely untested. Moreover, the energy potential of the Higgs

boson field, responsible for the electroweak symmetry breaking (EWSB) mechanism, has not yet

been measured by any experiment.

After EWSB, the Higgs boson potential gives rise to cubic and quartic terms in the Higgs boson

field, inducing a self-coupling λwhich, within the SM, is fully predicted in terms of the Higgs boson

mass and the Fermi coupling constant. A measurement of this coupling would therefore start shed-

ding light into the actual structure of the potential, whose exact shape can have deep theoretical

consequences.

Within the current uncertainty in the mass of the top quark, the self-coupling λ — whose value

runs with the energy due to quantum corrections — could tend to zero at the Planck scale. In

this case, it has been advocated [9] that a theory of quantum gravity can be built starting from

the present formulation of general relativity and the SM, that is fully renormalisable in a non-

perturbative manner. In addition, in this scenario of vanishing λ and in the presence of a non-

minimal coupling between the Higgs field and gravity [10], or in the presence of new physics con-

tributions [11], the Higgs boson field could be responsible for cosmological inflation. Finally, using

the current central values of the measurements of the Higgs boson and the top quark mass, the

Higgs potential energy function would have a new minimum at Higgs field values above 1011 GeV.

This would imply that the vacuum state of the SM, as we see it today, is unstable, and that 10600 years

in the future [12–14] our universe would be swallowed up in the transition to a new vacuum state

with different laws of physics. These disturbing or enticing possibilities could be tested with a suf-

ficiently accurate measurement of the Higgs self-coupling.

Despite the importance of a precise determination of λ, the SM prediction for this coupling

is still far from being tested, since all precision observables show a very mild dependence on it.

Constraints can be derived from perturbative unitarity arguments, but also in these cases they are

quite weak, spanning up to five times the SM predicted value. For a direct determination of this

coupling, the challenging measurement of Higgs boson pair production at colliders is needed.

The target of the present work is to summarise the present theoretical and experimental status

of the di-Higgs boson production searches, and of the direct and indirect constraints on the self-

coupling λ, with the wish to serve as a useful guide for the next years. The work has started as the
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proceedings of the Di-Higgs workshop at Colliders, that was held at Fermilab from the 4th to the 9th

of September 2018, but it went beyond the topics discussed at that workshop and included further

developments. The editors would like to thank all contributors, the ATLAS and CMS collaborations

and the Higgs cross section working group for supporting the editing of this white paper and for

providing many useful inputs and advises, and in particular Michael Peskin for his careful review of

the manuscript and his substantial contribution to the overall shaping of this work.

The editors
B. Di Micco
M. Gouzevitch
J. Mazzitelli
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Theoretical status

1



3

In this Part we aim to provide an overview of the latest theory developments that are relevant

to the measurement of the Higgs boson self-coupling and, more in general, to the study of the H H

production process in the context of the SM and beyond. The theory efforts that are summarised

here are vital in order to extract the maximum possible information from the experimental mea-

surements.

In Chapter 1 we present the latest theoretical predictions for the production cross section of

SM Higgs boson pairs in the different production modes, including fixed order results and Monte

Carlo generators. We put special focus on the main production mode at the LHC, gluon fusion.

We describe in Chapter 2 the developments on the effective field theory approach, crucial for the

interpretation of non-resonant deviations from the SM expectations. We study the impact that a fit

of the effective field theory coefficients would have on the Higgs self-coupling determination, both

in double and single Higgs final states. Finally, in Chapter 3, we present specific beyond the SM

scenarios that can have sizeable effects in the di-Higgs final state. We mostly focus on signatures

coming from new resonant states decaying into Higgs boson pairs, though we also study the impact

that new physics contributions might have via loop effects.



Chapter 1

HH cross section predictions

Editors: M. Spira, E. Vryonidou

While the quartic Higgs coupling λH 4 cannot be probed directly at the LHC due to the small size

of the triple-Higgs production cross section [15–18], the trilinear Higgs coupling can be accessed

directly in Higgs pair production. At hadron colliders, Higgs boson pairs are dominantly produced

in the loop-induced gluon-fusion mechanism g g → H H , mainly mediated by top quark loops, sim-

ilarly to how a single Higgs boson is produced. An estimate of the dependence of the cross section

on the size of the trilinear coupling is given by the relation ∆σ/σ∼−∆λ/λ in the vicinity of the SM

value of λ. This fact clearly illustrates that, in order to determine the trilinear coupling, the theoret-

ical uncertainties of the corresponding cross section need to be under control, hence the inclusion

of higher-order corrections in the QCD perturbative expansion becomes indispensable.

In this chapter we will summarise the state of the art of the theoretical predictions concerning

the production of SM Higgs boson pairs at hadron colliders. We start by describing in Sec. 1.1 all

the different production modes, then in Sec. 1.2 we focus on the QCD corrections for the main pro-

duction mode, gluon fusion, and in Sec. 1.3 we describe its dependence on the Higgs self-coupling.

Finally, in Sec. 1.4 we review the available Monte Carlo generators.

1.1 Overview of production modes

We individually discuss below the main production modes of Higgs boson pairs at hadron collid-

ers, briefly summarising the status of the corresponding theoretical predictions. Examples of the

leading-order (LO) Feynman diagrams are illustrated in Fig. 1.1, a summary plot of the total cross

sections – to the highest available accuracy – as a function of the collider centre-of-mass energy is

shown in Fig. 1.2, and the predictions are also presented in Table 1.1.

Gluon fusion. Higgs boson pairs are dominantly produced in the loop-induced gluon-fusion (ggF)

mechanism that is mediated by top quark loops, supplemented by a smaller contribution of bottom

quark loops. There are destructively interfering box (Fig. 1.1a left) and triangle (Fig. 1.1a right) di-

agrams, with the latter involving the trilinear Higgs coupling [20–22]. The relative contribution of

these two different pieces, as well as their interference, can be observed in the Higgs pair invariant

mass distribution shown in Fig. 1.3. The effect of the trilinear Higgs self-coupling in the LO total

cross section amounts to a reduction of about 50% with respect to the box-only contribution, due

to the large destructive interference. The QCD corrections are known up to next-to-leading order

(NLO) [23–25], and at next-to-next-to-leading order (NNLO) in the limit of heavy top quarks [26–29],

5
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Figure 1.1: Diagrams contributing to Higgs pair production: (a) gluon fusion, (b) vector-boson fu-
sion, (c) double Higgs-strahlung and (d) double Higgs bremsstrahlung off top quarks. The trilinear
Higgs coupling contribution is marked in red.

including partial finite top quark mass effects [30]. Very recently, also the third order corrections

have been computed in the heavy top quark limit [31]. The QCD corrections increase the total cross

section by about a factor of two with respect to the LO prediction, and they will be discussed in

more detail in the following section.

Vector-boson fusion. The vector-boson fusion (VBF) qq → H H qq is the second-largest produc-

tion mechanism, and it is dominated by t-channel W and Z exchange in analogy to single Higgs

production. It involves continuum diagrams originating from two Higgs radiations off the virtual

W or Z bosons, and diagrams in which a single Higgs boson (off-shell) splits into a Higgs pair

(Fig. 1.1b). The QCD corrections are only known in the structure-function approach, i.e. where

only the t-channel W and Z exchange is taken into account and interference effects for external

quarks of the same flavor are neglected. This approximation is valid at the level of a percent similar

to the single Higgs case. Within this approach the QCD corrections to the total cross section are

known up to N3LO [32–34], while the exclusive calculation is available at NNLO [35]. The pertur-
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Figure 1.2: Total production cross sections for Higgs pairs within the SM via gluon fusion,
vector-boson fusion, double Higgs-strahlung and double Higgs bremsstrahlung off top quarks.
PDF4LHC15 parton densities have been used with the scale choices according to Table 1.1. The size
of the bands shows the total uncertainties originating from the scale dependence and the PDF+αs

uncertainties.
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the gluon fusion production mechanism and their interference.
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p
s 13 TeV 14 TeV 27 TeV 100 TeV

ggF H H 31.05+2.2%
−5.0% ±3.0% 36.69+2.1%

−4.9% ±3.0% 139.9+1.3%
−3.9% ±2.5% 1224+0.9%

−3.2% ±2.4%

VBF H H 1.73+0.03%
−0.04% ±2.1% 2.05+0.03%

−0.04% ±2.1% 8.40+0.11%
−0.04% ±2.1% 82.8+0.13%

−0.04% ±2.1%

Z H H 0.363+3.4%
−2.7% ±1.9% 0.415+3.5%

−2.7% ±1.8% 1.23+4.1%
−3.3% ±1.5% 8.23+5.9%

−4.6% ±1.7%

W +H H 0.329+0.32%
−0.41% ±2.2% 0.369+0.33%

−0.39% ±2.1% 0.941+0.52%
−0.53% ±1.8% 4.70+0.90%

−0.96% ±1.8%

W −H H 0.173+1.2%
−1.3% ±2.8% 0.198+1.2%

−1.3% ±2.7% 0.568+1.9%
−2.0% ±2.1% 3.30+3.5%

−4.3% ±1.9%

t t̄ H H 0.775+1.5%
−4.3% ±3.2% 0.949+1.7%

−4.5% ±3.1% 5.24+2.9%
−6.4% ±2.5% 82.1+7.9%

−7.4% ±1.6%

t j H H 0.0289+5.5%
−3.6% ±4.7% 0.0367+4.2%

−1.8% ±4.6% 0.254+3.8%
−2.8% ±3.6% 4.44+2.2%

−2.8% ±2.4%

Table 1.1: Signal cross sections (in fb) for H H production including the available QCD corrections
according to the recommendations of the LHC Higgs Cross Section Working Group [19]. The renor-
malization and factorisation scales have been set to mH H /2 for gluon fusion, to the individual

virtualities Q1,2 =
√

−q2
1,2 of the t-channel vector-bosons for VBF (with a lower cut of 1 GeV), to

mH HV (V =W, Z ) for H HV production, to mt t̄ /2 for t t̄ H H and to mH H /2 for t j H H production.
They have been varied up and down by a factor of two to obtain the scale uncertainties, indicated
as superscript/subscript. PDF4LHC15 parton distributions have been used to obtain the results,
and the corresponding αs+PDF uncertainties. The cross sections for t j H H involve both top and
anti-top production.

bative corrections alter the total cross section at the level of about 10%, while they can be larger

for distributions. The moderate size of the QCD corrections can be traced back to the t-channel-

diagram dominance, that implies that the QCD corrections are driven by vertex corrections which

can be obtained from deep inelastic lepton-nucleon scattering (DIS). In turn, for DIS the residual

radiative corrections beyond the proper implementation of the PDFs at higher orders are moder-

ate; this happens by construction within the DIS factorization scheme, but holds as well in the MS

scheme. The NNLO and N3LO corrections range at the per-cent and sub-per-cent level [33, 34].

Double Higgs-strahlung. The double Higgs-strahlung’s production rate, i.e. the associated pro-

duction of Higgs pairs with a W or Z boson (Fig. 1.1c), is significantly lower than vector-boson

fusion’s one. The NLO and NNLO QCD corrections to this process are known [32, 36, 37], and their

main component can be translated from the corresponding calculation of the Drell–Yan process.

These corrections increase the total cross sections by about 30%. In the Z H H production chan-

nel there is a relevant contamination from the loop-induced process g g → Z H H adding another

20−30% to Z H H production. The LO contribution of this gluon-induced subprocess is part of the

full NNLO QCD corrections [32].

Double Higgs bremsstrahlung off top quarks. The associated production of Higgs pairs with top

quark pairs (Fig. 1.1d) reaches a cross section value close to the vector-boson fusion cross section

at a 100 TeV hadron collider. This is not the case for single Higgs boson production. The NLO QCD

corrections are negative and modify the total cross section at the level of 20%, and reduce the resid-
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ual scale dependence significantly [38]. In the case of single-top associated production, t j H H ,

the NLO QCD corrections are of a similar size but positive, and scale uncertainties are actually in-

creased with respect to the ones of the LO prediction, the latter not being a reliable estimate of the

true perturbative uncertainties [38].

1.2 QCD corrections for gluon fusion

J. Baglio, F. Campanario, P. Giardino, S. Glaus, M. Mühlleitner, M. Spira, J. Streicher

The NLO QCD corrections to the gluon-fusion cross section σ(g g → H H) have first been obtained

in the heavy top quark limit (HTL) [39] that simplifies the calculation since the top quark loop con-

tributions reduce to effective couplings between the Higgs boson and gluons, described by the ef-

fective Lagrangian [40–44]

L eff =
αs

12π
GaµνGa

µν

(
C1

H

v
−C2

H 2

2v2

)
, (1.1)

with the Wilson coefficients (Lt = logµ2
R /m2

t ) [28, 39, 45–50]

C1 = 1+ 11

4

αs

π
+

{
2777

288
+ 19

16
Lt +NF

(
Lt

3
− 67

69

)}(
αs

π

)2

+O (α3
s ) ,

C2 = C1 +
(

35

24
+ 2

3
NF

)(
αs

π

)2

+O (α3
s ) , (1.2)

that are presented up to NNLO, but are known up to N4LO [47–49]. Since the top quark is integrated

out, the number of active flavors has to be taken as NF = 5. Using these effective Higgs couplings

to gluons, the calculation of the NLO QCD corrections is reduced to a one-loop calculation for the

virtual corrections and a tree-level calculation for the matrix elements of the real corrections. The

NLO final result for the total gluon-fusion cross section can be decomposed as [39]

σNLO(pp → H H +X ) =σLO +∆σvirt +∆σg g +∆σg q +∆σqq̄ ,

where the different contributions take the following form:

σLO =
∫ 1

τ0

dτ
dL g g

dτ
σ̂LO(Q2 = τs) ,

∆σvirt = αs(µR )

π

∫ 1

τ0

dτ
dL g g

dτ
σ̂LO(Q2 = τs) Cvirt ,

∆σg g = αs(µR )

π

∫ 1

τ0

dτ
dL g g

dτ

∫ 1

τ0/τ

d z

z
σ̂LO(Q2 = zτs)

{
−zPg g (z) log

µ2
F

τs

+dg g (z)+6[1+ z4 + (1− z)4]

(
log(1− z)

1− z

)
+

}
,

∆σg q = αs(µR )

π

∫ 1

τ0

dτ
∑
q,q̄

dL g q

dτ

∫ 1

τ0/τ

d z

z
σ̂LO(Q2 = zτs){

−z

2
Pg q (z) log

µ2
F

τs(1− z)2 +dg q (z)

}
,

∆σqq̄ = αs(µR )

π

∫ 1

τ0

dτ
∑
q

dL qq̄

dτ

∫ 1

τ0/τ

d z

z
σ̂LO(Q2 = zτs) dqq̄ (z) . (1.3)
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Here σ̂LO(Q2) denotes the leading-order partonic cross section involving the squared invariant mass

Q2 of the Higgs boson pair, αs(µR ) the strong coupling constant at the renormalization scale µR ,

dL i j /dτ (i , j = g , q, q̄) the corresponding parton-parton luminosities at the factorization scale

µF , and Pi j (z) (i , j = g , q, q̄) the individual Altarelli–Parisi splitting functions [51]. The integration

regions are bound by τ0 = 4m2
H /s, with mH being the Higgs boson mass and s the square of the

hadronic centre-of-mass energy.

The quark-mass dependence is in general encoded in the green factors σ̂LO(Q2) for the LO cross

section and the red factors Cvirt, di j (z) for the virtual and real corrections, respectively. In the HTL,

the latter simplify to

Cvirt → 11

2
+π2 +C∞

44+ 33−2NF

6
log

µ2
R

Q2 ,

C44 = Re

∫ t̂+
t̂−

d t̂

{
c1

[
(C4F4+F2)+ p2

T

t̂
G2

]
+ (t̂ ↔ û)

}
∫ t̂+

t̂−
d t̂

{
|C4F4+F2|2 +|G2|2

} ,

C∞
44 = C44

∣∣
c1=2/9 ,

dg g (z) → −11

2
(1− z)3

dg q (z) → 2

3
z2 − (1− z)2,

dqq̄ (z) → 32

27
(1− z)3, (1.4)

where pT denotes the Higgs transverse momentum, ŝ, t̂ the partonic Mandelstam variables and

C44 is the contribution of the one-particle reducible diagrams, see Fig. 1.4. The integration bounds

are given by

t̂± =−1

2

Q2 −2m2
H ∓Q2

√√√√1− 4m2
H

Q2

 . (1.5)

The couplings C4 and C2 and the form factors F4, F2 and G2 in the HTL take the form

C4 = λH 3
6v

ŝ −m2
H + i mHΓH

, C2 = 1,

F4 → 2

3
, F2 →−2

3
,

G2 → 0, (1.6)

with the trilinear coupling λH 3 = m2
H /(2v2).

For the NLO QCD corrections, the full mass dependence of the LO partonic cross section has

been taken into account first, while treating the virtual corrections Cvirt and the real corrections di j

in the HTL. This approach is now called “Born-improved”. This leads to a reasonable approximation

for invariant Higgs pair masses in the lower range and approximates the full NLO result for the total

cross section within about 15% [23–25]. The NLO corrections in the HTL increase the cross section

by 80− 90% [39]. The NNLO QCD corrections have been calculated within the same approxima-

tion [26–29]. The main part of these corrections can be translated from the single Higgs case, since

the effective Lagrangian of Eq. (1.1) does not induce a change of kinematics between single Higgs

production and the differential Higgs pair production with respect to the invariant Higgs pair mass.

The new ingredient of the NNLO calculation is the proper treatment of the one-particle-reducible
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Figure 1.4: Examples of two-loop triangle (left), one-particle reducible (middle) and box (right) dia-
grams contributing to Higgs pair production via gluon fusion.

contributions C44 of the NLO corrections. These lead to additional contributions to the NNLO vir-

tual corrections and the interference of the NLO-real and NLO-virtual corrections that contributes

to the NNLO result, too. Including the full mass dependence of the LO cross section, the NNLO QCD

corrections increase the total cross section by a more moderate amount of 20− 30% [27]. On top

of these NNLO QCD corrections, the soft-gluon resummation (threshold resummation) has been

performed at next-to-next-to-leading logarithmic accuracy (NNLL) for the total cross section and

invariant mass distribution, resulting in a O (10%) modification of the total cross section on top of

the NNLO result for a central scale µR = µF = mH H , while the effects are much smaller if the scale

µR =µF = mH H /2 is used [52, 53].

The calculations in the HTL have been refined by several steps including mass effects partially at

NLO. The inclusion of the full mass effects in the real correction terms di j by means of incorporating

the full one-loop real matrix elements for g g → H H g , g q → H H q , qq̄ → H H g reduces the Born-

improved HTL prediction by about 10% [18, 38]. This improvement is denoted as “FTapprox” (for

full-theory approximation). This step has been performed by using the MG5_aMC@NLO frame-

work [54] for the automatic generation of the matrix elements. Another improvement has been ac-

complished by a systematic asymptotic large-top-mass expansion of the full NLO corrections at the

integral [55] and at the integrand level [56]. This established sizeable mass effects emerging from

the virtual two-loop corrections. In addition, the large-top-mass expansion has been extended to

NNLO resulting in expected 5% mass effects of the NNLO corrections on top of the NLO result [56].

This situation necessitated the full calculation of the mass effects at NLO.

The full NLO QCD corrections have been derived by two quite different methods, both, how-

ever, building on a numerical integration of the two-loop contributions that cannot be integrated

analytically with present state-of-the-art methods. Examples of diagrams of the NLO virtual correc-

tions are depicted in Fig. 1.4. It can be decomposed into triangle, one-particle-reducible and box

diagrams. The triangle diagrams can be obtained from the analogous calculation for g g → H with

the Higgs mass replaced by the invariant Higgs pair mass Q = mH H . The result of the one-particle-

reducible diagrams is known analytically, i.e. in the notation of Eq. (1.4), [25, 57]

c1 = 2
[

I1(τ,λt̂ )− I2(τ,λt̂ )
]2

,

I1(τ,λ) = τλ

2(τ−λ)
+ τ2λ2

2(τ−λ)2

[
f (τ)− f (λ)

]+ τ2λ

(τ−λ)2

[
g (τ)− g (λ)

]
,

I2(τ,λ) = − τλ

2(τ−λ)

[
f (τ)− f (λ)

]
, (1.7)
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with τ= 4m2
t /m2

H , λt̂ = 4m2
t /t̂ and the functions

f (τ) =


arcsin2 1p

τ
τ≥ 1

−1

4

[
log

1+p
1−τ

1−p
1−τ − iπ

]2

τ< 1
,

g (τ) =


p
τ−1arcsin

1p
τ

τ≥ 1
p

1−τ
2

[
log

1+p
1−τ

1−p
1−τ − iπ

]
τ< 1

. (1.8)

This expression has to be inserted in the C44 coefficient of Eq. (1.4). The new and cumbersome

part of the full virtual corrections is the calculation of the two-loop box diagrams that has only been

obtained numerically by two different methods. The full virtual amplitude can be decomposed into

two scalar form factors, one describing the spin-0 component of the full partonic process and the

second the spin-2 one [20, 22].

The first method [23, 24] relies on the reduction of the two-loop form factors to master inte-

grals, Feynman parameterisation of these master integrals and a sector decomposition to isolate

the ultraviolet and infrared singularities from the two-loop box integrals. This yields the numerical

coefficients of the divergences that can be checked to cancel against the corresponding ultraviolet

divergences of the counter-terms and the infrared and collinear singularities of the real corrections

numerically. For large invariant Higgs pair masses, however, the virtual top-antitop pair can be-

come on-shell so that there are additional threshold singularities inside the integration region. This

has been treated numerically by contour deformations that exploit the analyticity of the master in-

tegrals in the complex plane and by trading the physical integrals along the real axis for integrals off

the real axis. This procedure leads to numerically stable results after suitable deformation choices

and spending a sizeable amount of CPU time. The top mass has been renormalized on-shell and the

strong coupling constantαs in the MS-scheme with five active flavors. By means of the first method

a grid has been generated for the exclusive calculation of the virtual corrections to the Higgs pair

cross section so that the invariant Higgs pair mass distribution and the transverse-momentum dis-

tribution of the Higgs bosons in the final state can be obtained. Typical results after adding the full

top-mass corrections are shown in Fig. 1.5. The mass effects induce a reduction of the total cross

section by about 15% at NLO but turn out to be more sizeable for large di-Higgs invariant masses

in the differential cross section [23,24]. The two-dimensional grids in the Higgs pair invariant mass

and the transverse Higgs momentum are available and have been included in NLO event generators

thus providing the proper matching to parton showers [58, 59].

The second method [25] does not perform any tensor reduction to master integrals, but intro-

duces a Feynman parameterisation of the full individual two-loop box diagrams. For the isolation of

the ultraviolet divergences end-point subtractions have been made for most of the diagrams. How-

ever, the diagrams with an external gluon exchange between the gluons require special subtraction

terms for the infrared singular part. This is also related to the property that these diagrams develop a

second threshold at vanishing Higgs pair invariant mass in addition to the threshold at mH H = 2mt .

This method uses special subtraction terms for these diagrams that cover all singularities and can

be easily integrated analytically over one Feynman parameter. Using the transformation properties

of hypergeometric functions, the infrared and collinear singularities can be isolated. The numer-

ical stability of the integrations across the thresholds has been achieved by means of integration

by parts to reduce the power of the singular denominators and introducing a small imaginary part

for the virtual squared top masses. Since the dependence on this small imaginary part is regular,
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Figure 1.5: Higgs pair invariant mass and transverse-momentum distributions for a center-of-mass
energy of 14 TeV in various approximations. The full NLO results are shown in red. The red bands
show the renormalization and factorization scale dependence obtained from a 7-point scale varia-
tion around the central scales µR =µF = mH H /2 [24].

i.e. polynomial, for small values a Richardson extrapolation [60] has been used to obtain the narrow-

width approximation from results at finite values of this imaginary part. The observed convergence

is good and can also be used for a quantitative estimate of the extrapolation error in addition to

the numerical integration error. In addition to the six-dimensional integration over the Feynman

parameters, the integration over the transverse momentum of the Higgs bosons in terms of the

Mandelstam variable t̂ has been included in the numerical integration so that the differential cross

section in the invariant Higgs pair mass is obtained directly. Since the t̂-integration is not finite

for individual diagrams, the cancellation of the divergences in t̂ in the sum of all of them serves

as an additional consistency check of the final result. The numerical integration together with the

Richardson extrapolation requires a huge amount of CPU time, similar to the other approach. The

real corrections have been calculated by subtracting the corresponding matrix elements in the HTL

for a suitably transformed LO kernel including the full LO mass dependence from the full real ma-

trix elements. The subtracted pieces lead to the “Born-improved" real corrections in the HTL when

added back. Typical final results of this method are displayed in Fig. 1.6, which includes a compar-

ison to the HTL and real and virtual mass effects individually.

Both methods lead to final results in mutual agreement within their respective integration er-

rors. The residual small differences are due to the different top masses chosen in the numerical

analysis, mt = 173 GeV for the first method and mt = 172.5 GeV (as recommended by the LHC

Higgs Cross Section Working Group) for the second method. The explicit NLO numbers are col-

lected in Table 1.2 for several collider energies. Note that both calculations have been performed

in the narrow-width approximation for the top quark. Finite width effects have been studied at LO

and amount to a ∼−2% for the total cross section [18].

The virtual corrections have also been obtained by expansion methods. A first approach is

based on the large top-mass expansion that is transformed into a complex polynomial by a suitable

conformal mapping and using Padé approximants above the virtual t t̄-threshold [61, 62]. The re-

sults are in mutual agreement with the full numerical integration up to Higgs pair invariant masses

of about 700−800 GeV [62], see Fig. 1.7. A promising method is provided by a different expansion

in a Lorentz-invariant variable that mainly corresponds to the transverse momentum of the Higgs

bosons. The first three terms of this expansion result in an excellent agreement with the full nu-

merical integration for di-Higgs invariant masses up to 800− 900 GeV [63], see Fig. 1.7. Last but
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Figure 1.6: Higgs pair invariant mass distribution for a collider energy of 14 TeV in various approxi-
mations using MMHT2014 (left) and PDF4LHC15 (right) parton densities. The full NLO results are
shown in red. The red bands show the renormalization and factorization scale dependence ob-
tained from a 7-point scale variation around the central scales µR =µF = mH H /2. From Ref. [25].

not least, the approximate result of the large-mH H expansion has been obtained analytically, in-

cluding subleading terms [64,65]. The latter result exhibits the detailed logarithmic structure of the

full NLO virtual corrections that may be useful for further improvements. In addition, it provides

a first approach to the contribution of the bottom loops at NLO. Another proposal for a valuable

approximation is provided by a strict expansion in the Higgs mass while keeping all other kine-

matical invariants arbitrary [66]. However, this last option has not been worked out completely for

g g → H H yet.

These expansions considerably simplify the problem and allow for an analytical solution to be

found in certain limits. Of course, an immediate drawback with respect to the numerical calcu-

lation is that the analytical result obtained in this way does not retain the full dependence on the

Energy mt = 173 GeV mt = 172.5 GeV

13 TeV 27.80(9)+13.8%
−12.8% fb 27.73(7)+13.8%

−12.8% fb

14 TeV 32.91(10)+13.6%
−12.6% fb 32.78(7)+13.5%

−12.5% fb

27 TeV 127.7(2)+11.5%
−10.4% fb 127.0(2)+11.7%

−10.7% fb

100 TeV 1149(2)+10.8%
−10.0% fb 1140(2)+10.7%

−10.0% fb

Table 1.2: NLO cross sections for proton colliders at 13, 14, 27 and 100 TeV center-of-mass
energy using PDF4LHC15 parton densities. The errors in brackets are the numerical integra-
tion/extrapolation errors, while the explicit percentage numbers present the renormalization and
factorization scale dependences. The central scale choice is µR =µF = mH H /2 [23–25].
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Figure 1.7: Partonic virtual corrections to the Higgs pair invariant mass distribution for Padé ap-
proximants (left) and the p2

T expansion (right), for a Higgs transverse momentum pT = 100 GeV.
The full NLO results are shown as red points. The other curves represent different orders included
in the corresponding expansions [62, 63].

parameters over which the expansion is performed. On the other hand, analytical calculations are

usually faster and less computationally intensive than numerical calculations, and can reach high

precision, thus providing a sound alternative in specific instances and a valid check of the numeri-

cal result in the corresponding limits.

Apart from the renormalization and factorization scale dependence, the additional uncertainty

due to the scale and scheme dependence related to the top mass has to be taken into account.

This has been analyzed in the framework of the second numerical approach by deriving the full

NLO result not only for the top pole mass, but also for the MS mass at the scales of the top mass

itself and in the range of mH H /4 to mH H for the scale of the running top mass. The maximum and

minimum of these results have been taken differentially in mH H . This leads to sizeable additional

uncertainties [25],

dσ(g g → H H)

dQ

∣∣∣
Q=300 GeV

= 0.02978(7)+6%
−34% fb/GeV,

dσ(g g → H H)

dQ

∣∣∣
Q=400 GeV

= 0.1609(4)+0%
−13% fb/GeV,

dσ(g g → H H)

dQ

∣∣∣
Q=600 GeV

= 0.03204(9)+0%
−30% fb/GeV,

dσ(g g → H H)

dQ

∣∣∣
Q=1200 GeV

= 0.000435(4)+0%
−35% fb/GeV (1.9)

for the differential cross section at
p

s = 14 TeV using PDF4LHC15 parton densities.

The full NLO corrections have been combined recently with the NNLO QCD corrections in

the HTL, to construct a full NNLO Monte Carlo program for exclusive Higgs pair production via

gluon fusion [30]. In this implementation, the second-order corrections have been improved via

a reweighting technique to account for partial finite top quark mass effects, in what represents a

NNLO extension of the “FTapprox”. Within this approach, the NNLO parts of the virtual and real cor-

rections that are obtained in the HTL at NNLO are rescaled by the ratio between the corresponding

full one-loop (i.e. LO) amplitudes and the ones obtained in the HTL for each partonic subprocess

individually. The double-real corrections are added including the full mass dependence, since the

related one-loop amplitudes can be obtained by presently available automatic tools. This approx-

imation is an improvement of the previous “Born-improved” and “FTapprox” approaches used at
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Energy 13 TeV 14 TeV 27 TeV 100 TeV

NLO 27.78+13.8%
−12.8% fb 32.88+13.5%

−12.5% fb 127.7+11.5%
−10.4% fb 1147+10.7%

−9.9% fb

NLOFTapprox 28.91+15.0%
−13.4% fb 34.25+14.7%

−13.2% fb 134.1+12.7%
−11.1% fb 1220+11.9%

−10.6% fb

NNLOFTapprox 31.05+2.2%
−5.0% fb 36.69+2.1%

−4.9% fb 139.9+1.3%
−3.9% fb 1224+0.9%

−3.2% fb

Table 1.3: NLO and NNLO cross sections for proton colliders at 13, 14, 27 and 100 TeV centre-
of-mass energy using PDF4LHC15 parton densities. The explicit percentage numbers present
the renormalization and factorization scale dependencies. The central scale choice is µR = µF =
mH H /2 [30].
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Figure 1.8: Higgs pair invariant mass and rapidity distributions for a collider energy of 14 TeV in
various approximations using PDF4LHC15 parton densities. The NNLOFTapprox results are shown
in red. The grey and red bands show the scale dependence at NLO and NNLO [30].

NLO, and is expected to deliver more reliable results at NNLO [30]. Final predictions at NLO and

NNLO are presented in Table 1.3 for different centre-of-mass energies with mt = 173 GeV. From

these values it is visible that the “FTapprox" method works with an accuracy of better than 10% at

NLO, so that the NNLOFTapprox results are expected to be more reliable than the left-over uncertain-

ties. The corresponding NNLO Monte Carlo program can be used to provide NNLO predictions for

exclusive quantities, i.e. for distributions. Typical numerical results are shown in Fig. 1.8. In addi-

tion, the all-orders resummation of soft-gluon contributions has been performed at NNLL within

this approximation, finding – as it happens in the HTL – that the effects are very small if the cen-

tral scale µR = µF = mH H /2 is used, indicating the stability of the perturbative expansion at this

order [67].
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1.3 Cross section as a function ofκλ
G. Heinrich, S.P. Jones, M. Kerner, L. Scyboz

Non-resonant Higgs boson pair production in gluon fusion is the most promising process to test the

trilinear Higgs boson self-coupling at hadron colliders. The current constraints at 95% confidence

level from ATLAS and CMS searches, combining various decay channels, are −5 ≤ κλ ≤ 12.1 [68] and

−11.8 ≤ κλ ≤ 18.8 [69], respectively, where κλ = λH 3 /λSM
H 3 (see Sec. 7.2). In order to derive reliable

limits on κλ from these searches, it is crucial to have accurate predictions for the cross sections

corresponding to non-SM λH 3 values. The results presented in this section for a generic κλ are

NLO-accurate, including the full top quark mass dependence [70]. They are based on the original

calculation of Refs. [23,24] for the SM cross section, which has been extended to include effects from

anomalous couplings in the Higgs sector within a non-linear Effective Field Theory framework in

Ref. [71].

To obtain a full-fledged NLO generator which also offers the possibility of parton showering, we

implemented the calculation in the POWHEG-BOX [72–74], building on top of the code presented in

Ref. [58] for the NLO+PS predictions within the SM; the code is publicly available in the POWHEG-

BOX-V2 package.1

The results were obtained using the PDF4LHC15_nlo_30_pdfas [75–78] parton distribution func-

tions interfaced to the code via LHAPDF [79], along with the corresponding value forαs . The masses

of the Higgs boson and the top quark have been fixed to mH = 125 GeV, mt = 173 GeV, respectively,

where the pole mass scheme has been employed for the top quark mass. The widths ΓH and Γt have

been set to zero. Jets are clustered with the anti-kT algorithm [80] as implemented in the fastjet
package [81, 82], with jet radius R = 0.4 and a minimum transverse momentum p jet

T,min = 20 GeV.

The scale uncertainties are estimated by varying the factorisation and renormalization scales µF

and µR . The scale variation bands result from varying µ = µF = µR by a factor of two around the

central scale µ0 = mH H /2. For λH 3 = λSM
H 3 , the envelope of the scale variations coincides with the

7-point scale variation band.

In Table 1.4 we list total cross sections at 13, 14 and 27 TeV for various values of the trilinear

Higgs coupling. We observe that κλ =−1 leads to the largest total cross section of all the considered

κλ values. Table 1.4 also shows that the K-factors vary substantially as functions of the trilinear

coupling, which is different from the findings in the mt →∞ limit [83, 84]. This fact is illustrated in

Fig. 1.9, which shows that the K-factor takes values between 1.57 and 2.16 if the trilinear coupling is

varied between −5 ≤ κλ ≤ 12.

In Figs. 1.10 and 1.11 we show the mH H distribution for various values of κλ. The results in

Fig. 1.11 are distributions normalised to the total cross section for the corresponding value of κλ.

The ratio plots show the ratio to the Standard Model (SM) result. A characteristic dip develops in

the mH H distribution around κλ = 2.4, which is the value of maximal destructive interference be-

tween diagrams containing the trilinear coupling (triangle-type contributions) and “background"

diagrams (box-type contributions). We provide results for a denser spacing of κλ values around this

point. For κλ < −1 and κλ > 5 the triangle-type contributions dominate increasingly, leading to a

shape where the low-mH H region is more and more enhanced. In the transverse momentum dis-

tribution of one (any) of the Higgs bosons, shown in Fig. 1.12, effects of the destructive interference

around κλ = 2.4 are also visible, however they are less pronounced.

Fig. 1.13 shows the Higgs boson pair invariant mass distribution at NLO as a function of κλ as a

1The code can be found at the website http://powhegbox.mib.infn.it in the User-Processes-V2/ggHH/ di-
rectory.



18 Chapter 1. HH cross section predictions

κλ σNLO, 13TeV [fb] σNLO, 14TeV [fb] σNLO, 27TeV [fb] K-factor, 14TeV

-1 116.71+16.4%
−14.3% 136.91+16.4%

−13.9% 504.9+14.1%
−11.8% 1.86

0 62.51+15.8%
−13.7% 73.64+15.4%

−13.4% 275.29+13.2%
−11.3% 1.79

1 27.84+11.6%
−12.9% 32.88+13.5%

−12.5% 127.7+11.5%
−10.4% 1.66

2 12.42+13.1%
−12.0% 14.75+12.0%

−11.8% 59.10+10.2%
−9.7% 1.56

2.4 11.65+13.9%
−12.7% 13.79+13.5%

−12.5% 53.67+11.4%
−10.3% 1.65

3 16.28+16.2%
−15.3% 19.07+17.1%

−14.1% 69.84+14.6%
−12.1% 1.90

5 81.74+20.0%
−15.6% 95.22+19.7%

−11.5% 330.61+17.4%
−13.6% 2.14

Table 1.4: Total cross section for Higgs boson pair production at full NLO for different values of κλ.
The given uncertainties are scale uncertainties, and we use the central value µR =µF = mH H /2 [70].
The K-factors reported for the 14 TeV results are also valid at 13 TeV, with the exception of the κλ = 2
K-factor which takes the value 1.57.
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Figure 1.9: Variation of the NLO K-factor with the trilinear coupling for
p

s = 14 TeV [70].

3-dimensional heat map, where the dip in the mH H distribution for κλ values close to 2.4 is again

visible.

To summarise, we have presented in this section full NLO QCD results for Higgs boson pair

production for various values of the trilinear Higgs boson coupling. We have provided total cross

sections for 13, 14 and 27 TeV, and differential results at 14 TeV, including scale uncertainties. The

matrix elements have been implemented in the POWHEG-BOX-V2 Monte Carlo framework and the

corresponding generator is publicly available.

A combination of the NLO result with full top quark mass dependence presented in this section

and the NNLO computed in the (improved) HTL has not yet been done for the case of non-SM κλ
values, though work in this direction is in progress [85]. Such a combination would be desirable in

order to match the level of accuracy obtained for the SM prediction. For the time being, the simplest

approach to account for the higher order corrections consists in multiplying the results in Table 1.4

by the SM K-factor, i.e. the ratio of the NNLOFTapprox and NLO results in Table 1.3.
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Figure 1.10: Higgs boson pair invariant mass distributions at 14 TeV for (left) positive small values
of κλ and (right) larger or negative values of κλ [70].

Figure 1.11: Normalised Higgs boson pair invariant mass distributions at 14 TeV for (left) positive
small values of κλ and (right) larger or negative values of κλ [70].

1.4 Differential predictions and MC generators

G. Heinrich, S.P. Jones, M. Kerner, S. Kuttimalai, E. Vryonidou

The non-resonant production of a pair of Higgs bosons in gluon fusion is available within several

public Monte Carlo programs. Currently, the most sophisticated predictions which include a parton

shower are based on the NLO matrix-element including a finite top quark mass [23, 24]. The fixed-

order result was recently re-calculated and extended to allow also for a running top quark mass [25].

The NLO calculation was first interfaced to the POWHEG-BOX [73, 74] and MG5_aMC@NLO [54, 86]

in Ref. [58], and to SHERPA [87] in Ref. [59].

The matching and parton shower uncertainties have been extensively studied in the litera-

ture [58, 59, 88], and were found to be large for certain observables. Similar effects have been ob-

served in other processes including the production of a Higgs boson in gluon fusion [89, 90] and

Z-boson pair production in gluon fusion [91].

Here, we briefly review the current status of these uncertainties focusing on one of the most sen-

sitive distributions (the pT of the di-Higgs boson system). We will summarise the MC@NLO [92] and

POWHEG [72] matching schemes used in the literature. Results obtained from the POWHEG-BOX,

MG5_aMC@NLO and SHERPA implementations and via analytic resummation [93] are compared.

The shower uncertainty observed for the POWHEG-BOX implementation will also be discussed.
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Figure 1.12: Higgs boson transverse momentum distributions at 14 TeV for the considered κλ values
[70].

Figure 1.13: 3-dimensional visualisation of the mH H distribution at 14 TeV, as a function of κλ and
mH H [70].

Parton Shower Matching

Already in a pure fixed-order NLO calculation there are contributions in both the Born phase space

φB and in the real emission phase space φR =φB ×φ1. In a parton shower matched calculation, we

denote them by B̄(φB ) and H(φR ), respectively:

B̄(φB ) = B(φB )+V (φB )+
∫

D(φR )Θ(µ2
PS − t (φR ))dφ1, (1.10)

H(φR ) = R(φR )−D(φR )Θ(µ2
PS − t (φR )) . (1.11)

In Eqs. (1.10) and (1.11), B denotes the leading-order contributions, V the UV-subtracted virtual

corrections, R the real-emission corrections, and D the differential infrared subtraction terms. The

scaleµPS is the parton shower starting scale and t (φR ) is the evolution variable of the parton shower.

Through variations of µPS, contributions can be shuffled around between B̄ and H while leaving

their sum constant.

When considering Eqs. (1.10) and (1.11) by themselves, real emission configurations are gen-

erated only in H events. Furthermore, the emissions are suppressed in the phase space region
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t (φR ) < µPS due to the subtraction terms D(φR ). For t ¿ µPS, emissions are completely suppressed

since there we have R ∼ D , and thus H ∼ 0. These missing real-emission terms are generated

through the first parton shower emissions off the B̄ events. Taking into account the first emission,

the sum of Eqs. (1.10) and (1.11) can be written as

σNLO+PS =
∫

B̄(φB )

[
∆(t0,µ2

PS)+
∫
∆(t ,µ2

PS)
D(φB ,φ1)

B(φB )
Θ(µ2

PS − t )Θ(t − t0)dφ1

]
dφB

+
∫

H(φR )dφR . (1.12)

Here and in what follows we will assume that the parton shower splitting kernels are given by D
B ,

i.e. by the kernels that are also used in the infrared subtraction scheme. The Sudakov form factor

is then given by ∆(t0, t1) = exp
[
−∫ t1

t0

D(φR )
B(φB ) dφ1

]
and the infrared cutoff scale of the parton shower is

t0. The first term in the square bracket of Eq. (1.12) corresponds to the probability of generating no

emission above the parton shower cutoff scale for a B̄ event. The second term represents the prob-

ability of generating an emission somewhere between the starting scale µPS and t0. These terms

therefore fill the remaining real-emission phase space region of soft emissions that are subtracted

in H and would otherwise be missing. The scale µPS therefore separates the real emission phase

space in a resummation region that is populated by the parton shower through the B̄ events and a

region that is populated mostly by the fixed-order real-emission contributions in H . Variations of

this scale can be used in order to assess uncertainties associated with this separation.

The POWHEG method can be understood, in the formulation presented above, as the limit in

which the parton shower starting scale is set equal to the collider energy µPS =
p

s and D = R. This

choice leads to H = 0 and all real emission contributions are therefore generated by parton shower

emission off B̄ events. The choice µPS =p
s ensures that the full real-emission phase space is cov-

ered. Setting D = R in the first emission ensures that the fixed-order radiation pattern is recovered

in the hard region where the Sudakov form factor is approximately one. However, setting D = R also

results in the full real-emission corrections being exponentiated in the Sudakov form factor. This

is in general not justified since R contains hard, non-factorizing contributions. In Ref. [89] it was

instead suggested to use

D =
h2

damp

p2
T +h2

damp

R , (1.13)

where pT is the transverse momentum of the Born final state (pT = p H H
T in the case under consid-

eration). This choice limits the amount of hard radiation that gets exponentiated.

Parton Shower Results

In the literature, the full NLO di-Higgs boson production calculation has been combined with a

parton shower within the POWHEG-BOX, MG5_aMC@NLO and SHERPA frameworks. The POWHEG-

BOX framework relies on the POWHEG scheme to match the fixed-order calculation with the parton

shower, while MG5_aMC@NLO and SHERPA use the MC@NLO matching scheme. The POWHEG and

MG5_aMC@NLO implementations generate showered events using a PYTHIA 8.2 [94, 95] shower

whilst showered events are generated within SHERPA using the built-in Catani-Seymour (CS) [96] or

Dire [97] showers.

In general, most distributions were found to be only moderately sensitive to the matching scheme.

In particular, matching scheme uncertainties for NLO accurate observables were all found to be
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Figure 1.14: Left: Comparison between the POWHEG-BOX, MG5_aMC@NLO and NLO fixed-order
results for the Higgs boson pair transverse momentum. The uncertainty bands were obtained
through a 7-point scale variation of the factorization and renormalization scales [58]. Right: A com-
parison of the SHERPA and NLO fixed-order results. The SHERPA uncertainty bands indicate the
shower scale uncertainty obtained by varying µPS. The bands on the fixed-order prediction were
obtained by varying µF and µR [59].

within the scale uncertainties [58]. However, the impact of the parton shower on the p H H
T (trans-

verse momentum of the di-Higgs boson system), ∆ΦH H (difference in azimuthal angle of the Higgs

bosons) and∆R H H (radial separation of the Higgs bosons) was found to be fairly large. The sizeable

impact of the parton shower is to be expected as the tails of these distributions are predicted only

at the first non-trivial order in the fixed-order calculation. The matching scheme uncertainties for

these distributions were also found to be significant and could even become larger than the scale

uncertainties.

In Fig. 1.14 the NLO fixed-order result for the pT of the di-Higgs boson system is compared to

the showered predictions. The bands displayed on the left plot indicate the scale uncertainty, which

is obtained via a 7-point scale variation of the factorization scale µF and renormalization scale µR

around the central scale choice µ0 = mH H /2, where mH H is the invariant mass of the Higgs boson

pair. In the right plot the grey band indicates the scale uncertainty while the coloured bands display

the shower starting scale uncertainty. The MG5_aMC@NLO prediction is produced using a shower

starting scale of µPS = HT /2, where HT is the sum of the transverse energies of the Higgs bosons.

The POWHEG-BOX prediction is produced using hdamp = 250 GeV. For the SHERPA predictions, the

central parton shower starting scale choice in the case of the Dire shower is µPS = mH H /4, whereas

µPS = mH H /2 is used for the CS shower. The shower scale uncertainty is obtained by varying the

parton shower starting scale up and down by a factor of 2. It can be seen that for the central shower

starting scale choice the MG5_aMC@NLO and SHERPA predictions reproduce the fixed-order result

for sufficiently large p H H
T , where the fixed-order result can be expected to be reliable to leading

order accuracy. On the other hand, the POWHEG-BOX result overshoots the fixed-order result by

about a factor of 2 for large p H H
T . The Dire shower prediction can also significantly overshoot the

fixed-order result, but only if the largest shower starting scale is chosen.

In Fig. 1.15 we display a comparison between the NLO parton shower matched results of POWHEG,

MG5_aMC@NLO and SHERPA as well as the NLO+NLL result obtained using analytic resumma-

tion [93]. The bands displayed for the MG5_aMC@NLO and SHERPA predictions are produced by

varying the shower starting scale µPS by a factor of 2 around their central values. Lacking a natural

equivalent to µPS in the POWHEG framework, we display POWHEG-BOX predictions produced with
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Figure 1.15: Left: Comparison of NLO parton shower matched predictions for the p H H
T spectrum.

The lower panels show ratios to the fixed-order prediction and cover a wider range of p H H
T than

the upper panel. The uncertainty bands on the parton shower matched predictions were obtained
by varying µPS or hdamp as described in the text. Right: Comparison with the NLO+NLL analytic
resummation results of Ref. [93]. The uncertainty bands on the SHERPA predictions were obtained
by varying µPS [59].

various values of the hdamp parameter. The nominal (central) POWHEG-BOX prediction is produced

with hdamp = 250 GeV and the band is produced by varying the hdamp parameter between 150 GeV

and infinity. We note that although the parton shower predictions differ from each other signifi-

cantly less in the low p H H
T region, the shower starting scale uncertainty bands do not overlap. For

low p H H
T , where the analytic resummation can be trusted, it is found to be marginally compatible

with the SHERPA result and lies between the SHERPA result and that of the other implementations.

Somewhat surprisingly, the matching uncertainties are very large also at high p H H
T . They were

investigated in detail in Refs. [59, 88]. It was shown that the large uncertainties are due to the for-

mally sub-leading terms generated by parton shower emissions off the B̄ terms. Such contributions

are generally restricted to the phase space regions of soft emissions where t < µPS, as shown in

Eq. (1.12). For hard emissions where t > µPS, only H event contributions remain, which should

reproduce the fixed-order result. If µPS is sufficiently large, however, the parton shower emissions

in Eq. (1.12) start contributing to the hard tail of the transverse momentum distribution. These

parton shower emissions do not capture the correct, rapidly falling, fixed-order spectrum that one

observes when the finite top quark mass is accounted for. They therefore produce the overshoot

compared to fixed-order that we observe in the tails of Fig. 1.14. Varying µPS effectively switches

this overshoot on and off, thus generating large uncertainty bands. It is worth noting, however, that

for more moderate choices of the shower starting scale the fixed-order result is reproduced at large

transverse momenta.

Within the POWHEG matching scheme the hdamp parameter can be reduced in order to sup-

press the overestimated real emission at large transverse momenta. In Ref. [58] it was shown that
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Figure 1.16: Left: The transverse momentum spectrum of the Higgs boson pair obtained using
POWHEG-BOX in combination with a PYTHIA 8.2 and PYTHIA 6 shower. The scale uncertainty bands
represent the variation of µF and µR . Right: Comparison of the sub-leading jet transverse momen-
tum spectrum generated with POWHEG-BOX using a PYTHIA 8.2 and PYTHIA 6 shower [58].

the choice hdamp = 250GeV is sufficient to reproduce the fixed-order result at large p H H
T at the

Les Houches event Level, i.e. after the first hard emission is generated according to the POWHEG

method. Nevertheless, as can be seen in both Fig. 1.14 and Fig. 1.15, the POWHEG-BOX result when

showered with PYTHIA 8.2 was still found to be above the fixed-order result even at p H H
T ∼ 600 GeV.

In Ref. [88], one explanation for this behaviour was found to be due to the emission of a relatively

hard sub-leading jet, which at this order in perturbation theory is generated entirely by the parton

shower. In Fig. 1.16 POWHEG-BOX predictions are shown with a PYTHIA 8.2 and PYTHIA 6 shower

applied. The p H H
T spectrum is considerably softer when the PYTHIA 6 shower is applied and tends

towards the fixed-order prediction at large p H H
T . In the right panel, the transverse momentum of

the sub-leading jet, p j2
T , is shown, and we can observe that PYTHIA 8.2 predicts a significantly harder

jet than PYTHIA 6. This behaviour is documented elsewhere in the literature [98, 99], and recent de-

velopments in PYTHIA 8.2 are likely to soften the observed behaviour in the tail of the p H H
T distribu-

tion [100].

In summary, we have reviewed in this section the studies on the large matching scheme uncer-

tainties present in Higgs boson pair production [58,59,88]. The origin of the uncertainty was found

to partly be due to sub-leading terms present in the matching procedure, which can lead to a large

overshoot of the parton shower relative to the fixed order prediction. There are three factors which

play a role: the large K-factor (B̄ −B), large splitting kernel, and the shower starting scale. In par-

ticular, in the MC@NLO matching scheme the shower starting scale must be chosen small enough

to prevent the parton shower from populating the full phase space, where it will overestimate the

number of hard real emissions. Within the POWHEG matching scheme, a sufficiently low damping

factor (hdamp . 250 GeV) or even a hard cut off on the hardness of shower emissions (SCALUP)

must be used to suppress this behaviour.

In the POWHEG-BOX implementation it was found that the predictions for the transverse mo-

mentum of the Higgs boson pair differed significantly depending on whether a PYTHIA 8.2 or PYTHIA 6

parton shower is applied. This was found to be due to the fact that the PYTHIA 8.2 shower generates

significantly harder sub-leading jets, which recoil against the di-Higgs boson system.
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2.1 Introduction to the EFT formalism

G. Buchalla, C. Grojean, G. Heinrich, F. Maltoni, M. E. Peskin, E. Vryonidou

The goal of the study of Higgs pair production, and, more generally, multiple Higgs boson produc-

tion, is to understand the form of the potential energy function of the Higgs field, and, through

this, to understand why the Higgs field acquires a vacuum expectation value, fills the universe, and

gives mass to all elementary particles. The simplest theory incorporating these phenomena is the

SM. The SM in fact does not give any insight into these questions. It is simply a phenomenologi-

cal model in which all properties of the Higgs field are input parameters and cannot be explained

within the model. However, the SM is a tightly constrained structure. In particular, now that the

Higgs boson mass has been measured and the other couplings of the theory are fixed by measure-

ments of particle masses and electroweak (EW) boson couplings, the SM gives precise predictions

for the Higgs field potential and other observables. Experiments, then, can test whether the SM ac-

curately describes the phenomenon of electroweak symmetry breaking (EWSB), or whether the SM

must be replaced by a different, possibly more fundamental or predictive, underlying theory.

To test the SM through Higgs pair production, it is sufficient to work out the cross sections using

the SM prediction for the potential and compare these results to experiment. However, to gain

insight into the possibility of alternative theories of EWSB, it is necessary to understand how these

cross sections vary when we go outside the context of the SM. One way to do this is to compute the

relevant pair production cross sections in specific alternative models. However, it would be good to

have a formalism that is not so specific but rather summarises the deviations that might appear in

a very wide class of models beyond the SM.

This is the role of Effective Field Theory (EFT). It is one of the profound ideas of quantum field

theory that interactions of arbitrary complexity that act at short distances can be approximated

systematically by a Lagrangian with an enumerable set of parameters. This Lagrangian provides

an “effective” description of any underlying model in this class. The EFT Lagrangian might not be

renormalisable in the strictest sense, but it is nevertheless possible to carry out precise calculations

that relate the parameters of this Lagrangian to observables [101]. For our purposes, the EFT La-

grangian will be the SM Lagrangian with corrections described by addition of local operators.

The EFT formalism addresses the problem of calculating corrections to the predictions of the

SM in a systematic way. For example, it might seem that the most straightforward way to describe

25
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the effects of new physics on the triple-Higgs coupling is simply to add to the SM Lagrangian a term

∆L =−ch3 . (2.1)

This is equivalent to changing the Feynman rules of the SM by multiplying the triple Higgs boson

vertex by κλ, with

κλ = 1+2 c v/m2
H , (2.2)

where mH is the Higgs boson mass and v ' 246 GeV is the Higgs field vacuum expectation value. We

have already seen calculations in this context in Sec. 1.3. However, the Lagrangian term in Eq. (2.1)

is consistent with the SU (2)×U (1) gauge symmetry only if the field h(x) is treated as a gauge singlet.

This requires modifications elsewhere in the Lagrangian. Alternatively, we can keep h(x) as a com-

ponent of a complex scalar doublet, as in the SM. In that case, to have a gauge-invariant Lagrangian,

we should recast Eq. (2.1) as

∆L =−(c/v2)|Φ†Φ|3 , (2.3)

where Φ is the SM Higgs doublet field. In both cases, the calculations done in Sec. 1.3 remain valid

to the order at which they were presented. However, in both cases, the new terms added to L

contain additional multi-Higgs vertices. These terms give new contributions to higher-order EW

corrections. It turns out that these terms are needed to cancel potentially troublesome ultraviolet

divergences. More generally, they allow us to treat these models with κλ 6= 1 in a well-defined way

to arbitrary precision.

The second problem is that a modification of the Higgs self-coupling takes us outside of the

SM. In this context, we might wish to consider the most general set of perturbations due to possible

new physics. Those perturbations will affect the Higgs potential, but they will also modify other

interactions that contribute to the Higgs pair production cross sections. How can we have control

over these effects? The answer is that the possible gauge-invariant terms that we could add to the

EFT Lagrangian can be classified according to a systematic expansion parameter, with only a finite

number of new terms appearing at each order. Then we can, order by order, describe the possible

ways in which new physics can affect the Higgs pair production cross sections with a finite number

of parameters, and constrain them by measuring Higgs pair production. But the EFT Lagrangian is

the Lagrangian, also describing single Higgs boson processes, reactions of the W and Z bosons that

do not involve the Higgs boson, and precision EW observables. This allows us to use data from these

other processes to constrain the new physics parameters and limit their influence on the Higgs pair

production cross sections.

There is not a unique way to formulate an EFT description of new physics modifying the SM. In

fact, two different formalisms are used in the literature and, within these, many different approxi-

mations are used to simplify the Lagrangians for practical purposes. In this chapter, we will describe

these various approaches and their relation to specific underlying new physics models.

2.1.1 Two EFT extensions of the SM

In the literature, EFT descriptions of new physics beyond the SM are described within two different

formalisms, called the HEFT (Higgs Effective Field Theory) and the SMEFT (Standard Model Effec-

tive Field Theory). The HEFT is also referred to as the Electroweak Chiral Lagrangian (EWChL). In

relation to the discussion above, the HEFT follows the path of treating the Higgs field h(x) as an

SU (2)×U (1) singlet, while the SMEFT treats h(x) as a component of an SU (2)×U (1) doublet field

Φ(x). Both paths lead to self-consistent, gauge-invariant Lagrangians. The HEFT is the older of the

two formalisms. The SMEFT has come to the fore more recently, specifically motivated by the dis-
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covery that the mass of the Higgs boson is not large but, rather, close to the W and Z boson masses.

In the discussion to follow, we will explain these approaches and some simplifying assumptions

used with them in practical calculations.

It is important to emphasise at the start that the HEFT and the SMEFT are different ways to enu-

merate the same set of operators that can be added to the SM Lagrangian. In each case, operators

are added systematically according to a given scheme of power-counting. However, the schemes

are different in the two cases, so that the same operator might appear at the leading order in one

scheme but at a higher order in the other scheme. In general, the SMEFT is more restrictive and

therefore more predictive at a given order in its expansions.

2.1.2 SMEFT

The key idea of the SMEFT is to view a model of new physics that extends the SM as being built from

the usual SM fields plus additional fields that act only at short distances or at high energy scales. We

will refer to the mass scale of the new interactions as M in the following discussion. The fact that the

LHC experiments have not yet discovered particles associated with new physics strongly suggests

that there is a hierarchy between the mass scale mZ at which SM interactions act and the scale

M characteristic of new particle interactions, M À mZ . In this picture, the Higgs field lives at the

scale mZ and is described as a full complex doublet of scalar fields Φ, as in the SM. The SMEFT

Lagrangian is taken to be invariant under SU (2)×U (1). All of the fields in the Lagrangian transform

linearly under gauge transformations. For example, the Higgs field with I = 1
2 , Y = 1

2 transforms as

Φ(x) → exp

[
−iαa(x)

σa

2
− iβ(x)

1

2

]
Φ(x) , (2.4)

where αa(x) and β(x) are the SU (2) and U (1) gauge parameters, σa are the Pauli sigma matrices,

and 1
2 is the hypercharge Y of the fieldΦ. The gauge symmetry SU (2)×U (1) is spontaneously broken

when the Higgs field acquires a vacuum expectation value

〈Φ(x)〉 = 1p
2

(
0

v

)
. (2.5)

The models considered today as the best candidates for a predictive theory of the Higgs poten-

tial follow this description. For example, in the supersymmetric extension of the SM, the Higgs dou-

blet field is light, with a mass of the order of mZ , while superpartner fields are heavy, with masses

M = MSUSY À mZ [102]. An alternative class of models assumes that the Higgs field is a multiplet

of Goldstone bosons generated by symmetry breaking at a high mass scale M , with M at multi-TeV

energies. The potential for the Higgs field is generated at the much lower scale v ¿ M by radiative

corrections [103, 104].

To describe physics at energy scales below the scale M , we may integrate out the fields interact-

ing only at high energy. Then we obtain a Lagrangian that contains only the SM fields, but possibly

including operators of higher dimension built from these fields. In a renormalisable Lagrangian,

all terms are operators of dimension 4 or less. If we add an operator of dimension d > 4, then, by

dimensional analysis, that operator must have a coefficient proportional to (mass)4−d . When such

operators appear after integrating out heavy fields, their coefficients will be proportional to M 4−d .

The integration-out preserves the SU (2)×U (1) gauge symmetry. Then this procedure will give a

Lagrangian of the most general form that can be built from gauge-invariant operators constructed

from the SM fields.
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However, it is a property of the SM that the SM Lagrangian is already the most general renor-

malisable SU (2)×U (1)-invariant Lagrangian (with no strong-CP violation) that can be built from

the SM fields. The EFT Lagrangian describing the most general types of new physics at the mass

scale M then takes the form

L =LSM +∑
i

ĉi

M 2 Oi +
∑

j

d̂ j

M 4 O j +·· · , (2.6)

where the index i runs over dimension-6 operators, the index j runs over dimension-8 operators,

and so on. There do exist operators of dimension 5,7, . . . , but these involve lepton number violation.

For example, the dimension 5 operators are neutrino mass terms. We may ignore them in discussing

LHC processes.

Notice that, even though integrating out the new interactions can lead to order-1 modifications

in the parameters of LSM, those changes are not observable, since in any event the parameters of

LSM are determined from experiment. This means that the observable effects of new physics at

the scale M on cross sections at the much lower energy E are at most of size E 2/M 2. We can use

this ratio of energies as an expansion parameter to control the number of new operators that we

take under consideration. In particular, if E is of order mH , M is of order 1 TeV, and we assume that

the coefficients ĉi , etc., are of order 1, then the effects of dimension-6 operators are at the level of

a few percent while the effects of dimension-8 operators are at the level of 10−4. Then it can make

sense to drop the terms with operators of dimension-8 and higher and consider only the effects

of the dimension-6 operators. This gives a finite set of parameters describing the most general

modification of the SM at short distances.

If we are considering the experimental implications of one dimension-6 operator, it is very phys-

ical to write the coefficient of this operator in terms of the parameter M , which then represents the

scale of the new physics that gives rise to this operator. However, in analyses that involve a large

number of dimension-6 operators (for example, 6 such operators appear in Eq. (2.10) below), it be-

comes awkward to define M in a consistent way. For the rest of this report, then, we will rewrite

Eq. (2.6) using the Higgs field vacuum expectation value as the dimensional parameter. This gives

a definite, though arbitrary, choice for the dimensional parameter in the EFT coefficients. Then the

EFT Lagrangian will be expanded as

L =LSM +∑
i

c i

v2 Oi +
∑

j

d j

v4 O j +·· · . (2.7)

The statement that M À v appears here at the statement that the dimensionless coefficients c i are

much less than 1. Using the simple estimation scheme in the previous paragraph, in which we

assume that the M is of order 1 TeV and the ĉi , d̂ j are of order 1, we would estimate that the c i are

generally of the order of a few percent, the d j are generally of the order of 10−4, etc. However, this

argument is naive and there are important cases in which the c i and d j can be larger. Some of these

are relevant to the Higgs self-coupling, as we will see in the next section.

How large are the SMEFT parameters?

Though the number of operators that appear in the SMEFT at dimension 6 is finite, it is very large.

Naive enumeration gives more than 80 operators. However, linear combinations of operators that

vanish by the SM equations of motion do not contribute to S-matrix elements, so we may drop

some operators that appear in these linear combinations in favour of others. In the literature, there
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are different choices of which operators to retain and which to drop. Two commonly used choices

are the “Warsaw basis” [105] and the “SILH basis” [106, 107]. Comparing these schemes, different

operators appear in the descriptions, but the final physics conclusions must be identical. Still, even

after eliminating as many operators as possible, we are left with an unwieldy number of parameters

to work with. For one generation of fermions (or assuming the strongest form of flavor universality),

there are 59 independent baryon-number-conserving dimension-6 operators that one can build

out of SM fields [105, 108].

One of these parameters—called c6—multiplies the dimension-6 operator in Eq. (2.3) and thus

directly induces an h3 vertex that shifts the Higgs self-coupling. However, other parameters can

contribute in the calculation of Higgs pair-production cross sections. There is another parameter—

called c H —that leads to an overall rescaling of all Higgs boson couplings. Other parameters not

obviously related to the Higgs self-coupling can also have an influence. At the LHC, the Higgs pair

production process g g → H H receives contribution from triangle and box top quark loop diagrams,

with destructive interference. A change in the value of the top quark Yukawa coupling by 10%, which

can be induced by another dimension-6 operator, then turns out to change the extracted value of

the Higgs self-coupling by 50%. To control effects such as this, we must either argue that the relevant

coefficients c i are small a priori or that their values are restricted by other SM measurements. In

this case, for example, precision measurement of the top quark Yukawa coupling could restrict this

source of uncertainty. It is also possible to use measurements in different regions of phase space

to distinguish the effects of different operators. This strategy has been studied for g g → H H in

Refs. [109–111] and for e+e− → νν̄H H in Ref. [112]. More generally, it is possible to combine data

from Higgs pair production with that from other processes affected by dimension-6 perturbations,

including precision EW observables, to extract the shift of the Higgs self-coupling through a global

fit [113, 114].

It might also be possible to give a priori arguments allowing us to ignore some of the coeffi-

cients c i . In the previous section, we have argued that the c i might be expected to be only a few

percent in size. There are some examples in which c i are known to be smaller. The S and T pa-

rameters of precision EW analysis [115] are induced by dimension-6 operator perturbations, and

the corresponding c i coefficients are then bounded by precision EW measurements to be less than

10−3 [116]. Constraints from the LHC on the Higgs couplings to W , Z , and heavy fermions are still

at the 10–20% level [117,118], but the estimate that the corresponding c i are at the few-percent level

neatly explains why no deviations from the SM have yet been observed. In this report, we will dis-

cuss experiments that constrain the Higgs self-coupling at the level of tens of percent. So perhaps

we might even have the opposite problem, that, within the SMEFT, we predict that no deviations of

the Higgs self-coupling from the SM will be observable.

Fortunately, there are models in which the deviations of the Higgs self-coupling can be of order

1 while the deviations in other parameters remain small. A variety of such models are studied in

Chapter 3. We have the possibility for such large deviations when the Higgs field mixes with a SM

singlet field that does not directly communicate with the W and Z bosons, or with a new fermion or

boson sector that is relatively light compared with the 1 TeV mass scale. It is typical in these models

that the same effects that give order-1 shifts of the Higgs potential also give few-percent shifts of

the HW W and H Z Z couplings that can be observed in measurements on single Higgs processes.

These couplings, which are measured in single Higgs processes, are already constrained by LHC

data, as noted above, and are expected to be measured with much higher accuracy. So it is possible

to bring these pieces of information together to test proposed models.

The largest effects occur in models in which a new boson provides an s-channel resonance that

can decay to H H . In such models, the di-Higgs mass spectrum in H H production can have two
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distinct peaks, one at high mass corresponding to the resonance and one at 400-500 GeV containing

the bulk of the H H production. The di-Higgs mass spectrum for a model in this class is shown in

Fig. 3.4. It should be noted that the EFT description applies only to the lower-energy part of this

spectrum, while the resonance at high mass must be described by a Lagrangian that contains the

new particle explicitly.

A specific motivation for large modifications of the Higgs potential comes from the idea of EW

baryogensis [119, 120]. The cosmic excess of baryons over anti-baryons must have been generated

in the early universe during a time when the universe was out of equilibrium. This could have been

possible at the EW phase transition, but only if this phase transition was strongly first-order. In the

SM, for mH = 125 GeV, this is not the case. Altering the Higgs potential to produce a strongly first-

order phase transition requires a significant change, with a h3 coefficient about a factor 2 larger than

that in the SM [121–125]. Such a large effect could potentially be observed with high significance in

the measurements we will describe. More information on this point is given in Sec. 3.6.

Finally, it is also reasonable to take a completely agnostic point of view and ask what is the max-

imal allowed value of the Higgs self-coupling. One possible limit comes from perturbative unitarity,

that is, the constraint that tree-level diagrams involving this coupling not violate unitarity bounds.

This gives [113, 126]

|κλ| < Min
(
600ξ,4π

)
, (2.8)

where ξ is the typical size of the deviation of the Higgs couplings to other SM particles [106]. From

the LHC measurements quoted above, ξ could be as large as 0.1-0.2. The stability of the Higgs

potential places a stronger bound on κλ [126],

|κλ| < 70ξ . (2.9)

This limit still gives considerable leeway in the search for modifications of the Higgs self-coupling.

Further discussion about the theoretical constraints that can be imposed on κλ from vacuum

stability, perturbativity, and by considering specific UV-complete models can be found in Sec. 2.2.

g g → H H in the SMEFT

None of the analyses described in this report confronts the full problem of controlling the depen-

dence of Higgs pair production cross sections on 59 (or more) dimension-6 operators available in

the SMEFT. Most studies restrict themselves either to modification of the h3 coupling only or mod-

ifications from a small set of especially relevant operators. As we discuss the current analyses, we

will clarify for each of them precisely which set of operator contributions is being considered.

If our goal is to extract the Higgs self-coupling at the level of tens of percent, it can make good

sense to consider only the subset of operators contributing at the leading order to the process under

consideration. In this section, we describe a sensible reduction of the operator set for the process

g g → H H .

For this process, choosing the “Warsaw basis” of dimension-6 operators defined in Ref. [105],

the most important contributions come from the 6 operators

∆L6 = c H

v2 ∂µ(Φ†Φ)∂µ(Φ†Φ)+ cu

v2 (Φ†Φ)Q̄LΦ̃ tR + c6

v2

(
Φ†Φ

)3

+ c tG

v2 Q̄Lσ
µνGµνΦ̃tR + cΦG

v2 (Φ†Φ)Ga
µνGaµν+ cΦG̃

v2 (Φ†Φ)Ga
µνG̃aµν . (2.10)
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Figure 1: Higgs boson pair production in gluon fusion at lowest non-vanishing
order (one-loop order in this case) in the non-linear EFT.

The contributing diagrams to lowest order are shown in Fig. 1. All diagrams
are at the same order in the chiral counting (chiral dimension 4, equivalent to
one-loop order). They illustrate the interplay between leading-order anoma-
lous couplings (black dots) within loops, and next-to-leading order terms (black
squares) at tree level.
The non-linear coe�cients ct, ctt, chhh, cggh and cgghh may be treated as quan-
tities of order one. No further expansion in the latter coe�cients is needed when
computing cross sections.
It should be kept in mind that the extraction of Higgs couplings ultimately
requires a global analysis, where other Higgs-related processes are also taken
into account, in particular observables from single-Higgs production.

Summary. The non-linear EFT provides us with a consistent parametrization
of anomalous Higgs-boson properties. Its power-counting encodes the (well-
motivated) assumption that anomalous Higgs couplings are the dominant e↵ects
of new physics in the electroweak sector. In essence, the non-linear EFT gives
the theoretical basis for the empirical -framework of modified Higgs couplings.
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Figure 2.1: Feynman diagrams contributing to g g → H H , including SM EFT effects of D = 6 op-
erators, whose potential insertions are indicated by black squares and blobs (for simplicity we are
neglecting additional diagrams that come from the top dipole operator). See text for details. These
diagrams also correspond to the lowest non-vanishing order (one-loop order in this case) in the
non-linear EFT.

In this formula, QL is the (t ,b)L doublet, Φ̃≡ iσ2Φ denotes the charge conjugate Higgs doublet, and

G̃a
µν ≡ 1/2εµνρσGaρσ. If we assume CP conservation, the coefficients of the dimension-6 operators

Ou and OtG will be real and the CP-violating operator OΦG̃ can be ignored.

The operators OH and O6 modify the Higgs self interactions. The modifications as a function of

the c H and c6 coefficients are given by

λH 3 /λSM
H 3 ≡ κλ = 1− 3

2
cH + c6 , λH 4 /λSM

H 4 = 1− 25

3
cH +6c6 , (2.11)

where cH ≡ 2c H and c6 ≡ (2v2/m2
H )c6. The parameter c6 only affects Higgs pair production, but the

parameter cH also induces a universal rescaling of single Higgs production cross sections.

The operators Ou and OtG modify the Higgs coupling to the top quark. The operator Ou shifts the

top quark Yukawa coupling (relative to the SM relation mt = yt v/
p

2). The operator OtG induces an

anomalous colour magnetic dipole for the top quark and a contact interaction including the Higgs,

the gluon and the top quark. These two operators enter the amplitude for g g → H H at the one-loop

level. The remaining two interactions OΦG and OΦG̃ give contact interactions involving two Higgs

bosons and two gluons. These operators contribute to Higgs pair production already at tree-level.

The relevant diagrams for double Higgs production are shown in Fig. 2.1.

Additional SMEFT operators modifying the coupling of the Higgs to the gauge bosons and b

quarks become relevant once the decays of the Higgs bosons are taken into account. Similarly,

additional operators will enter once QCD and EW corrections are considered. The consideration of

these operators is beyond the scope of this discussion.

In many SMEFT analyses of Higgs pair production [109, 110] a restricted set of dimension-6 op-

erators is used, namely OH , Ou , O6 and OΦG . This choice is motivated by theoretical considerations

on the possible origin and size of the effective operators. In a large class of UV theories (including

renormalisable, weakly coupled theories) the dipole operator OtG and the OΦG and OΦG̃ operators

are only induced at loop level, so that their coefficients are expected to be suppressed with respect

to the other dimension-6 operators that can instead be induced at tree level. When this happens,

the contributions of the dipole operator to double Higgs production can be formally considered as
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Figure 2.2: Dependence of double Higgs production cross-section on the Wilson coefficients of the
relevant dimension-6 operators. The dashed part of the contours are excluded by LHC Run 1 Higgs
and top quark measurements.

two-loop effects, and can be neglected with respect to the other corrections that arise at one-loop

order. Notice that the OΦG operator, although suppressed by a loop factor, contributes at tree-level

to double Higgs production. Therefore it is expected to give corrections comparable to the OH , Ou

and O6 operators. On the other hand, if no theory bias is assumed on the origin of the effective op-

erators, a full fit including the dipole operator OtG should be performed. The contribution of OtG

in double Higgs production has been computed in Ref. [127], where its impact on the differential

distributions was also studied.

In the context of the SMEFT, extracting the triple Higgs coupling from the measurement of the

Higgs pair production cross section is more difficult, since all five operators listed above enter the

process. The dependence of the total H H cross-section on the EFT coefficients of the operators of

Eq. (2.10) is shown in Fig. 2.2. We see that the total cross section depends rather strongly on all of

these coefficients.

A compensating factor is that the coefficients of the operators OH , Ou , OtG and OΦG can be

constrained by measurements of other processes at the LHC. In particular, top quark measurements

will constrain the dipole operator c tG , while the top Yukawa operator cu will be constrained by

measurements of t t̄ H production and other single Higgs processes. Similarly, cΦG is constrained

by measurements of the Higgs production cross section from gluon fusion, and c H can be extracted

as a uniform rescaling of all Higgs couplings. The current constraints obtained from Run 1 Higgs

and top quark measurements are shown in Fig. 2.2 as the points where the various lines become

dashed. Given these bounds, only the effect of c6 can lead to deviations of order 10 in the H H

cross section from the SM predictions. However, to constrain c6 at levels of order 1, we will need

precise constraints on all of other coefficients that enter the analysis. This demands a global SMEFT

interpretation. We will discuss the impact of a such global fit in Sec. 2.3.1.

Another aspect to be stressed is the fact that the various effective operators induce different

distortions in the double Higgs invariant mass distribution. A shape analysis can thus help in dis-

entangling the various operators in a global fit. We will discuss this point in Sec. 2.4.
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Single Higgs production in the SMEFT

As we already discussed, another process that is sensitive to modifications of the Higgs trilinear self-

coupling is single Higgs production. Accessing the self coupling in this way has been entertained in

Refs. [113,114,128–134] and is discussed in detail in Sec. 2.3.2. First experimental results employing

this method can be found in Refs. [135, 136], and are discussed in Sec. 7.6 (see also Sec. 8.3). Differ-

ently from double Higgs production, in which the Higgs trilinear interaction enters in LO diagrams,

in single Higgs processes such coupling contributes only through NLO corrections and its effects

are thus suppressed by a loop factor. In such a situation, model-independent bounds can only be

obtained by performing a fit that simultaneously takes into account all the possible deformations

of single Higgs interactions that contribute at LO. As discussed in the literature [113, 129–131] and

reviewed in Sec. 2.3.2, the sensitivity on κλ obtained from single Higgs processes in an exclusive fit

(i.e. allowing only κλ to vary and setting all the other couplings to their SM values) is comparable to

the one from double Higgs production. However, once a global fit including deformations in single

Higgs couplings is performed, the sensitivity is reduced, especially if no differential information is

taken into account (see Fig. 2.11).

The question of identifying a minimal set of effective operators is more complex than what we

discussed in the case of g g → H H . The difficulty mostly comes from the fact that even small contri-

butions from operators that enter at LO can easily overshadow the effects due to a modified Higgs

trilinear coupling. Here we discuss the minimal set proposed in Ref. [113] for an analysis at the high-

luminosity LHC. We however stress the fact that a suitable set of operators can crucially depend not

only on the actual collider but also on the sensitivity reached in precision EW measurements (see

for instance Ref. [114] in the context of future lepton colliders).

Before quoting the operators that we will include, we first discuss our simplifying assumptions.

In fact, we will not consider dipole operators (analogous to the one we mentioned in the basis

for double Higgs production) and operators that correct the W and Z interactions with the SM

fermions. Moreover, we omit four-fermion contact operators (where in particular the ones involv-

ing the top quark could be relevant in principle). In all these cases the experimental constraints are

weak enough to allow for non-negligible corrections to single Higgs processes. So, to remove these

operators from a global fit, some theoretical assumptions might be needed, which we will rely on

in the following. For instance, as we discussed for g g → H H , the assumption that dipole operators

only arise at loop level makes their contributions negligible. Moreover, under the assumption of

flavor-universality for the new-physics contributions, the corrections of the W and Z couplings to

the SM fermions are constrained at the 10−2 −10−3 level and can be safely neglected.

A minimal set of operators, following this reasoning, was proposed in Ref [113] and includes 9

effective operators in addition to the deformation of the Higgs trilinear coupling. These operators

can be expressed within the SMEFT framework in the “Higgs basis” [137] and correspond to

• 3 for the Yukawa interactions (δyt , δyb , δyτ),

• 2 for the contact interactions involving gluons and photons (cg g ,cγγ),

• 1 for the rescalings of the H Z Z and HW W interactions (δcz ), assuming custodial symmetry

is unbroken,

• 3 for the parameterisation of Higgs interactions with EW bosons featuring non-SM tensor

structures (czz ,czä,czγ). 1

1Since two combinations of these coefficients can also be constrained by di-boson data, the interplay between the
gauge and the Higgs sectors cannot be neglected.
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The resulting corrections to the Higgs interactions in the unitary gauge are given by

L ⊃ h

v

[
δcw

g 2v2

2
W +
µ W −µ+δcz

(g 2 + g ′2)v2

4
ZµZµ (2.12)

+cw w
g 2

2
W +
µνW −µν+ cwäg 2

(
W −
µ ∂νW +µν+h.c.

)
+ ĉγγ

e2

4π2 AµνAµν

+czz
g 2 + g ′2

4
ZµνZµν+ ĉzγ

e
√

g 2 + g ′2

2π2 ZµνAµν+ czäg 2Zµ∂νZµν+ cγäg g ′Zµ∂νAµν

]

+ g 2
s

48π2

(
ĉg g

h

v
+ ĉ(2)

g g
h2

2v2

)
GµνGµν−∑

f

m f

(
δy f

h

v
+δy (2)

f

h2

2v2

)
f̄R fL +h.c.

 ,

where the parameters δcw , cw w , cwä, cγä, ĉ(2)
g g and δy (2)

f are dependent quantities defined as

δcw = δcz ,

cw w = czz +2
g ′2

π2(g 2 + g ′2)
ĉzγ+

g ′4

π2(g 2 + g ′2)2 ĉγγ ,

cwä = 1

g 2 − g ′2
[

g 2czä+ g ′2czz −e2 g ′2

π2(g 2 + g ′2)
ĉγγ− (g 2 − g ′2)

g ′2

π2(g 2 + g ′2)
ĉzγ

]
,

cγä = 1

g 2 − g ′2
[

2g 2czä+
(
g 2 + g ′2)czz −

e2

π2 ĉγγ−
g 2 − g ′2

π2 ĉzγ

]
,

ĉ(2)
g g = ĉg g ,

δy (2)
f = 3δy f −δcz , (2.13)

and the relations between the independent couplings and the operator coefficients in the Warsaw

basis, as appearing in Eq. (2.10), have been worked out in Ref. [137]. Finally, in the above expressions

g , g ′, gs denote the SU (2)L , U (1)Y and SU (3)c gauge couplings respectively, and e is the electric

charge.

2.1.3 HEFT

The HEFT gives a different way of organising possible operator modifications of the SM Lagrangian.

The idea of the HEFT is to describe the low-energy dynamics of EWSB using a nonlinear realisation

of SU (2)×U (1). The SM naturally includes an unbroken global SU (2) symmetry, called “custodial

symmetry”, that protects against radiative corrections to the relation mW = mZ cosθw [138]. It is

compelling to assume that this custodial symmetry is also present at least approximately in more

general models of EWSB. Then the pattern of symmetry breaking is SU (2)×SU (2) broken to SU (2),

the same as the pattern seen in chiral symmetry breaking in the QCD strong interactions. This

suggests taking over the formalism of chiral perturbation theory used there to successfully describe

low energy pion interactions [139, 140].

In this approach, we take the symmetry-breaking field to be a unitary matrix of SU (2),

U (x) = exp[iπa(x)σa/v] , (2.14)

where πa are the Goldston boson fields of the SM and v is the SM Higgs vacuum expectation value.

Global SU (2)× SU (2) transformations act on U (x) by U → VL U (x)V †
R . This is a nonlinear action
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on the πa fields. The SU (2) gauge symmetry is identified with the left SU (2), and the U (1) gauge

symmetry is identified with the rotations about the 3̂ axis in the right SU (2), so that an SU (2)×U (1)

gauge transformation is given by

U (x) → exp

[
−iαa(x)

σa

2

]
U (x) exp

[
iβ(x)

σ3

2

]
. (2.15)

This transformation law should be contrasted with Eq. (2.4). The state of spontaneously broken

gauge symmetry is described by 〈
U (x)

〉= 1 . (2.16)

The expectation value leaves invariant the diagonal subgroup of the two original SU (2) symmetries,

and this subgroup can be identified with the custodial symmetry. The subgroup within this SU (2)

of rotations about the 3̂ axis is an unbroken gauge symmetry that can be identified with electro-

magnetism.

A problem with Eq. (2.15) is that it has no place for the Higgs boson field h(x). In this formalism,

h(x) must be introduced as an SU (2)×U (1) singlet. Couplings of the Higgs boson will be introduced

into the HEFT Lagrangian as polynomials in the dimensionless ratio h(x)/v .

As in the case of the SMEFT, the HEFT Lagrangian is organised according to power-counting

rules. Following the guidance of chiral perturbation theory, the Lagrangian can be built up as terms

with increasing chiral dimensionχ [141,142]. In this scheme, boson fields are assignedχ= 0, deriva-

tives χ = 1, and fermion bilinears χ = 1. The zeroth order Lagrangian has chiral dimension χ = 2,

L = 1

2
(Dµπ

a)2 + 1

2
(∂µh)2 + ψ̄ f (i 6D)ψ f , (2.17)

where Dµ is an appropriate covariant derivative. It is useful to think of the effective Lagrangian as

being generated perturbatively in successive loop orders L, with χ = 2L + 2. In this case, a weak

coupling constant should also be assigned χ = 1. This counting assigns to h(x)/v the dimension

χ = 0 and so arbitrary powers of this quantity can appear at each order. To control this, the HEFT

Lagrangian should be thought of as a double expansion in L and h(x)/v . A systematic expansion of

the HEFT Lagrangian and evaluation of constraints on its parameters can be found in Ref. [143].

The HEFT approach is well adapted to models of EWSB in which the symmetry breaking has two

distinct sources, one from the Higgs field vacuum expectation value, one from strong interaction

dynamics at a higher energy. Some models in this class are the low-scale technicolor [144], Higgs-

dilaton [145], composite Higgs [103, 104, 146], conformal Higgs [147], and induced EWSB [148, 149]

models. These models are not yet excluded, but they may be strongly challenged by future more

precise measurements of Higgs couplings to fermions.

In the HEFT, the leading terms in the Lagrangian contributing to a quark mass and fermion-

Higgs interactions are

∆L =−m f Q̄L U qR

(
1+ c f

h

v
+ c f f

h2

v2

)
−h.c. . (2.18)

In the SM, c f = 1 and c f f = 0. In the HEFT power-counting, the coefficient c f is not fixed and can

deviate from 1 by any amount, and the coefficient c f f also is an independent parameter. This con-

trasts strongly with the situation in the SMEFT, in which c f = 1+av2/M 2, where a is a parameter of

order 1, and c f f is predicted to be c f f = 3
2 av2/M 2 with the same value a (ignoring the contribution

from cH ), up to corrections of order 1/M 4. At the LHC, the Higgs boson couplings are found to be

equal to their SM values in terms of the particle masses, to an accuracy of 10-20%. This is natural in

the SMEFT, but it is a strong constraint on the parameters of the HEFT.
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Figure 2.3: Normalized Higgs pair invariant mass distribution at 14 TeV for different combinations
of the HEFT couplings in Eq. (2.19), and the ratio to the SM prediction. Here ci = 0 means i ∈
{t t , g g h, g g hh}, i.e. the blue curve denotes the SM case. The coefficient chhh is also known as κλ in
experimental papers. All curves are computed at NLO with full top-quark mass dependence [71].

With this introduction, we can present the terms in the HEFT Lagrangian most relevant to the

prediction of the cross section for g g → H H . These are

∆Lχ =−mt

(
ct

h

v
+ ct t

h2

v2

)
t̄ t − chhh

m2
H

2v
h3

+ αs

8π

(
cg g h

h

v
+ cg g hh

h2

v2

)
Ga
µνGa,µν . (2.19)

The couplings ct and ct t are the top quark couplings from Eq. (2.18). To lowest order in the SM,

ct = chhh = 1 and ct t = cg g h = cg g hh = 0. In the HEFT framework, the deviations of the various

couplings from their SM values are not expected to be small. The relation found in the SMEFT

between ct and ct t and the similar SMEFT relation cg g hh = 1
2 cg g h are not present here. However,

there is one simplification: the chromomagnetic operator does not appear in Eq. (2.19) because it

contributes to g g → H H only at 2-loop order in the chiral power counting.

The contributing diagrams to lowest order are shown in Fig. 2.1. All diagrams are at the same or-

der in the chiral power counting (chiral dimension 4, equivalent to one-loop order). The diagrams

illustrate the interplay between leading-order anomalous couplings (black dots) within loops, and

next-to-leading order terms (black squares) at tree level. In Fig. 2.3 we show, as an illustrative ex-

ample, the effect that the different operators in Eq. (2.19) can have on the di-Higgs invariant mass

distribution, for several points in the HEFT parameter space. These distributions are computed

at NLO in QCD including the full top quark mass dependence, based on the results presented in

Ref. [71].

As in the case of the SMEFT analysis described earlier, the prediction for the Higgs pair pro-

duction cross section depends strongly on all of the parameters in Eq. (2.19). Thus, to extract the

coupling chhh that determines the shape of the Higgs potential, we need to constrain the other

couplings in Eq. (2.19) through a global analysis. This is more difficult in the HEFT formalism com-

pared to the SMEFT because two of the relevant parameters—ct t and cg g hh in Eq. (2.19)—appear

only in processes with two Higgs bosons. Thus it is not possible to use single Higgs data to fix these

parameters. A full analysis in the HEFT thus needs a strategy for constraining the auxiliary HEFT
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parameters. For example, analysing t t̄ H H production separately from other H H production pro-

cesses may allow a determination of ct t independently from chhh .

In conclusion, the HEFT Lagrangian yields a consistent parameterisation of anomalous Higgs

boson properties. Its power-counting encodes the assumption that anomalous Higgs couplings are

the dominant effects of new physics in the EW sector. In essence, the HEFT formalism gives a field-

theory basis for the empirical κ-framework of modified Higgs couplings.

2.2 EFT vs. complete models: theoretical constraints onκλ
L. Di Luzio, R. Gröber, S. Gupta, F. Maltoni, D. Pagani, H. Rzehak, A. Shivaji, M. Spannowsky,

J. Wells, X. Zhao

The current bounds on the trilinear Higgs self-coupling λH 3 are much weaker than those for other

Higgs couplings. At the moment, the strongest experimental constraint from double Higgs produc-

tion has been obtained by the ATLAS collaboration combining three different analyses [68,150–152],

setting a bound −5.0 < κλ < 12.1, where κλ ≡ λH 3 /λSM
H 3 . An indirect measurement κλ = 4.0+4.3

−4.1 has

also been extracted by the ATLAS collaboration from single Higgs production measurements [136],

following the strategy described in Sec. 7.6. No experimental constraints on the quartic Higgs self

coupling are available at all. Given the current situation one can ask the following questions:

• is there any theoretical argument for constraining the Higgs self-couplings?

• how large can Higgs self-couplings be in UV-complete models?

In order to address the first question, we will consider both arguments based on vacuum sta-

bility and perturbativity. Then, we will consider specific UV-complete models for answering the

second question.

Vacuum stability

If we consider the modifications induced to the SM potential by dimension-6 operators in Eq. (2.10),

in particular the (Φ†Φ)3 operator, one can distinguish 6 cases for the different sign possibilities for

the parameters µ2 (where v2 =−µ2/λ), λ and c6 [153]. Two different kinds of instabilities can arise,

the most obvious one is at large field values for µ2 > 0, λ > 0, c6 < 0. The other one has to do

with the destabilization of the EW minimum against the minimum at zero field value, potentially

occurring for µ2 < 0, λ < 0, c6 > 0. In Ref. [154] it has been shown that both instabilities cannot

be reliably assessed within the EFT, so that one cannot infer a model-independent bound on the

trilinear Higgs self-coupling from stability arguments. The instability at large field configurations

cannot be trusted due to the breakdown of the EFT expansion in the region close to the instability

[155], while the occurrence of the low-scale instability requires a rather small value of the cutoff

scale, making the use of the EFT language questionable.2

Also in UV-complete models with modifications of the scalar potential at tree level the vacuum

instability and the modifications of the trilinear Higgs self-coupling are not directly connected, due

to the presence of many couplings in the scalar potential that decorrelate the two effects. Instead,

an almost one-to-one correspondence between the two is achieved in models where the Higgs self-

couplings modifications are due to new fermions running in the loop, as in the case of right-handed

2However, in a recent study [126] it is argued that vacuum stability argument can still be relevant under some rea-
sonable assumptions about the underlying EFT.
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Figure 2.4: Dependence of the J = 0 partial wave a0 on the centre of mass energy
p

s for modified
trilinear Higgs self-coupling (left) and modified quartic Higgs self-coupling (right). The plots are
taken from Ref. [154].

neutrinos. While in low-scale inverse seesaw models one can find modifications in the trilinear

Higgs self-coupling up to 30% [156], the scenarios providing such a large deviation of the trilinear

Higgs self-coupling drive the Higgs potential into the unstable regime. Requesting that this does

not occur within one order of magnitude from the mass scale of the right-handed neutrinos (hence

not requiring any UV completion below that scale), one can bound the trilinear Higgs self-coupling

modifications to be smaller than κλ = 0.1% [154] via metastability arguments (see e.g. Ref. [157]).

Perturbativity

On general grounds, one expects that too large values of the Higgs self-couplings will eventually en-

ter the non-perturbative regime. A violation of perturbativity implies that new phenomena such as

strong interactions may appear or new massive particles have to be present in the UV-finite model

in order to restore perturbativity. On the other hand, non-perturbativity also indicates that LO pre-

dictions as well as higher-order corrections cannot be trusted. In view of the following discussion

these two complementary aspects have to be kept in mind.

A possible tool to estimate the perturbativity range is based on partial wave unitarity. By looking

at the H H → H H scattering amplitude in the SM broken phase and requiring that for the J = 0

partial wave |Re a0| < 1
2 , one finds |κλ|. 6.5 and |λH 4 /λSM

H 4 |. 65. Note that theκλ bound is extracted

at small
p

s, being the trilinear coupling associated to a super-renormalisable operator (cf. Fig. 2.4

– left panel), while the contribution of the quartic coupling to the partial wave becomes important

only at large
p

s (cf. Fig. 2.4 – right panel). Thanks to this very distinctive kinematic feature, one can

separately set a model-independent bound on the trilinear and quadri-linear Higgs self-couplings.

An alternative perturbativity criterium is obtained by requiring that the loop-corrected trilin-

ear vertex should be smaller than the tree-level vertex, or in the case of the quartic that the beta-

function satisfies |βλ
H4

/λH 4 | < 1 [158, 159]. Such criteria lead to bounds very similar to the above
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mentioned ones, leaving us with

|κλ|. 6, (2.20)

|λH 4 /λSM
H 4 |. 65. (2.21)

Following the same alternative perturbativity criterion, in Ref. [134] a bound equivalent to Eq. (2.20)

has been set for c6 ≡ κλ−1. Parameterising any possible deviation to the SM potential as3

V NP(Φ) ≡
∞∑

n=3

c2nm2
H

2v2n−2

(
Φ†Φ− 1

2
v2

)n

, (2.22)

one finds that one-loop corrections to the H H H vertex are smaller than its tree-level value only for

|κλ−1|. 5. (2.23)

It is important to note that the bounds in Eqs. (2.20) and (2.23) originate from the requirement that

the H H H vertex, setting two Higgs bosons on-shell, is perturbative for the full spectrum
p

ŝ > 2mH .

The strongest bound arises form the configuration mH H ' 2mH . In general, in other kinematic

configurations, the bound is looser. For instance, the H H H vertex enters via one-loop EW cor-

rections the predictions for single-Higgs production and decays modes, however, never with two

Higgs bosons on-shell. Therefore, the bound in Eqs. (2.20) and (2.23), which indicates where it is

sensible to perform a perturbative calculation, does not directly apply to the studies presented in

Refs. [113, 114, 128–134] and discussed also in Sec. 2.3.2, where precise predictions for single Higgs

production have been proposed as alternative method for the extraction of κλ. Trilinear coupling

values corresponding to |κλ| ∼ 10 still lead to reliable perturbative calculations in single Higgs pro-

duction, though will lead also to large higher order corrections.4

On the other hand, the kinematic configuration corresponding to the most stringent perturba-

tive bounds forκλ corresponds to the threshold region in double Higgs production. This means that

if |κλ|& 6, perturbative predictions for total cross sections in double Higgs production are mean-

ingless.

In Fig. 2.5 we show a plot taken from Ref. [160] where the 2σ constraints that can be obtained at

HL-LHC on c6 as function ofσexp/σSM are presented. The quantityσexp is the supposedly measured

value for the double Higgs cross section, while σSM is the corresponding SM prediction. The con-

straints are derived using two different approximations: taking into account κλ = 1+c6 effects only

at LO or including also loop-corrections induced by c6 itself,5 i.e., at NLO. For |c6|& 5, where pertur-

bativity is violated, NLO and LO constraints are not compatible. The bottom line is: when data are

fitted viaσLO predictions,κλ or equivalently c6 is a parameter of ignorance; only for |κλ−1| = |c6|. 5

this parameter coincides with the quantity one is interested in. Moreover, NLO or any higher-order

corrections would not improve this situation. Therefore, one can set bounds outside the range

|κλ−1| = |c6|. 5, but only within this region they refer to the parameter in the Lagrangian.

Starting from the parameterisation of BSM effects in Eq. (2.22), one can derive from the one

loop corrections to the H H H vertex perturbative bounds on the coefficient c8, which is connected

to the quantity λH 4 /λSM
H 4 via the relation λH 4 /λSM

H 4 = 1+6c6+c8. Following this strategy, in Ref. [160],

3Note that, at variance with Eq. (2.10), the dimension-6 operator is (Φ†
Φ− 1

2 v2)3, so the coefficients c6 and c̄6 are not
simply related by a different normalisation. For more details see Ref. [134].

4More details can be found in Refs. [130, 159].
5For a precise definitions of the NLO predictions see Ref. [160]. Including NLO contributions, it is more convenient

to organise the calculation according to c6 than κλ.
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a bound

|c8|. 31, (2.24)

has been found and, taking into account the bound |c6|. 5, it translates into

|λH 4 /λSM
H 4 |. 61, (2.25)

which, although being κλ-dependent (e.g. |λH 4 /λSM
H 4 | . 31 for κλ ' 1), is in good agreement with

Eq. (2.21), obtained via a different approach.

Summarising, we find that current limits on the trilinear Higgs self-couplings do not reach the

interesting range yet; they are in fact still above the perturbative regime6. Before concluding this

subsection, however, we want to mention the results of recent studies [126, 161] that appeared dur-

ing the writing of this report. In these works, a different approach to the investigation of the possible

size of the trilinear has been pursued. In particular, a different question has been posed:

• if we measure a deviation on the value of the trilinear Higgs self coupling, at which energy

scale at least we should expect new physics?

Parameterising the deviation via δλ = κλ−1 it has been found [161] that perturbation theory breaks

down at the Emax scale

Emax .
13 TeV

|δλ|
, (2.26)

regardless of the specific shape of the Higgs potential. Thus, if a deviation from λSM
H 3 is observed, it

would provide a target for the energy to explore at future colliders.

UV-complete models

We now turn to our second question, namely how large the trilinear Higgs self-coupling can be

in renormalisable models. As a first step, we need to identify the class of models with potentially

6The ATLAS and CMS combinations of H H results based on 2016 Run 2 dataset [68,69] are discussed in details in Sec.
7.1 and a first attempt of combining them is reported in Fig.7.4. The strongest constrains results to be −6.8 < κλ < 14.
Therefore experimental data are currently less constraining than the perturbative conditions. But we expect that the full
LHC Run 2 data (a factor three larger than 2016 Run 2 dataset) would reach the perturbative constraints for low κλ values.
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φ Oφ

(1,1,0) φΦΦ†

(1,2, 1
2 ) φΦΦ†Φ†

(1,3,0) φΦΦ†

(1,3,1) φΦ†Φ†

(1,4, 1
2 ) φΦΦ†Φ†

(1,4, 3
2 ) φΦ†Φ†Φ†

Table 2.1: List of new scalars φ inducing a tree-level modification of κλ via the tadpole operator Oφ.
The (SU (3),SU (2),U (1)) representation is displayed in the left column.

the largest trilinear Higgs self-coupling modifications. For simplicity, we restrict ourselves to one

particle extensions of the SM and focus on the regime where the new states are heavier than the

SM ones but not necessarily yet in the EFT regime. This is motivated by the fact that we want to

concentrate on the case where the leading effects in di-Higgs production are due to the deviation in

the Higgs trilinear.

The EFT regime can still be very useful in order to classify the SM extensions that can potentially

yield the largest effects. In fact, we want to select those representations that can contribute to the

operator (Φ†Φ)3 once integrated out (see also Ref. [162]). In Table 2.1 we give the complete list of

scalar representations φ that introduce a tree-level modification to the trilinear Higgs self-coupling

in the EFT limit and that are characterized by the presence of a tadpole operator Oφ. The φ states

(1,3,0), (1,3,1), (1,4, 1
2 ) and (1,4, 3

2 ) receive a vacuum expectation value that violates custodial sym-

metry and hence these cases are strongly constrained by EW precision measurements, while (1,2, 1
2 )

with the operator φΦΦ†Φ† corresponds to a general two-Higgs doublet model without Z2 symme-

try. Such a model leads in general to flavour-changing neutral currents and hence requires extra

assumptions in the flavour structure. We will hence concentrate on the simplest case of a singlet

extension (1,1,0), with potential

V (Φ,φ) =µ2
1|Φ|2 +λΦ|Φ|4 +

µ2
2

2
φ2 +µ4|Φ|2φ+ λ3

2
|Φ|2φ2 + µ3

3
φ3 + λ2

4
φ4 . (2.27)

Some of the parameters above can be replaced by phenomenologically more accessible ones, like

the mixing angle cosθ between the singlet and the doublet fields, the vacuum expectation values

and the masses of the Higgs bosons. Choosing as input parameters m1 = 125 GeV, m2, θ, vH =
246 GeV, vS , λ2, λ3, we scan them in the range 800 GeV < m2 < 2000 GeV, |vS | < m2, 0.9 < cosθ < 1,

and in the perturbative regime 0 <λ2 < 8
3π, |λ3| < 16π. We further check the compatibility with EW

precision observables, where the strongest bound comes from the measurement of the W -boson

mass [163] and a combined fit to the Higgs signal (see also the discussion in Sec. 3.1). The per-

turbativity bound on λ2,3 is set by perturbative unitarity, while for the dimensional coupling µ3 we

require the loop-corrected vertex to be smaller than the tree-level one [159]. In addition, we re-

quired the potential to be bounded from below and checked for vacuum stability by means of the

code VEVACIOUS [164], with the model file generated by SARAH [165, 166].

The results of the parameter scan can be found in Fig. 2.6. All points on the left of the light

blue dashed line are excluded by Higgs coupling measurements, while everything on the left of the

dark blue line is excluded by the measurement of mW . The red, yellow, green points correspond

respectively to an unstable, metastable, stable EW vacuum. As it can be inferred from the figure,
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Figure 2.6: Modification of the trilinear Higgs self-coupling obtained from a scan over the singlet
model parameters. The plot is taken from Ref. [154] and adapted for this report.

the vacuum instability cannot constrain the modification of the trilinear Higgs self-coupling. The

maximal possible deviations allowed in the model are given by

−1.5 < κλ < 8.7. (2.28)

We now discuss the case of the MSSM as an example of a UV-complete model where BSM ef-

fects are more complex than in the scenario just considered. Assuming that at the LHC no further

particle related to the EWSB is discovered, in particular no further Higgs bosons, in Ref. [167] the

maximal SM deviations of the triple Higgs coupling of the light CP-even Higgs boson was estimated.

Constraints from the W -boson mass have a minimal influence, while viable deviations are mainly

constrained by the shape of the discovery potential and the size of the Higgs boson mass.

For a correct determination of the maximal deviations of the triple Higgs coupling, in the MSSM

it is crucial that the same approximation is used for the prediction of both the Higgs mass and the

triple-Higgs coupling. Also, the input parameters must be the same in order to find the decoupling

behaviour of the MSSM [168], i.e., λ→ λSM for MA → ∞. Taking into account all the corrections

given in Ref. [169], which especially includes the O (M 2
Z /v2 y2

t ) terms, the largest deviations were

found for tanβ = 5 and low MA values, MA ∼ 200 GeV,7 leading to about a 15% deviation of the

SM Higgs triple coupling. Note that the approximation from Ref. [169] partly leads to smaller Higgs

mass values and, hence, a wider exclusion of parts of the parameter points due to a too low Higgs

boson mass value w.r.t. other approximations including further higher-order corrections. In order

to account for this effect, a relaxed Higgs boson mass constraint was applied, see Ref. [167] for

details. Instead, for tanβ ≥ 10, the estimated maximal deviation is about 2%. The latter limit does

not change if one assumes that stop quarks are heavier than 2.5 TeV (one should note however

that the approximations used to derive the MSSM Higgs mass value and the corresponding triple

Higgs coupling have a much larger uncertainty for large stop masses, since large logarithms are not

re-summed in this approximation). On the other hand, the up-to-date results of the searches for

heavy Higgs bosons and, in particular, the measurements of the properties of the discovered Higgs

boson disfavour such a low value of MA . For MA & 350 GeV, the maximal deviations found are. 4%.

Thus, it will be very difficult to discover the imprint of the MSSM on the trilinear Higgs self-coupling

7It is important to note that in the region of tanβ= 5 a relatively light CP-odd Higgs boson of a mass of 200 GeV could
be present and still be undiscovered according to the discovery potential assumed in Ref. [167].
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both at the HL-LHC and at a 100 TeV future collider.

2.3 Impact of EFT fit

2.3.1 EFT fit for H H production
F. Goertz, A. Papaefstathiou, J. Zurita

In terms of the EFT coefficients, as defined in Eq. (2.10), the relevant interaction terms entering H H

production in gluon-gluon fusion read [109]

LH H =− m2
H

2v

(
1+ c6 −

3

2
cH

)
h3 −

[mt

v

(
1+ ct −

cH

2

)
t̄L tR h

− mt

v2

(
3ct

2
− cH

2

)
t̄L tR h2 +h.c.

]
+
αscg

4π

(
h2

2v2 + h

v

)
Ga
µνGµν

a ,

(2.29)

where we neglected light fermions, whose impact is in general expected to be small [118, 170], and

also neglected effects from the chromomagnetic operator, OtG . Moreover, in order to canonically

normalise the Higgs kinetic term (after EWSB) and to remove derivative interactions, we employed

the field redefinition h →
(
1− cH

2

)
h − cH

2v h2 − cH

6v2 h3.

Beyond modifying the trilinear self-coupling and the top-Yukawa coupling (first two terms in

Eq. (2.29)), entering Higgs pair production via the SM-like triangle and box diagrams, as given in

the upper panel of Fig. 2.1, the D = 6 operators induce new topologies, producing a Higgs pair via

4-point contact interactions with a scalar quark current or with the gluon field strength squared, or

finally via a splitting from a contact-like single Higgs production, see the second row of Eq. (2.29).

The corresponding Feynman diagrams are given in the lower panel of Fig. 2.1. The resulting differ-

ential cross section in the (linear) EFT becomes [109]

dσ̂(g g → H H)

dt̂

∣∣∣∣
EFT

= G2
Fα

2
s

256(2π)3

{∣∣∣(1−2cH + ct + c6)
3m2

H

ŝ −m2
H

F4+ (1− cH +2ct )F2

+ (3ct − cH )3F4+2cg

(
1+ 3m2

H

ŝ −m2
H

)∣∣∣2 +
∣∣∣G2

∣∣∣2
}

, (2.30)

where we ordered the various contributions accordingly, and the form factors F4,2,G2 take the

same form as in the SM [109] (see Sec. 1.2) and can be obtained from Ref. [22]. Note that the spin-2

contribution to the box topology, G2, receives no D = 6 corrections.

For our phenomenological analysis we have implemented the Lagrangian in Eq. (2.29) into the

HERWIG++ event generator, which allows to appropriately take into account changes in kinematic

distributions that will substantially modify the efficiency of the experimental analysis. To treat

higher order QCD corrections, we normalise our results to the NNLO QCD SM calculation of the

cross section of ∼ 40 fb [27] and include a conservative theory uncertainty of fth = 30%, compris-

ing scale, PDF plus strong coupling, and K -factor uncertainties of O (10%) each [84]. Regarding the

decays of the Higgs pair, we consider the H H → bb̄τ+τ− final state, where we also include the im-

pact of the D = 6 operators on the partial widths, via modified Yukawa couplings, as well as the NP

effects on the total width, and follow the analysis steps lined out in Ref. [171]. For more details, the

reader is referred to Ref. [109].

In the following, we consider the six-dimensional parameter set (c6,cH ,cg ,ct ,cb ,cγ), fixing in

addition cτ ≡ cb for simplicity. As a first result we present, in the left panel of Fig. 2.7, the impact of
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Figure 2.7: Left: Relative change in the H H cross section in dependence on individual operators.
The dashed parts of the curves are excluded at 95% CL from Higgs boson data. Right: Corresponding
efficiency of the analysis. See text for details.

varying individual coefficients out of this set on the H H production cross section relative to the SM

value σ(ci )/σSM. The dashed parts of the curves represent regions which are excluded at the 95%

CL by Higgs boson data8, employing HiggsBounds and HiggsSignals. We can see a particularly

pronounced dependence on the Yukawa-like and gluonic D = 6 operators, while the negative inter-

ference between the triangle and box diagrams leads to a decreased cross section for positive c6. In

the right panel of the same figure, we show the efficiency of our analysis, varying the same coeffi-

cients, where the non-trivial curves confirm the importance of using Monte Carlo event generation.

The resulting projected constraints on the EFT coefficients at the HL-LHC with an integrated

luminosity of 3000 fb−1, assuming the SM to be true, are presented in Fig. 2.8. Here, we consider

three different two-parameter planes, varying ct ,cg , and cb , each along with c6. We marginalise over

those parameters that are not shown, employing a Gaussian weight that corresponds to a projected

measurement of the respective (single Higgs) observables at the HL-LHC at the 10% level [109]. The

plots display the p-values obtained for a grid of points in the corresponding planes via a color code

and the 1-sigma contours as black dashed lines.

Looking at the (ct ,c6) plane, shown in the left plot, we see a strong dependence of the self-

coupling constraint on ct . In fact, for ct ∼ 0.2 the projected bound is significantly shifted compared

to ct = 0, since the effects of both coefficients on the production cross section can compensate each

other. Beyond that, a similar sensitivity is found with respect to the gluonic contact interactions,

entering the (cg ,c6) plane presented in the middle plot, and on changes in the bottom Yukawa cou-

pling, appearing in the rightmost (cb ,c6) plane (with cb ≡ cτ). In the latter case, a reduction in the

production cross section via c6 > 0 could for example be lifted by an enhanced branching ratio into

bottom quarks and τ leptons.

Finally, we summarise our projected HL-LHC constraints on c6, marginalising over all other

coefficients, in the following table:

full full (future) c6-only

c6 &−1.2 c6 ∈ (−0.6,0.6) c6 ∈ (−0.4,0.4)
.

The result given in the left column corresponds to a marginalisation assuming present experimental

uncertainties for the Higgs couplings, and delivers a very weak projected constraint [109], leaving c6

8The 95% CL limits obtained in Fig. 2.7 correspond to the bounds available at the time of the publication of Ref. [109].
Note the different sign convention in the top-Yukawa coupling ct with respect to Fig. 2.2.
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Figure 2.8: Projected exclusions in the (ct ,c6), (cg ,c6), and (cb ,c6) planes at the HL-LHC, assuming a
theoretical uncertainty of fth = 0.3. The plots show the p-values obtained after marginalisation over
the directions orthogonal to the respective planes, including the 1-sigma contours as black dashed
lines. See text for details.

unbounded from above, which highlights the importance of a combined analysis. Once we consider

an improved determination of the Higgs properties via single Higgs production at the 10% level,

as discussed above, the projected constraint on c6 improves significantly, reaching the 60% level

as presented in the middle column. This is rather close to, but still worse than, the naive bound

where only variations in c6 are allowed, leading to a projected 40% determination as given in the

last column and agreeing with previous estimates [172].

We close noting that a constraint on the trilinear coupling at the . 100% level would in partic-

ular mean that one could probe the presence of the only relevant operator in the SMEFT, namely

the µ2 term, whose existence has so far not been established experimentally yet [162] and whose

absence would lead to a strong decrease of the Higgs pair production cross section of ∼ 70%. It

is clear that further studies of Higgs pair production, especially considering its kinematic distribu-

tions, would be interesting to still improve constraints and to disentangle different EFT effects, see

e.g. Refs. [110, 160, 173].

2.3.2 Impact of single Higgs production
S. Di Vita, C. Grojean, U. Haisch, F. Maltoni, D. Pagani, G. Panico, M. Riembau, A. Shivaji,

T. Vantalon, X. Zhao

In this section we discuss an alternative strategy for extracting the information on the trilinear Higgs

self-coupling: the precise measurement of single Higgs production [113, 114, 128–134] at the LHC.

Indeed, single Higgs production is sensitive to the trilinear Higgs self-coupling via EW one-loop

corrections (two loops for gluon-gluon fusion production and H → γγ decay). Thus, this strategy

is based on indirect measurements and it is complementary to the direct measurements via dou-

ble Higgs production. In single Higgs production, the effects of a modified Higgs self-coupling are

much smaller, but the precision of the experimental measurements is and will be much better than

in the case of double Higgs production. Moreover, many different final states (at the differential

level) can be measured, leading to competitive bounds for the trilinear Higgs self-coupling. Even

EW precision observables can be helpful for setting these bounds [174, 175].

In this section we recall the most important points of the calculation framework introduced in

Refs. [129, 130]. Recently, updated numerical results for the effects induced by a modified trilinear

Higgs coupling have been presented in Ref. [176] for inclusive and differential quantities; we do

not report them here, but they have been exploited for the projections of the determination of the

trilinear Higgs self-coupling that are discussed in this section.
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Assuming on-shell single Higgs production, the signal strength for the process i → H → f , i.e.

its rate normalised to the corresponding SM prediction, is µ f
i = µi ×µ f , where µi and µ f are the

signal strengths for the production process i → H and the decay H → f , respectively. Therefore, µi

and µ f can be expressed as

µi = 1+δσλ
H3

(i ) , µ f = 1+δBRλ
H3

( f ) , (2.31)

where δσλ
H3

(i ) and δBRλ
H3

( f ) are the deviations induced by an anomalous interaction, including

the case of the trilinear Higgs self-coupling, to the production cross sections and branching ratios,

respectively. This definition can be also extended to the differential level.

In the case of vector boson fusion, W H , Z H , t t̄ H and t H j production, the trilinear Higgs self

interactions start to enter only at the one-loop level. On the contrary, gluon-gluon fusion produc-

tion and the decays H→ g g ,γγ depend on this coupling only via two-loop EW corrections. It is

important to note that in all single Higgs processes the dependence on the quadri-linear Higgs self-

coupling is further delayed by one loop order. On the other hand, it is possible in a similar way

to probe quartic Higgs self-couplings via EW corrections to double Higgs production [134,160,177].

Results for future hadron colliders exploiting this strategy to set bounds on the quartic self-coupling

are discussed in Sec. 10.3, and in Sec. 9.9 for the case of e+e− machines.

The anomalous trilinear Higgs self interactions can be parameterized via κλ (see (2.11)). Each

single Higgs production or decay channel receives two different kinds of λH 3 -dependent contribu-

tions [129, 130]. First, a process and kinematic dependent contribution, denoted in the literature

as C1, which parameterises the linear dependence on κλ. Second, a universal contribution that is

associated to the renormalization of the Higgs wave function and induces a quadratic dependence

on κλ. On the contrary, in the case of the decays only a linear dependence on κλ is present, due to

the cancellation of the effects associated to the Higgs wave function renormalization. Specifically,

the signal strength µi for the production process i → H can be written in the following way,

µi (κλ) = σBSM(i )

σSM(i )
= 1+δµi (κλ)+Z BSM

H (κ2
i −1) , (2.32)

where Z BSM
H

(
κλ

)
is defined as:

Z BSM
H

(
κλ

)= 1

1− (κ2
λ−1)δZH

with δZH =−1.536×10−3 ; (2.33)

κ2
i =σBSM

LO (i )/σSM
LO (i ) takes into account additional variations of Higgs boson couplings to other par-

ticles (e.g. fermions, vector bosons) or it can be taken equal to one when variations of the trilinear-

coupling only are considered. Assuming that (NLO) QCD corrections factorise anomalous κλ ef-

fects and taking into account also NLO EW corrections in the SM and on top of Z BSM
H , the quantity

δµi (κλ) is defined as

δµi (κλ) = σBSM
NLO(i )

σSM
NLO(i )

−1 = Z BSM
H

1+ (κλ−1)C i
1

KEW(i )

−1, (2.34)

where KEW(i ) ≡ σSM
NLOEW

(i )/σLO(i ) is the NLO EW K -factor in the SM, which therefore includes also

the Higgs self-coupling one-loop corrections in the SM. The values of KEW(i ) and C i
1 for the different

production mechanisms can be found in Ref. [133] for the inclusive case, and also the differential

values have been presented therein (see Figs. 2-10). It is worth to note that, although the size of
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trilinear coupling modifier [136].

KEW(i ) is quite sizeable and has a non negligible impact on the prediction of the (differential) cross

sections σ, in the case of δµi (κλ) its impact is very small [133]. Finally, each decay process H → f is

scaled by the signal strength

µ f (κλ) '
κ2

f + (κλ−1)C f
1∑

j BRSM( j )[κ2
j + (κλ−1)C j

1 ]
, (2.35)

where
∑

j runs over all the Higgs boson decay channels and κ j is the branching fraction modifier

for the j final state, κ2
j = BRBSM

LO ( j )/BRSM
LO ( j ). The dependence of the production cross sections and

branching fractions with κλ is shown in Fig. 2.9.

The processes W H , Z H , and especially t t̄ H , entail a larger linear dependence on λH 3 with re-

spect to the other processes. Moreover, also a stronger kinematic dependence is present, with larger

values associated to the threshold region [130, 131, 133]. In the case of VBF, the kinematic depen-

dence is instead rather flat [130, 131, 133]. Fully differential results for these production mecha-

nisms can be obtained with the code presented in Ref. [133]. The calculation of differential effects

for gluon-gluon fusion would be desirable, but it is not yet available due to its higher complexity, as

it involves the evaluation of two-loop EW diagrams for the process pp → H + jet. The calculation of

the relevant amplitudes in an asymptotic expansion near the limit of infinitely heavy top quark has

been performed for a generic κλ in Ref. [178]. The corresponding numerical results indicate that

the effect of κλ variations in the pT,H spectrum are almost flat within the range of validity of the

expansion (i.e. pT,h < mt ' 173GeV). This feature is illustrated in Fig. 2.10 for the choice κλ−1 = 10.

Above the top threshold, distortions of the pT,H distribution due to the κλ corrections are, however,

expected.

Since single Higgs production processes have already been measured, constraints on λH 3 can

be set following this strategy. Especially, since C1 is different for any production and decay channel,

a fit involving different measurements can be very powerful for the determination of a single pa-

rameter. Based on the results presented in Ref. [179], which do not exploit differential information,

assuming the only deviations from the SM are associated to λH 3 , the following 2σ bounds can be

set [130]:

−9.4 < κλ < 17.0 at 8 TeV (2.36)
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Figure 2.10: Effect of κλ corrections on the pT,H spectrum in pp → H+jet production. As indicated,
the curves correspond to different orders in the asymptotic expansion in the top-quark mass mt ,
and all show the ratio between the new-physics and the SM prediction for the choice κλ−1 = 10.

and following the same approach, based on the results presented in Ref. [118],

−4.7 < κλ < 12.6 at 13 TeV. (2.37)

Notably, bounds in Eq. (2.37) are competitive with the currently strongest bounds from double

Higgs production measurements [68]. Very recently, the first experimental results obtained follow-

ing this strategy have been presented by ATLAS [136]. This measurement is in good agreement with

the estimate in Eq. (2.37) and is discussed in detail in Sec. 7.6.

The aforementioned limits, however, assume a very peculiar BSM scenario, in which the only

relevant effects originate from the trilinear Higgs coupling, allowing for O (1) deviations without

any effect on other Higgs couplings. In fact, these limits critically depend on other aspects [113,

133]. First, the number of additional parameters, which are related to other anomalous interactions,

and the number of independent measurements that are taken into account in the fit. Second, the

inclusion or not of the information from differential distributions. Third, the fit assumptions on

the size of the theoretical and experimental uncertainties. Also for these reasons, ATLAS and CMS

analyses with a full-fledged treatment of all the correlations and with different assumptions on the

the number of BSM parameters are essential. The first of these kind of analyses, which has been

presented in Ref. [136] and it is also discussed in Sec. 7.6, is supporting the validity of this strategy.

As shown in Ref. [133], assuming only deviations on the Yukawa coupling of the top quark (κt )

and/or a common rescaling of the Higgs gauge interactions (κV ), limits are mildly affected. On

the other hand, in general, a new dynamic affecting the Higgs self-coupling would leave a more

complex imprint on the other Higgs interactions and can have a strong impact on the bound on

λH 3 [113]. Adopting the EFT framework described in Ref. [113], nine additional coefficients param-

eterise the possible deviations in single Higgs production (see Eq. (2.12) and related discussion):

δyt , δyb , δyτ, cg g , cγγ, δcz , czz , czä, czγ. (2.38)

For the determination of λH 3 , a global fit is important not only because it involves different

processes that entail a different dependence on λH 3 , but also because it allows to assess the robust-

ness of bounds such as those in Eqs. (2.36) and (2.37), where only λH 3 variations are considered.
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Figure 2.11: HL-LHC at 13 TeV and 3 ab−1. Left: Single Higgs with only inclusive measurements
(orange) and including differential information (blue) with only κλ (pale colour) or marginalising
over the nine EFT coefficients (strong colour). Right: Constraints from differential single Higgs
(blue), differential double Higgs (dashed red) and their combination (pink).

For example, a global fit using only inclusive single Higgs observables such as those presented in

Ref. [113], which is based on only nine independent measurements, and taking into account the

additional nine EFT deviations listed above, suffers from a flat direction. Therefore, λH 3 remains

unconstrained under these assumptions. On the other hand, its presence in the fit decreases the

accuracy in the determination of some of the other nine coefficients. In order to lift this degener-

acy, it is possible to include data from differential measurements. Indeed δκλ ≡ κλ−1 has a non-flat

effect on single Higgs distributions.

We summarise the global fit for the HL-LHC in Fig. 2.11. The width of the bands represent

the results obtained assuming two different uncertainty scenarios, S1 and S2, which correspond to

the projected uncertainties on the inclusive signal strengths recommended by the ATLAS and CMS

collaborations for the different production and branching ratio9. In the case of differential distri-

butions, as a first step, the projections of the uncertainties are estimated by rescaling the statistical

uncertainties bin by bin. However, this is a very conservative estimate, because it assumes the back-

ground to be flat, while this one is typically larger at lower energies. Therefore, following the CMS

analysis on t t̄ H production with H → γγ [135] as a template, we have tilted the background accord-

ingly10. In the left plot, we show the∆χ2 for single Higgs projections including differential informa-

tion (blue), both assuming only δκ effects (pale colour between dotted lines) and profiling over the

other nine parameters (strong colour between solid lines). Since the lines are not very separated,

we can understand that constraints are mostly dominated by statistics. In the case of orange bands,

we do not include the differential information and we show only the case in which only δκλ effects

are present. As can we see form Fig. 2.11, including the nine EFT parameters, the constraints on the

trilinear coupling are weaker due to correlations. The strongest effects are due to the correlations

between δyt and cg g , and also between δyb and δcz . On the other hand, the differential information

partially removes flat directions. In the right plot we compare and combine the constraints, includ-

ing differential observables (blue), with those achievable via double Higgs production, according to

Ref. [110] (red). Their combination is depicted in pink. Allowing non-negligible effects from all the

nine EFT parameters, double Higgs is leading to much stronger constraints. Nevertheless, single

9The first scenario (S1) assumes the same uncertainties as those used in the published in ATLAS and CMS Run 2
analyses [68, 69]. The second scenario (S2) features a reduction of the systematic uncertainties due to the improvements
expected to be reached at the end of HL-LHC program [176].

10With this procedure a good agreement with the CMS analysis is found, for this channel only. As a simple guess, we
use it for the rest of the uncertainties
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Higgs data are expected to be relevant and help in lifting the degenerate minima around δκλ ∼ 5.

In conclusion, the indirect bounds on the Higgs self-coupling arising from single Higgs produc-

tion are competitive to those obtained from double Higgs measurements in the case of exclusive κλ
variations, and while they become weaker in a fit that includes all the relevant EFT operators, they

can still help to improve the bounds obtained from double Higgs production if differential informa-

tion is included. At the LHC both direct and indirect constraints on κλ have been independently

derived, mostly by considering only κλ variations. In some cases also a restricted set of additional

operators was considered, though still not including potentially large effects from others (e.g. si-

multaneous κλ-δyt fits without including cg g , which can produce effects of a similar size as δyt

in gluon fusion). The natural step forward is the simultaneous fit of both direct and indirect con-

straints, and the gradual inclusion of the relevant EFT operators in the analysis, which becomes

even more important as the experimental sensitivity increases.

2.4 EFT shape benchmarks

A. Carvalho, F. Goertz

The differential distributions for the non-resonant H H signal depend critically on the Higgs boson

anomalous couplings to the SM particles. This happens in all the di-Higgs production modes, how-

ever due the quantity of possible free parameters and a cancellation between some of the diagrams

contributing to the process, the effect is stronger in the ggF production mode, the dominant pro-

duction process of Higgs boson pairs in the most reasonable parts of the EFT parameter space. The

dependence of the signal on mH H can vary as much as being localised around mH H = 250 GeV, to

contain dips around mH H = 400 GeV and/or to contain a non-negligible tail of events that could

extend up to 800 GeV or even beyond 1 TeV, when Higgs anomalous couplings are allowed to vary

on a theoretically reasonable range (see for instance Fig. 2.3).

In order to construct an analysis aiming to find new physics effects, it is very useful to have a

finite set of benchmarks that cover the most typical kinematic scenarios for the signal, especially

if we expect a small signal rate on top of a sizeable background. On the experimental side, bench-

marks are used for very practical reasons: they define a finite number of simulations to be done with

optimal coverage of signal possibilities; those simulations are primary used to check the sanity of

the data analysis on different phase space regions, and eventually for specific selections, optimiza-

tion and/or design of subcategories. In a scenario where small variations of continuous parameters

lead to non-negligible changes on signal shapes, it is not obvious how to construct a finite set of

benchmarks that would be comprehensive on most of the possible signal shapes based solely on

theoretical principles. To maximise the potential of an early LHC discovery to anomalous di-Higgs

production, it seems natural to define the benchmarks based on kinematic features. As by construc-

tion only kinematic features are used to define the benchmark points, those are referred as shape

benchmarks [180].

To define the shape benchmarks, a Monte Carlo is used to simulate the possible signal shapes

on a large portion of the theory parameter space. At LO in ggF, the di-Higgs system can be fully de-

scribed with two kinematic variables: mH H and the angle between one of the bosons and the beam

pipe measured in the di-Higgs centre of mass reference frame (cosθ∗). A large Monte Carlo sam-

pling (1507 samples) populating the parameter space of Higgs anomalous couplings with a range of

variations slightly larger than the reasonable theory and experimental limits, provided a rich sam-

pling of possible distributions on the (mH H ,cosθ∗HH) plane. The parameters used for this scan are

the ones described in Eq. (2.19). In the scan chhh is allowed to vary between -15 and 15, ct between
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Benchmark chhh ct ct t cg g h cg g hh

1 7.5 1.0 −1.0 0.0 0.0

2 1.0 1.0 0.5 −1.6
3 −0.2

3 1.0 1.0 −1.5 0.0 0.8
3

4 −3.5 1.5 −3.0 0.0 0.0

5 1.0 1.0 0.0 1.6
3

1.0
3

6 2.4 1.0 0.0 0.4
3

0.2
3

7 5.0 1.0 0.0 0.4
3

0.2
3

8 15.0 1.0 0.0 −2.0
3 −1.0

3

9 1.0 1.0 1.0 −0.4 −0.2

10 10.0 1.5 −1.0 0.0 0.0

11 2.4 1.0 0.0 2.0
3

1.0
3

12 15.0 1.0 1.0 0.0 0.0

SM 1.0 1.0 0.0 0.0 0.0

Table 2.2: Parameter values of the twelve benchmarks [180]. The SM reference is also shown.

0.5 and 2.5, while cg g h and 2cg g hh range between -1 and 1 and ct t between -3 and 3. A more detailed

description of the input grid can be found in Ref. [180] (note the different normalisation of the EFT

parameters).

A statistical Two-Sample test (TS-test) based on binned distributions on the mH H and cosθ∗

variables is then used as an order parameter to group the large input sample on a smaller set of

clusters, such that on each of these clusters the members are the most similar between themselves.

The shape benchmark is defined as the element most similar to all the other samples of the cluster

(according to the TS-test). The final number of clusters, Nclus, and therefore the number of shape

benchmarks, was chosen such that a reasonable trade-off between homogeneity and multiplicity

of the clusters is achieved. To this end, the value Nclus = 12 was found to be optimal: one cluster

less would result on a too heterogeneous cluster, while one more would define a redundant subset

of shape benchmarks. The values of the EFT coefficients for each of the benchmarks are listed

in Table 2.2, and the mH H distribution for each of the clusters (and benchmarks) is presented in

Fig. 2.12.

A large variability in the kinematic topologies is related to the local minima of the total cross

sections (where the largest cancellations among the different contributions occur). As a result of

this connection, the points in a given cluster are usually distributed in a couple of simply connected

regions of couplings (see Figs. 7-9 in Ref. [180]), demonstrating the robustness of the method on

consistently separating regions of the theory parameter space. The same strategy can be applied

to the other di-Higgs processes, as for example VBF, considering that more kinematic variables are

necessary to feed the TS-test, as more variables are necessary to describe the process.

The comparison of the constraints obtained by a given experimental analysis on each of these

shape benchmarks can provide a useful insight, since they summarise the typical distortions on

the signal distributions, therefore allowing to understand to which portion of the phase space each

analysis is more/less sensitive. CMS results interpreted in terms of these shape benchmarks are

presented in Sec. 7.1; the observed upper limits on the di-Higgs production cross section can vary

up to two orders of magnitude across different shape benchmarks. It is important to highlight,

however, that the usage of shape benchmarks and its presence on a set of final results does not
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Figure 2.12: Generation-level distributions for the di-Higgs invariant mass mH H . The red lines cor-
respond to the benchmark of each cluster, while the blue lines describe the other members of each
cluster [180].

substitute the need for other ways of producing and presenting results. If we want to have precise

limits on Higgs anomalous couplings, a possible approach is to propose sets of 1D and 2D scans to

be directly produced by the collaborations. However, it is not practical to generate large grids only

for interpretation purposes. In this sense, to have the MC generated on terms of shape benchmarks

can be useful as basis for MC re-weighting, as they by construction contain events that populate all

parts of the possible phase space [173].

Even with a re-weighting method that allows to produce results in several kinds of parameter

scans without large computing resources, it is not possible for the experiments to cover with a finite

set of scans all the dimensionality of the EFT considering any possible correlation between anoma-

lous couplings of all possible EFT UV completions . The design of a format for the results that allows

an easy reinterpretation is imperative for the long-term usage of the huge experimental work that is

invested on di-Higgs searches. Some ideas are discussed in Sec. 6. As long as such a method is not

defined and implemented, an alternative for a first coarse estimation of the effects of anomalous

couplings in specific portions of the EFT is to use the TS-test to find which is the shape bench-

mark that these specific points are more similar to. The limit for this point can be estimated to be

equal to the one of the most similar shape benchmark. An exercise of such procedure on the Run 2

H H → bb̄γγ ATLAS and CMS analyses can be found in Ref. [173]. As the mapping between a new

investigated point and the most similar shape benchmark is based only on kinematic information,

this technique also allows to estimate the limits beyond the EFT domain, as for example the case of

interference with resonances when a localised peak is not obvious.

The shape benchmarks were also used to study the typical shape modifications that can occur at

NLO level, including the full top-quark mass dependence [71]. While the main qualitative features

of the distributions (the position of peaks, dips, and the presence or not of sizeable high mass tails)

are mostly unchanged from LO to NLO, it was found that the NLO corrections are important for a
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correct experimental assessment of the Higgs anomalous couplings, with K-factors that can present

large variations across the mH H range, and whose size also depends considerably on the value of

the anomalous couplings (see e.g. Fig. 1.9 for the case of chhh). Based on these results, it is clear that

an extension of the shape benchmarks to NLO is desirable. However, having in mind that the main

goal of these benchmarks is to provide a first assessment of the sensitivity of a given analysis to

shape modifications and their connection to the EFT parameter space, and not to provide a precise

description that includes all the richness present in a full EFT scan, their present LO formulation

might be sufficiently accurate for their purpose, though NLO studies (in the lines of Ref. [71]) to

confirm this statement are in order.
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Chapter 3

New Physics in Higgs pair production

Editors: R. Gröber, I. M. Lewis, Z. Liu

While model-independent approaches in effective field theory are usually applicable for heavy new

physics, spectacular new physics signatures can show up in Higgs boson pair production in the

presence of new degrees of freedom, with masses below the validity range of an effective field the-

ory. Strongly enhanced cross sections for Higgs pair production are typical in the presence of a light

new resonance decaying to a Higgs boson pair. This is a common feature of models with extended

scalar sectors with sizeable couplings of the new resonance to a pair of Higgs bosons.

The simplest extension providing such a new scalar resonance is the SM augmented with a new

scalar that is a singlet under the SM gauge groups, which we discuss in Sec. 3.1. We put a particular

emphasis on the interference effects with the background of the box diagrams and the triangle di-

agram with SM Higgs boson exchange in Sec. 3.2. In Sec. 3.4, we turn to various other models with

extended Higgs sectors, the complex two-Higgs doublet model (C2HDM), the singlet extension of

the 2HDM, the next-to-minimal supersymmetric extension of the SM (NMSSM) and the Georgi-

Machacek model. In the context of these models, we provide benchmarks for resonant production

of a SM-like Higgs boson pair and final states with different Higgs bosons. We will shortly comment

on spin-2 resonances decaying to a Higgs pair in Sec. 3.3.

The Higgs boson pair production cross section can also be modified by the presence of new

colored particles in the gluon-induced loop. Prime examples are scalar particles, as for instance

top squarks in supersymmetry [181–183], or new vector-like fermions, as they would appear for

instance in Composite Higgs Models [184, 185]. Double Higgs production allows to break the de-

generacy present in single Higgs production between a shift in the top Yukawa coupling and new

physics in the gluon fusion loop [110, 184, 186]. We will discuss the impact of new particles in the

loop in Sec. 3.5.

In Sec. 3.6, we address the impact of a measurement of the Higgs pair production cross section

on cosmology. Since in successful models of electroweak baryogenesis a deformed potential with

respect to the SM one is required, a measurement of the trilinear Higgs self-coupling has a direct

impact on possible explanations of the matter-antimatter asymmetry of the universe. Finally, in

Sec. 3.7, we will show that searches for final states with Higgs pairs and missing energy have the

potential to uncover a dark sector that could provide a dark matter candidate.
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3.1 Spin-0 models

S. Dawson, I. M. Lewis, T. Robens, T. Stefaniak, M. Sullivan

Resonant double Higgs production is one of the most spectacular signatures to look for in Higgs

physics. The simplest extension of the SM, the addition of a real gauge singlet scalar [187–191],

can result in resonant double Higgs production [191–211]. The most general renormalizable scalar

potential can be expressed (using the parametrization of Ref. [196]) in the following way [190, 212]

V (Φ,S) = −µ2Φ†Φ+λ
(
Φ†Φ

)2 + a1

2
Φ†ΦS + a2

2
Φ†ΦS2

+b1S + b2

2
S2 + b3

3
S3 + b4

4
S4, (3.1)

where S = (vS + s)/
p

2 is a gauge singlet scalar, Φ = (
0, v +h

)T /
p

2 is the Higgs doublet, vS is the S

vacuum expectation value (vev), v is the Higgs vev, h is the SM Higgs boson, and s is a new scalar

boson. At the renormalizable level, Eq. (3.1) contains all possible interactions between S and the

SM particles.1 After electroweak symmetry breaking, S and h mix, resulting in two mass eigenstates

h1,2 with masses m1,2, where by definition m2 ≥ m1. Here we concentrate on the case that m1 =
125 GeV.2 The h − s mixing angle θ is defined as(

h1

h2

)
=

(
cosθ sinθ

−sinθ cosθ

)(
h

s

)
(3.2)

Due to this mixing, the couplings of h1 (h2) to SM fermions and gauge bosons are universally sup-

pressed by cosθ (sinθ), relative to the SM Higgs couplings. Hence, the production cross section for

h2 is given by the SM Higgs production rate at a mass of m2 suppressed by sin2θ, and the observed

Higgs boson h1 rates are suppressed by cos2θ relative to the SM.

If m2 > 2m1, Eq. (3.1) allows for on-shell h2 → h1h1 decays. The branching ratios of the decays

of the heavy scalar h2 to a Higgs boson pair, h1h1, and to final states with SM particles (collectively

denoted by ‘SM’) are given by

BRh2→h1h1
=

Γh2→h1h1

sin2θΓSM, tot +Γh2→h1h1

, BRh2→SM =
sin2θΓSM,h2→SM

sin2θΓSM, tot +Γh2→h1h1

,

(3.3)

respectively, where Γh2→h1h1
is the partial width of the h2 → h1h1 decay, ΓSM,h2→SM is the partial

width of the SM Higgs boson at mass m2 decaying to a SM particle final state, and ΓSM, tot denotes

the total width of the SM Higgs boson with mass m2.3

Imposing further symmetries decreases the number of free parameters. For example, a Z2 sym-

metry with the transformation properties S →−S, Φ→Φ, SM → SM requires that a1 = b1 = b3 = 0.

If S acquires a vev, vS 6= 0, the Z2 symmetry becomes softly broken. We will discuss both the non-Z2

and softly broken Z2 case below.

1At dimension-5 in an effective field theory, S can have additional couplings to SM particles [213–215] and has a
qualitatively different phenomenology, which we neglect here.

2The case m2 = 125GeV is also viable, see e.g. Refs. [201, 203, 216].
3Electroweak higher-order corrections to the h2 → h1h1 decay width have e.g. been presented in Ref. [202] and can

amount to up to 10%. We neglect these effects in the remainder of our discussion.
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Constraints

Detailed discussions of experimental and theoretical constraints on the model can be found in

Refs. [193, 201, 203, 216]. Here we briefly summarize these constraints, which are obeyed by the

benchmark scenarios proposed here, and refer the reader to the literature for more details.

The theoretical constraints that we consider are vacuum stability (both at the low and high

scale, µ ∼ 1010 GeV), perturbative unitarity, as well as perturbativity of the couplings in the scalar

potential (at the low and high scale, µ ∼ 1010 GeV). The experimental constraints are the agree-

ment with electroweak precision observables [217], with the observed W boson mass [218–221],

MW = 80.379± 0.012 GeV following Ref. [163], with null-results from LHC Higgs searches (using

HiggsBounds, version 5.4.0beta [222–226]), and with Run-1 and Run-2 Higgs boson rate measure-

ments (using HiggsSignals, version 2.2.3beta [227]).4

Z2

In the softly-broken Z2-symmetric scenario, the scalar sector is described by five parameters after

electroweak symmetry breaking, namely, m1, m2, v , sinθ, and tanβ≡ v
vs

. Two of these parameters,

v ≈ 246 GeV and m1 ≈ 125 GeV, are fixed by experimental measurements, leaving only three free

model parameters. The analytic expression for the partial decay width for h2 → h1h1 at leading

order can be found in Refs. [188,191,201,203]. Note that the specific choice of tanβ = cotθ leads to

Γh2→h1h1
= 0.

Given the constraints in Sec. 3.1, Table 3.1 lists the allowed values of sinθ and BRh2→h1h1
for sce-

narios with m2 ≥ 2m1. The maximal allowed signal rate (i.e. production cross section times branch-

ing ratio) for pp → h2 → h1h1 at the 13 TeV LHC is shown in Fig. 3.1, in direct comparison with the

current strongest upper cross section limit from the CMS combination of h2 → h1h1 searches [69].5

Both Table 3.1 and Fig. 3.1 present maximal BRh2→h1h1
values after applying all constraints, as well

as after applying EW-scale constraints only. The latter includes tests of vacuum stability and pertur-

bativity at the EW-scale, but does not require perturbitivity and vacuum stability at a higher scale

µ∼ 1010 GeV.

Non-Z2

In the non-Z2 limit, all parameters in Eq. (3.1) are allowed. Since there is no symmetry associated

with the scalar S, its vev is non-physical and we are allowed to set it to zero: vS = 0 [196, 207]. There

are now five physical parameters: the Higgs doublet vev v = 246 GeV, the scalar singlet vev vS = 0,

the observed Higgs boson mass m1 = 125 GeV, the heavy scalar mass m2 assumed to be m2 > 2m1,

and the h − s mixing angle θ. Hence, 5 of the potential parameters µ2,b1, a1,b2,λ can be solved

for [196, 207]:

µ2 =λv2, b1 =−v2

4
a1, a1 =

p
2

m2
1 −m2

2

v
sin 2θ

b2 = 2m2
1 sin2θ+2m2

2 cos2θ− a2

2
v2, λ= m2

1 cos2θ+m2
2 sin2θ

2 v2 . (3.4)

4With respect to the most recent literature [216], this work contains updated LHC Higgs search limits, in particular
for h2 → h1 h1 signatures [69, 152, 228, 229], updated Higgs boson signal rate measurements from LHC Run 2, as well as
an updated W boson mass value.

5We rescaled the NNLO+NNLL gluon fusion cross section of the SM Higgs boson [19] by sin2
θ.
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m2[GeV] |sinθ|max BRh2→h1h1
min BRh2→h1h1

max BRh2→h1h1
max

(all constraints) (EW-scale constraints)
255 0.22 0.13 0.26 0.47
260 0.22 0.17 0.32 0.54
265 0.22 0.20 0.35 0.57
280 0.22 0.23 0.39 0.60
290 0.22 0.24 0.40 0.61
305 0.22 0.25 0.40 0.60
325 0.22 0.26 0.40 0.58
345 0.22 0.26 0.39 0.56
365 0.22 0.24 0.36 0.53
395 0.20 0.23 0.33 0.49
430 0.20 0.23 0.30 0.45
470 0.22 0.21 0.28 0.42
520 0.21 0.21 0.27 0.39
590 0.20 0.22 0.26 0.36
665 0.21 0.21 0.26 0.35
770 0.20 0.22 0.25 0.33
875 0.19 0.22 0.25 0.31
920 0.18 0.23 0.25 0.31
975 0.17 0.23 0.25 0.31

1000 0.16 0.23 0.25 0.31

Table 3.1: Maximal and minimal allowed branching ratios of the decay h2 → h1h1, evaluated at the
maximal allowed value of |sinθ|. Note that minimal values for the BR(h2 → h1h1) stem from sinθ ≥
0. For the maximal BR(h2 → h1h1) we give the values obtained after applying all constraints as
well as after applying only EW-scale constraints, i.e. requiring perturbative couplings and vacuum
stability at the EW scale but not up to a high scale µ ∼ 1010 GeV. The numbers supersede those
presented in Table V of Ref. [203].

This leaves the additional potential parameters a2,b3,b4 free. The free parameters of the model are

then:

m1 = 125 GeV, m2, v = 246 GeV, vS = 0, θ, a2, b3, b4 . (3.5)

This situation differs from the Z2 limit, where all potential parameters can be solved for in terms

of masses, vevs, and the mixing angle. This additonal freedom leads to a more complex vacuum

structure. Indeed, with the additional freedom in the non-Z2 model, there are six potential extrema

of the potential in Eq. (3.1) with Higgs vevs that are not 246 GeV. The new scalar is a gauge singlet and

its vev cannot contribute to the W and Z masses. Hence, to get the observed electroweak symmetry

breaking pattern, we demand that (v, vS) = (246 GeV,0) is the global minimum. This puts stringent

constraints on the potential parameters a2 and b3 which contribute to the h2 −h1 −h1 coupling

relevant for h2 → h1h1 decays:

V (h1,h2) ⊃ λ211

2
h2h2

1

λ211 = b3p
2

sin2θcosθ+ a1

2
p

2
cosθ

(
cos2θ−2 sin2θ

)
+a2

2
v sinθ (2 cos2θ− sin2θ)−6λv sinθ cos2θ. (3.6)



3.2. Interference Effects 59

300 400 500 600 700 800 900 1000
m2 [GeV]

10−3

10−2

10−1

1
σ

(p
p
→

h
2
)
×

B
R

(h
2
→

h
1
h

1
)

[p
b

] CMS comb. (1811.09689)

obs. (95% CL)

exp. (95% CL)

±1σ

±2σ

Maximal pp→ h2 → h1h1 rate (13 TeV)

all constraints EW scale constraints only

Figure 3.1: Maximal allowed pp → h2 → h1h1 signal rate at the 13 TeV LHC in the softly-broken
Z2-symmetric case. Shown are values after applying (red solid) all constraints and (blue dotted)

only constraints at the EW scale. The corresponding BRh2→h1h1
max values are given in Table 3.1. For

comparison we include the current strongest cross section limit (at 95% CL), obtained from the
combination of various CMS h2 → h1h1 searches at 13 TeV with up to 36 fb−1 of data [69].

This limits how large the h2 → h1h1 branching ratios and pp → h1h1 production cross section can

be [196, 207].

In Fig. 3.2 we show the largest h2 → h1h1 branching ratios (left) and pp → h1h1 production cross

sections (right) allowed under the constraint the the global minimum correctly breaks electroweak

symmetry [207]. The S4 potential parameter b4 is set to the upper limit consistent with perturbative

unitarity [196, 207]. The lines sinθmax correspond to the maximal allowed mixing angle from Higgs

precision measurements and W mass measurements: |sinθ|. 0.22 for 250 GeV . m2 . 622 GeV

and |sinθ| . 0.21 for m2 & 622 GeV. We do not take into account perturbative limits from RGE

running up to a scale of ∼ 4×1010 GeV. The mixing angle, and hence h2 production rate, for sin2θ =
0.01 is smaller than any mixing angle considered in Fig. 3.1. Hence, even though BR(h2 → h1h1) is

largest for sin2θ = 0.01, it is still allowed due to the suppressed production rates of h2. Even with

these constraints, the h2 → h1h1 branching ratio can be above 80%, and the pp → h1h1 production

rate can be one order of magnitude larger than the SM prediction.

3.2 Interference Effects

It has been noted recently that the gluon-induced production of Higgs boson pairs via a heavy scalar

resonance often has large and non-trivial interference effects with the continuum SM Higgs pair

production process, which can be considered in this case a background to the resonant BSM signal.

Furthermore, in realistic models, the interfering non-resonant processes are often modified as well

with respect to the SM amplitude due to modifications to the Higgs couplings. In this section, we

examine these subtle interference effects. First, we discuss the interference effects of the underly-
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Figure 3.2: Maximum (left) branching ratios for h2 → h1h1 and (right) resonant double Higgs pro-
duction normalized to the SM rate in the non-Z2 singlet model for various h−s mixing angles [207].

ing scalar resonance. Second, we show the importance of the on-shell interference effect driven by

the dynamical phase generated by the loop diagrams. At the end of this section, a general param-

eterisation of the effective interactions and a general picture of the overall interference effects are

shown.

3.2.1 Off-shell Interference
I. M. Lewis

In the narrow-width approximation (NWA), it is usually assumed that the interference effects near a

resonance scale as Γ/M , where Γ is the width of the resonance and M its mass. In the limit Γ/M ¿ 1,

these effects are negligible. Indeed, in the narrow width approximation only the resonance makes

an important contribution to the process (see the next section for when these arguments fail). How-

ever, away from the resonance peak interference effects can be sizeable. This is especially true for

the Higgs boson and other scalars, where there are non-decoupling effects due to couplings being

proportional to masses. To illustrate this, we consider the Z2 symmetric singlet model introduced

in Sec. 3.1.

The di-Higgs invariant mass (mh1h1
) distributions for pp → h1h1 and various heavy scalar masses

are shown on the left of Fig. 3.3. We can observe that, if mh1h1
¿ m2, the invariant mass becomes

independent of the resonance mass. There are three contributions to g g → h1h1: a top quark trian-

gle with s-channel h1, a top quark triangle with s-channel h2, and a top quark box diagram. The box

diagram is independent of h2, although there is a uniform suppression from the scalar coupling, as

discussed in Sec. 3.1. However, both s-channel diagrams depend on the trilinear scalar couplings

which are altered from SM predictions.

The trilinear scalar couplings are defined in the scalar potential as

V (h1,h2) ⊃ λ111

3!
h3

1 +
λ112

2
h1h2

2, (3.7)

and in the Z2 singlet extension of the SM they are

λ111 = 3m2
1

v

(
cos3θ+ tanβ sin3θ

)
,

λ112 = −m2
2

2 v
sin 2θ

(
cosθ− tanβ sinθ

)(
1+ 2m2

1

m2
2

)
. (3.8)
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Figure 3.3: Left: Invariant mass distributions of di-Higgs final state in the Z2 symmetric singlet
model for various singlet masses. Right: Fractional contribution of the interference of h2 s-channel
contribution with h1 s-channel and box diagram contributions Ref. [198].

The s-channel contribution to the leading order amplitude is then

F tri
1 = m2

h1h1

 λ111 v cos θ

m2
h1h1

−m2
1 + i m1Γh1

− λ112 v sinθ

m2
h1h1

−m2
2 + i m2Γh2

F∆, (3.9)

where Γh j
is the total width of h j , s is the center or momentum energy squared, and F∆ is a form

factor for the triangle top loop [20, 22] normalized according to Ref. [198]. In the limit m1,mh1h1
¿

m2, Eq. (3.9) becomes

F tri
1 −−−−−−−−−−→

m1,mh1h1
¿m2

m2
h1h1

3m2
1

(
cos3θ+ tanβ sin3θ

)
cos θ

m2
h1h1

−m2
1 + i m1Γh1

−1

2
sin 2θ sinθ

(
cosθ− tanβ sinθ

))
F∆. (3.10)

Hence, the amplitude has no explicit dependence on m2 and the distribution is independent of m2

for s ¿ m2
2 as shown in the left of Fig. 3.3 [198].

Since the di-Higgs invariant mass distribution is independent of m2, the interference between

the s-channel h2 resonance and other contributions are independent of h2 for m1,mh1h1
¿ m2. As

m2 increases, the area of of the distribution satisfying mh1h1
¿ m2 increases. Hence, the size of the

interference between the h2 resonance and other contributions becomes increasingly large [198].

To illustrate this effect, the fractional contribution of the interference of the h2 s-channel with h1

s-channel and box diagram contributions is shown on the right hand side of Fig. 3.3. The leading

order interference cross section is labelled asσInt
LO while the total cross section with all contributions

is labelled as σLO. As can be seen, the interference can contribute upwards of 20% to the total cross

section for m2 ∼ 600 GeV and the interference contribution increases as m2 increases.

It should be noted this is effect is due to the h1 −h2 −h2 couplings being proportional to the

h2 mass squared. The mass dependence of the coupling then cancels the mass dependence in the

propagator. Since the Higgs is at the very least a major contributor to fundamental mass, this effect

is relatively generic and interference effects are important in Higgs physics.6

6Interference effects between scalar contributions to g g →V V , where V =W ±, Z , and continuum SM contributions
can also be important [230–232].
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3.2.2 On-shell Interference
M. Carena, Z. Liu, M. Riembau

In the case of a singlet resonance, constraints from SM precision measurements make these searches

more challenging. From one side, precision measurements imply that the singlet-doublet mixing

parameter is constrained to be small over a large region of parameter space. From the other side,

the singlet only couples to SM particles through mixing with the SM Higgs doublet. This results in

a reduction of the di-Higgs production via singlet resonance decays. In particular, the singlet reso-

nance amplitude becomes of the same order as the SM triangle and box diagram amplitudes. Most

important, in this work we show that a large relative phase between the SM box diagram and the

singlet triangle diagram becomes important. This special on-shell interference effect has important

phenomenological implications.

We will consider the simplest extension of the SM that can assist the scalar potential to induce a

strongly first-order electroweak phase transition, consisting of an additional real scalar singlet with

a Z2 symmetry. Detailed relations between the bare parameters and physical parameters can be

found in Ref. [211].

The on-shell interference effect may enhance or suppress the conventional Breit-Wigner reso-

nance production. Examples in Higgs physics known in the literature, such as g g → h → γγ [233]

and g g → H → t t̄ [234], are both destructive. We discuss in detail in this section the on-shell inter-

ference effect between the resonant singlet amplitude and the SM di-Higgs box diagram. We show

that in the singlet extension of the SM considered in this paper, the on-shell interference effect is

generically constructive and could be large in magnitude, thus enhances the signal production rate.

The interference effect between two generic amplitudes can be denoted as non-resonant am-

plitude Anr and resonant amplitude Ar es . The resonant amplitude Ar es , defined as

Ar es = ar es
ŝ

ŝ −m2 + iΓm
, (3.11)

has a pole in the region of interest and we parameterize it as the product of a fast varying piece

containing its propagator and a slowly varying piece ar es that generically is a product of couplings

and loop-functions. The general interference effect can then be parameterised as [233, 234],

|M |2i nt = 2Re(Ar es × A∗
nr ) = 2

(
Ii nt +Ri nt

)
,

Ri nt ≡ |Anr ||ar es |
ŝ(ŝ −m2)

(ŝ −m2)2 +Γ2m2 cos(δr es −δnr )

Ii nt ≡ |Anr ||ar es |
ŝΓm

(ŝ −m2)2 +Γ2m2 sin(δr es −δnr ), (3.12)

where δr es and δnr denote the complex phases of ar es and Anr , respectively.

The special interference effect Ii nt only appears between the singlet resonant diagram and the

SM box diagram. This interference effect is proportional to the relative phase between the loop

functions sin(δB−δä) and the imaginary part of the scalar propagator which is sizeable near the

scalar mass pole.

In Fig. 3.4 we display the differential cross section as a function of the Higgs pair invariant mass

for a benchmark point with a heavy scalar mass of 900 GeV, mixing angle sinθ = 0.3 and tanβ= 10.

The differential cross section is shown in linear scale for a broad range of di-Higgs invariant masses,

including the low invariant mass regime favoured by parton distribution functions at hadron col-

liders.
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Figure 3.4: The differential di-Higgs distribution for a benchmark point of the singlet extension of
the SM shown in linear scale and over a broad range of the di-Higgs invariant mass. The full results
for the SM and the singlet SM extension are shown by the grey and black curves, respectively. In the
singlet extension of the SM, the contributions from the resonant singlet diagram, the non-resonant
diagram and the interference between them are shown in red (dashed), brown (dotted) and blue
curves, respectively [211].

This particular choice for the benchmark shows well the separation of the scalar resonance peak

and the threshold enhancement peak above the t t̄-threshold. The SM Higgs pair invariant mass

distribution is given by the grey curve while the black curve depicts the di-Higgs invariant mass

distribution from the singlet extension of the SM. It is informative to present all three pieces that

contribute to the full result of the di-Higgs production, namely (i) the resonance contribution (red,

dashed curve), (ii) the SM non-resonance contribution (box and triangle diagrams given by the

brown, dotted curve), and (iii) the interference between them (blue curve). Note that the small

difference between the “Tri+Box” and the “SM” line shapes is caused by the doublet-singlet scalar

mixing, which leads to a cosθ suppression of the SM-like Higgs coupling to top quarks as well as a

modified SM-like Higgs trilinear couplingλH H H . We observe that the full results show an important

enhancement in the di-Higgs production across a large range of invariant masses. This behaviour

is anticipated from the decomposition analysis in the previous section. There is a clear net effect

from the interference curve shown in blue. Close to the the scalar mass pole at 900 GeV, the on-shell

interference effect enhances the Breit-Wigner resonances peak (red, dashed curve) by about 25%.

Off-the resonance peak, and especially at the threshold peak, the interference term (blue curve)

gives a sizeable enhancement to the cross section as well. Hence, a combined differential analysis

in the Higgs pair invariant mass is crucial in probing the singlet extension of the SM.

The interference pattern between the resonant heavy scalar contribution and the SM non-resonant

triangle and box contributions show interesting features. We highlight the constructive on-shell in-

terference effect that uniquely arises between the heavy scalar resonance diagram and the SM box

diagram, due to a large relative phase between the loop functions involved. We observe that the

on-shell interference effect can be as large as 40% of the Breit-Wigner resonance contribution and

enhances notably the total signal strength, making it necessary taking into account in heavy singlet

searches. Detailed parametric dependence of the on-shell interference on the model parameters

can be found in Ref. [211].
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3.2.3 Overall Interference
E. Bagnaschi, A. Carvalho, R. Gröber, S. Liebler, J. Quevillon

The search for a heavy Higgs boson resonance in the di-Higgs final states is accompanied by in-

terferences between the resonant signal and the di-Higgs continuum background, where the latter

includes the SM-like Higgs boson s-channel contribution. In this section we summarize a model-

independent study on such interference effects, see also Ref. [235].

We introduce an effective coupling of the heavy Higgs boson H to gluons,

L ⊃ αs

12πv
cH H Ga

µνGa,µν . (3.13)

The Wilson coefficient cH can in general be complex number, parameterized as

cH = |cH |e iθH . (3.14)

This effective interaction accounts for particles P coupling the new Higgs boson H to gluons, for

which the threshold 2mP of the corresponding loop can be either lighter or heavier than the Higgs

boson mass mH ; in the former case the effective loop-induced coupling becomes complex. Note

that while formally the description through an effective operator is not valid for 2mP ≤ mH , we do

not restrict ourselves to a specific model and can hence condense the amplitude to the given form.

However, we assume the Wilson coefficient and its phase to be constant, whereas for a concrete

model realization the loop-induced coupling can inherit a dependence on the final-state invariant

mass mhh , where h denotes the SM-like Higgs boson. This is particularly true for large width ΓH

and in the vicinity of the threshold region mhh ∼ 2mP .

In addition to cH , we also choose the mass of H , the width ΓH and the trilinear Higgs-boson self-

coupling of the SM-like Higgs bosonλhhh (normalised to its SM value) as free input parameters. Any

effect in the Higgs-boson self-coupling λHhh can be absorbed into cH , which is why we keep λHhh

fixed. In summary, we vary the following parameters freely

|cH |, θH , ΓH , mH , λhhh . (3.15)

For our analysis we use the code HPAIR [236], which incorporates the s-channel resonance by a

Breit-Wigner propagator of the heavy Higgs boson H

1

m2
hh −m2

H + i mHΓH

, (3.16)

with mhh again denoting the invariant mass of the Higgs-boson pair. In order to classify the inter-

ferences we split the differential cross section in three contributions

dσ

dmhh
= dσS

dmhh
+ dσI

dmhh
+ dσB

dmhh
. (3.17)

The signal cross section σS contains the s-channel exchange of a heavy Higgs boson g g → H → hh

only, while the background cross sectionσB contains all non-resonant diagrams with final state hh,

namely the triangle and box diagrams equivalent to the ones of the SM process. The interference

cross section σI is proportional to 2Re(AS A∗
B ), where AS denotes the signal amplitude and AB the

background amplitude.
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As a measure of the interference effects we introduce the following parameters

η=
∫ mH+10ΓH

mH−10ΓH

dmhh

(
dσS

dmhh
+ dσI

dmhh

)/∫ mH+10ΓH

mH−10ΓH

dmhh

(
dσS

dmhh

)
,

η− =
∫ m I

hh

mH−10ΓH

dmhh

(
dσS

dmhh
+ dσI

dmhh

)/∫ m I
hh

mH−10ΓH

dmhh

(
dσS

dmhh

)
,

η+ =
∫ mH+10ΓH

m I
hh

dmhh

(
dσS

dmhh
+ dσI

dmhh

)/∫ mH+10ΓH

m I
hh

dmhh

(
dσS

dmhh

)
. (3.18)

The first parameter η yields, if multiplied with the signal cross section, the overall change of the

signal cross section due to the interference effects. Instead η+ and η− measure the interference

effects if the peak structure is distorted. For instance, typically there could be a peak-dip structure.

In this case the two curves dσS/dmhh and d(σS +σI )/dmhh intersect in m I
hh and we can define η+

and η− as the measures of the peak distortion. The boundaries in the definition of the η’s, mH ±
10ΓH , capture the majority of the peak structure. We refrain from using very large widths or an even

larger boundary of the integration, since (i) the crossing of the top threshold for the background

diagrams at mhh ∼ 2mt would require a more thorough analysis of the background effects for this

peculiar case, and (ii) we choose the Wilson coefficient to be constant.

For the scan over the parameter space we consider

|cH | ∈ [0.001,5] , θH ∈ {0,
π

4
,
π

2
}, mH ∈ [0.3,1.4]TeV, ΓH /mH ∈ [10−4,0.2] . (3.19)

For the trilinear Higgs-boson self-coupling we use the values λhhh ∈ (0,1,2)λSM
hhh while keeping

λHhh = λSM
hhh . In Fig. 3.5 we show the dependence of our measure η on ΓH /mH and σsi g /σback .

The latter ratio is defined through

σsi g =
∫ mH+10ΓH

mH−10ΓH

dmhh
dσS

dmhh
and σback =

∫ mH+10ΓH

mH−10ΓH

dmhh
dσB

dmhh
. (3.20)

The different colors in the figure indicate if η differs from 1 by less than 3%, between 3–10%, be-

tween 10–50% or by more than 50%. It turns out that the interference effects mostly depend on the

size of the ratio of the signal over background cross section. Instead the interference shows little
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dependence on the width of the heavy Higgs boson, ΓH , as long as we consider masses mH > 2mt ,

i.e. the region in which the background process develops an imaginary part. Though, the largest

values in η are obtained for large width only. In order to emphasize the dependence on σsi g /σback

we show η (black points), η+ (red points) and η− (blue points) over σsi g /σback in Fig. 3.6. We see

that for σsi g /σback ≈ 10 the interference effects can already increase the cross section by a factor of

1.5, and therefore should be definitively taken into account in order to obtain accurate predictions.

In conclusion, we find that interference effects should be taken into account once the LHC

reaches sensitivity of 10 times the SM di-Higgs background process. We parameterised the increase

in the signal cross section due to interference effects by a parameter η. To get a handle on the possi-

ble peak distortion we introduced the parameters η±. Note that neither of the parameters accounts

for a possible peak shift. Further work should assess whether a peak distortion can be resolved

experimentally and how the proposed general parameterisation compares to concrete model real-

izations.

3.3 Spin-2 models

B. Dillon, H. M. Lee

Extra-dimensional models provide ideal benchmark scenarios for spin-2 resonances decaying to

a pair of Higgs bosons. Warped extra dimensional models in particular are very well motivated

extensions to the SM, providing a natural solution to the electroweak hierarchy problem and an ex-

planation of the hierarchies in the flavour sector. In addition to this, they are intimately connected

with strongly coupled extensions of the SM such as composite Higgs models through the AdS/CFT

correspondence. Metric fluctuations in an extra dimension give rise to massive towers of spin-2

states, the Kaluza-Klein (KK) gravitons, and a light spin-0 state, the radion. The couplings of these

states are determined by the wavefunction overlaps between the SM particles and the metric fluc-

tuations. Most phenomenoligical studies of the KK gravitons and the radion assume a warped extra

dimension described by the Randall-Sundrum (RS) metric [237]. The masses of the KK gravitons

are typically above 1 TeV, while the radion may take a much lighter mass due to it being generated

from backreaction on the metric [238]. In this RS scenario the electroweak hierarchy is solved by

localising the wavefunction of the Higgs field near the IR brane, where the overlaps with the metric

fluctuation wavefunctions are large. For this reason channels with a resonant di-Higgs production
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are important to probe the KK graviton and radion.

We assume that only the lightest KK graviton, which we denote as Xµν(x), is accessible in the

experiment. This state couples to the SM particles through the energy-momentum tensor as LX =
− ci
Λ XµνT µν

i , and we can write the partial decay widths to SM particles as [239, 240]

Γ(X → g g ) =
c2

g m3
X

10πΛ2 , Γ(X → γγ) =
c2
γγm3

X

80πΛ2 ,

Γ(X → hh) = c2
hm3

X

960πΛ2 (1−4rh)5/2 ,

Γ(X → r r ) = c2
r m3

X

960πΛ2 (1−4rr )5/2 ,

Γ(X → f f̄ ) =
Nc (c2

f l + c2
f r )m3

X

320πΛ2 (1−4r f )3/2(1+8r f /3) ,

Γ(X → Z Z ) = m3
X

80πΛ2

√
1−4rZ

c2
Z Z + c2

h

12
+ rZ

3

(
3c2

h −20chcZ Z −9c2
Z Z

)

+2
r 2

Z

3

(
7c2

h +10chcZ Z +9c2
Z Z
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,

Γ(X →W W ) = m3
X

40πΛ2

√
1−4rW

c2
W + c2

h

12
+ rW

3

(
3c2

h −20chcW −9c2
W

)

+2
r 2

W

3

(
7c2

h +10chcW +9c2
W

))
,

Γ(X → Zγ) =
c2

Zγm3
X

40πΛ2 (1− rZ )3

(
1+ rZ

2
+ r 2

Z

6

)
, (3.21)

whereΛ is the IR scale determining the KK graviton interactions, the ci coefficients are determined

by integrals over the wavefunctions of the states, ri = (mi /mX )2, and mX is the lightest KK graviton

mass. The decay width to two radion states is also included here with the radion field denoted

by r (x), where we assume that the radion mass is lower than mX /2. We also use the following

relations: cγγ = s2
θcW + c2

θcB , cZ Z = c2
θcW + s2

θcB , cZγ = sθcθ(cW − cB ). The decay to Zγ is only non-

zero when brane-kinetic terms for the gauge fields are present, since it is only this that can break

the degeneracy between cW and cB . Without fine-tuning we can assume that these brane-kinetic

terms are negligible.

There are important differences that occur between different incarnations of RS models regard-

ing the nature of the SM fields. In the most basic set-up, all SM fields are placed on the IR brane. This

is problematic since large couplings between light fermions and the KK states are induced leading

to unacceptable levels of flavour violating processes for KK masses in the TeV range. The solution is

then to allow all SM fields to propagate in the bulk of the extra dimension, with the lighter fermions

localised near the UV region such that the overlap of their wavefunctions and those of the KK gravi-

tons is significantly reduced. This also leads to an elegant description of fermion mass generation,

whereby the Yukawa couplings of light fermions receive natural exponential suppression due to

wavefunction overlaps. With the Higgs field and the top quark being localised in the IR region and

the lighter fermions towards the UV region, it has been shown that the flavour hierarchy structure

of the SM can be achieved with O (1) 5D Yukawa couplings [241]. The gauge fields in the extra di-

mension are restricted to having flat profiles by gauge invariance. The same mechanism that gives

rise to hierarchical Yukawa couplings also gives rise to hierarchical KK graviton couplings, since its
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Figure 3.7: Production cross-section of the KK graviton via gluon fusion at centre of mass energies of
8 and 14 TeV, figure taken from Ref. [244]. The dependence of this quantity on the graviton coupling
to gluons has been factored out.

wavefunction is localised in the IR region of the extra dimension. Therefore the most important

decay modes of this state will be to the heavier particles of the SM: t t̄ , H H , W +W −, and Z Z . The

dominant production mechanism for the lightest KK graviton is via gluon fusion, and in Fig. 3.7 the

corresponding cross-section is shown as a function of the coupling cg for both the 8 TeV and 14 TeV

centre of mass energies. While VBF typically has a production cross-section an order of magnitude

lower than gluon fusion, it has been shown that VBF searches can sometimes provide better sen-

sitivity due to an enhanced background rejection [242, 243]. More work is required for a detailed

study of the phenomenology of the KK graviton produced via VBF.

We consider a benchmark scenario for resonant di-Higgs production due to the decay of a KK

graviton with the Higgs field localised on the IR brane, while the SM gauge fields and fermions

propagate in bulk. In this case, we have cg = cW = cZ = [log(MP /Λ)]−1 ∼ 0.03 and ch = 1. The

localization of the top quark is controlled by the bulk mass parameter, L5D ⊃−sgn(y)νt i k t̄i ti with

i = l ,r for the bulk fermions containing either left-handed or right-handed top quarks. For νt l =−1
2

(that is, a flat left-handed top) and arbitrary νtr , we have the couplings of the KK graviton to the top

quark [239, 245] as

c2
t l = 0, c2

tr =
1−2νtr

1−e−kL(1−2νtr )

∫ 1

0
d y y2−2νtr

J2(3.83y)

J2(3.83)
, (3.22)

where J2 represents the second order Bessel function. Finally, the radion coupling to KK graviton is

determined geometrically [246] by

cr =
1

3

∫ 1

0
d y y3 J2(3.83y)

J2(3.83)
= 0.09. (3.23)

In Fig. 3.8, we depict the branching ratios of the KK graviton as a function of the KK graviton mass

for the bulk RS model with νtr = 1
3 on the left and νtr =−1

2 on the right. We have chosen the radion

mass to mr = 100GeV in both plots. The branching ratio to the di-Higgs channel is as large as 10%

or so, while the t t̄ channel can be comparable to W W and Z Z channels when the top quark is
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Figure 3.8: Branching ratios of KK graviton for the bulk RS benchmark model with νtr = −1
3 (left)

and νtr =−1
2 (right).

localised near the IR brane. The branching ratio to the di-radion channel is at the level of 0.1% but

it can be also interesting, depending on its decay modes.

We also remark on the case where the SM particles are localised away from the IR brane and

dark matter is localised on the IR brane. This is the so-called the dark brane scenario considered

in Ref. [239]. In this case, the KK graviton can be regarded as a mediator for dark matter [246–250],

leading to a sizable invisible decay rate of the KK graviton into a dark matter pair. Furthermore,

the KK graviton can decay sizably into a radion pair, which then decays into SM particles [246].

For a relatively heavy radion, the radion decays into massive particles such as top quarks, di-Higgs,

etc., with comparable branching ratios as those for massive particles, even if there is a volume sup-

pression for the SM particles delocalized from the IR brane. Therefore, in the dark brane scenario

there are interesting signatures from multiple Higgs production due to the cascade decay of the KK

graviton.

Recent results from the ATLAS collaboration place a lower bound of 3.4 TeV on the mass of a KK

graviton resonance decaying to an all hadronic final state via t t̄ [251]. Searches for a KK graviton

decaying via t t̄ to lepton-plus-jets final states can constrain the lightest state to lay above 3.8 TeV

for a 15% width [252]. Weaker constraints have been obtained through consideration of the VBF

production mode [243, 253], however these will be interesting for future study. Direct production

of a radion can also give rise to di-Higgs signatures, however this is covered by the sections on

scalar mediators, and for a recent in depth analysis of radion phenomenology we refer the reader

to Ref. [254]. Interesting effects on both the radion and KK graviton phenomenology has been ob-

served in the presence of brane-localised kinetic terms [244, 255–258], most notably resulting in a

lowering of the KK graviton mass with respect to the scale of other resonances. Interesting and de-

tailed studies of KK graviton effects in di-Higgs production have been studied in Refs. [259, 260]. In

Ref. [259] the authors studied both the scenario with the SM on the IR brane and the SM in the bulk.

They developed a strategy to search for resonant di-Higgs production via a KK graviton in the bb̄bb̄

final state and showed that a large range of the parameter space can be explored. Lastly, it is note-

worthy that these techniques and results are equally applicable to the search for spin-2 composite

resonances arising in composite Higgs models, thus expanding the theoretical motivation to search

for spin-2 resonances in di-Higgs production.
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u-type d-type leptons
type I (T1) Φ2 Φ2 Φ2

type II (T2) Φ2 Φ1 Φ1

lepton-specific Φ2 Φ2 Φ1

flipped Φ2 Φ1 Φ2

Table 3.2: The four Yukawa types of the Z2-symmetric 2HDM, defined by the Higgs doublet that
couples to each kind of fermions.

3.4 BSM Models and Benchmarks

3.4.1 Complex 2-Higgs-Doublet Model
P. Basler, S. Dawson, C. Englert, M. Mühlleitner

The 2-Higgs-Doublet Model (2HDM) [261, 262] contains 2 SU (2)L doublets, Φ1 and Φ2. Assuming

no flavor changing neutral currents and a softly broken Z2 symmetry, there are four different types

of 2HDMs, which are defined by the Higgs doublet that couples to each kind of fermions, and are

summarised in Table 3.2.7 The complex or CP-violating 2HDM (C2HDM), described in Ref. [264],

allows for two complex phases, and the C2HDM has nine independent parameters [265],

v , tβ , α1,2,3 , mHi
, mH j

, mH± , Re(m2
12) , (3.24)

where tβ = v2
v1

, αi are the angles that diagonalise the Higgs mass matrix, and mHi
and mH j

are any

two of the three neutral Higgs boson mass eignestates. The third mass is calculated from the other

parameters [265].

Within the C2HDM it is possible to produce final states with two different Higgs bosons. Com-

pared to the SM di-Higgs production rate, in the C2HDM the cross sections can be enhanced in the

case of resonant production of a heavy Higgs boson that decays into a pair of lighter Higgs bosons,

or due to Higgs self-couplings that differ from the SM value.

CP-conserving 2HDM benchmarks for double Higgs production can be found in Refs. [266,267].

Here we summarise the benchmark points for the C2HDM model presented in Ref. [268]. Table 3.3

gives the maximum cross section values for Higgs pair production that are compatible with all

present experimental and theoretical constraints. The SM-like Higgs boson is h, the lighter of the

non-SM-like neutral Higgs bosons is H↓, and the heavier one is H↑. Table 3.3 demonstrates that

in both the T1 and T2 scenarios the maximum cross section for hh production can exceed the SM

value: in T1 by a factor of about 40 and in T2 by a factor of about 3.2. The large enhancements are

due to the resonant production of an H↓ or H↑ that decays into a pair of SM-like Higgs bosons. The

reason for the smaller enhancement in hh production in T2 compared to T1 is the overall heavier

Higgs spectrum.

Based on extrapolations from current searches, we study the exclusion luminosity, i.e., the inte-

grated luminosity at which a parameter point could be excluded experimentally. The most promis-

ing final states are bb̄γγ [270], bb̄τ+τ− [171, 271, 272] and bb̄bb̄ [271, 273, 274]. In Fig. 3.9 we show

(for all the parameter points that pass the theoretical and experimental constraints), the cross sec-

tion values for hh production in the T1 scenario normalized to the SM Higgs pair production in the

bb̄γγ final state (left) and for H↓H↓ production in the bb̄bb̄ final state as a function of the exclusion

7Phenomenological implications of the 2HDM model on the Higgs self-coupling are not discussed in this document,
the interested reader can find a study within the Gildener-Weinberg models in Ref. [263].



3.4. BSM Models and Benchmarks 71

100 101 102 103 104 105

Lexcl [fb−1]

10−1

100

101

102
σ
( g
g
→

(h
→

bb
)(
h
→
γ
γ

))
/S

M

100 101 102 103 104 105

Lexcl [fb−1]

10−4

10−3

10−2

10−1

100

101

102

103

σ
( g
g
→

(H
↓→

bb
)(
H
↓→

bb
))
/S

M

Figure 3.9: Higgs pair production cross sections normalized to the SM value for SM-like Higgs pairs
decaying into bb̄γγ (left) and light-non-SM-like Higgs pairs decaying into bb̄bb̄ (right) as a function
of the exclusion luminosity, for the C2HDM T1 scenarios passing our applied constraints [268,269].

luminosity. Fig. 3.9 shows that the production of a SM-like Higgs pair decaying to bb̄γγ can exceed

the SM rate by up to a factor of 68. This maximum enhancement factor is roughly the same for all

final states.

In the H↓H↓ final state with both H↓’s decaying into bottom quarks or to bb̄τ+τ−, the enhance-

ment can be up to a factor of about 200. Due to a smaller branching ratio into photons, however,

the maximum allowed enhancement in the bb̄γγ final state is a factor of 40.

The remaining di-Higgs production processes are less promising. The enhancement factor for

hH↓ production is less than 3 in the bb̄bb̄ and bb̄τ+τ− final states. The h → bb̄, H↓ → γγ rate is

below the SM rate, while h → γγ, H↓ → bb̄ has an enhancement factor around 3. Other final states

have rates below the SM values.

The situation is less promising in the C2HDM T2. The maximum enhancement over the SM

rate for hh production with the decay into the bb̄τ+τ−, bb̄bb̄, or bb̄γγ final states is around 4.5. All

other final states lead to smaller rates than in the SM.

We conclude that there are promising di-Higgs signatures with large rates in the C2HDM T1 for

SM-like Higgs pair production and also for final states with non-SM-like Higgs bosons. The new

neutral Higgs bosons appear in SM-like final states, however, with different kinematic correlations

due to different masses. The stringent constraints on the di-Higgs production rates present in the

T2 scenario could exclude it if signatures much larger than in the SM were to be found.

Hi H j /model T1 T2

hh 794 63.2
hH↓ 49.17 11.38
hH↑ 17.65 13.50

H↓H↓ 3196 0.31
H↓H↑ 12.58 0.31
H↑H↑ 7.10 0.23

Table 3.3: Maximum cross section values at
p

s = 14 TeV in fb for LO gluon fusion into Higgs pairs,
σ(g g → Hi H j ), in the C2HDM T1 and T2 scenarios, with an exclusion luminosity ≥ 64 fb−1 that
satisfy all theoretical and experimental constraints [268, 269].
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3.4.2 Singlet extensions of 2HDM
N. R. Shah

The extension of a 2HDM by a complex singlet S gives rise to the generic Higgs potential [275,276]:

V =V2HDM +VS , (3.25)

where

V2HDM = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −

(
m2

12Φ
†
1Φ2 +h.c.

)
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(3.26)

and

VS = (
ξS +h.c.

)+m2
SS†S +

(
m′2

S

2
S2 +h.c.
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6
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(3.27)

Φ1, Φ2 are SU (2) doublets with hypercharge Y = 1/2. The m2
i j parameters have dimension mass

squared, while the λi are dimensionless. The parameter ξ has dimensions mass cubed, the pa-

rameters {µSi ,µi j } have dimension mass, and the {λ′
i ,λ′′

i } are dimensionless. In the CP-conserving

case, all parameters can be chosen manifestly real. As customary, after minimisation, we define

v1 ≡ 〈
Φ1

〉
, v2 ≡ 〈

Φ2

〉
, vS ≡ 〈S〉 , v ≡

√
v2

1 + v2
2 and tanβ ≡ v1/v2 . The observed mass of the Z bo-

son mZ = 91.2GeV is obtained for v = 174GeV. A similar structure for the Higgs potential is also

obtained for the general NMSSM [277], and a mapping is provided to both the general and the Z3

invariant NMSSM in Ref. [276].

The potential given above is described by 27 arbitrary parameters and at first glance appears dif-

ficult to analyze. However, the 125 GeV Higgs mass and its SM-like couplings enable us to constrain

these significantly. In particular, most of the relevant phenomenology can be mostly parameterized

in terms of physical parameters like masses and mixing angles.8 To see this, it is useful to rotate the

8The mapping from the physical parameters to the parameters in the potential can be found in Ref. [276].
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Higgs fields to the extended Higgs basis [261, 275, 278–283]9

 G+
1p
2

(
H SM + iG0

)= sinβΦ1 +cosβΦ2 , (3.28)

 H+
1p
2

(
H NSM + i ANSM

)= cosβΦ1 − sinβΦ2 , (3.29)

1p
2

(
H S + i AS

)
= S , (3.30)

where {H SM, H NSM, H S} and {ANSM, AS} are the neutral CP-even and CP-odd real Higgs basis inter-

action states, G0 (G±) is the neutral (charged) Goldstone mode, and NSM stands for Non-SM. In this

basis, of the states coming from the doublets, only
〈

H SM
〉
=p

2v acquires a vev, and it is straight-

forward to work out the coupling of SM fermions to the Higgs basis states. For concreteness, in

the following a Type II Yukawa structure is assumed. However, the results shown will in general

hold for a different Yukawa structure. Some quantitative details may change due to the change in

the Yukawa enhancement or suppression of the fermion couplings, but such modifications will be

small since mostly the low tanβ=O (1) regime is considered.

The three CP-even mass eigenstates are denoted

hi = {h125, H ,h} , (3.31)

where h125 is identified with the mh125
≈ 125GeV SM-like state observed at the LHC, and H and h

are ordered by masses, mH > mh . Each mass eigenstate is an admixture of the extended Higgs basis

interaction states,

hi = SSM
hi

H SM +SNSM
hi

H NSM +SS
hi

H S , (3.32)

where S j
hi

with j = {SM, NSM, S} denotes the components of the mass eigenstates in terms of the

interaction basis. Likewise, the two CP-odd mass eigenstates are denoted

ai = {A, a} , (3.33)

where again mA > ma , and

ai = P NSM
ai

ANSM +P S
ai

AS , (3.34)

where the components are similarly denoted by P j
ai

. The observed SM-like nature of h125 implies

that

SSM
h125

≈ 1 , {(SNSM
h125

)2, (SS
h125

)2} ¿ 1 , (3.35)

or, in other words, h125 mass eigenstate must approximately be aligned with the H SM interaction

state.

First a few conditions that alignment imposes on the phenomenology are highlighted. The most

important point is that alignment forbids the NSM or S-like CP-even Higgs bosons from coupling to

pairs of h125 or vector bosons (W or Z ). Additionally the CP-odd state couplings to h125 and Z are

also forbidden. Instead, there can be interesting Higgs cascade decays of the heavy Higgs bosons to

final states involving only one h125 or a Z such as (H NSM → H SH SM) or (ANSM → H SZ ). The singlets

9Note that there are different conventions in the literature for the Higgs basis differing by an overall sign of HNSM

and ANSM. Taking these into account, the potential in Eq. (3.25) and couplings for the 2HDM+S can be mapped directly
to the potential and couplings given in the appendices of Ref. [275].
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Figure 3.10: Regions of 2HDM+S parameter space within the future reach of the different Higgs
cascade search modes as indicated in the legend at the LHC with L = 3000fb−1 of data. The left
panel shows the accessible regions in the plane of the singlet fraction of the parent Higgs bosons
(SS

H )2 vs (P S
A)2. The right panel shows the reach in the plane of the masses of the daughter Higgs

bosons produced in the Higgs cascades, mh vs ma . The remaining parameters are fixed to the values
indicated in the labels [276].

couple only to SM particles via their mixing with the other states, or to a possible Dark Matter (DM)

state χ1. Hence depending on the mixing angles and the arbitrary coupling to DM, such decays

could result in h125 or Z plus visible or invisible signatures.

We collected all the current search results and projections available for the relevant decays, as

well as performed detailed collider simulations where needed, to obtain the projection for the reach

at the LHC with 3000 fb−1 of data [276]. Fig. 3.10 presents an example of the reach we obtain for

benchmark scenarios. While the mass of the parent Higgs bosons is fixed at 750 GeV in Fig. 3.10,

and perfect alignment is assumed, the effect of varying these quantities is easy to deduce. First, dif-

ferent masses for the parent Higgs bosons would primarily affect the gluon fusion production cross

section, whose scaling with mass is well known. The affect of misalignment would be quantitatively

negligible on the reach of the Higgs cascades discussed here. However, various decay chains not

considered in the above analysis, such as (H → h125h125) or (A → Z h125), would be present. Such

decays are suppressed by either the NSM or S component of h125 compared to decays into h. The

reach for such decays can be extrapolated from those presented by the convolution of the relevant

decay widths with the misalignment of h125 and identifying mh = 125 GeV in the right panel of

Fig. 3.10. Observe that the results presented can also be mapped to the case of the decoupled sin-

glet, i.e. an effective 2HDM, with non-degenerate CP-odd and CP-even NSM-like Higgs bosons, by

appropriately choosing the NSM and S components for the parent and daughter Higgs bosons in

the decay chain of interest.

Finally, note that Fig. 3.10 is meant to summarise only the prospects of exploring the 2HDM+S

parameter space using Higgs cascades. The regions displayed do not take into account existing

bounds from searches for additional Higgs boson beyond h125. In particular, the charged Higgs

does not play a role in any of the searches shown. Existing constraints on charged Higgs bosons,

e.g. from flavor physics observables, can be satisfied by choosing a sufficiently large mass of the

charged Higgs. Recall that the masses of the physical Higgs bosons are treated as free parameters.
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Even without considering effects of mixing, mass splittings of order of a few 100 GeV between the

mostly doublet-like pseudo-scalar and the charged Higgs are easily achievable. Furthermore, in

more complete models with larger particle content than the 2HDM+S considered here, such as the

NMSSM, indirect observables such as those from flavor physics receive additional contributions

beyond those from the charged Higgs which may loosen the bounds on the mass of the charged

Higgs, cf. Refs. [284, 285].

In summary, as evident from Fig. 3.10, there are large regions of parameter space in reach of

the different Higgs cascade search modes. In particular, Higgs cascades enable the LHC to probe

regions of parameter space challenging to access with traditional searches for the direct decays of

additional Higgs states: singlet-like light states are difficult to directly produce due to the small cou-

plings to pairs of SM particles. On the other hand, doublet-like states are readily produced, but if

their mass is above the kinematic threshold allowing for decays into pairs of top quarks, for low

tanβ, Φ→ t t̄ decays will dominate over the decays into other SM states. Pairs of top quarks pro-

duced from an s-channel resonance are very difficult to detect at the LHC due to interference effects

with the QCD background, which makes the mΦ& 350GeV, low tanβ region extremely challenging

to probe at the LHC through direct Higgs decays with current search strategies [234, 286–292]. De-

tailed LHC benchmarks optimising qualitative features of the different cascade decay signals dis-

cussed here, including alignment suppressed decays into pairs of h125, are presented in Ref. [293].

3.4.3 hMSSM
S. Liebler, M. Mühlleitner, M. Spira

An effective approximation of the MSSM for scenarios of large SUSY particle masses but small and

moderate values of the Higgsino mass parameter µ relative to the stop masses is provided by the

hMSSM [294–297]. This approach starts from the scalar Higgs mass matrix including radiative cor-

rections,

M 2 = M 2
Z

 c2
β −sβcβ

−sβcβ s2
β

+M 2
A

 s2
β −sβcβ

−sβcβ c2
β

+
(
∆M 2

11 ∆M 2
12

∆M 2
12 ∆M 2

22

)
, (3.36)

where we use the short–hand notation sβ ≡ sinβ, etc., and introduce the radiative corrections

through the general matrix elements ∆M 2
i j . The hMSSM approach starts by neglecting diagonal

and off-diagonal entries of the radiative corrections,

∆M 2
11 ∼∆M 2

12 ∼ 0, (3.37)

and just keeping ∆M 2
22. Since the off-diagonal entries are proportional to the µ parameter, this

approximation restricts µ to small or moderate values in comparison with the other SUSY masses,

thus excluding large µ parameters [297–299]. In this way, all radiative corrections can be described

by the parameter ε,

ε=∆M 2
22 =

M 2
h(M 2

A +M 2
Z −M 2

h)−M 2
A M 2

Z c2
2β

M 2
Z c2

β+M 2
A s2

β−M 2
h

, (3.38)

which is related to the pseudo-scalar mass MA , the parameter tanβ = v2/v1 that is determined by

the vevs of the two neutral CP-even Higgs fields, and the light scalar Higgs mass Mh . In this way the

radiative corrections are traced back to the known light scalar Higgs mass that is identified with the

mass of the discovered SM-like Higgs boson Mh = 125 GeV. The remaining parameters of the MSSM
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Higgs sector are given by

M 2
H =

(M 2
A +M 2

Z −M 2
h)(M 2

Z c2
β+M 2

A s2
β)−M 2

A M 2
Z c2

2β

M 2
Z c2

β+M 2
A s2

β−M 2
h

,

α = −arctan

 (M 2
Z +M 2

A)cβsβ

M 2
Z c2

β+M 2
A s2

β−M 2
h

 ,

M 2
H± = M 2

A +M 2
W , (3.39)

where MH denotes the heavy scalar Higgs mass, α the CP-even mixing angle, MH± the charged

Higgs mass and MW the W mass. The upper bound on the light scalar Higgs mass is lifted to

M 2
h ≤ M 2

Z cos2 2β+εsin2β . (3.40)

The hMSSM determines all Higgs masses and mixing angles by three input parameters, MA ,

Mh and tanβ. The hMSSM approach, however, can be understood as an approximation to a low-

energy 2HDM with heavy SUSY particles being integrated out [300,301]. The parameter ε then plays

the role of the matching of the low-energy 2HDM to the full MSSM. This point of view allows to

extend the simplified ε approximation to the Higgs self-couplings, too. However, an explicit analysis

revealed additional contributions to the effective ε parameter for the Higgs self-couplings that are

determined by the top mass alone [301],

ε= ε− 24
p

2GF m4
t

(4π)2s2
β

2

3
. (3.41)

The trilinear Higgs self-couplings induce Higgs pair production processes at the LHC and are given,

in terms of this modified ε parameter,

λεhhh =λhhh + 3c3
α

v sβ
ε , λεHhh =λHhh + 3sαc2

α

v sβ
ε ,

λεH Hh =λH Hh + 3s2
αcα

v sβ
ε , λεH H H =λH H H + 3s3

α

v sβ
ε ,

λεh A A =λh A A +
cαc2

β

v sβ
ε , λεH A A =λH A A +

sαc2
β

v sβ
ε , (3.42)

where the tree-level couplings are given (in terms of the radiatively corrected mixing angle α) by

λhhh = 3
M 2

Z

v
c2αsα+β , λHhh = M 2

Z

v
(2s2αsα+β− c2αcα+β) ,

λH Hh = M 2
Z

v
(−2s2αcα+β− c2αsα+β) , λH H H = 3

M 2
Z

v
c2αcα+β ,

λh A A = M 2
Z

v
c2βsα+β , λH A A =−M 2

Z

v
c2βcα+β . (3.43)

The vacuum expectation value v is related to the Fermi constant by v = 1/
√p

2GF . Using these

radiatively corrected Higgs masses, mixing angles and trilinear Higgs couplings, the corresponding

Higgs pair production processes can be investigated involving the dominant radiative corrections

within the hMSSM approximation.
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3.4.4 NMSSM
P. Basler, S. Dawson, C. Englert, M. Mühlleitner

The NMSSM contains a complex gauge singlet superfield, Ŝ, along with the SU (2)L doublet super-

fields Ĥu and Ĥd of the MSSM [277, 302]. The additional contribution to the superpotential due to

Ŝ is,

∆W = −εi jλŜĤ i
d Ĥ j

u + κ

3
Ŝ3 , (3.44)

with the SU (2)L indices i , j = 1,2 and the totally antisymmetric tensor εi j where ε12 = ε12 = 1. The

scalar component of the singlet, S, contributes the trilinear soft SUSY breaking interactions,

−Ltril = −εi jλAλSH i
d H j

u + 1

3
κAκS3 . (3.45)

The set of six parameters describing the tree-level NMSSM Higgs sector is

λ , κ , Aλ , Aκ, tanβ= vu/vd , µeff =λvs/
p

2 . (3.46)

The sign conventions are such that λ and tanβ are positive, while κ, Aλ, Aκ and µeff can take both

signs. Diagonalizing the scalar mass matrix gives three CP-even mass eigenstates, h, H↓, and H↑,

two CP-odd mass eigenstates A↓ and A↑, and two charged Higgs bosons. Here, h denotes the SM-

like Higgs boson and H↓ (H↑) the lighter (heavier) non-SM-like CP-even Higgs boson, A↓ and A↑
denote the lighter and heavier pseudoscalar, respectively. Note that we restrict ourselves to the

CP-conserving NMSSM. The Higgs boson masses are calculated from the input parameters.

We scan the NMSSM parameter space [268] 10 and require that all experimental constraints

from Higgs production, LHC SUSY searches, and dark matter limits are satisfied. Within the allowed

parameter space we are interested in double Higgs production with non-SM like signatures. After

satisfying the constraints, we define an approximate “exclusion luminosity” at which single Higgs

measurements would become sensitive to a particular scenario. This allows us to directly compare

the discovery potential of double-Higgs production to single Higgs measurements and to identify

interesting regions of the NMSSM parameter space.

The enlarged Higgs sector of the NMSSM leads to processes with two different Higgs bosons in

the final state. Also the production of two pseudoscalars in the final state is possible. The cross

sections can be enhanced relative to the SM H H rate in the case of the resonant production of

a heavy Higgs boson that decays into a pair of lighter Higgs bosons. Note, however, that due to

supersymmetry, the Higgs self-coupling are determined in terms of the gauge couplings, restricting

large deviations from the SM Higgs self-coupling. The Higgs bosons can additionally decay into

non-SM final states such as e.g. neutralinos, giving signatures with new and interesting features.

Scanning over NMSSM parameter points that meet all criteria and that have exclusion lumi-

nosities above 64 fb−1, the maximum enhancement of the gluon fusion rate to hh pairs is found to

be slightly less than a factor of two. The H↓H↓ cross section can become very large mainly because

of the allowed smallness of the H↓ mass, mH↓ ∼ 38 GeV. The maximum value11 of 70 fb in h A↓ pro-

duction is due to the rather small mass, mA↓ = 69 GeV, in combination with resonant A↑ production

followed by the decay to h A↓. Finally, the enhancement in A↓A↓ production with a production cross

10In contrast to [268] HiggsSignals v.2.2.2 [222–225, 227] is used for the following part and the lower bound on the
chargino mass has been relaxed to the LEP limit of 94 GeV.

11All values are for a center of mass energy of 14 TeV and at LO. The inclusion of NLO QCD corrections roughly adds a
factor of 2.
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Figure 3.11: Scatter plots for NMSSM scenarios passing the applied experimental constraints: Higgs
pair production cross sections normalized to the SM value for SM-like Higgs pairs decaying into
bb̄bb̄ (left) and A↓A↓ Higgs pairs decaying into bb̄bb̄ (right) as a function of the exclusion luminos-
ity [268].
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Figure 3.12: NMSSM: Scatter plots for bb̄bb̄ final state rates from A↓A↓ production normalized to
the SM rate as a function of mA↓ . The colour code denotes the exclusion luminosity [268].

section of 70 fb is due to the smallness of the A↓ mass of mA↓ = 69 GeV combined with the resonant

H↓ production decaying subsequently into A↓A↓. (The branching ratio of H↑ → A↓A↓ is very small

for this parameter point.)

In Fig. 3.11 we show the NMSSM cross sections for hh pair production in the bb̄bb̄ final state

(left) and for A↓A↓ production in the bb̄bb̄ final state (right) normalized to the corresponding SM

values as a function of the exclusion luminosity and for all parameter points that pass the exper-

imental restrictions. As seen in Fig. 3.11 (left), the bb̄bb̄ final state rates from SM-like Higgs pair

production exceed the SM H H rate by at most a factor of 2 and only for higher exclusion luminosi-

ties. As can be inferred from Fig. 3.12 (right), the maximum value for A↓A↓ production with subse-

quent decay into bb̄bb̄ is 9.3 compared to the SM value, at an exclusion luminosity of 287 fb−1. The

maximum value found for the production of a SM like Higgs boson h together with H↓ and subse-

quent decay into bb̄bb̄ (not shown here), has an enhancement of ∼ 4.6 at an exclusion luminosity

of 449 fb−1.

Because the light pseudoscalar, A↓, can be relatively light and decays dominantly into bb̄, the

enhancement factors can be up to ∼ 5- 10 in these processes. Fig. 3.12 shows the production of
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A↓A↓ with decay into the bb̄bb̄ final state normalized to SM di-Higgs H H production decaying into

the bb̄bb̄ final state, as a function of the mass of the light pseudoscalar. The color code denotes

the exclusion luminosity. For masses below 125 GeV, the rates are enhanced because of the large

di-Higgs production cross sections. Above the top-pair threshold, the exclusion luminosities are

on average lower than below the threshold due to the exclusion limits in the top-pair final state.

For masses below the SM-like Higgs mass, however, there are parameter points where the exclusion

luminosities can exceed 100 fb−1 up to about 900 fb−1 while still featuring enhanced rates. The

reason that these points are not excluded from single Higgs searches is that light Higgs states with

dominant decays into bb̄ final states are difficult to probe. On the other hand this enhancement

combined with the large di-Higgs production cross section implies significant bb̄bb̄ final state rates

that may be tested at the high luminosities. This is an example of the interplay between difficult

single-Higgs searches and large exotic di-Higgs rates, where new physics may be found.

3.4.5 Georgi-Machacek Model
H. E. Logan

The Georgi-Machacek (GM) model [303, 304] is an extended Higgs model whose scalar sector con-

sists of the usual complex isospin doublet (φ+,φ0) with hypercharge Y = 1/2, a real triplet (ξ+,ξ0,ξ0)

with Y = 0, and a complex triplet (χ++,χ+,χ0) with Y = 1. The scalar potential is constructed to pre-

serve a global SU(2)L×SU(2)R symmetry so that custodial symmetry is preserved after electroweak

symmetry breaking, ensuring that the electroweak ρ parameter is equal to one at tree level. Addi-

tional details can be found in Sec. IV.4.4 of Ref. [19].

In addition to a light custodial-singlet scalar h, usually identified with the SM-like 125 GeV Higgs

boson, the physical spectrum contains a custodial fiveplet (H++
5 , H+

5 , H 0
5 , H−

5 , H−−
5 ) with common

mass m5, a custodial triplet (H+
3 , H 0

3 , H−
3 ) with common mass m3, and a heavier custodial singlet H

with mass mH . Here we focus on the decay H → hh. Custodial symmetry forbids H 0
3 and H 0

5 from

decaying into hh.

H can be produced at the LHC via the same processes as a heavy SM Higgs boson. For H masses

above 2mh , the only relevant production modes are gluon fusion and vector boson fusion. We

compute the signal cross sections for the 13 TeV LHC as follows, focusing on the H H → bb̄bb̄ final

state:

σ(g g → H → hh → bb̄bb̄) = σ(g g → HSM)× (κH
f )2 ×BR(H → hh)

×[BR(h → bb̄)]2, (3.47)

σ(VBF → H → hh → bb̄bb̄) = σ(VBF → HSM)× (κH
V )2 ×BR(H → hh)

×[BR(h → bb̄)]2. (3.48)

We take the SM cross sections σ(g g → HSM) and σ(VBF → HSM) from Ref. [19], where for the gluon

fusion process we use the cross sections computed to NNLO+NNLL QCD accuracy. The remaining

factors are computed using the public code GMCALC 1.4.1 [305]. κH
f and κH

V are the coupling modi-

fication factors for H couplings to fermion pairs and vector boson pairs, respectively. The branching

ratio of H → hh depends on a combination of the parameters of the scalar potential. The branching

ratio of h → bb̄ depends mainly on the custodial-singlet Higgs boson mixing angle and the triplet

scalar vacuum expectation value, and is constrained by LHC Higgs signal strength measurements

to be close to its SM value.

We scan over the full GM model parameter space, requiring that the scalar quartic couplings

satisfy perturbative unitarity constraints [306, 307] and that the potential is bounded from below
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Figure 3.13: Cross sections for H → hh → bb̄bb̄ in 13 TeV pp collisions produced via gluon fusion
(left) or vector boson fusion (right) as a function of the H mass in the Georgi-Machacek model. The
points represent a scan over the full model parameter space imposing only theoretical constraints.
Red and violet points are already excluded by other searches.

and has no deeper minima than the desired vacuum [307]. The resulting signal cross sections are

shown in Fig. 3.13 as a function of the H mass. We include only the resonant processes of Eqs. (3.47)

and (3.48), and do not consider interference with the non-resonant SM-like pp → h∗ → hh → bb̄bb̄

process (for comparison, the total SM cross sections times branching ratios for the non-resonant

g g → hh → bb̄bb̄ and VBF→ hh → bb̄bb̄ processes are 10 fb [30] and 0.55 fb [19], respectively).

In red we indicate the scan points that are excluded by existing LHC searches other than H →
hh. The most stringent of these is a CMS search for doubly-charged scalar production in VBF with

decays to like-sign W bosons using 35.9 fb−1 of pp data at 13 TeV [308], which sets an upper bound

on the production cross section of H±±
5 as a function of its mass.

In violet we indicate the scan points that are allowed by direct searches but excluded by mea-

surements of the 125 GeV Higgs boson properties. We apply the constraint by using HiggsSignals

2.2.1 [227] to compute a p-value, which we require to be larger than 0.05 for the point to be allowed

at the 95% confidence level. Because we want to apply the constraint separately for each scan point,

we take the number of free model parameters to be zero in the calculation of the p-value. This max-

imises the p-value and (conservatively) excludes the smallest number of points. The black points in

Fig. 3.13 are still allowed after applying these constraints.

The thick blue line in the left panel of Fig. 3.13 shows the current ATLAS limit on σ(pp →
Scalar → hh → bb̄bb̄) using 27.5–36.1 fb−1 of pp data at 13 TeV [150]. This search already excludes

new parameter space in the GM model for mH between about 300 GeV and 1 TeV that is not oth-

erwise constrained by previous searches. The model therefore serves as a useful benchmark for

interpreting H → hh searches that will be performed using the full LHC Run 2 dataset.

3.5 New Particles in the Loop

S. Dawson, I. M. Lewis

BSM physics can contribute to di-Higgs production through new colored scalars [181, 309–313] or

fermonic [314–321] particles contributing to the loop amplitudes. If new particles get their masses

from a different source than the Higgs, the contributions to single and double Higgs production

can be different [316]. These new particles can then significantly change the rates as well as the

kinematic distributions in double production and keep single Higgs production close to the SM
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prediction [182, 310, 322].

Heavy VLQs

To be consistent with single Higgs rates, new heavy quarks cannot get all their mass from the Higgs

mechanism and must be vector-like [323]. We focus on two cases: SU (2)L singlet up-type vector-

like quark (VLQ) U and a full generation of up- and down-type VLQs.

Q =
(

T

B

)
, U , D, (3.49)

where Q is a vector-like SU (2)L doublet, U is an up-type vector-like SU (2)L singlet, and D is a down-

type vector-like SU (2)L singlet. For simplicity and to avoid low energy constraints, we only consider

mixing with the third generation SM quarks:

qL =
(

tL

bL

)
, tR ,bR . (3.50)

Singlet VLQ

The singlet VLQ, third generation quarks, and Higgs boson couple via

L =−λb qLΦbR −λt qLΦ̃tR −λ1qLΦ̃UR +M1 U L tR +M2 U LUR +h.c. (3.51)

Since UR and tR have the same quantum numbers, M1 can be rotated via a field redefinition be-

tween UR and tR [319]. Hence, there are four physical free parameters: the bottom quark mass mb ,

the observed top quark mass mt = 173 GeV, the heavy top partner mass mT , and the left-handed

mixing angle between the top quark and top partner θL . The right-handed mixing angle θR can be

determined by the Higgs vev, mt , mT , and θL [319]. Electroweak precision constraints constrain

sinθL . 0.16−0.12 for mT ∼ 1−2 TeV [324–326].

In left hand side of Fig. 3.14 we show deviations away from SM predictions for single and double

Higgs production in the singlet VLQ model as a function of the mixing angle with MT = 800 GeV [321].

The single Higgs production is always nearly SM-like, while substantial deviations in double Higgs
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production are possible. These deviations are always a suppression [319, 321]. However, once (yel-

low solid) EW precision measurements are taken into account, double Higgs production is forced to

be within ∼ 15% the SM value. The kinematic distributions are nearly SM like, as shown in the right

hand side of Fig. 3.14. For higher top partner masses, EW precision constraints on θL become more

stringent [324–326], the effects of the top partner decouple more, and invariant mass distributions

continue to be SM like [321].

Full VLQ Generation

A more complicated scenario is to assume a full generation of VLQs. The couplings with the third

generation quarks and Higgs are [321]

L = −λb qLΦbR −λt qLΦ̃tR −MQLQR −MUU LUR −MD DLDR

−λ1QLΦ̃UR −λ2QLΦDR −λ3QRΦ̃UL −M4qLQR −M5U L tR

−M6DLbR −λ7qLΦ̃UR −λ8qLΦDR −λ9QLΦ̃tR −λ10QLΦbR

−λ11QRΦDL +h.c. (3.52)

There are the top quark, the bottom quark, two top partners T1,2, and two bottom quark partners

B1,2 mass eigenstates after electroweak symmetry breaking. The free parameters are the top quark

mass, the bottom quark mass, the two top partner masses MT1,2
, two bottom partner masses MB1,2

,

and twelve mixing angles.

The invariant mass distributions for this model are shown in Fig. 3.15. The pattern of the top and

bottom partner masses and values of mixing angles are chosen to be consistent with electroweak

precision data, single Higgs rates, and maximize deviations in double Higgs rates [321]. After all

constraints are taken into account, the (black solid) SM and (blue dashed) VLQ distributions are

very similar.

The red dotted line in Fig. 3.15 shows the distribution calculated by integrating out the heavy

top and bottom partners and matching on the SM EFT. This introduces new point-like interactions

between the gluons and Higgs boson and new four point interactions t − t −h −h [321]. The EFT

agrees very well with the VLQ model in the region of validity Mhh < MT1,2
, MB ,1,2. In the EFT it is

clear that the single and double Higgs rates depend on the same parameters. Hence, the two rates

are tightly related, and indeed de-correlated [321]. That is, if the single Higgs rate increases the
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double Higgs rate is decreased. Since single and double Higgs rates are bound together, we must go

to a region of parameters space where new particles are light and the EFT is not valid [182,310,322].

Colored scalars

We consider an SU (2)L singlet, SU (3)c complex scalar, s,

Ls,c = (Dµs)∗(Dµs)−m2
0s∗s − λs

2
(s∗s)2 −κs∗s

∣∣∣H †H
∣∣∣+LSM , (3.53)

where H is the SM SU (2)L doublet with 〈H〉 = (0, v/
p

2)T . If the scalar, s, is real,

Ls,r = 1

2
(Dµs)(Dµs)− m2

0

2
s2 − λs

4
s4 − κ

2
s2

∣∣∣H †H
∣∣∣+LSM . (3.54)

The physical mass for either a real or complex scalar is, m2
s = m2

0 + κv2

2 and m0 = 0 is the limit where

the scalar gets all of its mass from electroweak symmetry breaking.

Scalar Top Partners

We compare the results for H H production when the loop particles are the SM top with those for a

colored scalar with ms = mt = 173 GeV. Fig. 3.16 shows the ratio of the total cross sections for both

1h and 2h production, normalized to the lowest order SM predictions in this scenario. We note that

in order to reproduce the SM rate for 1h production using a color triplet scalar (the black dashed

line), κ needs to be quite large, κ& 2. If κ is tuned to obtain σ/σSM = 1 for g g → h, then a color

octet intermediate particle replacing the top quark with positive κ (the solid black line) would pre-

dict a highly suppressed rate for 2h production (the red dashed line). Even when the total rates are

identical to the SM predictions, the kinematic distributions from color octet and triplet intermedi-

ate states are quite different than those from the SM top, as plotted in Fig. 3.17. The scalar needs to

be quite light to reproduce the SM rates, and the distribution is peaked at much lower mhh than the

SM prediction.

Assuming the top Yukawa is SM-like, adding an additional scalar receiving all of its mass from
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Figure 3.18: Invariant mass distribution in 2h production with the SM top quark in addition to an
800 GeV color triplet scalar that gets all (red dashed) or half (blue dot-dashed) of its mass from the
Higgs. The SM (black solid) is shown for comparison [327].

electroweak symmetry breaking gives an unacceptably large contribution to the 1h production

cross section, regardless of the scalar mass and SU (3) representation. A heavy color triplet scalar

with κ= 2m2
s /v2, for example, changes the 1h production rate by 54%. Lighter scalars and scalars in

other color representations result in even larger deviations. Heavy scalars receiving all their masses

from the Higgs have m0 = 0, and are not compatible with LHC limits on the 1h production rate from

gluon fusion. Heavy scalars decouple quickly in the 1h rate and may show up in the high mhh tail

of the 2h distribution. The invariant mass distributions for 2h production are shown in Fig. 3.18 as-

suming a SM-like top quark and an additional 800 GeV color triplet scalar. If the scalar receives half

of its mass squared from electroweak symmetry breaking, m2
0 = m2

s /2, the 1h rate is in roughly 2σ

tension with the current measurement, and the 2h distribution deviates from the SM expectation

starting at 2ms , roughly speaking.
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Figure 3.19: Double Higgs production cross section normalized to the SM values as a function of the lightest
stop mass(left) and X t (right) [322]. The color coding is explained in the main text.

MSSM

P. Huang

Now we discuss the modification to double Higgs production in the presence of light stops [182,

309, 322]. We first write down the stop mass matrix

M2
t̃ =

(
m2

Q +m2
t +DQ mt X t

mt X t m2
U +m2

t +DU

)
. (3.55)

The parameters mQ and mU are soft SUSY breaking mass terms of the left-handed and right-handed

stops respectively, X t is the stop mixing parameter, DU and DQ are the D-term contributions. The

dimensionful trilinear coupling of the Higgs to the stops has a strong dependence on the Higgs

mixing parameter X t , which can be larger than the stop masses. Given that the LHC has excluded

stops that are not significantly heavier than the top quarks, a large X t is preferred to generate rel-

evant contributions to the double Higgs production cross section. However, a large X t may affect

the Higgs vacuum stability [328–333], which leads to constraints in the stop sector in addition to

constraints from the direct stop searches. X t also contributes to the gluon fusion of a single Higgs

production. Including possible modifications in the Higgs coupling to tops, the modification in κg

is given by [334–338]

κg = κt +
κt

4
m2

t

 1

m2
t̃1

+ 1

m2
t̃2

− X̃ 2
t

m2
t̃1

m2
t̃2

 , (3.56)

with κi defined as ghi i /g SM
hi i .

The contribution of light stops to double Higgs production is summarized in Fig. 3.19 [322].

In the left panel of Fig. 3.19, we show the double Higgs production cross section normalized to the

SM value as a function of the light stop mass using the full one loop calculation (solid lines), and

the EFT calculation (dashed lines). κt is chosen to be 1 for the orange, red and green lines, and

1.1 for the blue lines. For the orange line, X 2
t is chosen to be m2

t̃1
+m2

t̃2
. This choice makes the

effective Higgs gluon coupling SM like. In the red and blue lines, instead, X 2
t is chosen to saturate
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the vacuum stability condition,

A2
t ≤

(
3.4+0.5

|1− r |
1+ r

)
(m2

Q +m2
U )+60

(
m2

z

2
cos(2β)+m2

A cos2β

)
(3.57)

in a conservative way by neglecting the mA and mZ terms, For the green lines, X 2
t is chosen to

saturate the vacuum stability condition with mA = 350 GeV, µ= 400 GeV, and tanβ = 1. In the right

panel of Fig. 3.19, we show the effect of stop mixing parameter X t on the double Higgs production

cross section for a fixed value of the mass of the lighter stop. Red, green and blue lines represent

fixed lighter stop mass of 300, 400 and 500 GeV respectively. Solid lines correspond to κt = 1, while

dashed lines correspond to κt = 1.1.

The cross section for a given final state depends not only on the double Higgs production cross

section, but also on the relevant Higgs decay branching ratios. In the MSSM, some small modifica-

tions to the Higgs decay branching ratios are expected. The largest modification is about ±20% for

the bb̄γγ channel [322]. Light stops also lead to modifications to the double Higgs invariant mass

distribution. In the presence of a light stop, the amplitudes develop imaginary parts when the in-

variant mass mhh crosses the 2m t̃ threshold, inducing a second peak in the mhh distribution a little

above 2m t̃ [322].

3.6 Connection to Cosmology

J. Kozaczuk, A. Long, K. Sinha

Measurements of di-Higgs production test the hypothesis that the Higgs boson couples to new

physics with a mass scale m ∼ 100GeV− 1TeV. In the hot conditions of the early universe, these

particles would have been in thermal equilibrium with the SM plasma. As the universe expanded

and cooled, the presence of this new physics could affect the nature of the electroweak phase tran-

sition (EWPT).

Electroweak phase transition and electroweak baryogenesis: The electroweak phase transition is

the dynamical process by which the Higgs field acquired its nonzero vacuum expectation value in

the early universe. The SM predicts that the phase transition is a smooth, continuous crossover

with the Higgs field evolving almost homogeneously from 0 to 246GeV as the temperature is de-

creased through the weak scale. However, the presence of new physics can easily and dramatically

change the predicted nature of the phase transition, even leading to a first order phase transition.

Unlike the gentle continuous crossover, a first order phase transition is a violent event during which

bubbles nucleate, expand, collide, and eventually merge to overtake the whole system. Today, our

understanding of Higgs physics is too poor to discriminate between even these two qualitatively

different scenarios.

If the cosmological electroweak phase transition was a first order one, it would have profound

implications for cosmology. The out-of-equilibrium conditions of a first order phase transition pro-

vide the right environment for the generation of cosmological relics. In this way, a first order elec-

troweak phase transition could explain why our universe has an excess of matter over antimatter on

cosmological scales through the mechanism of electroweak baryogenesis [123, 339]. A strong first-

order electroweak phase transition can have other interesting cosmological consequences, such as

the dilution of pre-existing thermal relics through entropy injection [340] and the generation of a

stochastic gravitational wave background (discussed below).

Double Higgs production at colliders allows for a direct probe of the couplings in the Higgs po-
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Figure 3.20: Figure adapted from Ref. [341] showing slices of the real singlet extension of the SM
for a singlet-like scalar mass of 170 GeV and two different mixing angles with the Higgs. Blue and
purple shaded points feature a strong first-order electroweak phase transition. Regions outside of
the red dashed contours feature deviations in the 125 GeV Higgs self-coupling larger than 30%. The
green (yellow) shaded regions show the discovery (exclusion) reach for pair production of the new
scalar at the 14 TeV HL-LHC in a trilepton final state discussed further in Ref. [341].

tential responsible for strengthening the electroweak phase transition. A typical example of this

in the real singlet extension of the SM is illustrated in Fig. 3.20 (adapted from Ref. [341]), which

shows slices of the parameter space consistent with a strong first-order electroweak phase transi-

tion (blue and purple points). Outside of the red dashed contours the deviations in the Higgs self

coupling are larger than 30%. Precise measurements of the double Higgs production rate can thus

provide a powerful probe of the electroweak phase transition in this scenario (see also Ref. [342]).

Similar conclusions hold in other extensions of the SM as well [122, 125]. For scenarios in which a

new scalar heavier than 250 GeV coupled to the Higgs generates a strong first-order EWPT, resonant

double Higgs production mediated by the new scalar provides a powerful handle on the nature of

electroweak symmetry breaking [195]. The prospects for such a search at the high luminosity LHC

are shown in Fig. 3.21 (adapted from Ref. [211]), again for slices of the singlet model parameter

space. Strong first order phase transitions generated by new scalars with masses up to the TeV scale

can be probed by resonant di-Higgs production (see also Refs. [192,195,205]). In models with addi-

tional scalars, pair production of the other scalar states can provide a complementary probe of the

electroweak phase transition [341,343]. The shaded regions of Fig. 3.20 correspond to the projected

HL-LHC sensitivity to pair production of singlet-like scalars in a particular trilepton channel de-

tailed in Ref. [341]. The sensitivity shown is likely conservative, and searches for double scalar pair

production involving states other than the 125 GeV Higgs can be a promising avenue for probing

electroweak symmetry breaking in the early Universe at the LHC and beyond.

Complementarity with gravitational wave observations: The inhomogeneous nature of a first

order phase transition provides the requisite quadrupole moment to source gravitational waves [344].

Since gravitational waves are very weakly interacting, they propagate freely until reaching us at

Earth today. If we can observe this primordial stochastic gravitational wave background, it could

provide direct evidence for a first order electroweak phase transition and thereby indicate the pres-

ence of new physics coupled to the Higgs.

Our ability to measure gravitational waves (GWs) has recently been demonstrated in spectac-
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Figure 3.21: Sensitivity of resonant di-Higgs production (black and red contours) to regions of the
singlet model parameter space with a strong first-order electroweak phase transition (purple). De-
tails can be found in Ref. [211] from which this figure was adopted.

ular fashion by the LIGO and VIRGO collaborations [345]. Moreover, efforts are underway to build

and launch a gravitational wave interferometer in space. The Laser Interferometer Space Antenna

(LISA) [346] collaboration has recently celebrated a successful pathfinder mission and is expected

to be launched in the early 2030s. With an interferometer that is no longer tethered to the Earth, the

length of its arms can be increased to millions of kilometers, which gives it sensitivity to the ∼ mHz

gravitational waves that are expected to arise from a first order electroweak phase transition [347].

It is important to understand how future collider measurements, such as Higgs pair produc-

tion, and observations of a stochastic GW background can complement each other in exploring

new physics yielding a strong first-order electroweak phase transition. The simplest template where

these questions can be studied is an extension of the SM by a singlet scalar discussed above. The

complementarity between GW and collider measurements has recently been explored in this model

by the authors of Refs. [210] and [209], and we summarise the main results here. The left panel of

Fig. 3.22 displays the GW spectrum obtained at a benchmark point in this model which is compat-

ible with electroweak precision measurements and all other phenomenological constraints. The

mass of the extra singlet is 455 GeV. The total GW signal is shown in red, while the different contri-

butions from sound waves (turbulence) are shown in blue (brown). The color-shaded regions are

the experimentally sensitive regions for various GW detectors. The right panel of Fig. 3.22 shows AT-

LAS (solid green lines) [68] and CMS (solid brown lines) [69] limits on resonant di-Higgs production

for 36.1 fb−1 and 35.9 fb−1 of data, respectively, combining several final states. A simple rescaling

of the current limits to 3000 fb−1 at the HL-LHC (13 TeV) is performed to obtain the correspond-

ing dashed line future projections. For the points on the parameter space giving detectable GWs

with a signal-to-noise ratio at LISA larger than 10, the resonant cross sections from gluon fusion at

NNLO+NNLL are computed using the results in [19]. It is clear that resonant di-Higgs studies at the

HL-LHC and GW signals from LISA can play complementary roles in exploring this model in the

future.
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Figure 3.22: Left panel: GW spectrum obtained at a benchmark point in the singlet-extended SM.
Figure adapted from Ref. [210]. Right panel: Current and future ATLAS/CMS di-Higgs sensitivity
to points predicting a signal-to-noise ratio larger than 10 at LISA. Figure adapted from Ref. [209].
Details in text.

3.7 HH and Dark Matter (Missing Energy)

M. Blanke, S. Kast, J. Thompson, S. Westhoff, J. Zurita

The final state of two Higgs bosons plus missing transverse energy was originally studied in the

context of Goldstino dark matter [348], which is currently the new-physics model that the existing

LHC searches [349,350] target. More recently it was realised that di-Higgs plus /E T is a signature that

also occurs in a plethora of other BSM scenarios including a dark sector [351–358].

In Ref. [359], a detailed analysis of the final state with four b-quarks and large missing energy

in the High Luminosity phase of the LHC was carried out. Here we provide a summary of the most

salient findings and refer the reader to Ref. [359] for further details. The large backgrounds (V + jets,

t t̄ , etc.) and the complex kinematics of the final require a multivariate analysis (MVA), which we

summarise here.

Since many new physics models can give rise to the same final state, it is important to define

physics scenarios that do not depend (crucially) upon the detailed field content, but rather on the

masses and couplings that characterise the signature. To this end we have introduced two sim-

plified models targeting two different final state topologies. Both models feature three new scalar

particles, dubbed B , A and χ (invisible), with the production mechanism g g → B → A A, through

a dimension five operator BG a
µνGµνa . We then have two options for A to decay: either A → hχ for

both A bosons (symmetric topology) or A → hh and A → χχ simultaneously (resonant topology).

We restrict ourselves to mass spectra where all these states are produced on-shell. Moreover, we

assume all new fields to be SM singlets, and we impose a discrete Z2 parity under which all SM

fields and B are even, χ is always odd and A is even (odd) in the resonant (symmetric) topology.

The Feynman diagrams for the hh + /E T final state are shown in Fig. 3.23.

In our study we use the scikit-learn [360] implementation of AdaBoost [361], employing the

SAMME.R algorithm to perform a Boosted Decision Tree (BDT) classification (70 trees, maximal

depth of 3, learning rate of 0.5, minimum node size of 0.025 of the total weights). We apply a /E T >
200 GeV cut, as we found the inclusive /E T trigger better suited for our purposes than triggering
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symmetric topology resonant topology

Figure 3.23: Topologies for a scalar resonance B decaying into hh + /E T .
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Figure 3.24: Luminosity required for a discovery (in fb−1) at the HL-LHC in the mA −mχ plane for
the symmetric model, with mB = 500 GeV (left panel) and mB = 750 GeV (right panel) [359].

on the jets. We employ a modified version of the BDRS algorithm [362], and cluster large-radius

jets with R = 1.2 (R = 0.6) for the symmetric (resonant) topology (see Sec. 4.1 for more details),

demanding to have at least one b-tagged subjet within each jet, and veto events with leptons. The

input variables include the pT,η,φ,m of the large-radius jets and subjets, global variables such as

/E T , HT , the number of large-radius jets and subjets, and finally variables for the di-jet and /E T -jet

systems, e. g. ∆Φ(J , /E T ), ∆R(J1, J2). We define the significance as

Σ= S√
αS +B +β2B 2

, (3.58)

where S and B are the number of signal and background events, α = 0 (1) for exclusion (discov-

ery) and β is the systematic uncertainty, which we fix here to 5 %. To be conservative we add an

additional layer of cautiousness and define exclusion as Σ(α = 0) = 3 (instead of the usual 2) and

discovery as Σ(α = 1) = 7 (instead of the usual value of 5). Moreover, in order not to be pushed to

very sparsely populated regions of phase space, we also request S ≥ 20.

We present our results in terms of the scalar masses for a total integrated luminosity of 3 ab−1.

In Fig. 3.24, we display the luminosity required to discover the symmetric scenario at the HL-LHC,

fixing mB = 500 GeV (left panel) and mB = 750 GeV (right panel). Except for one point, all scenarios

are well within the reach of the HL-LHC, and thus we also present, in Fig. 3.25, the results in terms

of the minimal cross section that can be discovered with a luminosity of 3 ab−1. The latter has the

advantage of providing results that can be readily applied to a larger class of models.

In the resonant model, the planned HL-LHC luminosity is not sufficient to exclude (left) or dis-

cover (right) any of the benchmark scenarios, due to the lower production rates.12 We therefore

12This is due to the additional final states, e. g. W W, Z Z + /E T , arising in this model, that can be targeted by comple-
mentary searches.
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Figure 3.25: Cross sections (in fb) for the 4b2χ final state required for a discovery at the HL-LHC
in the mA −mχ plane for the symmetric model, with mB = 500 GeV (left panel) and mB = 750 GeV
(right panel) [359].
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Figure 3.26: Cross sections (in fb) for the 4b2χ final state required for exclusion (left) and discovery
(right) at the HL-LHC in the mA −mχ plane for the resonant model, with 3ab−1. Here we have fixed
mχ = 25 GeV, but this parameter is not relevant for the sensitivity provided that 2mχ < mA [359].

confine ourselves to presenting the cross sections required to discover a particular resonant bench-

mark in Fig. 3.26. The mass of the lightest scalar, mχ, does not affect the sensitivity, since the boost

of A does not depend on mχ or mh . We therefore present our results in terms of the heavier scalar

masses mA and mB . From the figure, we see that we can test cross sections in the fb and sub-fb

regime. As in the symmetric model, the significance increases when the spectrum is compressed.

We note that in a complete model involving additional couplings, χ could either be the dark

matter or a long-lived neutral particle that decays outside the LHC detectors. Dark matter direct

detection experiments on the one hand and searches for long-lived particles (see e. g. [363–367]) on

the other hand thus serve as complementary probes of the nature of χ.

As a final remark, we would like to stress that we have verified, using CheckMATE2 [368], that

even with the largest possible cross section displayed here, the search for di-Higgs plus /E T is still the

most sensitive channel for both symmetric and resonant topologies. We thus encourage the ATLAS

and CMS collaborations to expand their di-Higgs portfolio of searches by including a topology-

based study of the Higgs pair plus missing transverse energy final state.



92 Chapter 3. New Physics in Higgs pair production

3.8 Summary: precision goals for the measurement of the Higgs pair

production process in the light of new physics

We can usefully summarize this chapter as a set of goals for the measurement of the Higgs pair pro-

duction process. While one of the major objectives is certainly the determination of the trilinear

Higgs self-coupling, many models have new particles that can be directly searched for in observ-

ables related to the Higgs boson. One of the most spectacular signatures of new physics in the

Higgs sector is resonant double Higgs production (see Secs. 3.1, 3.3 and 3.4). In models with s-

channel resonances, the di-Higgs invariant mass spectrum can be distorted compared to the SM

distribution, with an additional peak appearing at the mass of the new resonance, as we see, for

example, in Fig. 3.4. Care must be taken to incorporate interference effects to correctly interpret

results (see Sec. 3.2).

We have furthermore discussed how large the trilinear Higgs self-coupling can realistically be.

In Sec. 2.2 we have seen how large the modifications to the di-Higgs production cross section can

be in concrete models. We are hence now in the position to give a catalogue of precision goals for

the measurement of the di-Higgs production process that might be obtained in future experiments,

and the implications of each level for the discovery of effects due to new physics models.

Beyond di-Higgs production, many of the models in Sec. 3.4 have additional scalar particles.

These new scalars can also be produced in pairs or in association with the observed Higgs boson,

expanding di-Higgs production to di-scalar production. These new modes provide a new, robust

phenomenology for colliders. Searches for these new modes are important for fully mapping out

the Higgs potential and, in addition to a modified trilinear Higgs self-coupling, even helping to

determine if electroweak baryogenesis is the source of the baryon asymmetry of the Universe (see

Sec. 3.6).

The above discussion is focused on probing modifications to the Higgs sector and searching for

trilinear scalar couplings. However, we have seen in Chapter 2 that other effective operators can

substantially modify the di-Higgs production process. In particular, loops of new strongly interact-

ing particles can affect the di-Higgs production cross section, and it is hence important to properly

include their effects (see Sec. 3.5).

We now provide an indicative summary of what experimental precision on the di-Higgs mea-

surement is needed to probe the different BSM phenomena we have surveyed in this chapter:

• Bronze: Precision of 100%: Measurements at this level are sensitive to models with the

largest new physics effects, in which new particles of few hundred GeV mass appear in tree

diagrams or as s-channel resonances. Depending on the model, the heavy new resonance of-

ten has sizeable branching ratios also to V V final states. We have discussed in Sec. 3.1 models

with singlets which allow for sizeable branching ratios of a heavy Higgs boson to light Higgs

bosons, with values of maximally BR(H → hh) = 0.4 for singlet models with Z2 symmetry,

while larger BR(H → hh) are possible without Z2 symmetry.

• Silver: Precision of 25–50%: Measurements at this level are sensitive to mixing of the Higgs

boson with a heavy scalar with a mass of order 1 TeV. Models of electroweak baryogenesis

typically predict this level of deviation in the trilinear Higgs self-coupling. At this level of

precision we are able to exclude a physical hypothesis with realistic deviations in the Higgs

self-coupling, rather than just eliminating parts of parameter space.

• Gold: Precision of 5–10%: Measurements at this level are sensitive to a broad class of loop

diagram effects that might be created by light top squarks and or other new particles with
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strong coupling to the Higgs sector. Measurements at this level could possibly complement

measurements on new particles that could be discovered at the HL-LHC.

• Platinum: Precision of 1%: Measurements at percent level are sensitive to typical quantum

corrections to the Higgs self-coupling generated by loop diagrams.

In the remainder of this report, we will see how the capabilities of the LHC and of future ex-

periments on the measurement of the di-Higgs production process and the extraction of the Higgs

self-coupling align with these goals.
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Status of the measurements at LHC
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The Higgs self-coupling can be probed at the LHC directly through Higgs boson pair production

or indirectly by exploring the radiative corrections to single Higgs measurements.

Both ATLAS and CMS experiments have developed a wide set of searches to test the SM pre-

diction for the Higgs boson self-coupling. In this Part, we aim to provide an exhaustive overview

of the current experimental effort to test the Higgs boson self-coupling through both the double

and single Higgs boson productions processes. Direct searches for new resonant states decaying

to H H pairs will also be summarised. We hope that the reader will find this overview useful for

experimental studies at the LHC and future colliders.

Chapter 4 provides an overview of the online selections (trigger), the detector object reconstruc-

tion techniques and the calibration strategies specific for H H final states are reviewed.

Depending on the decay mode of the Higgs boson, a rich variety of signatures is available to

probe the production of H H pairs. Chapter 5 presents an overview of the results of the searches for

both non-resonant and resonant H H production through gluon-gluon fusion from the ATLAS [369]

and CMS [370] experiments, based on the data recorded between 2015 and 2018, corresponding to

an integrated luminosity of up to about 126 fb−1.

A discussion on how ATLAS and CMS collaborations could generalize the presentation of the

results and possibly allow their re-interpretations under specific models is given in Chapter 6.

The results of all the searches for H H production at the LHC are presented in Chapter 7 under

different beyond the SM hypotheses. A first attempt to combine statistically the ATLAS and CMS

results is also discussed. When possible, recommendations are provided on how to improve the

current measurements and expand the interpretation of the experimental results. The first exper-

imental results from the indirect determination of κλ via precision measurements of single Higgs

processes, as described in Chapter 2 are also presented and discussed.



Chapter 4

Detector objects, triggers and analysis
techniques

Editors: M. A. Kagan, L. Mastrolorenzo

In both ATLAS and CMS, the particles used to reconstruct the Higgs decays are identified by

combining the information of several sub-detectors based on different technologies. A detailed

description of the ATLAS and CMS detectors, together with a definition of the coordinate system

and the relevant kinematic variables, can be found in Ref. [369,370]. ATLAS and CMS have different

concept and detector specifics but similar capabilities.

ATLAS has optimised the detector design to have good stand-alone measurements from each

subsystem. Indeed it employees a toroidal magnet field for a stand-alone muon momentum mea-

surement, in addition to the solenoid used for the momentum measurements in the inner detector.

CMS instead has put major emphasis on the tracker system, consisting of all silicon detectors,

and relies on a very strong solenoid magnet field to achieve excellent transverse momentum res-

olution. Both the ATLAS and CMS calorimeter systems have two separate sub-detectors for the

reconstruction of electromagnetic and hadronic showers. Both the electromagnetic and hadronic

calorimeters for ATLAS have longitudinal and transverse segmentation, while CMS exploits longi-

tudinal segmentation only in the hadronic calorimeter. As a result, while the ATLAS calorimeter

allows a good calibration of the energy of hadronic objects and stand-alone reconstruction of the

jet direction, CMS has to combine with information from the tracking system in order to achieve

similar performance for the jet measurements and pile-up subtraction. Dedicated algorithms are

needed in order to identify different particles. Most of them relies on machine learning techniques,

such as Neural Networks (NN) or Boosted Decision Tree (BDT), which combine multiple observ-

ables at once to achieve good performance [371]. The algorithms are calibrated using data from

well understood SM processes and the correction derived are then applied to the simulation to

match the observed detector response. In the following we will describe how jets are reconstructed

and identified as initiated from b-quarks, as well as the τ and photon reconstruction algorithms.

The case when two objects are merged due to the high momentum of the parent particle (boosted

objects) is also discussed. In addition, dedicated strategies have been developed to identify final

state particles in a very short time to make real time decision whether to save a collision event to

disk or discard it. In this Chapter, the online selections (applied at trigger level) and the calibration

strategies specific for H H final states (such as kinematic fit) are reviewed. In particular differences

between ATLAS and CMS strategies are reported when relevant. Possible improvements and limi-

tations of the current algorithms are also discussed.
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4.1 Jet reconstruction

M. Swiatlowski

Quarks and gluons fragment (hadronisation) into a large number of stable particles, which result

in narrow cones of hadrons, called “jets". Jets are reconstructed with the anti-kT [80] clustering

algorithm with a distance parameter R = 0.4. Due to the differences between the calorimeter and

tracking systems, ATLAS and CMS employ different sets of inputs to the jet clustering algorithm. AT-

LAS uses topological clusters composed of calorimeter cells and applies corrections to the energy

measurement based on the longitudinal profile of the energy deposits in the calorimeters, as well as

the shape and number of associated inner-detector tracks. CMS, on the other hand, uses “particle

flow” objects [372] which exploits the information from all sub-detectors and aims at reconstruct-

ing and identifying all stable particles in the event (µ, e, γ, π etc...). The particle flow algorithm

matches inner-detector tracks to calorimeter energy depositions and perform a combined energy

measurement, weighted by the expected resolutions of each detector. Thus, it compensates the

calorimeter energy resolution with the tracker information at low pT. Moreover the particle flow

approach allows for the subtraction of energy deposits originating from pileup improving the jet

energy resolution, especially at low pT.

ATLAS is also considering moving to a particle flow approach for the end of Run 2 analyses [373]. In

the meanwhile, in order to reduce the impact of pileup, ATLAS requires a significant fraction of the

tracks associated with each jet below a certain pT threshold to have an origin compatible with the

primary vertex, as defined by the jet-vertex-tagger (JVT) algorithm [374].

Techniques are in place to reduce the impact of pileup on the mis-reconstruction of the jet

properties, also known as pileup mitigation techniques. Several approaches have been exploited

so far. The jet-area method [375] evaluates the average neutral energy density from pileup inter-

actions and subtracts it from the reconstructed jets. The pileup per particle identification (PUPPI)

algorithm [376] in CMS assigns a weight to each particle prior to jet clustering based on the like-

lihood of the particle originating from the hard scattering vertex. Pileup mitigation will present a

significant challenge as the colliders move to higher instantaneous luminosity values. Improving

the jet resolution by more accurately removing pileup contamination will lead to narrower signal

distributions, allowing for increased sensitivity of nearly the entire H H search program, especially

as the pileup is expected to grow to more than three times the current levels at the HL-LHC.

The jets reconstructed in the detectors are calibrated to the particle level (excluding neutrinos)

using a multi-stage calibration procedure [377,378]. It includes MC corrections taking advantage of

MC truth and data-driven approaches used to uniform the detectors response and to provide scale

factors to correct for simplified detector simulation.

Searches for new resonances decaying to H H with mass above 1 TeV (high mass), the resulting

Higgs bosons have a momentum considerably higher than their mass. Thus, each H → bb̄ decay is

reconstructed more efficiently as one hadronic jet with a larger anti-kT distance parameter: R = 1.0

(ATLAS) or R = 0.8 (CMS). As with R = 0.4 jets, CMS uses particle flow objects as inputs, whereas

ATLAS uses clusters of calorimeter cells only.

The larger jet size leads to increased susceptibility to contamination from underlying events and

pileup. Specific algorithms, grooming, are employed to reduce contributions from soft and wide

angle radiation by re-clustering the jet constituents, and as a result they help to mitigate pileup

effects.

Different “grooming” algorithms are applied to large-radius jets to allow a better identification

of the substructure of the W /Z /H-initiated jets, resulting from the decay to two partons at LO in
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QCD (2-prong decay). The resolution of the H-jet mass is improved by grooming since it filters

out contributions from soft and wide angle radiation that affects significantly the estimation of the

original invariant mass of the two-prong system.

The optimal choice of the grooming algorithm depends significantly on the specifics of the de-

tector. Few options have been proposed such as trimming [379], employed by ATLAS, pruning [380]

and soft-drop [381, 382], used by CMS. A review of the performance of these algorithms can be

found in Ref. [383].

ATLAS has recently validated large-radius jets that incorporate combined inner-detector and

calorimeter information. These “track-calorimeter-cluster” jets use the improved angular recon-

struction of the inner detector and the improved energy measurements of the calorimeters in order

to significantly improve the resolution at high pT.

4.2 Identification of b-jets

M. A. Kagan, L. Mastrolorenzo, C. Vernieri

The ability to correctly identify b-jets initiated by H → bb̄ decays is crucial to reduce the otherwise

overwhelming background from processes involving jets initiated from gluons (g ) and light-flavour

quarks (u,d , s), and from c-quark fragmentation.

The b-quark fragmentation process is very peculiar and its properties are fully exploited to

achieve good tagging efficiencies. The b-quarks hadronise in B-hadrons and several hadron par-

ticles, mostly pions. In particular, the large lifetime (cτ ∼ 500 µm) and the relative large mass of

B-hadrons make b-jets unique. A B-hadron with pT ≈ 50 GeV will fly about half a centimetre in the

transverse plane before decaying. Thus, daughter particles are expected to have a sizeable impact

parameter with respect to the B-hadron point of origin, the primary collision vertex. In addition,

B-hadrons are much more massive than anything they decay into, thus the decay products have a

momentum of few GeV in the B rest of frame. They can be identified by looking for (i) a decay vertex

displaced from the primary collision vertex, (ii) tracks with large impact parameter, or distance of

closest approach, with respect to the primary collision vertex, (iii) non-isolated leptons from the

semi-leptonic decays of B-hadrons (soft-leptons). The presence of a lepton in a jet is indeed a good

signature of the presence of a B-hadron given the high rate of semi-leptonic decays (∼ 35%). More-

over, since the B-hadrons retain about 70% of the original b-quark momentum [384], usually these

leptons have a high pT relative to the jet pT which make them easier to identify with respect to other

sources of leptons in jets.

The primary source of b-jet mis-identification include jets initiated by a charm quark, and light-

flavour quark- or gluon-initiated jets that have displaced vertices or large impact-parameter tracks.

Jets initiated by c-quarks , c-jets, are misidentified as b-jet due to the relatively large mass and

lifetime of charm hadrons, and the presence of charm hadrons in the B-hadron decay chain. Light-

flavour quark- or gluon-identified jets can be misidentified as B-hadrons due to detector resolution

effects in the reconstruction of the secondary vertices and the impact parameters, due to the hadron

interactions with the material or long-lived particle decays (such as kaon andΛ particles).

Both ATLAS and CMS have dedicated b-tagging algorithms which exploit in turn the secondary

vertex, impact-parameter, and soft-lepton information [385, 386]. As these algorithms are largely

complementary, multi-variate techniques based on neural networks are used to combine these dif-

ferent and complementary sets of information in order to yield the highest performance for a high-

level tagger. For jets in a t t̄ simulated sample with pT > 20 GeV, with a selection on high-level taggers

that results in a 70% b-tagging efficiency, ATLAS achieves mis-tag rates of approximately 0.3% for
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Figure 20: Light-flavour and c-jet rejection as a function of b-jet e�ciency for MV2 (black line), MV2Mu (red
line), MV2MuRnn (blue line). The algorithm evaluation is performed on tt̄ events. The ratio reported on the bottom
of the figure is calculated for each MV2 variant (MV2Mu, MV2MuRnn) with respect to MV2.
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Figure 21: Light-flavour (a) and c-jet (b) rejection as a function of the jet transverse momentum for MV2 (black
markers), MV2Mu (red markers), MV2MuRnn (blue markers). The algorithm evaluation is performed on tt̄ events
for a flat b-jet e�ciency of 77% for each pT bin. The ratio reported on the bottom of the figure is calculated for each
MV2 variant (MV2Mu, MV2MuRnn) with respect to MV2.

27

Figure 3: Performance of the b jet identification algorithms demonstrating the probability 
for non-b jets to be misidentified as b jet, as a function of the efficiency to correctly 
identify b jets. The curves are obtained on simulated ttbar events using jets within 
abs(η)<2.4 and with pT>30 GeV. The b jets from gluon splitting to a pair of b quarks are 
considered as b jets. The lines shown are for DeepCSV (retrained for the Phase 1 
detector geometry), NoConv, and DeepFlavour. The NoConv algorithm serves only for 
comparison. The absolute performance in this figure serves as an illustration since the b 
jet identification efficiency depends on the pT and η distribution of the jets in the topology 
as well as the amount of b jets from gluon splitting in the sample.

5

Figure 4.1: Light-flavour and c-jet rejection as a function of b-jet efficiency for DNN-based algo-
rithm developed by ATLAS (left) [387]. Comparison between the DeepCSV and DeepFlavour al-
gorithms developed by CMS to identify jets originated by bottom quarks (Right). The plot shows
the b-tagging efficiency versus the mis-tag rate from light-jets (continuous line) and c-jets (dashed
line) [389].

light flavoured jets and approximately 11% for charm-initiated jets [387]. The highest performance

b-tagging algorithm in CMS relies on a deep NN [388], with more hidden layers and more nodes

per layer, capable of combining vertexing information, track related variables and the kinematics of

jets reconstructed with the particle-flow algorithm, exploiting the correlations between these vari-

ables [386,389]. The performance of the CMS b-tagging algorithms has been evaluated for jets with

pT > 20 GeV in a simulated sample of t t̄ events. For a b-tagging efficiency of 68%, the tagger c-

quark mis-tag rate is 12% and the light-quark mis-tag rate is 1.1%. ATLAS outperforms CMS and

this is also related to the different tracking performance.

In Table 4.1 the commissioned working point for some of the CMS and ATLAS taggers most used

in the double Higgs boson searches are listed.

Working point ATLAS Tagger (MV2) CMS Tagger (Deep CSV)
εb(%) εc (%) εl (%) εb(%) εc (%) εl (%)

Very loose 85 32 3 – – –
Loose 77 20 1 84 40 10
Medium 70 11 0.3 68 12 1.1
Tight 65 6 0.2 50 2 0.1

Table 4.1: Calibrated operating points with relative efficiencies for ATLAS and CMS b-tagging algo-
rithms during Run 2, evaluated for jets with pT > 20 GeV from t t̄ simulated events [386, 387].

The calibration of the tagging efficiency and mis-tag rates of these algorithms is performed by

identifying pure samples of b-, c-, and light-flavour jets and by measuring the tagging efficiency

in t t̄ or multi-jet events in data. By comparing to the results from simulation, scale factors can be

derived to provide tagging efficiency corrections to the simulation. In ATLAS, scale factors for the b-

jet tagging efficiency deviate from unity (i.e. no correction) by typically 2−4%, with uncertainties of

3−5% except at low- and high-pT [390]. ATLAS c- and light-flavour-quark mis-tag rate scale factors

deviate from unity by typically 2− 10% and 5− 30%, with uncertainties of 5− 15% and 30− 50%,

respectively [391–393]. In CMS, the measured data-to-simulation scale factors for the tight working

point of the DeepCSV algorithm range from 0.9 to 1.0. The relative precision on the scale factors is
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1% to 1.5% using jets with 70 < pT < 100 GeV and rises to 3% to 5% at the highest considered jet pT.

The relative precision on the light-flavour mis-tag scale factors is 5–10% for the loose working point

and 20–30% for the tight working point. For the c-quark mis-identification, the relative precision

on the scale factor is 3–5% for the loose working point, and 10–38% for the tight working point.

Depending on the usage of the b-tagging algorithm in physics searches, reshaping scale factors

may be needed to correct for the tagger discriminant distribution. For such scale factors related to

c-jets in resolved topologies, the total uncertainty is 5% to 10%, and the statistical uncertainty in

the tagging efficiency dominates over the full jet pT range.

There are several long-term challenges for b-tagging at the HL-LHC. Increased levels of pileup

may lead to degradation in tracking performance, both from tracking algorithmic failures produc-

ing poor quality or completely fake tracks and from the radiation damage which degrades the pixel

detector hit efficiency and resolution. In addition, the larger density of tracks in HL-LHC events

can lead to b-tagging algorithmic challenges, as identifying the tracks from the B-hadron decay

and rejecting other tracks becomes increasingly challenging.

4.2.1 Boosted H → bb̄ taggers

For transverse momenta of the Higgs boson significantly higher than its mass (≈ 250 GeV), the re-

sulting Lorentz boost reduces the angular separation between its decay products. In the case of the

decay to b-quarks, the Higgs boson is reconstructed as a single large-radius jet (“H-jet") and not as

two separate jets. Then, the composite nature of such a jet is revealed by analysing its substructure.

Several phenomenological studies have explored H → bb̄ tagging algorithms (or “H-tagging”) using

jet substructure [362], though ultimately the optimal performance comes from using both the sub-

structure information of the fat jet and the track and vertex information related to the B-hadrons

lifetime [383].

For boosted Higgs-jet identification, ATLAS uses large R = 1.0 anti-kT jets built from calorime-

ter topological clusters to identify Higgs boson candidates, measure their energy and direction, and

estimate a variety of substructure inspired features, for discriminating the H → bb̄ signal from back-

grounds [394]. For identifying b-quark candidates, small R = 0.2 anti-kT jets are built from charged

particle tracks only, then the aforementioned suite of b-tagging algorithms are applied to these

jets [394, 395]. Such small radius jets can perform b-tagging even in dense environments and at

small opening angles between b-initiated sub-jets as would be expected in boosted jets. Utilising

tracks to build such jets benefits from the better resolution of tracking detectors over calorimeters.

New approaches, aimed at providing b-tagging for jets where the b−quark pair ∆R is smaller than

the track jets radius, have also been developed through the use of variable-radius track jets [396].

In CMS different approaches to identify boosted H → bb̄ candidates have been developed: the

subjet b-tagging and the double-b tagger [386]. In the first approach the subjets are first defined,

using the anti-kT algorithm with 0.4 distance parameter, and then the standard b-tagging is applied

to each of the subjets. At high pT the two subjets start to overlap causing the standard b-tagging

techniques to break down due to double-counting of tracks and secondary vertices when evaluating

the b-tag discriminants. The double-b tagger is a dedicated multivariate (BDT) tagging algorithm

which does not define subjets. It fully exploits not only the presence of two B-hadrons inside the

AK8 jet, but also the correlation between the directions of the momenta of the two B-hadrons. There

are 27 inputs in total which rely on reconstructed tracks, secondary vertices (SV) as well as the two-

SV system. The performance achieved in terms of background rejection for a given boosted bb̄

tagging algorithm outperforms those reached by reconstructing and tagging individually the two

jets for di-jet transverse momentum pT > 350−400 GeV.
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The algorithm has been updated to use a DNN based architecture, known as "Deep-Double-

b" [397], and more observables exploiting the kinematics of the charged particle flow candidates

and secondary vertex information. For a given bb̄ tagging efficiency of 70%, the inclusive mis-tag

rate is reduced more than a factor 2 with respect to the BDT based double-b tagger (from 4% down

to 1.2%-1.5%).

Due to the small cross section of producing events with boosted H → bb̄ or Z→ bb̄ jets, the ef-

ficiencies of these algorithms are measured using QCD multi-jet events enriched in jets from gluon

splitting to bb̄ (g→ bb̄) with topology similar to that of boosted H → bb̄ jets [394, 398].

Recently, CMS and ATLAS have reported the first observation of Z to bb̄ in the single jet topol-

ogy [399, 400], consistent with the SM expectation, in the context of a search of inclusive Higgs

boson production at high pT decaying to bb̄.

4.3 Specific Corrections for b-jet transverse momentum

N. Chernyavskaya, F. Micheli, L. Mastrolorenzo, C. Vernieri

The most sensitive searches for H H production involve at least one Higgs boson decay to bottom

quark-antiquark (H → bb̄). Improving the invariant mass resolution of the b-jet pair plays a crit-

ical role for these searches. The jet energy calibration is done as a function of the jet pT and η,

and taking into account the pileup activity of the event, as the pT density (ρ), which is the corre-

sponding amount of transverse momentum per unit area [375]. The jet energy is calibrated in data

using QCD di-jet events, which are mostly gluon-initiated jets, without taking into account the ad-

ditional details of the jet reconstruction. Typical values for the jet energy resolution are 15–20% at

30 GeV [377, 378].

Jets initiated from b-quarks contain B-hadrons, which have a relatively high probability (35%)

to decay to leptons and neutrinos. The presence of neutrinos, which escapes detection, in the

B hadron semi-leptonic decay chain results in an even lower response with respect to the light

quark/gluon induced jets used in the standard calibration [377, 378]. In addition, due to the soft

particles from the decay of heavy hadrons, b-jets deposit over a wider cone than light jets. There-

fore, the standard jet energy calibration does not correct for the energy loss caused by escaping

neutrinos or out-of-cone energy leakage, and a dedicated energy correction is needed for b-jets.

Both ATLAS and CMS have developed specific strategy to correct the b-jet energy and improve

the invariant mass resolution of the reconstructed Higgs boson [401, 402].

Both ATLAS and CMS attempt to correct the b-jet energy, by applying a multi-variate technique

similar to that used in CDF [403],

The CMS method [404, 405] uses the regression method to combine various jet and event prop-

erties, to get an additional correction beyond the standard CMS jet energy corrections. The regres-

sion is essentially a multi-dimensional calibration at the particle level - including neutrinos - which

exploits the main b-jet properties. The regression target is the jet pT at generator level, including

the contribution of neutrinos. A specialised BDT is trained on a jet-by-jet basis using a large dataset

of simulated b-jets from decay of t t̄ pairs. It provides a correction factor that improves both the

b-jet energy scale and its resolution.

Inputs are chosen among variables that are correlated with the b-quark energy and well mea-

sured. They include detailed jet structure information about tracks and jet constituents which dif-

fers from light flavour quarks/gluons jets. Information from B-hadron decays on the reconstructed

secondary vertices are used as well as soft lepton from semi-leptonic decay when available, provid-
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ing an independent estimate of the b-quark pT. This multi-dimensional regression then combines

information about the secondary vertex and tracks associated to a b-jet, jet kinematics, jet compo-

sition and individual energy deposits reconstructed by the different CMS sub-detectors, as well as

pileup information.

In Run 1 [406] the information carried by the variables related to the missing transverse energy

(Emiss
T ) has been also exploited as input to the regression. In the absence of real Emiss

T in the event, it

acts as a kinematic constraint for the momentum balance in the transverse plane.

In general, the most discriminating variables are those related to the jet kinematic, due to the

fact that most of the power of the regression is derived from the neutrinos involved in the semi-

leptonic B-hadron decays.

The average improvement on the mass resolution, measured on simulated signal samples, when

the corrected jet energies are used is about 15-25%, resulting in an increase in the analysis sensitivity

of 10–20%, depending on the pT of the reconstructed Higgs boson and on the analysis strategy.

The validation of the regression technique in data has been performed in Z(``)+bb̄ events, by

comparing the Z pT with the pT of the bb̄ system, and in an t t̄-enriched sample targeting the lepton

plus jets final state, by looking at the reconstructed top-quark mass distribution [404].

Very recently, the CMS experiment has improved the regression through the use of a DNN [401,

407]. A dedicated loss function is introduced, allowing simultaneous training of an energy correc-

tion and a per-jet resolution estimator1. The DNN regression improves the b-jet resolution by a

about 13%. Therefore this improvement generalises well to b-jets originating from physics pro-

cesses different from t t̄ production. A larger improvement of roughly 20% is observed for the di-jet

invariant mass resolution. The resolution estimator predicted by the DNN and based on quantile

estimators is shown to predict the intrinsic jet resolution with an accuracy of better than 20% over

a pT range spanning over one order of magnitude. The DDN-based regression has been validated

in data using events arising from dilepton decay of a Z boson in association with b-jets. It was

confirmed that the improvement coming from b-jet energy regression is observed in both data and

simulation.

ATLAS proceeds following the same logic to improve the b-jet energy resolution. Since muons

are not included in the standard ATLAS jet calibration, but are present in roughly 15% of the B-

hadron decays, b-jets receive an additional µ-in-jet correction. If a muon is found within a jet cone

of ∆R =
√
∆η2 +∆φ2 = 0.4, the four-momentum of the muon closest to the jet axis is added to

the four-momentum of the jet. Additional residual jet pT corrections are applied to account for

escaping neutrinos and equalise the response to jets containing semi-leptonic and hadronic decays

of B-hadrons ATLAS has also developed a more sophisticated method using a boosted decision tree

(BDT) algorithm with a set of inputs similar to those used by CMS [409]. The improvement of the

di-jet invariant mass resolution coming from simple average correction and BDT regression is very

similar, and it is of the order of 18% with respect to the calibration without including muons [410].

In Fig. 4.2 the impact of the µ-in-jet and the b-jet regression based corrections is shown for

simulated H → bb̄ events in ATLAS and CMS.

Both ATLAS and CMS have implemented dedicated algorithms to improve the b-jet energy res-

olution using machine-learning techniques. These algorithms will further be developed to meet the

conditions of the HL-LHC. For the HL-LHC phase, a major upgrade of the ATLAS and CMS detec-

tors is planned, with new detectors having a higher granularity, extended coverage, and additional

timing layers. The high granularity of the detectors and the additional timing information will im-

1The loss function combines a Huber function for the energy correction estimation with two quantile estima-
tors [408].
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Figure 4.2: Di-jet invariant mass distributions for simulated samples of Z(``)H → bb̄ events, before
and after the µ-in-jet energy correction (left) and the regression procedure (right) is applied for
ATLAS and CMS respectively [401, 402].

prove the reconstruction of the b-jets by removing spurious tracks from pileup and by improving

the identification of secondary vertices. The additional information coming from detectors can be

used for the training of more sophisticated neural network architectures.

4.4 Hadronic τ object identification

A. Bethani, K. Leney, L. Mastrolorenzo

The τ is the heaviest lepton with a mass of 1.776 GeV and a lifetime cτ ∼ 87µm. Because of its

large mass τ is the only lepton that can decay hadronically. More precisely, in 65% of the cases

the τ decays hadronically, typically into either one or three charged mesons (mainly pions) in pres-

ence of up to two neutral pions, subsequently decaying into a pair of photons. While leptonic τ-

decays are reconstructed as prompt electrons or muons, hadronic decays of a τ-lepton (τh) are

reconstructed by combining detailed information of the visible decay products, such as tracks and

their impact parameters, and energy clusters corresponding to the τ candidate. In both ATLAS and

CMS, hadronic τ detector objects are seeded by jets reconstructed with the anti-kT algorithm, with

a distance parameter R = 0.4. Further reconstruction in CMS is performed by using the Hadron-

Plus-Strips (HPS) [411] method, described further in this section.

The τ reconstruction method used by ATLAS [412, 413] is based on a set of selection criteria,

applied to jets to reject those initiated by quarks and gluons. Information from the inner tracker is

used to identify the τ vertex and the resulting tracks using the number of hits and the distance of

closest approach to the τ vertex, that are compatible with the hadronic τ decays. The energy of the

τ object is then obtained using dedicate calibration algorithms.

The τ reconstruction in CMS is based on the HPS algorithm, that combines information from

the energy deposited in the calorimeters and from the reconstructed charged tracks. It starts search-

ing for τ lepton decay products within a particle-flow jet, identifying the most abundant τ hadronic

decays, classified accordingly to the number of reconstructed charged hadrons and electromag-

netic energy deposits: 1-prong (1 charged track assumed to originate from a pion), 3-prongs (3

charged tracks with invariant mass compatible with the mass of the intermediate resonances a1 or

ρ) and 1-prong + π0 (1 charged track originated from a pion plus electromagnetic deposition).
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Both experiments use multi-variate discriminators to reduce mis-identification of quark- and

gluon-initiated jets as τ objects. During the 2015-2017 data taking period, a BDT was used by

both experiments and in 2018, ATLAS introduced a τ identification algorithm based on a recur-

rent NN (RNN) [414]. In physics analyses, different selections on the discriminant output score can

be applied according to the desired efficiency. In ATLAS, three working points referred to as loose,

medium and tight are provided, corresponding to different cuts on the BDT output score and hence

different efficiencies, as listed in Table 4.2. The rejection factors for quark- and gluon-initiated jets

is O (102) to O (103) depending on the working point as well as pT and the number of tracks. In CMS,

several multi-variate techniques were probed, with three to six working points. The corresponding

efficiencies and background rejection factors are listed in Table 4.2.

Working point
ATLAS CMS

τ eff./ jet → τ (1 track) τ eff. / jet → τ (3 tracks) τ eff. jet → τ e → τ µ→ τ

Loose 60% / 2% 50% / 1% 60% 0.8% 1% 0.1-0.5%
Medium 55% / 0.8% 40% / 0.8% 55% 0.4% 0.2%
Tight 45% / 0.6% 30% / 0.6% 45% 0.2% 0.1% 0.03-0.4%

Table 4.2: Efficiencies for the different τ hadronic identification working points used by the AT-
LAS [413,415] and CMS [411] collaborations. Identification efficiency are evaluated using simulated
H → τ+τ− or a 2 TeV BSM resonance decay to τ+τ− events. Jet → τ mis-identification probabilities
for τ objects are evaluated using simulated multi-jet events and reported for inclusive pT for ATLAS
while for 30-60 GeV in the CMS case. e → τ and µ→ τmis-identification probabilities are evaluated
using Z /γ→ ee/µµ events.

The efficiency of the hadronic τ identification criteria has increased enormously since the first

data-taking periods in 2010, when the fake rates were more than an order of magnitude larger for

similar efficiencies, despite the increase of instantaneous luminosity and concurrent pileup events.

Electrons and muons can also be mis-identified as τ objects, and these backgrounds are suppressed

using algorithms that combine information from the inner tracker, calorimeters, and muon detec-

tors. The e → τ and µ→ τ mis-identification probabilities are significantly smaller than for jet→ τ.

The uncertainties on τ identification efficiency correction factor measurement are approxi-

mately 5-6% for the sum of the transverse momenta of all charged pions and photons from π0 (vis-

ible transverse momentum) in the 20-60 GeV range [411, 413]. The reconstructed τ energy scale

correction factor is measured with a precision of approximately 1.2–2% for ATLAS [413] and less

than 1.2% for CMS [411].

4.4.1 Boosted H →τ+τ−

Reconstructing the di-τ system is an integral part of H H searches that include a H → τ+τ− decay.

In the case of searches for heavy resonances, it is likely that the di-τ system is produced with very

high transverse momentum and the τ decay products are more collimated. The higher the energy of

the original state the smaller the angular distance between the two τ objects. The τ reconstruction

efficiency drops dramatically as the di-τ pT increases. The τ reconstruction is seeded by anti-kt jets

with a distance parameter R = 0.4, corresponding to the maximal distance between jet axes. There-

fore τ pairs within a cone of ∆R <0.4 are merged into the same jet and can not be reconstructed

separately, as for the boosted H → bb̄ reconstruction.

To reconstruct highly boosted τpairs, a new approach is necessary since they cannot be handled

with existing methods by construction. A simple solution would be to reduce the anti-kT distance

parameter, until both τ objects can be reconstructed separately again. This approach does improve
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the efficiency of a single τ reconstruction in a high-momentum regime. However, in the case of

boosted τ pairs it is very likely one τ to have a significantly higher pT than the other. In the case

the τ pair originates from a scalar particle, as the Higgs boson, then one τ-lepton is likely to give

most of its energy to the τ neutrino because of spin conservation and the V-A structure of the elec-

troweak interaction. Therefore a better solution is to reconstruct the boosted τ pair as one object.

Both ATLAS and CMS have developed specific tools for the identification of boosted di-τ systems

with similar approach. The sub-structure of wide jets is exploited to look for the presence of two τ

decays. The large-radius jets are used as seeds for the reconstruction and sub-jets are subsequently

identified. ATLAS has employed a multi-variate method [416] to discriminate the boosted di-τ sys-

tem from other boosted hadronic objects. The observable used as input to the algorithm are similar

to those used for standard τ identification, including calorimeter information on the clusters and

energy deposits, as well as tracking inputs related to primary and secondary vertices to estimate the

τ decay length. Given the distinctive di-τ decay signature, a higher jet background rejection is likely

to be achievable for boosted τ-pairs as compared to boosted H → bb̄.

So far the focus of both experiments has been to identify fully hadronic di-τ system, however

everything already stated before applies in the case of the semi-leptonic di-τ decays as well. In this

case the wider jet is investigated to look for the presence of a lepton. The identification of boosted

semi-leptonic di-τ decays is significantly easier for CMS due to the use of particle flow in the event

reconstruction which combines tracker and calorimeter information for particle identification.

CMS has developed a dedicated reconstruction algorithm to reconstruct the Higgs boson decay-

ing to τ leptons. Higgs decaying to τ leptons are clustered as large radius jet (distance parameter

of 0.8) and if two subjets with pT > 10 GeV that satisfy the mass drop condition are found, then the

two subjets are used as seeds in the standard τ reconstruction and the HPS algorithm is applied on

them to identify hadronic taus. The τ leptons selected by the HPS algorithm are then required to

have pT > 20 GeV and satisfy a selection on the (MVA) τ-ID isolation. A medium working point is

used for the leading τ and a very loose one is used for the second leading τ in fully hadronic events.

For boosted Higgs boson decays into µτh and τhτh, the corresponding efficiencies are about

80% and 60% and the mis-identification rate 10−3 and 10−4 respectively, depending on the Higgs

boson pT [417].

4.5 Photon reconstruction

E. Brost, R. Teixeira de Lima

The photon reconstruction algorithm in the ATLAS detector starts by dividing the electromagnetic

(EM) calorimeter into angular regions of ∆η×∆φ = 0.025 × 0.025, a tower, with energy given by

the sum of all longitudinal cells within that area. Towers with an energy larger than 2.5 GeV are

used as seeds for the cluster reconstruction with the sliding window algorithm [418], which clus-

ters calorimeter cells within fixed-size rectangle, with a window size of 3× 5 towers. Clusters are

classified as electron, unconverted photons or converted photons according to the presence of

matched well reconstructed tracks that are consistent or not with primary vertices in the event.

These EM clusters are calibrated to account for different effects, in data and simulation, using the

transverse and longitudinal segmentation of the EM calorimeter. The calibration uses Z → e+e−,

Z → (e+e−,µ+µ−)γ and J/Ψ→ e+e− as standard candles. This achieves a relative energy resolution

of σ/E = 2.5% (1%) for central unconverted photons with ET = 20(200) GeV [419].

In the CMS detector, photon and electron clusters are reconstructed based on energy deposits

in the CMS electromagnetic calorimeter (ECAL) crystals. Crystals with an energy deposit above that
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of their immediate neighbours and above the noise threshold are used as seeds for the clustering

algorithm, which works with flexible-sized windows, depending on the energy distribution around

the seed crystals [420]. Before the clustering, the ECAL crystal responses are corrected for ageing

effects, and inter-calibrated by measuring quantities such as the π0/η → γγ process and the ra-

tio between the energy of electrons with respect to their momenta measured by the CMS trackers.

The absolute scale calibration is then performed with Z → e+e− decays as a function of η. In addi-

tion, pileup effects are mitigated with a multi-variate regression technique. The energy resolution

is measured in Z → e+e− events with electrons reconstructed as photons, and achieves a relative

resolution of σE /E = 1.5% for central electrons with low bremsstrahlung emission [421].

ATLAS identifies photons with respect to jets with high EM activity (such as π0 → γγ from

hadronic showers) with rectangular cuts on expected prompt-photon shower shapes [422]. Due

to the longitudinal segmentation of its EM calorimeter, ATLAS uses information based on the en-

ergy distribution in the different EM layers for a purer selection. This purer version of the algorithm

achieves an efficiency of 85−90% (85−95%) for unconverted (converted) photons in the range of

30 GeV < ET < 100 GeV [423]. Additionally, isolation criteria based on vetoing hadronic (track- and

calorimeter-based) activity around the cone defined by the photon axis is used to reject π0 → γγ

from nearby jets that have been reconstructed as a single photon. The isolation requirement has a

signal efficiency of approximately 98% for SM H H → bb̄γγ events.

Photon identification in CMS is performed both with rectangular cuts and with a multi-variate

approach based on a BDT [421]. Quantities such as the width of the photon shower in the η di-

rection are used to mitigate hadronic background. The CMS photon identification BDT includes

variables related to extra activity in the detector in the vicinity of the reconstructed photon, and, in

the endcaps, extra information obtained from the CMS preshower detector 2, particularly to iden-

tify π0 → γγ decays. Since in the endcap regions, the angle between the two emerging photons

from the decay of a neutral pion is on average smaller. The algorithm was developed during Run 1,

focusing on the performance of the CMS H → γγ analysis. For the Run 2 version of the algorithm,

efficiencies on data with Z → e+e− events, where one of the electrons is reconstructed as a photon,

are found to be between 75% and 95% for photons with ET > 20 GeV [424].

4.6 Trigger strategies

J. Alison

Identifying b-jets and τ leptons efficiently at trigger level [425, 426] is critical for two of the most

sensitive H H final states, H H → bb̄bb̄ and H H → bb̄τ+τ−. The challenges of properly identifying

these objects online are outlined in the following sections.

The ATLAS and CMS triggers consists of two different systems: the L1 Trigger (L1) and the High

Level Trigger (HLT). The first uses custom-built programmable hardware to make an accept-reject

decision in approximately 2.5-3µs, while the second relies on a shelf processor farm employing the

same reconstruction software framework used for the offline reconstruction.

4.6.1 b-jet trigger
J. Alison

The all-hadronic H H → bb̄bb̄ final state poses a great challenge to the online selection criteria due

to the overwhelming rate of QCD multi-jet events. The b-jet properties are exploited at trigger level

2The preshower detector is located in front of the ECAL in the endcap regions and has a much finer granularity.
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Figure 2.9: Expected 95% C.L. upper limit on the cross-section ratio
s(HH ! 4b)/s(HH ! 4b)SM as a function of the minimum pT requirement applied to
the fourth-leading jet, assuming that systematics are not a strong limitation on the result. As
discussed in Section 2.2, modifications of the Higgs self-coupling can modify the cross-section by
factors of order unity. Results with systematics show similar trigger impacts. For a more detailed
discussion, see Section 6.13.

the trigger selection of a high-pT ISR jet biases the distribution of the invariant mass of the
second and third leading jet for the QCD multijet background, which is problematic for the
background estimation used in these searches.

The single-jet pT threshold is driven by the Event Filter output limitation. The rate of high-
pT single-jet events that can be accepted by the Level-0 and used for combinations with
other signatures at the Event Filter is on the order of 25 kHz for HL-LHC; this corresponds
to a pT threshold of 180 GeV. Such a rate is much larger than the maximum recording rate
of 10 kHz. An alternative is to reduce the amount of recorded data for these events by re-
cording only the reconstructed objects in the Event Filter instead of the full detector data. In
order for this to work, the reconstruction in the Event Filter needs to be as close as possible
to a well understood offline reconstruction. This has been implemented in Run 2 and the
result is shown by the light blue line in Fig. 2.6 (named TLA in the legend). It provides a
substantial gain in sensitivity in the ⇠ 450� 1000 GeV Z0 mass range (purple line in the fig-
ure). This illustrates the value of a low single-jet threshold and reconstruction in the Event
Filter that closely follows the offline reconstruction (including having tracking available for
pile-up mitigation and calibrations). The mass range of this search is ultimately limited
by the Level-0 thresholds, and by the CPU requirements for obtaining tracks associated to
trigger jets that can guarantee a good pile-up suppression performance.

29

Figure 4.3: Expected upper limit on the H H → bb̄bb̄ cross section as a function of the minimum jet
pT threshold [427].

to keep an acceptable rate without increasing the jet transverse momentum thresholds, reducing

the H H → bb̄bb̄ signal acceptance. The sensitivity of the projected H H → bb̄bb̄ analysis as a func-

tion of the jet threshold is shown in Fig. 4.3. An increase of the jet threshold from 60 to 100 GeV

reduces the H H → bb̄bb̄ sensitivity by a factor of two. This loss is greatest for events with relatively

low mH H , the region most sensitive to λ. It is therefore crucial to identify b-jets at the trigger level

with the highest possible efficiency. This is a challenging task for the LHC experiments.

The L1 triggers do not use inner detector tracks and thus provide no separation between b-jets

and jets from light-flavour quarks or gluons. As a result, b-jets can only be efficiently collected using

relatively inclusive, and consequently high-rate, hadronic L1 triggers. The output rate of these L1

seeds is a major, and often the most severe, constraint for the b-jet triggers. The b-jet identification

is carried out in the high-level trigger (HLT), when track information becomes available. Another

major limitation to b-jet triggers is the available CPU in the HLT farms to perform track reconstruc-

tion. While tracking information is necessary for b-tagging, it is computationally expensive. The

large CPU cost, coupled with a high input rate from the inclusive L1 triggers, results in the b-jet

triggers demanding a significant fraction of the available HLT CPU. The b-jet triggers have to trade

performance for speed in order to fit into the allocated resources. It is also important for the online

b-tagging to maintain as much consistency with the offline b-tagging algorithms as possible. Most

of the searches for H H require b-jets to be identified both online and offline; any inconsistency in

the two identification algorithms leads to a reduced overall efficiency. Maintaining online/offline

consistency is particularly challenging as the offline algorithms are constantly evolving – even after

the trigger decisions have been made – and are not subject to the CPU constraints in the HLT. The

remainder of this section discusses the various inputs to HLT b-tagging and summarises the overall

performance. Differences between ATLAS and CMS are highlighted.

Primary vertex (PV) finding is crucial to b-tagging as it defines the reference from which track

displacements are measured and it is used to suppress tracks coming from pile-up. Both transverse

and longitudinal positions of the PV are needed. The transverse position is determined from the

beam spot position. The position of the beam spot is monitored in real-time during data-taking

with dedicated HLT triggers. The transverse beam spot width is comparable to the accuracy with
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which the transverse PV position can be measured, O (10µm). As a result, the PV transverse posi-

tion is approximated with the beam spot position. The longitudinal PV position, however, must be

reconstructed on an event-by-event basis. It is used both to reduce the phase-space where tracking

is performed, as well as to define the inputs to the b-tagging. Only tracks pointing to the PV are

important for b-tagging, so imposing a maximal longitudinal distance between the track and the

PV significantly reduces the relevant hit combinations and thus the CPU cost associated to tracking

algorithms.

ATLAS and CMS have quite different approaches to reconstruct the online PV. CMS uses an iter-

ative approach that starts with track-less vertex finding using jet directions and pixel clusters. Pixel

clusters matched to the four leading jets in the event are projected to the beam line. The position of

the PV along the beam line is then determined as a maximum in the projected hits positions. This

technique is extremely fast and locates the PV along the beam line with an accuracy of about a cen-

timetre. This preliminary estimate of the PV position is then used to seed pixel-only track finding.

The PV finding algorithm is then performed again including the pixel tracks, improving the resolu-

tion in z to ∼ 100µm. Tracks reconstructed with a combination of hits from both the pixel and strip

detectors, consistent with this PV position are then reconstructed and used to further refine the PV

position determination, resulting in a final resolution of around 25µm, comparable to the offline

PV resolution.

The PV finding in ATLAS is done in one step. Track reconstruction is performed using inner

detector hits matched to pT > 30 GeV jets found at L1. The hits are required to fall within ∆R < 0.2

from the jet direction. Tracks with pT > 1 GeV are reconstructed using a configuration of the track

finding algorithm optimised for speed [425]. In 2017, to reduce the CPU cost, the threshold on the

track pT was raised to 5 GeV. These tracks are then used to reconstruct the PV with an accuracy of

∼ 60µm along the beam line. The PV position is then used as seed to the track finding algorithm in

a wider ∆R < 0.4 area around the jet direction. A more precise and CPU expensive configuration of

the track reconstruction algorithm is used at this final stage.

The HLT track efficiency is one place where there is a significant difference in performance be-

tween ATLAS and CMS. The online track reconstruction in CMS, as evaluated in simulated t t̄ events,

has an efficiency that is 10% lower than that of the corresponding offline reconstruction for tracks

with pT of 1-10 GeV. In ATLAS for a similar kinematic phase space, the efficiency of the online track

reconstruction relative to the offline is better than 98%. This difference in track reconstruction

performance translates into a difference in online b-tagging performance between the two experi-

ments.

The b-jet trigger decisions are ultimately made based on the multiplicities of jets passing var-

ious pT and b-tagging thresholds. Jet reconstruction, discussed in Sec. 4.1, is thus also critical to

the b-jet trigger. The online jet reconstruction follows the procedure used offline as closely as pos-

sible. Residual differences in the online/offline performance arise mainly from the different track

reconstruction used online and from the jet thresholds applied at L1. Currently neither experiment

implements dedicated b-jet pT corrections in the trigger, an obvious potential area for future im-

provement.

The b-tagging algorithm is the final ingredient for the b-jet triggers. The b-tagging algorithms

used by ATLAS and CMS are described in Sec. 4.2. The online algorithms follow those used offline

as closely as possible. The primary differences between the online and offline b-tagging arise from

differences in the input tracks and from improvements to the offline algorithms that come after the

software used in the trigger is frozen. In Run 2, ATLAS used the MV2c algorithm both offline and

in the trigger [428]. In the start of Run 2, CMS deployed a version of the CSVv2 [386] algorithm at

trigger level. However, during 2018 the CMS trigger moved to the DeepCSV discussed in Sec. 4.2.
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Figure 29: Comparison of the misidentification probability for light-flavour jets (left) and c jets
(right) versus the b tagging efficiency at the HLT and offline for the CSVv2 algorithm applied
on simulated tt events for which the scalar sum of the jet pT for all jets in the event exceeds
250 GeV.

8 Measurement of the tagging efficiency using data
In the previous sections, the performance of the taggers was studied on simulated samples.
In this section, we present the methods used to measure the efficiency of the heavy-flavour
tagging algorithms applied on the data. In Section 8.1, the data are compared to the simulation
for a few input variables as well as for the output discriminator distributions. The measurement
of the misidentification probability in the data is presented in Section 8.2. The tagging efficiency
for c and b jets is presented in Sections 8.3 and 8.4, respectively. Section 8.5 summarizes a
method to measure data-to-simulation scale factors as a function of the discriminator value for
the various jet flavours. The results of the various measurements are compared and discussed
in Section 8.6.

8.1 Comparison of data with simulation

The data are compared to simulation in different event topologies, chosen for their different jet
flavour composition, and selected according to the following criteria:

• Inclusive multijet sample: Events are selected if they satisfy a trigger selection re-
quiring the presence of at least one AK4 jet with pT > 40 GeV. Because of the high
event rates only a fraction of the events that fulfill the trigger requirement are se-
lected (prescaled trigger). The fraction of accepted events depends on the prescale
value, which varies during the data-taking period according to the instantaneous
luminosity. The data are compared to simulated multijet events using jets with
50 < pT < 250 GeV. This topology is dominated by light-flavour jets and contains
also a contribution of jets from pileup interactions.

• Muon-enriched jet sample: Events are considered if they satisfy an online selec-
tion requiring at least two AK4 jets with pT > 40 GeV of which at least one contains
a muon with pT > 5 GeV. Also in this case, the trigger was prescaled. The data
are compared to a sample of jets with 50 < pT < 250 GeV and containing a muon
selected from simulated muon-enriched multijet events. Because of the muon re-
quirement this topology is dominated by jets containing heavy-flavour hadrons.

• Dilepton tt sample: At trigger level, events are selected by requiring the presence
of at least one isolated electron and at least one isolated muon. Offline, the leading
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Figure 4.4: Comparison of online and offline b-tagging performance for CMS [386] (left) and AT-
LAS [428] (right).

The relative performance of the online and offline b-tagging algorithms are shown for both AT-

LAS and CMS in Fig. 4.4. For a background rejection of 100, the difference in online and offline

signal efficiency for ATLAS is ∼2%; in CMS, the corresponding difference is ∼ 6%. The worse rela-

tive online performance for CMS is likely a result of the lower HLT tracking efficiency because the

limited availability of pixel tracks.

4.6.2 τ trigger
A. Ferrari, L. Mastrolorenzo

During the Run 2 taking, CMS has developed a new τ trigger algorithm [429] for the L1. The re-

cent micro-TCA (µTCA) technology [430], together with more powerful and dedicated Field Pro-

grammable Gate Arrays (FPGA), had being deployed at the L1 trigger during the Phase-I upgrade

allowing enhanced calorimeter granularity to be used by the online algorithms3. The L1-tau algo-

rithm is based on an innovative dynamic clustering technique (used also to trigger electron and

photon at L1 [431]) capable to combine the information coming from the calorimeters to perform

a first online identification of the main τ hadronic decay mode (1-prong, 1-prong, 1-prong+π0, and

3-prongs). Together with a cluster-dedicated calibration and an innovative isolation technique to

perform an online PU mitigation, the performances obtained allow to effectively use the L1-tau

trigger to seed the acquisition of events with hadronic τ lepton in their final state requiring un-

precedentedly low online thresholds. For the different hadronic τ decay modes considered, the

trigger efficiency is found to be close to 100% for τ reconstructed online with a pT fairly above the

trigger threshold (to avoid energy resolution effect).

In ATLAS, the trigger-level identification of τ objects relies at L1 on the calorimeter information,

with a granularity of 0.1× 0.1 in η and φ [413]. A core region consists of 2× 2 trigger towers and

requirements are placed on the transverse energy of the two most energetic adjacent towers as well

as an isolation region around the core. At the HLT, topological clusters of calorimeters cells are con-

sidered within a cone of radius 0.2 around the L1 τ object and they are calibrated using the same

method as offline τ objects. Following the use of trigger specific pattern recognition algorithms, re-

quirements of at most 4 and 2 are made on the number of tracks in, respectively, the core (∆R < 0.2)

and isolation (0.2 < ∆R < 0.4) regions. The hits and tracks identified in this fast-tracking proce-

dure then serve as seeds at the HLT, similarly to the offline reconstruction. Finally, the tracking and

3the granularity corresponds to the single calorimeter trigger tower: 5x5 crystals in ECAL in addition to the corre-
sponding projection in HCAL
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Figure 4.5: Level-1 trigger efficiency of isolated τ-seeds (i.e. requiring the L1 τ candidate to pass a
cut on its isolation transverse energy) as a function of the offline τ pT [429].

calorimeter information is used in a BDT algorithm, similarly to that used for offline identification,

with minor differences arising from the fact that vertexing information is not available at trigger

level. Three working points (loose, medium and tight) are defined for the online τ identification.

These working points were tuned to provide target efficiencies of approximately 0.95 (0.70) after

their offline counterpart identification is applied for τ leptons with one (three) associated tracks

4.7 H H specific analysis techniques

The event topology resulting from the Higgs pair production is very peculiar and it could be further

exploited to improve the signal reconstruction, as described in the next two sections.

4.7.1 Kinematic fit procedure
M. Gouzevitch, C .Vernieri

It has been shown (see [432–435] and references therein) that the resolution of the measured objects

in the final state of p −p collisions can be improved by forcing well-defined kinematic hypotheses

through an event-by-event least square fitting technique. The resulting chi-square of the fit can

be interpreted as the probability of the proposed kinematic hypotheses to be true for the observed

event.

In the searches for resonances decaying into H H , the Higgs boson mass, as measured by both

ATLAS and CMS experiments [436], could be used as a kinematic constraint in the event recon-

struction. The kinematic fit procedure is extremely effective for improving the four body invari-

ant mass. Such kinematic constraints are widely used for measurements where a decay proceeds

through some known intermediate state. For example, in the case of H H → bb̄bb̄ the kinematic fit

technique aims to fit the measured quantities, i.e. the four b-jet four vectors, to certain hypotheses

within their uncertainty, as described in [437]. On an event-by-event basis, it builds a χ2 func-

tion using the four-vectors of the final state objects and their resolutions. The χ2 is minimised by

correcting the measured quantities within their resolutions, fulfilling the kinematic constraints by

using Lagrangian multipliers. In this case, the number of degrees of freedom allowed in the fit is
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ten, as there are four jets (three degrees of freedom for each jet) and the two constraints from each

di-jet invariant mass. The outcome of the kinematic fit is a set of corrections for each of the mea-

sured quantities, which translate into in an improved four-body invariant mass resolution. The

information provided by the minimised χ2 is the measure of the probability for the observed event

to be compatible with the proposed kinematic. The correction factors are then applied to each jet

to improve the four-body invariant mass reconstruction. This procedure uses η, φ and pT informa-

tion for each jet and their related uncertainty. As the jet angles are measured with a better relative

resolution than the jet-pT, the corrections mainly affect the jet transverse momentum.

The improvement in resolution for the reconstructed signal resonance ranges from 20 to 40%

depending on the mass hypothesis for the CMS H H → bb̄bb̄ resonant search [405], resulting in

an improvement of the sensitivity of 10–20%. Similar improvements are also observed in CMS

H H → bb̄τ+τ− searches at 13 TeV [438] or H H → bb̄γγ at 8 TeV [439]. The asymmetry of the

corrections, due to the jet momentum resolution across the pT range considered, results in a lin-

ear mass shift as function of the resonant mass. The relative improvement is large for the low-

est mass resonant hypotheses, since by construction once the two Higgs boson masses are con-

strained to the nominal value of the Higgs boson mass, the resolution of the four-body invariant

mass∼ 2mH+∆(EH1, pH1,EH2, pH2) is dominated by the precision of the 2mH ∼ 250 GeV term [440].

The application of the kinematic fit could potentially be extended to other final states involving

b-jets, to further improve the resolution of the mH H invariant mass on top of the dedicated b-jet

specific corrections, as the two methods exploit orthogonal information. Indeed the sensitivity of

the CMS search for H H → bb̄τ+τ− is enhanced by the use of the kinematic fit, which exploits the

four-momenta of both the τ and b-jets and the pmiss
T vector in the event, and is performed under

the hypothesis of two 125 GeV Higgs bosons decaying into a bottom quark pair and a τ lepton pair.

The use of the kinematic fit improves the resolution on mH H by about a factor of two compared

to the four-body invariant mass of the reconstructed leptons and jets [438]. The decay products of

the τ leptons are assumed to be collinear in the fit, since they are highly boosted as they originate

from an object that is heavy when compared to their own mass. In the decay of the two τ leptons, at

least two neutrinos are involved and there is no precise measurement of their original energies. For

this reason, the τ lepton energies are constrained from the balance of the fitted H boson transverse

momentum and the reconstructed transverse recoil, pmiss
T , as detailed in Ref. [441].

A simplified version of the kinematic fit is used by the ATLAS H H → bb̄γγ and H H → bb̄bb̄

searches [150, 151], where mbb̄ is constrained by a simple multiplicative factor mH = 125/mbb̄ be-

fore reconstructing mH H . This improves the mH H resolution, on average, by 30–60% across the

resonance mass range of interest as shown in Figure 4.6 and sculpts the non-resonant background

in the low mH H range.

The CMS H H → bb̄γγ [442] search applies two different scaling factors for the mγγ and mbb̄ ,

and approximates the kinematic fit procedure by defining a modified mH H estimator. The so called

“reduced” mH H mass [443] is shown in the following equation:

M̃X = m j jγγ− (mbb̄ −mH )− (mγγ−mH ). (4.1)

This estimator subtracts the out-of-cone and resolution effects that impact the mbb̄ mass more

than the jet pT. While the kinematic fit scales the jet momentum, this method attempts to directly

correct the mbb̄ mass. The m j jγγ is also corrected for the reconstructed mγγ value, even if its res-

olution is much better compared to mbb̄ . The use of M̃X instead m j jγγ improves the mH H recon-

struction by 25 to 30 GeV in absolute, that have the most visible effect at mass resonant hypotheses,

as shown in Fig. 4.6. For resonant mass of 300 GeV the resolution reduces from roughly 50 to 20
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Figure 4.6: Reconstructed mH H with (solid lines) and without (dashed lines) the dijet mass con-
straint, for a subset of the mass points used for the resonant H H → bb̄γγ searches of ATLAS [151]
(left) and CMS (right) [442].

GeV. CMS also uses an M̃X estimator for the boosted H H → bb̄bb̄ searches [444, 445], reporting an

improvement of about 10% for the dijet mass resolution.

4.7.2 H H vertex reconstruction with H →γγ decay
V. M. M. Cairo, M. Gouzevitch

For H → γγ decays, the Higgs boson mass is computed from the measured photon energies and

from their directions relative to the Higgs production vertex.

In general, the hard scatter interaction is identified as the vertex that has the highest total trans-

verse momentum (sumPT) of outgoing charged particles produced in the same p −p collision that

generated the Higgs boson.

For single Higgs boson production through gluon-gluon fusion, there are only two photons

coming from the primary vertex at LO. Therefore in absence of additional jets, it is hard to iden-

tify the vertex because tracks from the primary p −p collision are due only to the underlying events

and are soft. In addition to the primary vertex there are many other vertices due to pileup that could

spread out in a region of 10 cm along z-axis, therefore it is not possible to identify the right vertex

by simply looking at the charged particles.

The di-photon production vertex is then chosen among all reconstructed primary vertex candi-

dates using multivariate techniques based on track and primary vertex information, as well as the

directions of the two photons measured in the calorimeter and inner detector (in the case of photon

conversion). In this way, the Higgs boson production vertex is correctly identified with an efficiency

of about 80% [446, 447] for the ggF production mechanism.

This was optimised in a way that the Higgs boson mass resolution is affected from the wrong

vertex identification less than from the photon energy resolution.

The same algorithm used for the identification of the H → γγ primary vertex is then used in the

case of H H → bb̄γγ searches, but the presence of H → bb̄ allows to exploit the particles produced

in the H → bb̄ hadronization which makes it possible to reconstruct and select the correct event of

interest with even higher efficiency than that of the H → γγ case. In fact, similar performance are

achieved by both ATLAS and CMS, which are able to identify the primary vertex correctly in up to

99.9% of the simulated signal events [151, 442].

Likewise also in the case of searches for H H → γ γWW∗, the presence of high pT leptons or jets

from the W boson decay could contribute to correctly identify the primary vertex together with the

constraints derived from H → γγ.
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The ATLAS and CMS collaborations have exploited a rich variety of signatures to search for H H

pair production, exploiting the several Higgs boson decay modes shown in Fig. 5.1.

The feasibility of many of them has been considered in several phenomenological studies. The

interested reader can consult Refs. [32, 171, 172, 272, 273, 448–460] and references therein. Sec. 5.1-

5.5 present an overview of the results of the searches for both non-resonant and resonant H H pro-

duction through gluon-gluon fusion from the ATLAS [369] and CMS [370] experiments, based on the

data recorded in 2015 and 2016, corresponding to an integrated luminosity of up to about 36 fb−1.

Table 5.1 lists the relevant searches performed by ATLAS and CMS experiments and the corre-

sponding main features. The H H → bb̄bb̄ final state exploits the leading BR for a SM Higgs boson

but it suffers from a large multi-jet background. The experimental challenges related to this sig-

nature, the current results and potential improvements are discussed in Sec. 5.1. Despite the low

branching fraction, the H H → bb̄γγfinal state has a very good sensitivity to the SM H H production,

thanks to an excellent trigger and reconstruction efficiency of photons, and the excellent invariant

mass resolution for the Higgs boson decay to photons, see Sec. 5.2. The H H → bb̄τ+τ− final state

represents a compromise between the rate and the background contamination. Thanks to the use

of multi-variate analysis techniques, the search performed by the ATLAS collaboration yields to the

most stringent limit on H H production from an individual channel, as discussed in Sec. 5.3.

The above three final states drive the sensitivity to the SM Higgs boson pair production. How-

ever, experiments have also exploited other rare and challenging final states such as H H → bb̄V V ∗,

where V = W, Z (Sec. 5.4), H H → W W ∗γγ, H H → W W ∗W W ∗ and H H → τ+τ−τ+τ− (Sec. 5.5).

The current outlook for the non-resonant H H → bb̄V V ∗ channel is challenging and provides am-

ple opportunity for improvement. Searches for H H production in final states without b-jets have

in general smaller signal yields, but are also typically affected largely by backgrounds processes. As

their sensitivity is mainly limited by statistical uncertainties, their sensitivity is expected to scale

better with the integrated luminosity, as more refined and sophisticated analysis techniques could

be employed.

117
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Figure 5.1: Branching fractions of the decay of an H H pair to a selected group of final states. The de-
cay modes are shown on each axis by increasing probability. The numerical values are only shown if
larger than 0.1%. The branching fractions of the Higgs boson are evaluated for mH = 125.0 GeV [19].

5.1 H H → bb̄bb̄: status and perspectives

P. Bryant, M. Osherson

Nearly one third of H H events decay via the bb̄bb̄ channel, resulting in the experimental signa-

ture of four energetic jets which originate from b-quark hadronisation. The main challenge for this

signature is the large background from multi-jet final states produced by quantum chromodynam-

ics (QCD) processes, which collectively yield rates exceeding that of the signal by several orders of

magnitude. Other non-resonant processes can contribute to the signal signature, such as the pro-

duction of top quark pairs, and W or Z bosons in association with b-jets.

As discussed in Sec. 2.1.3, most of the impact of modifications of the Higgs boson self-coupling

to the mH H distribution is near the 2mH threshold, where the irreducible multi-b-jet background

has a significant contribution. Since the start of Run 2, much of the experimental effort has been

focusing on extending these searches in the low mH H range, by employing dedicated trigger strate-

gies, consequently loosening the event selection criteria and modelling the substantially increased

background acceptance as illustrated in Fig. 5.2. In the most recent ATLAS search, the loosened

kinematic selection requirements have increased the background acceptance by a factor of 20, rel-

ative to the restricted phase space probed in the first Run 2 result (Fig. 5.2, left). Combined with the

integrated luminosity increase, the statistical uncertainty at the peak of the mH H distribution has

dropped by an order of magnitude to the percent level in the latest Run 2 result (Fig. 5.2, right). By

the end of HL-LHC data-taking, we will require a sub-percent level background model – a daunting

task that will require novel data-driven modelling techniques.

In addition to non-resonant H H production via gluon-gluon fusion, ATLAS and CMS sear-

ches [150, 461], also searched for resonant H H production in the range 260 < mH H < 3000 GeV.

The momenta and angles between the decay products of such a resonance vary significantly over
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Search channel References Luminosity Discriminant

bb̄bb̄
ATLAS [150] 27.5–36.1 mH H

CMS [461] 35.9 BDT

bb̄γγ
ATLAS [151] 36.1 mγγ/mH H

CMS [442] 35.9 mbb̄ ,mγγ (2D)

bb̄τ+τ− ATLAS [152] 36.1 BDT
CMS [438] 35.9 BDT/mT2

bb̄V V ∗ ATLAS [462] 36.1 e.c.
CMS [463] 35.9 DNN

W W ∗γγ ATLAS [228] 36.1 mγγ

CMS – – –

W W ∗W W ∗ ATLAS [464] 36.1 e.c.
CMS – – –

Table 5.1: Summary of H H search channels with their corresponding references, the integrated
luminosity of the dataset used in the analysis and the distribution used to extract the signal (dis-
criminant) - note that e.c. stands for event counting. This table is based on the H H non-resonant
and resonant searches performed with the 2015 and 2016 datasets collected by ATLAS and CMS at
13 TeV.

this range. In order to increase the sensitivity of this search, different event selection criteria are

used for the two main kinematic regions: (i) “resolved” with four individually reconstructed b-jets

which tests resonance mass hypotheses from 2×mH up to 1500 GeV; (ii) “boosted” which exploits

large-radius jets and substructure techniques (see Sec. 4.1 and Sec.4.2.1) to probe resonance mass

hypotheses up to 3 TeV. The resolved regime dominates the sensitivity to SM non-resonant H H

production. In addition, the strategy adopted by CMS makes use of a third category, the "semi-

resolved". This case, first proposed in Ref. [259], aims to recover potential events which did not en-

ter the other two categories by considering events where one Higgs candidate merges into a single

large-radius jet but the other is reconstructed as two individual b-jets. This analysis moderately im-

proves the sensitivity for mH H between 750 and 2000 GeV [445]. For the non-resonant H H → bb̄bb̄

searches, events are selected online by combining two different trigger selections, both using the b-

tagging algorithms to identify b-jets. Events are requested offline to contain four b-tagged jets with

pT > 30/40 GeV (CMS/ATLAS). The b-tagging efficiency for jets with pT in the 60–150 GeV range is

approximately 70% (68%) and gradually decreases for lower and higher jet pT. This corresponds to

a light jet mis-tag efficiency of 0.3% (1%) for ATLAS [466] (CMS [386]), see Sec. 4.2 for more details.

After these selection criteria are applied, the dominant background processes are multi-b-jet pro-

duction (85–90%) and top-quark pair production (10–15%). The Z + jets background is estimated to

contribute no more than 0.2–0.5% to the total background, and therefore is neglected.

The main challenge for the signal extraction in the bb̄bb̄ final state, is to build a precise model of

the multi-jet background without a reliable simulation. The simulation of these final states, due to

their large cross section, requires the simulation of a large number of events, which is challenging

for the available computing resources.

In the following the analysis strategies are presented, Sec. 5.1.1, together with their limitations,

Sec. 5.1.2. Finally possible paths forward, where there is clear room for improvement and opportu-

nities for innovation, are discussed, Sec. 5.1.3.
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5.1.1 Analysis strategies

Both ATLAS and CMS analysis strategies rely on multi-jet triggers at L1 with online b-tagging selec-

tions applied at the HLT to a subset of the online jets, as described in Sec. 4.6. At L1 the multi-jet

trigger selections is required to have a maximum rate of approximately 3 kHz, which demands sig-

nificant HLT resources for the online b-tagging to reduce trigger rates to roughly 40 Hz. At HLT, CMS

requires four jets with pT > 30 GeV and two above 90 GeV, and three online b-tags corresponding

to an offline b-tagging efficiency of less than 60%. ATLAS trigger selection requires four jets with

pT > 35GeV, where at least two are b-tagged online with the 60% working point. The CMS trigger

efficiency, as evaluated for a resonant signal benchmark as function of mH H , ranges from 10% at

the 2mH threshold to 60% above 800 GeV and it is 34% for the non-resonant hypothesis. The ATLAS

trigger efficiency is evaluated instead, with respect to the offline requirements and ranges from 65%

at the 2mH threshold to ' 99% above 600 GeV.

The four jets with the highest b-tagging score are paired to reconstruct the two Higgs boson

candidates. Given these four jets, there are three possible di-jet pair constructions. Both ATLAS

and CMS chose the pairing which minimizes the difference between the di-jet masses. CMS per-

forms this minimization over all three pairings for the non-resonant signal and exploits the smaller

angular separation of the two b-jets for resonance mass values above 500 GeV. ATLAS reduces the

number of considered pairings by applying a sliding selection on the di-jet opening angle as a func-

tion of the reconstructed four body mass. The impact of the sliding selection requirements on the

signal is shown in Fig. 5.6. The ATLAS (CMS) approach selects the correct pairing at least 90% (70%)

of the time for the non-resonant H H signal hypothesis and across the full range of resonance mass

hypotheses (70–95%). A multi-variate classifier able to use all of the di-jet correlation information

for all possible pairings would perform better than the ∆R(j,j) sliding requirement, by classifying

such events as more background-like than those where none of the pairings are such clear exam-

ples of the dominant background.

A requirement on the masses of the Higgs boson candidates is used to define the signal region
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Figure 5.3: Illustration of the hemisphere mixing procedure from [461].

for the ATLAS search which takes into account of the mbb̄ resolution:√√√√(
mH 1 −120 GeV

10%mH 1 GeV

)2

+
(

mH 2 −110 GeV

(10%mH 2 GeV

)2

< 1.6 (5.1)

Similarly CMS, for the resonant H H → bb̄bb̄ search, defines a circular signal region in the two-

dimensional space defined by the reconstructed masses of the two Higgs boson candidates, after

the regression based corrections, described in Sec. 4.3, are applied to each b-jet. The mH H reso-

lution is further improved by correcting the momenta of the reconstructed b-quarks imposing the

kinematic constraint of the invariant mass of the Higgs boson candidates to be 125 GeV, as de-

scribed in Sec. 4.7.1. The improvement in resolution for the reconstructed signal resonance ranges

from 20 to 40% depending on the resonant mass hypothesis, which results in an improvement of

the sensitivity by 10–20%.

Background modelling

The ATLAS analysis strategy derives the model for high b-jet multiplicity events from the low b-

jet multiplicity events, with at least two b-jets. This procedure relies on the assumption that the

ratio of multi-jet production matrix elements with different b-jet multiplicities does not change

sharply in the phase space with di-jets near the Higgs boson mass. This ratio takes into account of

the kinematic dependence of the b-tagging efficiency and fake rate as well as the different relative

contributions of the underlying matrix elements. The ratio is then used as a weighting factor to

correct low b-jet multiplicity events to match high b-jet multiplicity events and should apply equally

well across a broad range of phase space with different di-jet masses, in particular they should apply

for events with two di-jet pairs near the Higgs boson mass. This assumption is validated in a control

region in data, orthogonal to the signal regions used to extract the signal. Shape uncertainties in

the multi-jet background are estimated to affect the mH H distribution by 5–30%, by deriving an

alternative background model using the same procedure as in the nominal case, but using data

from the control region.

For ATLAS, the systematic uncertainty associated to the background model estimate limits the
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current result and it will become more important with the full Run 2 integrated luminosity.

The ATLAS background estimation method profits of a dedicated trigger selection with only two

b-jet, not available in CMS due to different optimisation choice of the b-jet trigger, that favoured

the use of lower pT threshold and a b-jet multiplicity of at least three (see Sec. 4.6 for more details).

The CMS collaboration, instead, has developed different background estimation strategies for the

resonant and non-resonant H H searches. For the non-resonant signal extraction, the so called

“hemisphere mixing” technique is used, where fake events are generated by mixing and matching

di-jet systems from separate events [461] as illustrated in Fig. 5.3. This background estimate method

does not require the presence of signal depleted control region in data, but it aims at creating an

artificial background data set using the whole original data set as input. Thus, rather than a model

of a single distribution, a full model of the original data is produced.

The transverse thrust axis is defined as the axis that maximises the sum of the absolute values

of the projections of jets transverse momenta along the axis itself. The event space is divided into

hemispheres by cutting along the axis perpendicular to the transverse thrust axis. Artificial events

are then built, by picking hemispheres from different events that are similar to the two hemispheres

that made up the original event. The matching algorithm is designed to create fake events with the

same kinematic structure as the background process while washing out the correlated structure of

the signal process. Because of this, the resulting artificial data sets are unaffected by the presence of

a small signal contamination in the original data. This has been verified with signal injection tests.

A BDT classifier, using the XGBOOST library [467], is employed to separate signal (including other

BSM non-resonant hypotheses) from background processes. The resulting artificial samples are

used to provide a background model in the training of a BDT classifier (training sample), an inde-

pendent set for its validation and optimisation (validation sample), and a third set used to extract

the predicted shape of the optimised BDT (application sample). The BDT exploits the b-tagging

scores, kinematic information of both the H H system and Higgs candidates, as well as the angles

between the H H system and the leading Higgs boson, for a total of 25 inputs. The BDT distribution

for data and the artificial model are compared in control regions and a systematic bias is detected.

Thus, the background template is corrected for the bias evaluated from this comparison.

A search for SM H H → bb̄bb̄ signal is then performed for an excess in the tail of the BDT output

distribution.

Minor background contamination arising from t t̄ H , Z H , bb̄H do not show a signal-like BDT

distribution and their effect is found to be negligible in the selected data at the current level of

the search sensitivity. The systematic uncertainty associated to the shape and normalisation of the

background model affects the final result by about 9% and 30% respectively.

For the resonant signal extraction, a simultaneous fit to the mH H spectrum in the signal region

is used. The background model is validated in data in dedicated control regions with reduced b-

tag multiplicity [405]. Since the t t̄ contribution to the background exhibits a shape very similar

to that for the multi-jet process, it is implicitly included in the data driven estimate. The system-

atic uncertainty associated with the choice of the parametric background model is evaluated with

pseudo-datasets, generated from an alternative function and fitted with the nominal function to

evaluate the bias in the reconstructed signal strength. The measured bias impacts the expected

limit by 0.3–1.5 %.

Data-driven methods to estimate the backgrounds (dominantly multi-jet) are also used in the

boosted and semi-resolved regimes. The ATLAS result are obtained with the same approach ex-

ploited for the resolved analysis. The CMS results instead, rely on the smooth dependence, in back-

ground jets, of the specialised double−b tagging efficiency on the jet mass, introduced in Sec. 4.2.1.
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Figure 5.4: The ATLAS event-level trigger efficiencies for the various signal H H → bb̄bb̄ hypothe-
ses [150].

This rate can be derived in sidebands of the Higgs boson mass and interpreted as a ratio of events

passing to events failing the requirement, so that it can be applied to events with the correct mass,

but failing the double-b tagging requirement. The dominant uncertainty in these searches is the

uncertainty associated to the substructure requirements for large-radius jet algorithms, which can

be as large as 20%.

5.1.2 Limitations of current analysis strategies

Both the ATLAS and CMS experiments face significant challenges related to the hardware and soft-

ware triggers. The current trigger efficiencies are limited at L1 for events with mH H / 500 GeV as

illustrated in Fig. 5.4.

At the HLT trigger level, maintaining good tracking performance to efficiently reconstruct sec-

ondary vertices without using excessive CPU resources is extremely challenging, as discussed in

Sec. 4.6. The required CPU time to perform online b-tagging grows non-linearly with pileup. In fact,

in the year 2017 and 2018 the trigger thresholds were increased and tracking algorithms optimised

to cope with high instantaneous luminosities, but new techniques will be required to accommodate

for the luminosity targets of Run 3. While ATLAS focused on providing a unified analysis strategy

for resonant and non-resonant H H → bb̄bb̄ searches, CMS has developed independent strategies

and optimised the signal extraction for low-, intermediate- and high-mass resonances.

Both the ATLAS and CMS approaches suffer from statistically limited control regions in data.

The assumptions that go into generating a background model from data do not necessarily hold to

a higher degree of precision than can be tested outside of the signal region. Such uncertainties are

difficult to be quantitatively assessed, particularly when they have non-trivial effects on distribu-

tions beyond their normalisation.

The recent ATLAS result [150] attempted to address this by deriving the background model

twice, using orthogonal kinematic selections, and using the resulting variation of the background

prediction in the signal region to derive systematic uncertainties. In principle this method accounts

for biases in the model due to the extrapolation into the signal region by making one model deriva-

tion region kinematically “closer” to the signal region. It also naturally provides a full spectrum (and

in principle, high dimensional) uncertainty in the final discriminant distribution with the proper

bin-to-bin correlations. Ideally one would chop the phase space into many orthogonal regions,

each progressively closer to the signal region, such that trends in the extrapolation of the models

across phase space could be extracted. Unfortunately, these attempts quickly become limited by
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Figure 5.5: These plots illustrate the validation and result of the CMS background modelling of
the H H mass spectrum [405]. Left: observed and predicted H H mass spectrum in a validation
region centred around mbb̄ = 150 GeV. Right: A fit to the background-only hypothesis of the mH H

distribution in the signal region in data.

the need to validate each model at the statistical precision anticipated in the signal region. If this

requirement is not kept, large systematic uncertainties are required to cover the lack of precision

in the model validation. These issues are compounded when trying to model higher dimensional

target spaces to improve the sensitivity and model independence of searches.

One of the primary limitations of the current ATLAS background model is the algorithm used

to derive the correction factors from low to high b-jet multiplicity. The method iteratively weights

multiple one dimensional distributions, which are selected to encapsulate the primary differences

in the scattering processes with as few variables as possible. This avoids the statistical limitations

of high dimensional histograms but may not correctly account for (anti)correlations between the

reweighted distributions. With the integrated luminosity of 27.5 fb−1 used in [150] one could argue

hints of such effects are becoming visible and a new strategy will almost certainly be required for

analyses of the full Run 2 data set.

In the low mass phase space near the kinematic threshold mH H ' 250GeV, the CMS and ATLAS

searches suffer from the reliability of any potential excess on top of a sharply peaking background,

as shown in Fig. 5.5.

The CMS background model prediction is validated by comparing the prediction for the signal

region and the actual signal region in a kinematic sideband defined by moving the Higgs boson

mass window from 120 to 150 GeV. ATLAS used a similar background validation method, looking

at signal-region-like select mbb̄ Higgs shifted both below and above the actual Higgs boson mass.

The background shape has a strong dependence on the di-jet mass selection, as it is shown in Fig. 3

of [468] for CMS, but it is properly modelled.

The ATLAS background strategy and the functional fits used by CMS can easily accommodate

sub-dominant background sources like t t̄ , H/Z +jets and diboson processes using simulated sam-

ples. In the ATLAS approach the simulated backgrounds processes are used in a two step process.
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by ATLAS during 2016 data taking with mH H =272 GeV which passes the signal region selection
from [150]. Of the three possible pairings, the two with large di-jet opening angles pass the ∆R(j,j)
sliding requirement, while the third pairing with both opening angles approximately equal to twice
the jet radius fails. This third pairing is consistent with the topology of the dominant two to two
gluon scattering background where the two outgoing gluons split to bb̄ pairs and results in a low
mass large radius jets.

First, they are run through the data driven background modelling procedure so that they can then

be subtracted from the background model procedure as applied to data. This gives a multi-jet back-

ground estimate where the other processes have been removed. Next, the simulated backgrounds

are added back into the background model to give the total background.

The hemisphere mixing method has been successfully used in the search based on the 2016

dataset. With the increasing statistics, the need for an accurate modelling of the t t̄ and electroweak

processes will become more relevant. It is not clear that the hemisphere mixing approach used

for the CMS non-resonant result can appropriately model the event level correlations of these pro-

cesses. Indeed the hemisphere mixing technique relies on its ability to remove the event level cor-

relations of the H H signal process to avoid signal contamination in the background model. This

same dilution of event level correlation could subtly impact the t t̄ and electroweak backgrounds

such that their contamination in the high signal purity bins of the BDT output is underestimated.

Furthermore, to avoid tricky statistical issues, the hemisphere mixing, Sec. 5.1.1, can only use

each source event once, limiting the statistical precision of the background model to that of the true

background. If the statistical uncertainty of the published ATLAS background model is set to
p

N in

each bin of the final discriminant, the sensitivity to SM H H production is reduced by 33%. This is

unsurprising because the ATLAS result [150] is statistically limited: the sensitivity of a measurement

where the background and data have the same statistical uncertainty scales with 1/
p

L .

5.1.3 Potential improvements

All final states with b-jets are likely to gain from dedicated b-jet energy regressions and calibra-

tions. In the bb̄bb̄ case improvements in the b-jet energy scale reduce the mass resolution for both
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Higgs bosons allowing for tighter signal region definitions with the same signal efficiency. CMS has

demonstrated this in their most recent resonant search [405] where the Higgs boson mass resolu-

tion for different resonance mass hypotheses improved by 6-12%. The tighter optimal signal region

definitions then improved the search sensitivity by 5-20%.

One promising approach to construct a multi-jet model from lower b-jet multiplicity data is

to reweight using a single multivariate classifier output distribution rather than several one di-

mensional kinematic distributions or sparse high dimensional histograms. The classifier would be

trained to separate low b-jet multiplicity data from high b-jet multiplicity data without any flavour

tagging information. In principle this should appropriately account for (anti)correlations between

the classifier input variables and provide a better high dimensional model of the four b-jet data. AT-

LAS has already released a search for Higgsino pair production [349] using a BDT based reweighting

scheme using the same event selection as Ref. [150].

Multivariate reweighting provides a possible solution to the curse of dimensionality in extrap-

olating a multi-jet model across b-jet multiplicity but does not address the assumption that the

reweighting can be extrapolated across the kinematic phase space. This assumption could instead

be independently verified in a tri-jet sample, if triggers exist to collect such a sample. The extrapo-

lation across phase space could also be tested in a synthetic sample like that generated by the CMS

hemisphere mixing procedure. Furthermore, at low values of mH H the signal contamination in

events with exactly three b-jets would be negligible and could be used to validate the background

procedure with substantially higher statistics than the four b-jet sample. One would have to use

caution with data containing three b-jets, with mH H ' 500GeV data, as it could offer significant

sensitivity to new physics and should be explored as an additional signal selection.

The most obvious approach to improve any search is to perform combined fits with more re-

gions, more dimensions or on especially trained multivariate classifiers. All of these approaches

require well understood high dimensional background models. The following variables, in addition

to the Higgs boson candidate masses and mH H , should be investigated:

• Angular correlations like the pseudorapidity separation between Higgs boson candidates∆η(H1, H2)

provide discrimination between scalar and tensor resonances and low-mass Higgsino pair

production.

• The (b-)jet multiplicity to target VBF H H production (VBF jet η difference and di-jet mass are

also relevant in this case).

• Correlations in other di-jet constructions (in contrast to the Higgs boson candidate construc-

tion) may provide a handle in separating the signal from the dominant two-to-two gluon scat-

tering background for mH H / 400GeV. This combinatoric background can be seen in Fig. 5.6

where, depending on the chosen jet pairing, the displayed event can look like a H H event

with back-to-back b-jets from each Higgs boson or a di-gluon event where each gluon splits

to a low-mass collimated bb̄ pair.

With the full Run 2 dataset of about 300 fb−1, it may already be feasible to perform dedicated

measurements of SM Z Z and Z H production in the bb̄bb̄ final state.

σ(pp → Z Z → bb̄bb̄)

σ(pp → H H → bb̄bb̄)
≈ 15pb×0.152

33fb×0.582 ≈ 31

σ(pp → Z H → bb̄bb̄)

σ(pp → H H → bb̄bb̄)
≈ 880fb×0.15

33fb×0.58
≈ 7
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Measurements of these processes would serve to validate the background model and reduce the

impact of the systematic uncertainties. The same measurements in the bb̄τ+τ− final state would

benefit from even larger ratios. The techniques used to generalise the H H search to these measure-

ments will also be useful in developing generalised bb̄bb̄ searches for additional exotic particles in

processes like Y → X H → bb̄bb̄.

5.2 H H → bb̄γγ: status and perspectives

E. Brost, R. Teixeira de Lima, M. Gouzevitch

5.2.1 Overview

The H H → bb̄γγ final state has the lowest branching fraction among the most sensitive channels,

just 0.3%, but it provides a high signal-to-background ratio by reducing multi-jet events with the

identification of two high quality photons. The analysis strategies developed for H H → bb̄γγ,

closely follow those for the SM H → γγ analyses.

Two isolated photons with pT > 25 GeV provide an excellent handle for the triggers. This provides a

clear advantage in this final state for mH H < 400 GeV, compared to the ones with higher branching

fractions, but with trigger strategies requiring higher momenta particles, such as H H → bb̄bb̄.

Furthermore, the presence of the H → γγ photons provides a clear strategy for event selection

and signal extraction. As a consequence, the ATLAS and CMS analyses of Run 2 dataset [151, 442]

(≈36fb−1) have many similarities.

ATLAS excludes SM H H production at 95% confidence level with cross sections higher than 0.73 pb

(expected 0.93 pb) while CMS 0.79 pb (expected 0.63 pb). Limits are also set on the modifier of the

Higgs self-coupling, with ATLAS constraining −8.2 < κλ < 13.2 and CMS −11 < κλ < 17. However,

small changes in strategy can lead to significant improvements to sensitivity to SM and BSM H H

production. Therefore, it is important to understand the details of each analysis strategy.

5.2.2 Signal modelling

The H H → bb̄γγ final state benefits from having a fully reconstructable final state. In contrast with

other final states, such as H H → bb̄bb̄ and other fully hadronic channels, there are no combinatoric

issues in the identification of the Higgs boson candidates. Therefore, one expects to see clear peaks

consistent with the Higgs boson mass in both the di-jet and di-photon invariant mass spectra. Due

to the good energy resolution and low reconstruction uncertainties for photons at the LHC experi-

ments, the di-photon mass resolution is small relative to the di-jet mass, with σγγ/Mγγ = 1.3%(1.5)

for the most sensitive signal region in the CMS (ATLAS) search. CMS quotes Mjj/σjj = 15% for that

same category after applying the b-jet energy regression, derived using H H → bb̄bb̄ signal events

as described in Sec. 4.3.

In order to avoid issues with the statistical precision of the simulated samples, both the ATLAS

and CMS searches model the peaks from Higgs boson decays with the double-sided Crystal-Ball

(DSCB) function for mγγ (ATLAS and CMS) and m j j (CMS). The DSCB function is chosen for its

Gaussian core and power-law asymmetric tails:

f (x;µ,σ,αL , pL ,αR , pR ) = N ·


AL ·

(
BL − x−µ

σ

)−pL
for x−µ

σ >−αL ,

AR ·
(
BR + x−µ

σ

)−pR
for x−µ

σ >αR ,

e
(x−µ)2

σ
2 for x−µ

σ
<−αL

and x−µ
σ

>αR

, (5.2)
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where AL , AR ,BL ,BR are normalization constants defined by:

Ak =
(

pk∣∣αk

∣∣
)pk

·e−
α

2

2 , (5.3)

Bk = pk∣∣αk

∣∣ − ∣∣αk

∣∣ . (5.4)

One of the main benefits of using the DSCB function to model the Higgs boson is the ability

to describe the effects of systematic uncertainties in its shape with extra parameters in Eq.( 5.2).

Therefore, scale and resolution effects can be mapped into variations of the mean and width of

the DSCB Gaussian core, respectively, keeping the tail parameters fixed. This description simplifies

the final steps of the searches, which involve unbinned parametric fits to describe the continuous

background and extract the signal.

The DSCB parameters are determined from a fit to the simulated H H → bb̄γγ signal. In ATLAS,

the fit is performed in the mγγ distribution, while in CMS, the fit is performed simultaneously in

the mγγ and m j j distributions1, with f (mγγ,m j j ) = g (mγγ)×h(m j j ) where g (x) and h(x) are DSCB

functions, Eq. (5.2). The modelling of the mγγ and m j j distributions is shown in Fig. 5.7.

Figure 5.7: mγγ (left) and m j j (right) signal modelling in the CMS H H → bb̄γγ analysis. The
blue lines represent the double-sided Crystal Ball parametric fit to the SM H H signal simulation
(squares) [442].

The ATLAS and CMS searches use slightly different strategies to simulate the H H → bb̄γγ sig-

nal. The ATLAS non-resonant signal is modeled at approximate NLO, using MG5_aMC@NLO [54],

reweighted in mH H to take into account the full top quark mass dependence, and parton showering

uses HERWIG++ [470]. CMS models the non-resonant H H → bb̄γγ signal at LO in MG5_aMC@NLO,

and parton showering uses PYTHIA [95]. A comparison of non-resonant H H → bb̄γγ production at

LO and NLO is shown in Fig. 5.8. The transverse momenta of the jets is harder in the LO simulation,

and therefore the signal acceptance is higher at LO.

5.2.3 Event selection and reconstruction

The online selection strategy for the H H → bb̄γγ analyses follows closely the approaches from the

H → γγ analyses, utilising the H → γγ targeted di-photon triggers. These triggers offer lower online

thresholds on the photon pT than the jet corresponding triggers thanks to the good quality of the

trigger-level reconstructed photons.

1It has been checked using simulations that the correlations between the two distributions are negligible.
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Figure 5.8: Comparison of ATLAS H H → bb̄γγ signal at LO (orange) and NLO (green) for the trans-
verse momenta of the leading (left) and sub-leading jets (right) [151].

In ATLAS, the di-photon trigger requires two clusters of energy deposits in the electromagnetic

calorimeter with transverse energy above 35 GeV and 25 GeV for the leading and sub-leading cluster,

respectively. These clusters are required to have shapes that are consistent with photon-initiated

electromagnetic showers and that are isolated from other electromagnetic activity [471]. The CMS

di-photon trigger requires the leading (sub-leading) transverse isolated energy deposit to be above

30 (18) GeV, and that the invariant mass of the di-cluster system be above 90 GeV [472]. Both ATLAS

and CMS triggers are nearly fully efficient for the H → γγ and H H → bb̄γγ photons that pass the

kinematic requirements. The offline object selection of the H H → bb̄γγ analyses is seeded by find-

ing good quality photons and jets, which must be consistent with the hadronisation of the b-quarks.

The overall strategies of the ATLAS and CMS analyses are similar, and begin by selecting photons

close to their trigger thresholds, with extra criteria inspired by H → γγ analyses - such as Eγ

T /mγγ

requirements, which preserve the shape of the mγγ distribution.

One important distinction between the ATLAS and CMS H H → bb̄γγ analyses is their use of

the b-tagging information (see Sec. 4.2) to classify event categories. The ATLAS H H → bb̄γγ search

categorises events according to the number of b-jets:

(i) two b-tags, defined by selecting events with exactly two jets which pass the 70% efficient b-

tagging working point;

(ii) one b-tag, exactly one jet passes the 60% efficient b-tagging working point.

Events with more than two b-tagged jets are vetoed in order to be orthogonal with the H H →
bb̄bb̄ analysis, and those with no b-tagged jets are not considered as signal events. The H → bb̄ can-

didate is then reconstructed with the two b-tagged jets, in the two b-tag region, and with the b-

tagged plus an extra jet, in the one b-tag region. This extra jet is selected with a BDT trained with

kinematic information of each possible H → bb̄ candidate reconstructed with the b-tagged jet and

the non-b-tagged jets in the event. More details of this approach will be discussed in Sec. 5.2.7.

After the H → bb̄ candidate is defined, loose and tight jet selections are defined, depending on the

pT of the jets: loose if the leading jet pT > 40 GeV; tight if the leading jet has pT > 100 GeV and the

sub-leading pT > 30 GeV.

CMS exploits the full distribution of the probability that the jets are b-tagged (the b-tagging

score). First, the H → bb̄ candidate is reconstructed using the jets with the highest b-tagging score

and their scores are then used as inputs for the multivariate event categorisation, described in

Sec. 5.2.7. The angular correlations between the four objects used to reconstruct the H → γγ and
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H → bb̄ candidates, the helicity angles, are also exploited by the event categorisation algorithm to

classify signal versus γγ+jets background events.

Helicity angles have been historically used in analyses such as the SM H → Z Z∗ → l+l−l+l−

searches and subsequent measurements, as they have been shown to distinguish between different

spin and parity hypotheses for the Higgs boson [473]. Some of these angles are also sensitive to

the tensor structure of a resonance production mechanism [474]. Similar to the four-lepton final

state, the H H → bb̄γγ analysis also profits from having four final state objects that can be used to

measure such angles.

Three helicity angles have been found to bring the most sensitivity in the CMS H H → bb̄γγ

search, as shown in Fig. 5.9. They are defined in the Collins-Soper (CS) references frame [475]. The

CS frame boosts to the rest frame of the Higgs bosons and defines fixed axes such that measured

variables are sensitive to spin and CP properties of the Higgs boson. It minimises the dependence

of the angles on the transverse momentum of the H H system, as follows:

• |cos(θCS
H H )|: θH H is the angle between the momentum of the H → γγ candidate and the line

that bisects the acute angle between the colliding protons.

• |cos(θCS
γγ )|, |cos(θCS

jj )|: θCS
γγ and θCS

jj are the angles between the Higgs bosons and their decay

products in the CS reference frame. The two photons or jets used to define the angle are

chosen randomly.

Figure 5.9: Distributions of the three helicity angles for data (dots), γ+jets background, different
signal hypotheses and three single Higgs boson samples (t t̄ H , V H , and ggF) after the selections on
photons and jets [442] have been applied.

The output of this algorithm classifies events as more signal- or continuum-background-like,

separating events into high, medium and low purity categories. Only the two highest purity cate-

gories are used for the signal extraction.

The H H → bb̄γγ final state can be fully reconstructed and the mH H spectrum is a particularly

important observable for the resonant H H → bb̄γγ searches. The mH H estimator described in

Sec. 4.7.1 is actually used for the signal extraction.

5.2.4 Background modelling

Searches for H H → bb̄γγ are affected by both backgrounds from single Higgs boson production

and by non-resonant backgrounds with continuum mγγ spectra.

The dominant backgrounds to the bb̄γγ final state are those in which two objects identified as

photons (either prompt photons or jets misidentified as photons) are produced in association with

jets (referred to as γ+jets). The simulation of these final states poses a major challenge because of

large effects from higher orders in QCD. Furthermore, the knowledge of the fragmentation effects
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for a jet misidentified as a photon is quite limited. For these reasons, these contributions are mod-

elled entirely from data in both ATLAS and CMS H H → bb̄γγ searches with maximum-likelihood

fits to parametric shapes.

However, the choice of a specific function, or families of functions, for the background mod-

elling leads to extra systematic uncertainties related to possible biases in the signal estimate. This

uncertainty is derived by generating pseudo-data from a certain function choice (truth function)

and performing the signal extraction with another function of choice (fit function). There are then

two alternative approaches: either by testing different truth functions against the fit function, from

which an uncertainty due to this choice can be extracted; or the number of degrees of freedom can

be increased in the fit function to reduce the bias of fitting different truth function to a negligible

level (defined formally as a maximum of 14% of the statistical uncertainty2).

With the large amount of data to be analysed in the next iterations of these searches, this uncer-

tainty might become the dominant one, justifying the pursuit of alternative background estimation

methods, such as Gaussian Processes (GPs) [476] and envelope [477] methods.

In the GPs approach, instead of defining the parametric description f (x), where x is the fitted

observable (in this case mγγ or m j jγγ), f (x) is modelled as a Gaussian and the correlation between

two points x and x ′ is given by a covariance kernel Σ(x, x ′). The choice of the fit function becomes

the physics inspired definition of a covariance kernel, which could encode detector specific infor-

mation, such as energy resolution and scale uncertainties when fitting the invariant mass distribu-

tion. Moreover, the GPs fit is enough flexible to allow for any function that respects the covariance

relation defined by the kernel.

The envelope method includes the bias uncertainties in the fitting procedure. All possible para-

metrisations of the background are considered while performing the maximum likelihood fit, with

a penalty proportional to their number of degrees of freedom.

Single Higgs boson processes, with two additional jets and with a subsequent decay of the Higgs

boson to two photons, are 5–14% of the total background. Additional jets can be effectively initi-

ated by b-quarks, or by lighter quarks and misidentified as a b-jet. The SM single Higgs boson back-

ground contribution is estimated using a parametric model fitted to simulated samples. The SM

single Higgs boson background is particularly challenging for the bb̄γγ searches, as the mγγ peak,

which is the most important handle for signal discrimination, appears as a background feature.

However, other event characteristics that are dependent on the Higgs boson production mecha-

nism can be exploited. Some of these features might also be helpful to reduce the continuous back-

ground, therefore a combined background mitigation procedure can be devised. The CMS para-

metric fit of mγγ and m j j distributions, described in Sec. 5.2.5, mitigates the impact of the single

Higgs boson background. Alternatively a machine learning based multi-classification algorithm,

exploiting kinematic properties of the four-body system and other event observables, such as the

number of jets and b-jets, and missing transverse momentum, could be investigated.

New physics may enhance single Higgs production too, both H H and t t̄ H can be enhanced

by modifications to the Higgs-top Yukawa coupling. Performing a simultaneous signal extraction

of the H H → bb̄γγ and t t̄ H → γγ signals could account for this possible scenario. The ability to

constrain the SM single H → γγ backgrounds will play an important role in the future.

2The bias is estimated by how much the definition of standard deviation around the unbiased expected signal
strength (µ) has to be inflated to cover 68.3% of the bias expected µ, in alternative of adding a bias term that corrects
the bias µ. A 14% bias with respect to the unbiased standard deviation, requires to inflate the definition of standard
deviation by 1%, which is much smaller than the systematic uncertainties in the analysis.
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5.2.5 Signal extraction

The signal extraction in the H H → bb̄γγ searches is similar to the procedure used in the SM H →
γγmeasurements, to take advantage of the excellent mass resolution of the H → γγ channel, by fit-

ting the resonant H → γγ peak on top of the continuous and monotonically falling background. For

H H → bb̄γγ searches, the presence of the H → bb̄ resonant peak becomes an extra handle to con-

strain or reduce background processes. The ATLAS and CMS analyses signal extraction strategies

differ particularly in the usage of the H → bb̄ mass spectrum.

The ATLAS approach is an unbinned, maximum-likelihood fit to the mγγ distribution and the

H → bb̄ resonance is used to reduce the background by requiring the compatibility of m j j peak

with the Higgs hypothesis (80/90 < m j j < 140 GeV for the loose/tight selection). The relative con-

tribution of γγ, γj, jγ and jj produced in associations with jets, to the continuum background is

determined from data by varying the photon identification and isolation criteria. The functional

form used to model the background is then chosen using events simulated with SHERPA [87]. The

accuracy of the simulation is tested in events passing all the event selection requirements but failing

the b-tagging and a correction factor, up to 5%, is derived as function of mγγ and applied in the one

and two b-tag categories. The γγbb̄ is the dominant contribution to the continuum background in

the two b-tag category (≈80%), while γγbj (≈60%) dominates in the one b-tag category, as shown in

Fig. 5.10.

110 120 130 140 150 160
m  [GeV]

0

10

20

30

40

50

60

70

80

Ev
en

ts 
/ 2

.5
 G

eV ATLAS√s = 13TeV, 36.1 fb 1

1 b-tag, loose selection

Data

Single Higgs
SM bj

SM cj

Other SM  + jets

Data-driven j

Data-driven j

110 120 130 140 150 160
m  [GeV]

0

5

10

15

20

Ev
en

ts 
/ 2

.5
 G

eV ATLAS√s = 13TeV, 36.1 fb 1

2 b-tag, loose selection

Data

Single Higgs

SM bb

Other SM  + jets

Data-driven j

Data-driven j

Figure 5.10: The expected number of background events for the continuum γγ+jets production,
other continuum γ+j production (orange) and single Higgs boson production (green) is compared
to the observed data (black points) for the mγγ distribution in the one (left) and two b-tag (right)
categories [151].

The full background fit is shown in Fig. 5.11, for the loose and tight selections in the two b-tag

category.

In the CMS analysis, the signal extraction is performed simultaneously in the mγγ and m j j dis-

tributions (2D fit). It assumes that the background can be described by a two dimensional para-

metric function and that can be factorised, similarly to the parametric signal model described in

Sec. 5.2.2. This hypothesis is tested by checking if possible correlations between mγγ and m j j would

be statistically significant with the typical expected number of background events in the analysis

signal regions. The validity of this assumption is therefore dependent on the size of the dataset, and

has to be checked again with the increase of the integrated luminosity. The projections in mγγ and
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Figure 5.11: mγγ distributions for the two b-tag category after the loose (left) and tight (right) event
selection requirements are applied [151].

m j j distributions for the most sensitive categories to the SM H H production are shown in Fig. 5.12.

Figure 5.12: mγγ and m j j projections of the 2D maximum-likelihood fit for the signal extraction, in
the most sensitive category to the SM H H production [442].

The ATLAS approach simplifies the continuum background description, as it does not depend

on the accuracy of the mγγ–m j j correlations modelling, for both the signal and background hy-

potheses. On the other hand, the CMS 2D fit approach constrains better the non-resonant back-

ground exploiting fully the m j j distribution and it improves the search sensitivity by ≈ 10%.

5.2.6 Systematic uncertainties

The H H → bb̄γγ searches are currently limited by the statistics of the Run 2 dataset. Theoretical un-

certainties on the PDF and scale variations are applied to the non-resonant signal model and they

amount to 3–6%. Uncertainties on the normalisation of single Higgs boson background processes

are also taken into account, corresponding to 1–20%.

Photon trigger efficiency, as well as photon energy scale and resolution uncertainties impact

the signal model and acceptance by 1–5%. The largest experimental uncertainties come from the

jet energy scale and resolution (1–5%), and from flavour-tagging uncertainty (10–20%).

ATLAS additionally applies an uncertainty due to the continuum background fitting process,
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and a 100% uncertainty on the ggF and WH single Higgs boson production modes in events with

extra heavy-flavour particles.

5.2.7 Machine learning in H H → bb̄γγ: use and challenges

Both ATLAS and CMS analyses use machine learning methods for event categorisation and signal

classification. ATLAS uses a BDT method for the selection of the H → bb̄ candidate, when only one

jet is b-tagged. The b-tagged plus non-b-tagged jet pairings are built for the signal (only one pairing

is correct) and the continuum background (no pairing is correct) using simulated events. The BDT

is trained to classify correct and incorrect pairings based on the kinematic information of the paired

jets: paired jets p j
T , di-jet pT and b-tagging information, m j j , paired jets ηj, di-jet ηjj, ∆η between

the paired jets. The ranking of the jets according to the closest match between the di-jet mass and

the Higgs boson mass, highest jet p j
T and highest di-jet pT is exploited as well. Each di-jet pairing

in an event is given a BDT score, the di-jet with the highest score is then selected to reconstruct the

H → bb̄ candidate.

In the CMS analysis, a BDT is trained for signal classification against the continuum back-

ground. The training variables are: the b-tagging scores of the jets that form the H → bb̄ candi-

date, the three helicity angles and the H H transverse balance variables p j j
T /m j jγγ and pγγ

T /m j jγγ.

The training is performed with the ensemble of all non-resonant H H production hypotheses (SM

plus the shape benchmark used for BSM reinterpretations as explained in Sec. 2.4) as signal. This

choice allows for the final classifier performance to be generalised to various BSM H H production

hypotheses. Events that pass all the analysis selection criteria except the identification and isola-

tion requirements for one photon candidate, are used as background events for the training. This

choice is validated by comparing the input distributions in the training dataset with the signal se-

lection events that fall outside of a mass window of 30 GeV around the Higgs boson mass in mγγ.

A common issue with classifiers trained with specific target signals is how their performance

can be generalised to other signal hypotheses, for which the kinematic properties might change

substantially. Both ATLAS and CMS searches deal with this challenge by defining different kine-

matic regimes with the four-body invariant mass, populated by different signal hypotheses and

background compositions, in which dedicated training or cut based analyses can be performed.

In addition, CMS chooses to use an ensemble of different signal simulated samples as the signal

hypothesis for the BDT training to guarantee a uniformity of the sensitivity to different final states.

A different approach, already used by other H H analyses such as the CMS H H → bb̄V V ∗ search,

is to train a discriminant based on a parameterised neural network (NN). The NN training is per-

formed as a function of a certain model parameter, such as the X resonance mass when looking for

resonant X → H H → bb̄γγ signals, or the Higgs boson self-coupling modifier κλ. The performance

for each individual model parameter is similar to the performance of a network trained using that

single hypothesis as the target signal. Therefore, the parameterised NN effectively trains different

NNs for each model parameter in a single training procedure. Additionally, this NN is also able to

interpolate between the model parameters used for training.

5.3 H H → bb̄τ+τ−: status and perspectives

K. Leney

The H H → bb̄τ+τ− final state has a branching fraction of 7.3% for a SM Higgs boson with mass of

125 GeV and a relatively small background contribution from other SM processes, compared to the
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H H → bb̄bb̄ search. Three final states of the τ-lepton pair are combined for the H H → bb̄τ+τ−

searches: ττ→ eτh, ττ→ µτh, and ττ→ τhτh. These three final states all together account for 88%

of ττ decays. The case where both τ-leptons decay to lighter charged leptons (` = e/µ) and their

associated neutrinos account for the remaining 12% of ττ decays, but this category of events have

not been considered by either the ATLAS or CMS experiments yet [152, 438].

The reconstruction of H H → bb̄τ+τ− events poses several challenges, including the reconstruc-

tion of hadronic objects: b-jets and hadronically decaying τ-leptons, τh (as described in sections

4.2 and 4.4), the rejection of objects that mimic these, and the reduction of backgrounds. The most

irreducible backgrounds are Z → ττ produced in association with heavy-flavour jets, t t̄ pairs and

multi-jet processes, in which quark- and gluon-initiated jets are misidentified as τh. Single Higgs

boson production, particularly in association with a Z boson or a top pair, is becoming an important

background contribution as the size of the available dataset increases.

5.3.1 Analysis strategies
K. Androsov, A. Bethani, A. Betti, H. Fox, M. Gallinaro, K. Leney

At the trigger level, both the ATLAS and CMS experiments require the presence of an isolated lepton

or hadronic τ object, depending on the final state.

For the fully hadronic channel (τhτh), CMS requires di-τ triggers, while ATLAS uses both single-

and di-τ triggers, described in Sec. 4.6. For the semi-leptonic channels (`τh), ATLAS uses single

lepton and lepton-plus-τ on line selections, while CMS uses only single lepton triggers. This use of

lepton-plus-τ triggers by ATLAS allows the use of lower pT thresholds for the analysis object selec-

tion, which result in a 3% gain on the final sensitivity for the semi leptonic channels.

Similar trigger strategies are planned for the future, however the increased instantaneous lu-

minosity will force the lepton and jet pT thresholds to be raised unless new techniques, exploiting

track information for instance, are used.

In order to reconstruct a H H → bb̄τ+τ− candidate event, it is necessary to identify any electron

or muon from a leptonic τ decay, one or two hadronically decaying τ leptons (τh), the jets originat-

ing from the two b-quarks, and the missing transverse momentum of the event. The latter arises

predominantly from the neutrinos accompanying the τ-lepton decays, although neutrinos in semi-

leptonic B-hadron decays may also contribute. Both collaborations use a medium operating point

for hadronic τ identification, as described in Sec. 4.

In addition to the hadronic τ objects, electrons or muons, the presence of two jets within the

tracker acceptance is required. Jets may be required to be tagged as originating from the hadronisa-

tion of b-quarks. The operating point used in the ATLAS and CMS analyses provides approximately

70% b-tagging efficiency with a mis-identification rate of approximately 0.3% and 1%, respectively,

for light-flavoured jets. The optimisation of the b-jet tagging efficiency and the requirement on

the number of b-jets, depends on the background suppression. In the ATLAS search, both jets are

required to be b-tagged, while in the CMS analysis events are split into three exclusive categories

depending on the number of b-tagged jets (0, 1, or 2).

In the CMS analysis, further classification into “resolved” and “boosted” categories is used in

the case of resonant H H production, for invariant mass values (mH H ) above 700 GeV [438], where

high pT H → bb̄ candidates are reconstructed more efficiently as a large-radius jet, as described

in section 4.2.1. The event is classified as boosted if it contains at least one AK8 jet of invariant

mass larger than 30 GeV and pT > 170 GeV that is composed of two sub-jets. Otherwise, the event

is classified as resolved. In order to improve the resolution and to enhance the sensitivity of the

resonant analysis, the invariant mass is reconstructed using a kinematic fit, as detailed in Sec. 4.7.1.
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Different observables related to the event kinematic are used to discriminate between signal

and background, with various differences depending on the signal model and the considered H →
τ+τ− decay mode.

In both the resonant and non-resonant production modes, mH H is one of the most discrimi-

nating variables for background rejection. An essential part of reconstructing the H H mass is to

first reconstruct the mass of the two sub-systems, mττ and mbb̄ . The mbb̄ is improved by apply-

ing dedicated b-jet specific energy corrections as discussed in Sec. 4. Accurately reconstructing

the mass of a resonance decaying to a pair of τ-leptons is challenging because of the presence

of multiple neutrinos from τ-lepton decays, which lead to a kinematic description of the system

that is under-constrained. The “collinear approximation" is a simple but frequently used technique

to address this problem. It is based on the observation that the neutrinos are produced nearly

collinear with the corresponding visible τ-lepton decay and that all the missing transverse energy

in the event comes from the neutrinos of the τ-lepton decays. Then, mττ is directly calculated from

the masses and momenta of the visible products of the τ-lepton. This technique gives a reasonable

mass resolution, when the two neutrino momenta are not back-to-back or when the di-tau system

transverse momentum is large enough to compensate the resolution effects on the reconstructed

missing transverse energy. In order to better reconstruct mττ, both the ATLAS and CMS collabo-

rations have developed algorithms including dynamic likelihood techniques [478, 479] to account

for the invisible part of the four-momentum due to the neutrinos. The Missing Mass Calculator

(MMC) [480] is used by ATLAS, whereas the Secondary Vertex Fit (SVfit) [481, 482] is used by CMS.

Both algorithms calculate the best estimate of the ττ invariant mas on an event by event basis, us-

ing constraints from the measurements of the visible decay products and the missing transverse

energy.

In the case of the MMC algorithm, the estimate exploits the fact that the solutions of the under

constrained kinematic system are not all equally probable. Then, additional constraints from the τ

kinematics are applied. In this case, the distance ∆R between the neutrino(s) and the visible decay

products is parametrised and provides a probability density function that is then incorporated in a

global event likelihood. The most probable value provides the final estimation of mττ.

In a similar way, the SVfit mττ values are reconstructed by combining the measured observables,

the x and y components of the missing transverse energy, with a probability model, that includes

terms for the τ decay kinematics. The model makes a prediction for the probability to observe the

missing transverse energy values measured in the event, given a parameterisation of the kinematics

of the τ pair decay and it provides a probability density function as a function of the unknown

parameters. The best estimate for the mττ is the value that maximises this probability.

After selecting events compatible with a di-τ plus b-jets final state, the ATLAS search requires

that the MMC-based mττ be above 60 GeV, while CMS uses an elliptical selection in the mττ-mbb̄

plane around the SM Higgs boson mass:

(mττ−116 GeV)2

(35 GeV)2 + (mbb̄ −111 GeV)2

(45 GeV)2 < 1 (5.5)

ATLAS uses three categories of signal events, based on the trigger selection, while CMS defines

nine categories in total depending on the τ final state and number of b-jets: (eτh,µτh,τhτh) × (one

b-jet, two b-jets, boosted). For both experiments, the most sensitive category is the τhτh where

both jets pass the b-tagging requirements.

Both experiments use BDTs trained on different kinematic variables to improve the analysis

sensitivity. ATLAS uses BDTs to separate the signal from multi-jet, t t̄ and Z+b-jet backgrounds. The
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input variables include angular information, the full di-τ mass including neutrinos, mbb̄ corrected

for neutrinos in semi-leptonic B-decays (see Sec. 4.3), mH H and in the leptonic category also thee

transverse mass.

ATLAS uses BDTs for all categories of signal events, while CMS uses a BDT only in the semi lep-

tonic resolved categories. Furthermore, while ATLAS uses the output BDT scores directly to extract

the signal, CMS applies a cut on the BDT output score and then uses the mH H distribution as the

final discriminant for the resonance search, and the “stransverse mass" (mT2) for the non-resonant

analysis. The mT2 variable exploits the fact that the stransverse mass of the t →W b system is con-

strained by the top quark mass, and therefore mT2 is bounded for the t t̄ background (without reso-

lution effects), while this is not the case for the H H → bb̄τ+τ− signal [272].

The MMC-based mττ and mT2 distributions are shown for the τhτh and two b-jets category in

Fig. 5.13 for simulated signal and background events.
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Figure 5.13: The distribution of the MMC-based mττ (left) [152] and mT2 (right) variables in the
τhτh and two b-jets category [438].

5.3.2 Modelling of background contributions
K. Androsov, A. Bethani, A. Betti, H. Fox, M. Gallinaro, K. Leney

One of the main backgrounds in the H H → bb̄τ+τ− search comes from t t̄ events with `+ τh fi-

nal states
(
t t̄ →W (→ `ν)b W (→ τhνν)b̄

)
, or lepton and jet final states (t t̄ →W (→ `ν)b̄ W (→ qq̄)b̄)

where the jet is incorrectly reconstructed as a τh object. Due to the relatively large top quark pair

production cross section (≈ 832 pb at
p

s = 13 TeV [483, 484]) and final states similar to the signal

process, this is the dominant source of background. In both experiments the t t̄ model relies on

simulation, where ATLAS uses the POWHEG-BOX generator [74] with a NNLO+NNLL precision for

the cross section, whereas CMS uses the POWHEG 2.0 generator [485] with a NLO precision for the

cross section. In ATLAS, the component of the t t̄ background in which the reconstructed τh objects

are matched to a hadronically decaying τ-lepton at truth level is estimated from simulation. Its nor-

malisation is further constrained in data using the low BDT output score region of the τ`τh channel.

In the τ`τh channel the component of t t̄ in which the reconstructed τh object is mis-identified is

estimated in an entirely data-driven way. In the τhτh channel, the simulation is corrected using a τ

fake-rate derived from data.

Events with a boosted H → bb̄ candidate are assigned to a dedicated boosted category in the
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CMS analysis. A BDT discriminant based on the kinematic differences between the H H and t t̄

processes is used in the lepton+jet final states in order to reduce the large amount of t t̄ background.

The production of Z bosons in association with heavy-flavour jets provides a significant back-

ground to the H H → bb̄τ+τ− signal process. Both experiments take the shape of Z/γ∗ → τ+τ−+jets

from simulation and normalise it using control regions defined in the data. ATLAS uses the SHERPA

generator while CMS uses MG5_aMC@NLO [54, 86].

The modelling of this background is limited by the current understanding of the hadronisation

of jets initiated from b or c quarks. Cross section predictions for this background do not match the

observations in data, and large correction factors need to be applied. In both ATLAS and CMS ex-

periments these are derived from control regions dominated by Z → µµ+jets events. In both cases,

the selection is similar to that of the signal region, and an additional cut on mµµ is applied. ATLAS

applies an additional selection on the b-tagged jet pair invariant mass mbb̄ in order to reduce the

SM ZH process and provides a single normalisation factor that is used to correct the Z +bb̄/bc/cc̄

processes. CMS performs a simultaneous fit in the three categories and provides three normalisa-

tion factors, depending on the number of b-jets from the hard process: Z + 0, 1 or at least 2 b-jets at

the generator level.

The scale factors and their uncertainties are applied to the Z/γ∗ → `+`− simulated processes

and are propagated to the background estimation to correctly account for higher-order effects. The

use of finer granularity event categories may further constrain these sources of background and

reduce their associated uncertainties.

In the ATLAS searches, fake factors are derived in control regions with inverted isolation re-

quirements on the light lepton (τ`τh channel) or events where the two τ objects have the same-sign

charge (τhτh channel). The fake factors are then applied to a template region where reconstructed

τh objects fail the nominal ID requirements, but still pass a very loose requirement on the τ ID BDT

score (in order to maintain a selection of jets that have τh-like properties). The fake factors are

binned in pT and number of associated tracks.

For all channels in the CMS search, control regions are constructed by inverting the require-

ments on the sign of the τh-pair charge product, and the τh isolation. The three control regions are

therefore defined as: same sign (SS) isolated, opposite sign (OS) anti-isolated, SS anti-isolated. The

shape of the multi-jet template is estimated from the SS isolated region, while the normalisation is

estimated as the ratio of the yields of OS anti-isolated and SS anti-isolated regions multiplied by the

yield in the SS isolated region.

5.3.3 Limitations of the current result and perspectives
M. Gallinaro, T. Vickey

For the non-resonant H H → bb̄τ+τ− production, observed limits of 12.7 and 31.4 times the rate

predicted by the SM have been set by the ATLAS and CMS experiments respectively. A BDT was

not used in the CMS τhτh or boosted channels, since following the semi-leptonic resolved analysis

strategy of cutting on the BDT output score and using the mH H variable as the final discriminant

was not feasible in these channels, due to limited statistics in the final selection. This approach of

cutting on the BDT output score leads to a larger statistical uncertainty on the final result, and addi-

tionally makes it harder to constrain the nuisance parameters associated to background processes.

Another source of the difference in the results obtained by the two experiments is that the CMS

selection has significantly lower efficiency for the signal in all categories due to less efficient b-

tagging. This effect is amplified in the two b-jet categories. For example, in the most sensitive τhτh

two b-jet category the expected yield of non-resonant SM H H events is 0.75±0.14 events (0.55±0.10
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in the last two bins of the BDT) in ATLAS, while CMS expects 0.21 events in their signal region.

These limitations have a direct impact on the signal extraction strategy chosen by CMS and on the

sensitivity of the final limits.

As the result of (i) the limited statistics in the final selection for CMS, (ii) the absence of a mul-

tivariate analysis for the most sensitive category and (iii) the choice of selecting events based on

the BDT score instead of the extracting the signal from its distribution, the final signal sensitivity

obtained by CMS is considerably weaker, by a factor 1.7, than the result obtained by ATLAS.

An independent study using CMS data [486] has shown that results comparable to those pub-

lished by ATLAS can be obtained if multivariate techniques are used for all three channels and if the

signal is extracted using the continuous BDT score. This confirms that by improving the analysis

strategy CMS results could reach similar sensitivity to those reported by the ATLAS experiment.

Although the analyses are currently dominated by statistical uncertainties on the data, the im-

pact of systematic uncertainties will become increasingly important as the size of the available

dataset increases. The dominant source of systematic uncertainties are the multi-jet and t t̄ back-

ground normalisation, which are 5–30% depending on the final state and category and 10–17% re-

spectively; the knowledge of the τh and b-tagging efficiency, which impact the overall signal nor-

malisation up to 10–16% and 6–8% respectively the ATLAS and CMS non-resonant searches.

Reducing these uncertainties is therefore an important way to improve the sensitivity of the

H H → bb̄τ+τ− searches in the future.

5.4 H H → bb̄V V ∗: status and perspectives

J. H. Kim, S. Shrestha

The H H → bb̄W W ∗ final state has the second largest branching fraction, providing desirable statis-

tics and leaving much flexibility to consider all its different sub-channels, depending on the W de-

cay mode: fully hadronic, semi-leptonic and di-lepton final states. In addition, in the fully hadronic

and di-lepton state, this channel has the same final state objects as bb̄Z Z∗, which could provide

additional sensitivity. Given the large statistics, the H H → bb̄V V ∗ channel, where V is either W

or Z , is quite important, necessitating a careful study. However, it has been relatively overlooked,

mostly due to the large t t̄ background. The current outlook for the non-resonant H H → bb̄V V ∗

channel is challenging and provides ample opportunity for improvement. In this section, we sum-

marise the current experimental status and explore potential solutions to improve sensitivity in this

channel.

Double Higgs production could also be used as a probe of a new scalar particle S, ubiquitous

in many well-motivated extensions of the SM [262, 487]. The new scalar can mix with the Higgs

boson acquiring couplings with the SM particles. If the S mass is larger than twice the Higgs mass,

S can decay into two Higgs bosons, and it manifests as a resonance in the H H invariant mass. On

the other hand, if S is lighter than twice the Higgs mass, the resonant double-Higgs production is

forbidden. In this particular scenario, the mixed non-resonant HS production [341] provides an

alternative window to search for an evidence of new physics. The S boson will dominantly decay

into two on-shell W or Z bosons. Therefore, for both mass regimes, the H H → bb̄V V ∗ channel

is ranked high in terms of branching fractions, with a higher priority of the H H → bb̄W W ∗ decay

chain.

ATLAS has reported results of a search for Higgs boson pair production where one Higgs bo-

son decays via H → bb̄, and the other decays via H → W W ∗ with subsequent decays of the W

bosons into `νqq̄ , where ` is either an electron or a muon [462]. One of the W bosons is off-shell.
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The small contamination from leptonic τ decays is not explicitly vetoed in the analysis. CMS has

reported results in the final state with two leptons such that it is sensitive to both bb̄W W ∗ and

bb̄Z Z∗ channels, again with one of the gauge bosons being off-shell [463].

5.4.1 H H → bb̄W W ∗ (`νq q̄)

For the analysis of this channel data were collected using a set of single lepton triggers (triggers re-

quiring the presence of at least one high pT electron or muon) with increasing lepton pT thresholds

through the data taking as function of the instantaneous luminosity, in order to keep the total event

rate below the requirements of the data acquisition system. Events are required to contain at least

one reconstructed electron or muon matching a trigger-lepton candidate. In order to ensure that

the leptons originate from the interaction point, requirements on the transverse and longitudinal

impact parameters of the leptons relative to the primary vertex are imposed.

Four different event selections have been optimised for: non-resonant H H , resonant H H pro-

duction for resonance masses below 600 GeV, in the 600-1500 GeV mass range, and above 1500 GeV.

For the latter category the H → bb̄ candidates are reconstructed as large-radius jets and identified

with boosted reconstruction technique described in Sec. 4.2.1. The b-jets are identified using op-

erating points such that the b-tagging efficiency is 85% and 77% in the resolved and boosted case

respectively.

The dominant background process for both boosted and resolved searches is the top-quark

background, which ranges from more than 50% to 90% depending on the kinematic regime. All the

background processes are estimated from simulation, except the normalisation of the t t̄ process

and the multi-jet background which are derived from data. Exploiting kinematic constraints, in

particular the masses of the W and Higgs bosons, each event can be fully reconstructed despite the

presence of one neutrino in the final state.

The invariant mass of the H H system (mH H ) after applying all selection requirements for the

resolved analysis is shown in Fig. 5.14. Data are generally found to be in good agreement with the

expected background predictions within the total uncertainty. The dominant systematic uncertain-

ties for the resolved regime are t t̄ modelling (18%), flavour tagging (30%), JES/JER (20%) and data

samples in control regions (60%). In the resolved analysis, a counting experiment is performed after

applying all selection requirements, which include a requirement on mH H in the searches for reso-

nant H H production. In the boosted analysis, the fully reconstructed mH H shape is used to extract

the signal.

The resolved and boosted analyses have non trivial overlap of events. In fact, a set of energy

deposits in the calorimeter can be reconstructed both as two separate jets and one large-radius jet.

The expected limit in the boosted analysis is higher than that from the resolved analysis for masses

greater than 1300 GeV in the case of the scalar interpretation, and for masses greater than 800 GeV

in the spin-2 hypothesis.

For the non-resonant signal hypothesis the observed (expected) upper limit on the σ(pp →
H H)×B(H H → bb̄W W ∗) at 95% CL is:

σ(pp → H H)×B(H H → bb̄W W ∗) < 2.5
(
2.5+1.0

−0.7

)
pb,

which corresponds to 300 (300+100
−80 ) times the cross section predicted by the SM.

These results from ATLAS are dominated by large backgrounds and associated systematic un-

certainties. Additionally, further optimization of the trigger and the computation of the neutrino

longitudinal momentum are needed. It will also be interesting to see how the sensitivity improves



5.4. H H → bb̄V V ∗: status and perspectives 141

 [GeV]HHm
0 200 400 600 800 1000 12001400 1600 1800 2000

B
kg

D
at

a-
B

kg

2−
1−
0
1
2 MC Stat Unc.

E
ve

nt
s/

17
5 

G
eV

0
2
4
6
8

10
12
14
16
18
20
22
24

ATLAS
 -1 = 13 TeV, 36.1 fbs

qq νlb b→WW* b  b→HH 
non-resonant

Data

HH SM x 150

Other

Multijet

W+jets

tt

MC Stat + Syst Unc.

 [GeV]HHm
0 200 400 600 800 1000 12001400 1600 1800 2000

B
kg

D
at

a-
B

kg

1−

0

1 MC Stat Unc.

E
ve

nt
s/

21
5 

G
eV

0
20
40
60
80

100
120
140
160
180
200 ATLAS

 -1 = 13 TeV, 36.1 fbs

qq νlb b→WW* b  b→HH 
 = 1000 GeV

X
low-mass, m

Data
(c=1.0)*KKRescaled G

(c=2.0)*KKRescaled G
Rescaled Scalar

Other
Multijet

W+jets
tt

MC Stat + Syst Unc.

Figure 5.14: Distributions of mH H for the non-resonant H H search (left) and for the search of a
resonance (right) using the selections of the resolved analysis. The lower panel shows the fractional
difference between data and the total expected background with the corresponding statistical and
total uncertainty. The signal distributions are scaled arbitrary for presentation [462].

when adding fully-hadronic and di-lepton channels. Finally, techniques discussed in Sec. 5.4.3 and

multivariate analysis also appear promising and should definitely be explored in the next iteration

of this search.

5.4.2 H H → bb̄V V ∗ (`ν`ν)
B. Di Micco, S. Shrestha

For the di-lepton analysis, data were collected in Run 2 with a set of di-lepton triggers3 with asym-

metric pT thresholds. Events with two oppositely charged leptons are selected using asymmetric pT

requirements, chosen to be above the corresponding trigger thresholds, for leading and subleading

leptons of 25 GeV and 15 GeV for ee and events with one electron and one muon where the muon

has a higher pT than the electron (µe), 20 GeV and 10 GeV for µµ events, and 25 GeV and 10 GeV

for events with one electron and one muon where the electron has a higher pT than the muon (eµ).

Electrons in the pseudo-rapidity range |η| < 2.5 and muons in the range |η| < 2.4 are considered.

Jets are required to be separated from a selected lepton by a distance of ∆R > 0.3 and are con-

sidered to be b-tagged if they pass the working point of the algorithm at which the efficiency is 70%,

see Sec. 4.2.

The top-quark background is the single most-dominant background, which accounts for almost

85–90% of the total background and is estimated from simulation. The Drell-Yan production in the

same flavour channels amounts to 7–10% of the total and is estimated with data-driven techniques.

Other backgrounds have almost negligible contribution.

Deep neural network (DNN) discriminators are used to improve the signal to background sep-

aration. As the dominant background process (t t̄ production) is irreducible, the DNNs rely on in-

formation related to event kinematics. The variables provided as input to the DNNs exploit the

presence in the signal of two Higgs bosons decaying into two b-jets on one side, and two leptons

and two neutrinos on the other, which results in different kinematics for the di-lepton and di-jet

systems between signal and background processes. Two parameterised DNNs are trained: one for

the resonant search and one for the non-resonant search. In order to extract the best fit signal cross

sections, a binned maximum likelihood fit is performed using templates built from the DNN output

distributions in the three m j j regions and in the three channels (e+e−, µ+µ−, and e±µ±).

3Di-lepton triggers require the presence of two leptons at level 1 and at HLT.
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The major uncertainty source is the top-background modelling (5–13%), followed by simulated

sample size (up to 20%). The results obtained by CMS are in agreement, within uncertainties, with

the SM predictions. For the SM H H hypothesis, the data exclude a product of the cross section and

branching ratio of 72 fb, corresponding to 79 times the SM prediction. The expected exclusion is

81+42
−25 fb, corresponding to 89+47

−28 times the SM prediction.

ATLAS has also presented preliminary results in this channel [488] using an integrated luminos-

ity of 139 fb−1, only for the non-resonant signal model. The analysis follows a similar approach of

the CMS analysis using a DNN to separate signal from t t̄ , Z → e+e−,µ+µ− (Z → l l ) and Z → τ+τ−.

The DNN produces four outputs: pH H , pt t̄ , pZ→l l and pZ→τ+τ− . The four DNN outputs are com-

bined in a single variable using the relation:

dH H = ln

(
pH H

pZ→l l +pZ→τ+τ− +pt t̄

)

The observed (expected) results are upper limits at 95% CL equal to 40 (29) times the SM cross

section that, when the different integrated luminosity is taken into account, are slightly better than

the CMS results.

The results from CMS are dominated by large t t̄ background and associated systematic uncer-

tainties, that already exceed the statistical precision. It will be interesting to see how sensitivity

improves when adding fully hadronic and single lepton H →W W ∗ final states. Finally, techniques

discussed in Section 5.4.3, in addition to the already used multivariate analysis, also appear to be

promising and should be explored in the next iteration of the analysis.

5.4.3 New kinematic observables for H H → bb̄W W ∗

V. D’Amico, B. Di Micco, J.H. Kim, K. Kong, K. T. Matchev, M. Park

The sensitivity to double Higgs boson production in the H H → bb̄W W ∗ final state, where both

W bosons decay leptonically, could be improved by the use of two novel kinematic observables,

Topness and Higgsness [457, 489, 490]. These functions, which could be generalised to other fi-

nal states as well, capture features of the dominant t t̄ background and the H H signal events, re-

spectively, and result to be effective in separating these two different event topologies. For the

H H → bb̄W W ∗ (`ν`ν) final state other two observables are combined, the subsystem MT 2 (or

subsystem M2) [491–493] for t t̄ production and the subsystem
p

ŝmin (or subsystem M1) [493–495]

for H H production. The MT 2 variable is defined as:

M 2
T 2 ≡ M 2

2 = min
�pT 1+�pT 2=�pT

[
max{m2

T

(
pT l− ,�p1

)
,m2

T

(
pT l+ ,�p2

)
}
]

(5.6)

where �pT 1 and �pT 2 are the neutrino transverse momenta, �pT is the the measured missing trans-

verse momentum, �p1 and �p2 are the neutrino four-momenta. The minimisation is performed on

the eight components of the two neutrino four momenta with the constraint that the sum of their

transverse momenta is equal to the measured missing transverse momentum. The M1 variable is

defined as:

M1 =
√

M 2
vis +|~pT |2 +|��~pT | M 2

vis = E 2
vis −|~pT vis|2 −p2

z vis (5.7)

where Evis and ~pT,vis are the sum of the energy and of the transverse momenta of all visible particles

respectively.

The Topness variable quantifies the degree of consistency of the event kinematic with the di-

lepton t t̄ production, with six unknowns (the three-momenta of the two neutrinos, ~pν and ~pν̄) and
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four on-shell constraints, mt , m t̄ , mW + and mW − . An estimate of the neutrino momenta can be

obtained by minimising the following quantity:

χ2
i j ≡ min

�~pT =~pνT +~pν̄T

[(
m2

bi`
+ν−m2

t

)2

σ4
t

+
(
m2
`+ν−m2

W

)2

σ4
W

+

(
m2

b j`
−ν̄−m2

t

)2

σ4
t

+
(
m2
`−ν̄−m2

W

)2

σ4
W

]
(5.8)

subjected to the missing transverse momentum constraint, ��~pT = ~pνT +~pν̄T . Since there is a two-

fold ambiguity in the pairing of a b-quark and a lepton, Topness is defined as the smaller of the two

χ2:

T ≡ min
(
χ2

12 , χ2
21

)
. (5.9)

In double Higgs boson production, a selection on the invariant mass mbb̄ is used to identify H → bb̄

candidates and to reduce the SM backgrounds. Higgsness characterises the decay of the other Higgs

boson, H →W W ∗ → `+`−νν̄. It is defined as follows:

H ≡ min


(
m2
`+`−νν̄−m2

H

)2

σ4
h`

+
(
m2
νν̄−m2

νν̄,peak

)2

σ4
ν

+min


(
m2
`+ν−m2

W

)2

σ4
W

+

+
(
m2
`−ν̄−m2

W ∗,peak

)2

σ4
W∗

,

(
m2
`−ν̄−m2

W

)2

σ4
W

+
(
m2
`+ν−m2

W ∗,peak

)2

σ4
W∗


 , (5.10)

where mW ∗ is the invariant mass of the lepton-neutrino pair coming from the off-shell W . The mW ∗

distribution has an end-point at around mH −mW (see Fig. 5.15 for the `νqq events which yield to

results similar to `ν`ν events), and its peak is located at

mpeak
W ∗ = 1p

3

√
2
(
m2

H +m2
W

)
−

√
m4

H +14m2
H m2

W +m4
W . (5.11)

Note also that mpeak
νν̄ = mpeak

``
≈ 30 GeV is the location of the peak in the dσ/dmνν̄ or dσ/dm``

distribution [457, 497]. The σ parameters in Eq. (5.8) and (5.10) stand for the experimental uncer-

tainties and intrinsic particle widths. In principle, they can be treated as free parameters, and tuned

by a neutral network or a boosted decision tree. For the studies shown in the following the values

σt = 5 GeV, σW = 5 GeV, σW ∗ = 5 GeV, σh`
= 2 GeV, and σν = 10 GeV have been used.

The Higgsness and Topness distributions are shown in Fig. 5.16 for simulated signal and all back-

grounds (t t̄ , t t̄ H , t t̄V , ``b j , bb̄τ+τ− and others) events. Simulated signal and background events

include for parton shower and hadronisation simulation, as well as semi-realistic detector effects,

as described in Ref. [457, 489]

The dominant t t̄ events are expected to be on the lower right corner with smaller Topness and

larger Higgsness. The H H events are, on the other hand, expected to have smaller Higgsness and

larger Topness. A selection in the (log H , logT ) is then used to separate signal and backgrounds.

Along with Higgsness and Topness, the MT 2 variable, Eq. (5.6) could be exploited for both the

H → bb̄ (M (b)
T 2 ) and leptonic (M (`)

T 2 ) [492] candidates, as well as ŝ(``)
min for H → W W ∗ → `+`−νν̄ [494,

495]. In the case of M (b)
T 2 , the two W bosons play the role of two missing neutrinos. The M (b)

T 2 and

M (`)
T 2 distributions are shown in Fig. 5.17 (upper panels). The vertical lines at M (b)

T 2 = 190 GeV and

M (`)
T 2 = 6 GeV represent optimised cuts, suppressing t t̄ and bb̄τ+τ− (Drell-Yan) backgrounds, re-



144 Chapter 5. Overview of HH searches at the LHC

0 20 40 60 80 100 120

 [GeV]νlm

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

A
rb

itr
ar

y 
U

ni
ts

W On-shell 

W Off-shell 

ATLAS Generator-level

ν bbqql→ bbWW* →HH 
MG5_MC@NLO(FTApprox) + Herwig++

Figure 5.15: Distribution of the invariant mass of the lepton-neutrino system for simulated signal
H H → bb̄W W ∗ events without selection requirements, separated for the on-shell and the off-shell
W boson. Signal sample generated with MG5_AMC@NLO using the FTApprox approximation and
with a HERWIG++ parton-shower simulation. The distributions are normalised to unit area [496].

�15 �10 �5 0 5 10

log(H)

�10

�5

0

5

10

lo
g
(T

)

0.015

0.030

0.045

0.060

0.075

0.090

0.105

0.120

N
or

m
a
li
ze

d

log H
<latexit sha1_base64="S0ROfAWo/WNykAjT8cZ5c6QWpDs=">AAAB73icbZDLSgMxFIZPvNZ6q7p0E2wFV2WmG10WdNFlBXuBdiiZNNOGZpIxyQhl6Eu4caGIW1/HnW9j2s5CW38IfPznHHLOHyaCG+t532hjc2t7Z7ewV9w/ODw6Lp2cto1KNWUtqoTS3ZAYJrhkLcutYN1EMxKHgnXCye283nli2nAlH+w0YUFMRpJHnBLrrG6lL9QINyqDUtmregvhdfBzKEOu5qD01R8qmsZMWiqIMT3fS2yQEW05FWxW7KeGJYROyIj1HEoSMxNki31n+NI5Qxwp7Z60eOH+nshIbMw0Dl1nTOzYrNbm5n+1XmqjmyDjMkktk3T5UZQKbBWeH4+HXDNqxdQBoZq7XTEdE02odREVXQj+6snr0K5Vfcf3tXL9Lo+jAOdwAVfgwzXUoQFNaAEFAc/wCm/oEb2gd/SxbN1A+cwZ/BH6/AG56I8Y</latexit><latexit sha1_base64="S0ROfAWo/WNykAjT8cZ5c6QWpDs=">AAAB73icbZDLSgMxFIZPvNZ6q7p0E2wFV2WmG10WdNFlBXuBdiiZNNOGZpIxyQhl6Eu4caGIW1/HnW9j2s5CW38IfPznHHLOHyaCG+t532hjc2t7Z7ewV9w/ODw6Lp2cto1KNWUtqoTS3ZAYJrhkLcutYN1EMxKHgnXCye283nli2nAlH+w0YUFMRpJHnBLrrG6lL9QINyqDUtmregvhdfBzKEOu5qD01R8qmsZMWiqIMT3fS2yQEW05FWxW7KeGJYROyIj1HEoSMxNki31n+NI5Qxwp7Z60eOH+nshIbMw0Dl1nTOzYrNbm5n+1XmqjmyDjMkktk3T5UZQKbBWeH4+HXDNqxdQBoZq7XTEdE02odREVXQj+6snr0K5Vfcf3tXL9Lo+jAOdwAVfgwzXUoQFNaAEFAc/wCm/oEb2gd/SxbN1A+cwZ/BH6/AG56I8Y</latexit><latexit sha1_base64="S0ROfAWo/WNykAjT8cZ5c6QWpDs=">AAAB73icbZDLSgMxFIZPvNZ6q7p0E2wFV2WmG10WdNFlBXuBdiiZNNOGZpIxyQhl6Eu4caGIW1/HnW9j2s5CW38IfPznHHLOHyaCG+t532hjc2t7Z7ewV9w/ODw6Lp2cto1KNWUtqoTS3ZAYJrhkLcutYN1EMxKHgnXCye283nli2nAlH+w0YUFMRpJHnBLrrG6lL9QINyqDUtmregvhdfBzKEOu5qD01R8qmsZMWiqIMT3fS2yQEW05FWxW7KeGJYROyIj1HEoSMxNki31n+NI5Qxwp7Z60eOH+nshIbMw0Dl1nTOzYrNbm5n+1XmqjmyDjMkktk3T5UZQKbBWeH4+HXDNqxdQBoZq7XTEdE02odREVXQj+6snr0K5Vfcf3tXL9Lo+jAOdwAVfgwzXUoQFNaAEFAc/wCm/oEb2gd/SxbN1A+cwZ/BH6/AG56I8Y</latexit><latexit sha1_base64="S0ROfAWo/WNykAjT8cZ5c6QWpDs=">AAAB73icbZDLSgMxFIZPvNZ6q7p0E2wFV2WmG10WdNFlBXuBdiiZNNOGZpIxyQhl6Eu4caGIW1/HnW9j2s5CW38IfPznHHLOHyaCG+t532hjc2t7Z7ewV9w/ODw6Lp2cto1KNWUtqoTS3ZAYJrhkLcutYN1EMxKHgnXCye283nli2nAlH+w0YUFMRpJHnBLrrG6lL9QINyqDUtmregvhdfBzKEOu5qD01R8qmsZMWiqIMT3fS2yQEW05FWxW7KeGJYROyIj1HEoSMxNki31n+NI5Qxwp7Z60eOH+nshIbMw0Dl1nTOzYrNbm5n+1XmqjmyDjMkktk3T5UZQKbBWeH4+HXDNqxdQBoZq7XTEdE02odREVXQj+6snr0K5Vfcf3tXL9Lo+jAOdwAVfgwzXUoQFNaAEFAc/wCm/oEb2gd/SxbN1A+cwZ/BH6/AG56I8Y</latexit>

lo
g

T
<latexit sha1_base64="TCRQj0vKlQKyDIuAZVIlAnZVTpg=">AAAB73icbZC7SgNBFIbPeo3xFrW0GUwEq7CbRsuAFpYRcoNkCbOT2WTIXNaZWSEseQkbC0VsfR0738ZJsoUm/jDw8Z9zmHP+KOHMWN//9jY2t7Z3dgt7xf2Dw6Pj0slp26hUE9oiiivdjbChnEnassxy2k00xSLitBNNbuf1zhPVhinZtNOEhgKPJIsZwdZZ3UqfqxFqVgalsl/1F0LrEORQhlyNQemrP1QkFVRawrExvcBPbJhhbRnhdFbsp4YmmEzwiPYcSiyoCbPFvjN06ZwhipV2T1q0cH9PZFgYMxWR6xTYjs1qbW7+V+ulNr4JMyaT1FJJlh/FKUdWofnxaMg0JZZPHWCimdsVkTHWmFgXUdGFEKyevA7tWjVw/FAr1+/yOApwDhdwBQFcQx3uoQEtIMDhGV7hzXv0Xrx372PZuuHlM2fwR97nD8wkjyQ=</latexit><latexit sha1_base64="TCRQj0vKlQKyDIuAZVIlAnZVTpg=">AAAB73icbZC7SgNBFIbPeo3xFrW0GUwEq7CbRsuAFpYRcoNkCbOT2WTIXNaZWSEseQkbC0VsfR0738ZJsoUm/jDw8Z9zmHP+KOHMWN//9jY2t7Z3dgt7xf2Dw6Pj0slp26hUE9oiiivdjbChnEnassxy2k00xSLitBNNbuf1zhPVhinZtNOEhgKPJIsZwdZZ3UqfqxFqVgalsl/1F0LrEORQhlyNQemrP1QkFVRawrExvcBPbJhhbRnhdFbsp4YmmEzwiPYcSiyoCbPFvjN06ZwhipV2T1q0cH9PZFgYMxWR6xTYjs1qbW7+V+ulNr4JMyaT1FJJlh/FKUdWofnxaMg0JZZPHWCimdsVkTHWmFgXUdGFEKyevA7tWjVw/FAr1+/yOApwDhdwBQFcQx3uoQEtIMDhGV7hzXv0Xrx372PZuuHlM2fwR97nD8wkjyQ=</latexit><latexit sha1_base64="TCRQj0vKlQKyDIuAZVIlAnZVTpg=">AAAB73icbZC7SgNBFIbPeo3xFrW0GUwEq7CbRsuAFpYRcoNkCbOT2WTIXNaZWSEseQkbC0VsfR0738ZJsoUm/jDw8Z9zmHP+KOHMWN//9jY2t7Z3dgt7xf2Dw6Pj0slp26hUE9oiiivdjbChnEnassxy2k00xSLitBNNbuf1zhPVhinZtNOEhgKPJIsZwdZZ3UqfqxFqVgalsl/1F0LrEORQhlyNQemrP1QkFVRawrExvcBPbJhhbRnhdFbsp4YmmEzwiPYcSiyoCbPFvjN06ZwhipV2T1q0cH9PZFgYMxWR6xTYjs1qbW7+V+ulNr4JMyaT1FJJlh/FKUdWofnxaMg0JZZPHWCimdsVkTHWmFgXUdGFEKyevA7tWjVw/FAr1+/yOApwDhdwBQFcQx3uoQEtIMDhGV7hzXv0Xrx372PZuuHlM2fwR97nD8wkjyQ=</latexit><latexit sha1_base64="TCRQj0vKlQKyDIuAZVIlAnZVTpg=">AAAB73icbZC7SgNBFIbPeo3xFrW0GUwEq7CbRsuAFpYRcoNkCbOT2WTIXNaZWSEseQkbC0VsfR0738ZJsoUm/jDw8Z9zmHP+KOHMWN//9jY2t7Z3dgt7xf2Dw6Pj0slp26hUE9oiiivdjbChnEnassxy2k00xSLitBNNbuf1zhPVhinZtNOEhgKPJIsZwdZZ3UqfqxFqVgalsl/1F0LrEORQhlyNQemrP1QkFVRawrExvcBPbJhhbRnhdFbsp4YmmEzwiPYcSiyoCbPFvjN06ZwhipV2T1q0cH9PZFgYMxWR6xTYjs1qbW7+V+ulNr4JMyaT1FJJlh/FKUdWofnxaMg0JZZPHWCimdsVkTHWmFgXUdGFEKyevA7tWjVw/FAr1+/yOApwDhdwBQFcQx3uoQEtIMDhGV7hzXv0Xrx372PZuuHlM2fwR97nD8wkjyQ=</latexit>

Signal
<latexit sha1_base64="KCahDVUvWr/YkBnMZlYQEevvGAI=">AAAB7XicbVA9SwNBEJ3zM8avqKXNYhCswl0aLQNaWEY0H5AcYW6zl6zZ2z1294QQ8h9sLBSx9f/Y+W/cJFdo4oOBx3szzMyLUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03jco0ZQ2qhNLtCA0TXLKG5VawdqoZJpFgrWh0PfNbT0wbruSDHacsTHAgecwpWic17/lAouiVyn7Fn4OskiAnZchR75W+un1Fs4RJSwUa0wn81IYT1JZTwabFbmZYinSEA9ZxVGLCTDiZXzsl507pk1hpV9KSufp7YoKJMeMkcp0J2qFZ9mbif14ns/FVOOEyzSyTdLEozgSxisxeJ32uGbVi7AhSzd2thA5RI7UuoKILIVh+eZU0q5UgqAR31XLtJo+jAKdwBhcQwCXU4Bbq0AAKj/AMr/DmKe/Fe/c+Fq1rXj5zAn/gff4AhZiPFQ==</latexit><latexit sha1_base64="KCahDVUvWr/YkBnMZlYQEevvGAI=">AAAB7XicbVA9SwNBEJ3zM8avqKXNYhCswl0aLQNaWEY0H5AcYW6zl6zZ2z1294QQ8h9sLBSx9f/Y+W/cJFdo4oOBx3szzMyLUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03jco0ZQ2qhNLtCA0TXLKG5VawdqoZJpFgrWh0PfNbT0wbruSDHacsTHAgecwpWic17/lAouiVyn7Fn4OskiAnZchR75W+un1Fs4RJSwUa0wn81IYT1JZTwabFbmZYinSEA9ZxVGLCTDiZXzsl507pk1hpV9KSufp7YoKJMeMkcp0J2qFZ9mbif14ns/FVOOEyzSyTdLEozgSxisxeJ32uGbVi7AhSzd2thA5RI7UuoKILIVh+eZU0q5UgqAR31XLtJo+jAKdwBhcQwCXU4Bbq0AAKj/AMr/DmKe/Fe/c+Fq1rXj5zAn/gff4AhZiPFQ==</latexit><latexit sha1_base64="KCahDVUvWr/YkBnMZlYQEevvGAI=">AAAB7XicbVA9SwNBEJ3zM8avqKXNYhCswl0aLQNaWEY0H5AcYW6zl6zZ2z1294QQ8h9sLBSx9f/Y+W/cJFdo4oOBx3szzMyLUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03jco0ZQ2qhNLtCA0TXLKG5VawdqoZJpFgrWh0PfNbT0wbruSDHacsTHAgecwpWic17/lAouiVyn7Fn4OskiAnZchR75W+un1Fs4RJSwUa0wn81IYT1JZTwabFbmZYinSEA9ZxVGLCTDiZXzsl507pk1hpV9KSufp7YoKJMeMkcp0J2qFZ9mbif14ns/FVOOEyzSyTdLEozgSxisxeJ32uGbVi7AhSzd2thA5RI7UuoKILIVh+eZU0q5UgqAR31XLtJo+jAKdwBhcQwCXU4Bbq0AAKj/AMr/DmKe/Fe/c+Fq1rXj5zAn/gff4AhZiPFQ==</latexit><latexit sha1_base64="KCahDVUvWr/YkBnMZlYQEevvGAI=">AAAB7XicbVA9SwNBEJ3zM8avqKXNYhCswl0aLQNaWEY0H5AcYW6zl6zZ2z1294QQ8h9sLBSx9f/Y+W/cJFdo4oOBx3szzMyLUsGN9f1vb219Y3Nru7BT3N3bPzgsHR03jco0ZQ2qhNLtCA0TXLKG5VawdqoZJpFgrWh0PfNbT0wbruSDHacsTHAgecwpWic17/lAouiVyn7Fn4OskiAnZchR75W+un1Fs4RJSwUa0wn81IYT1JZTwabFbmZYinSEA9ZxVGLCTDiZXzsl507pk1hpV9KSufp7YoKJMeMkcp0J2qFZ9mbif14ns/FVOOEyzSyTdLEozgSxisxeJ32uGbVi7AhSzd2thA5RI7UuoKILIVh+eZU0q5UgqAR31XLtJo+jAKdwBhcQwCXU4Bbq0AAKj/AMr/DmKe/Fe/c+Fq1rXj5zAn/gff4AhZiPFQ==</latexit>

�15 �10 �5 0 5 10

log(H)

�10

�5

0

5

10

lo
g
(T

)

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

N
or

m
a
li
ze

d

log H
<latexit sha1_base64="S0ROfAWo/WNykAjT8cZ5c6QWpDs=">AAAB73icbZDLSgMxFIZPvNZ6q7p0E2wFV2WmG10WdNFlBXuBdiiZNNOGZpIxyQhl6Eu4caGIW1/HnW9j2s5CW38IfPznHHLOHyaCG+t532hjc2t7Z7ewV9w/ODw6Lp2cto1KNWUtqoTS3ZAYJrhkLcutYN1EMxKHgnXCye283nli2nAlH+w0YUFMRpJHnBLrrG6lL9QINyqDUtmregvhdfBzKEOu5qD01R8qmsZMWiqIMT3fS2yQEW05FWxW7KeGJYROyIj1HEoSMxNki31n+NI5Qxwp7Z60eOH+nshIbMw0Dl1nTOzYrNbm5n+1XmqjmyDjMkktk3T5UZQKbBWeH4+HXDNqxdQBoZq7XTEdE02odREVXQj+6snr0K5Vfcf3tXL9Lo+jAOdwAVfgwzXUoQFNaAEFAc/wCm/oEb2gd/SxbN1A+cwZ/BH6/AG56I8Y</latexit><latexit sha1_base64="S0ROfAWo/WNykAjT8cZ5c6QWpDs=">AAAB73icbZDLSgMxFIZPvNZ6q7p0E2wFV2WmG10WdNFlBXuBdiiZNNOGZpIxyQhl6Eu4caGIW1/HnW9j2s5CW38IfPznHHLOHyaCG+t532hjc2t7Z7ewV9w/ODw6Lp2cto1KNWUtqoTS3ZAYJrhkLcutYN1EMxKHgnXCye283nli2nAlH+w0YUFMRpJHnBLrrG6lL9QINyqDUtmregvhdfBzKEOu5qD01R8qmsZMWiqIMT3fS2yQEW05FWxW7KeGJYROyIj1HEoSMxNki31n+NI5Qxwp7Z60eOH+nshIbMw0Dl1nTOzYrNbm5n+1XmqjmyDjMkktk3T5UZQKbBWeH4+HXDNqxdQBoZq7XTEdE02odREVXQj+6snr0K5Vfcf3tXL9Lo+jAOdwAVfgwzXUoQFNaAEFAc/wCm/oEb2gd/SxbN1A+cwZ/BH6/AG56I8Y</latexit><latexit sha1_base64="S0ROfAWo/WNykAjT8cZ5c6QWpDs=">AAAB73icbZDLSgMxFIZPvNZ6q7p0E2wFV2WmG10WdNFlBXuBdiiZNNOGZpIxyQhl6Eu4caGIW1/HnW9j2s5CW38IfPznHHLOHyaCG+t532hjc2t7Z7ewV9w/ODw6Lp2cto1KNWUtqoTS3ZAYJrhkLcutYN1EMxKHgnXCye283nli2nAlH+w0YUFMRpJHnBLrrG6lL9QINyqDUtmregvhdfBzKEOu5qD01R8qmsZMWiqIMT3fS2yQEW05FWxW7KeGJYROyIj1HEoSMxNki31n+NI5Qxwp7Z60eOH+nshIbMw0Dl1nTOzYrNbm5n+1XmqjmyDjMkktk3T5UZQKbBWeH4+HXDNqxdQBoZq7XTEdE02odREVXQj+6snr0K5Vfcf3tXL9Lo+jAOdwAVfgwzXUoQFNaAEFAc/wCm/oEb2gd/SxbN1A+cwZ/BH6/AG56I8Y</latexit><latexit sha1_base64="S0ROfAWo/WNykAjT8cZ5c6QWpDs=">AAAB73icbZDLSgMxFIZPvNZ6q7p0E2wFV2WmG10WdNFlBXuBdiiZNNOGZpIxyQhl6Eu4caGIW1/HnW9j2s5CW38IfPznHHLOHyaCG+t532hjc2t7Z7ewV9w/ODw6Lp2cto1KNWUtqoTS3ZAYJrhkLcutYN1EMxKHgnXCye283nli2nAlH+w0YUFMRpJHnBLrrG6lL9QINyqDUtmregvhdfBzKEOu5qD01R8qmsZMWiqIMT3fS2yQEW05FWxW7KeGJYROyIj1HEoSMxNki31n+NI5Qxwp7Z60eOH+nshIbMw0Dl1nTOzYrNbm5n+1XmqjmyDjMkktk3T5UZQKbBWeH4+HXDNqxdQBoZq7XTEdE02odREVXQj+6snr0K5Vfcf3tXL9Lo+jAOdwAVfgwzXUoQFNaAEFAc/wCm/oEb2gd/SxbN1A+cwZ/BH6/AG56I8Y</latexit>

lo
g

T
<latexit sha1_base64="TCRQj0vKlQKyDIuAZVIlAnZVTpg=">AAAB73icbZC7SgNBFIbPeo3xFrW0GUwEq7CbRsuAFpYRcoNkCbOT2WTIXNaZWSEseQkbC0VsfR0738ZJsoUm/jDw8Z9zmHP+KOHMWN//9jY2t7Z3dgt7xf2Dw6Pj0slp26hUE9oiiivdjbChnEnassxy2k00xSLitBNNbuf1zhPVhinZtNOEhgKPJIsZwdZZ3UqfqxFqVgalsl/1F0LrEORQhlyNQemrP1QkFVRawrExvcBPbJhhbRnhdFbsp4YmmEzwiPYcSiyoCbPFvjN06ZwhipV2T1q0cH9PZFgYMxWR6xTYjs1qbW7+V+ulNr4JMyaT1FJJlh/FKUdWofnxaMg0JZZPHWCimdsVkTHWmFgXUdGFEKyevA7tWjVw/FAr1+/yOApwDhdwBQFcQx3uoQEtIMDhGV7hzXv0Xrx372PZuuHlM2fwR97nD8wkjyQ=</latexit><latexit sha1_base64="TCRQj0vKlQKyDIuAZVIlAnZVTpg=">AAAB73icbZC7SgNBFIbPeo3xFrW0GUwEq7CbRsuAFpYRcoNkCbOT2WTIXNaZWSEseQkbC0VsfR0738ZJsoUm/jDw8Z9zmHP+KOHMWN//9jY2t7Z3dgt7xf2Dw6Pj0slp26hUE9oiiivdjbChnEnassxy2k00xSLitBNNbuf1zhPVhinZtNOEhgKPJIsZwdZZ3UqfqxFqVgalsl/1F0LrEORQhlyNQemrP1QkFVRawrExvcBPbJhhbRnhdFbsp4YmmEzwiPYcSiyoCbPFvjN06ZwhipV2T1q0cH9PZFgYMxWR6xTYjs1qbW7+V+ulNr4JMyaT1FJJlh/FKUdWofnxaMg0JZZPHWCimdsVkTHWmFgXUdGFEKyevA7tWjVw/FAr1+/yOApwDhdwBQFcQx3uoQEtIMDhGV7hzXv0Xrx372PZuuHlM2fwR97nD8wkjyQ=</latexit><latexit sha1_base64="TCRQj0vKlQKyDIuAZVIlAnZVTpg=">AAAB73icbZC7SgNBFIbPeo3xFrW0GUwEq7CbRsuAFpYRcoNkCbOT2WTIXNaZWSEseQkbC0VsfR0738ZJsoUm/jDw8Z9zmHP+KOHMWN//9jY2t7Z3dgt7xf2Dw6Pj0slp26hUE9oiiivdjbChnEnassxy2k00xSLitBNNbuf1zhPVhinZtNOEhgKPJIsZwdZZ3UqfqxFqVgalsl/1F0LrEORQhlyNQemrP1QkFVRawrExvcBPbJhhbRnhdFbsp4YmmEzwiPYcSiyoCbPFvjN06ZwhipV2T1q0cH9PZFgYMxWR6xTYjs1qbW7+V+ulNr4JMyaT1FJJlh/FKUdWofnxaMg0JZZPHWCimdsVkTHWmFgXUdGFEKyevA7tWjVw/FAr1+/yOApwDhdwBQFcQx3uoQEtIMDhGV7hzXv0Xrx372PZuuHlM2fwR97nD8wkjyQ=</latexit><latexit sha1_base64="TCRQj0vKlQKyDIuAZVIlAnZVTpg=">AAAB73icbZC7SgNBFIbPeo3xFrW0GUwEq7CbRsuAFpYRcoNkCbOT2WTIXNaZWSEseQkbC0VsfR0738ZJsoUm/jDw8Z9zmHP+KOHMWN//9jY2t7Z3dgt7xf2Dw6Pj0slp26hUE9oiiivdjbChnEnassxy2k00xSLitBNNbuf1zhPVhinZtNOEhgKPJIsZwdZZ3UqfqxFqVgalsl/1F0LrEORQhlyNQemrP1QkFVRawrExvcBPbJhhbRnhdFbsp4YmmEzwiPYcSiyoCbPFvjN06ZwhipV2T1q0cH9PZFgYMxWR6xTYjs1qbW7+V+ulNr4JMyaT1FJJlh/FKUdWofnxaMg0JZZPHWCimdsVkTHWmFgXUdGFEKyevA7tWjVw/FAr1+/yOApwDhdwBQFcQx3uoQEtIMDhGV7hzXv0Xrx372PZuuHlM2fwR97nD8wkjyQ=</latexit>

Backgrounds
<latexit sha1_base64="w+EOqvGeFP/x+x/9JT38lAsZFpY=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSS96LGoB48V7Ae0oWw2m3bpZjfsToQS+jO8eFDEq7/Gm//GbZuDtj5YeLw3MzvzwlRwg5737ZQ2Nre2d8q7lb39g8Oj6vFJx6hMU9amSijdC4lhgkvWRo6C9VLNSBIK1g0nt3O/+8S04Uo+4jRlQUJGksecErRS/4bQyUirTEZmWK15dW8Bd534BalBgdaw+jWIFM0SJpEKYkzf91IMcqKRU8FmlUFmWGrnkxHrWypJwkyQL1aeuRdWidxYafskugv1d0dOEmOmSWgrE4Jjs+rNxf+8fobxdZBzmWbIJF1+FGfCReXO73cjrhlFMbWEUM3tri4dE00o2pQqNgR/9eR10mnUfb/uPzRqzbsijjKcwTlcgg9X0IR7aEEbKCh4hld4c9B5cd6dj2VpySl6TuEPnM8fda6RXA==</latexit><latexit sha1_base64="w+EOqvGeFP/x+x/9JT38lAsZFpY=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSS96LGoB48V7Ae0oWw2m3bpZjfsToQS+jO8eFDEq7/Gm//GbZuDtj5YeLw3MzvzwlRwg5737ZQ2Nre2d8q7lb39g8Oj6vFJx6hMU9amSijdC4lhgkvWRo6C9VLNSBIK1g0nt3O/+8S04Uo+4jRlQUJGksecErRS/4bQyUirTEZmWK15dW8Bd534BalBgdaw+jWIFM0SJpEKYkzf91IMcqKRU8FmlUFmWGrnkxHrWypJwkyQL1aeuRdWidxYafskugv1d0dOEmOmSWgrE4Jjs+rNxf+8fobxdZBzmWbIJF1+FGfCReXO73cjrhlFMbWEUM3tri4dE00o2pQqNgR/9eR10mnUfb/uPzRqzbsijjKcwTlcgg9X0IR7aEEbKCh4hld4c9B5cd6dj2VpySl6TuEPnM8fda6RXA==</latexit><latexit sha1_base64="w+EOqvGeFP/x+x/9JT38lAsZFpY=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSS96LGoB48V7Ae0oWw2m3bpZjfsToQS+jO8eFDEq7/Gm//GbZuDtj5YeLw3MzvzwlRwg5737ZQ2Nre2d8q7lb39g8Oj6vFJx6hMU9amSijdC4lhgkvWRo6C9VLNSBIK1g0nt3O/+8S04Uo+4jRlQUJGksecErRS/4bQyUirTEZmWK15dW8Bd534BalBgdaw+jWIFM0SJpEKYkzf91IMcqKRU8FmlUFmWGrnkxHrWypJwkyQL1aeuRdWidxYafskugv1d0dOEmOmSWgrE4Jjs+rNxf+8fobxdZBzmWbIJF1+FGfCReXO73cjrhlFMbWEUM3tri4dE00o2pQqNgR/9eR10mnUfb/uPzRqzbsijjKcwTlcgg9X0IR7aEEbKCh4hld4c9B5cd6dj2VpySl6TuEPnM8fda6RXA==</latexit><latexit sha1_base64="w+EOqvGeFP/x+x/9JT38lAsZFpY=">AAAB8nicbVBNS8NAEJ3Ur1q/qh69BIvgqSS96LGoB48V7Ae0oWw2m3bpZjfsToQS+jO8eFDEq7/Gm//GbZuDtj5YeLw3MzvzwlRwg5737ZQ2Nre2d8q7lb39g8Oj6vFJx6hMU9amSijdC4lhgkvWRo6C9VLNSBIK1g0nt3O/+8S04Uo+4jRlQUJGksecErRS/4bQyUirTEZmWK15dW8Bd534BalBgdaw+jWIFM0SJpEKYkzf91IMcqKRU8FmlUFmWGrnkxHrWypJwkyQL1aeuRdWidxYafskugv1d0dOEmOmSWgrE4Jjs+rNxf+8fobxdZBzmWbIJF1+FGfCReXO73cjrhlFMbWEUM3tri4dE00o2pQqNgR/9eR10mnUfb/uPzRqzbsijjKcwTlcgg9X0IR7aEEbKCh4hld4c9B5cd6dj2VpySl6TuEPnM8fda6RXA==</latexit>

Figure 5.16: Distribution of (log H , logT ) for simulated signal (H H) and backgrounds (t t̄ , t t̄ H ,t t̄V ,
``b j , bb̄τ+τ− and others) events after loose selection requirements as defined in Ref. [457].

spectively.

The ŝ(v)
min variable [493–495] is defined as:

ŝ(v)
min = m2

v +2

(√
|~P v

T |2 +m2
v |��~pT |−~P v

T · ��~pT

)
, (5.12)

where the script (v) represents a set of visible particles under consideration. The mv and ~P v
T denote

their invariant mass and transverse momentum, respectively.

The ŝ(v)
min variable provides the minimum value of the Mandelstam invariant mass ŝ which is

consistent with the observed visible four-momentum vector. Figure 5.17 (lower-left panel) demon-

strates that the
p

ŝ
(``)
min distribution has an endpoint at around mH for H H events. All other back-

grounds, however, extend above this point. This justifies the use of
p

ŝ
(``)
min < 130 GeV as a cut to re-

duce the backgrounds. Figure 5.17 (lower-right panel) shows distributions of
p

ŝ
(bb̄``)
min and the truep

ŝ for H H and t t̄ events. First, one can observe that
p

ŝ
(bb̄``)
min (H H) provides a good measure of the

true
p

ŝ(H H), while
p

ŝ
(bb̄``)
min (t t̄ ) peaks lower, near the 2mt threshold. Secondly, both

p
ŝ(H H) and
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Figure 5.17: Distributions of M (b)
T 2 , M (`)

T 2 and
p

ŝ
(``)
min for the signal (H H) and all backgrounds (t t̄ , t t̄ H ,

t t̄V , ``b j , bb̄τ+τ− and others) events [457, 489]. The vertical lines at M (b)
T 2 = 190 GeV, M (`)

T 2 = 6 GeV

and
p

ŝ
(``)
min = 130 GeV show the optimised cuts. The lower-right panel shows the distributions ofp

ŝ
(bb``)
min as defined in Eq. (5.12) as compared to the

p
ŝ ≡ M1 for the H H and t t̄ events.

p
ŝ(t t̄ ) peak at ∼ 400 GeV. This implies that while the two top quarks are produced near threshold

(2 mt ), the two Higgs bosons are produced well above the corresponding 2mH threshold. Conse-

quently, the two top quarks are more or less at rest, while the two Higgs bosons are expected to be

relatively boosted and their decay products tend to be more collimated. This observation motivates

the use of simple kinematic variables such as ∆R``, ∆Rbb̄ , m`` and mbb̄ to further separate signal

and background events [457, 489].

The new observables presented in this section are quite general and can be easily applied to dif-

ferent topologies. For the H H → bb̄W W ∗ (`ν j j ) final state, the Topness variable is defined through

Eq. (5.9) where

χ2
i j ≡ min

pν
z

[(
m2

bi`ν
−m2

t

)2

σ4
t

+
(
m2
`ν−m2

W

)2

σ4
W

+

(
m2

b j j j −m2
t

)2

σ4
t

+
(
m2

j j −m2
W

)2

σ4
W

]
. (5.13)

In this expression pν
z is the longitudinal neutrino momentum, b1 and b2 are the b-jets in the final

state, j j is the di-jet system, mbi`ν
is the invariant mass of the lepton, neutrino, b-jet system and
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Figure 5.18: Distribution of Higgsness and Topness (log (H), l og (T)) for simulated signal H H →
bb̄W W ∗ and background t t̄ →→ bbqqlν events without selection requirements. The signal has
been simulated with MG5_AMC@NLO using the FTApprox approximation and with a HERWIG++
parton-shower simulation, while the background sample is generated with POWHEG and PYTHIA

6.428. The distributions are normalised to unit area. Red lines are drawn to give a visible reference
for a possible separation between signal and background [496].

mb j j j that of the b-jet plus di-jet system. The Higgness is defined by the identity:

H ≡ min
pν

z


(
m2
`ν j j −m2

h

)2

σ4
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σ4
W

+
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W ∗
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+
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peak

)2

σ4
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The distribution of the Higgness and Topness variables are shown in Fig. 5.18 for simulated signal

and t t̄ events.

5.5 H H , other signatures: status and perspectives

C. Veelken

Searches for H H production in channels without b-jets have in general smaller signal yields, but

are typically less contaminated by backgrounds than those with b-jets. As the sensitivity of searches

without b-jets is mainly limited by statistical uncertainties, we expect that their sensitivity will scale

better with the integrated luminosity than the b-jets final states. ATLAS has recently investigated

both the H H → γγW W ∗ [228,498] and H H →W W ∗W W ∗ [464] final states, while CMS has studied

for the first time H H → τ+τ−τ+τ− [499]. The branching fractions of these channels for SM H H

bosons are 9.85 · 10−4, 4.67 · 10−2, and 4.00 · 10−3, respectively. Phenomenological studies of the

H H → γγW W ∗ and H H →W W ∗W W ∗ channels have been published in Refs. [456] and [456,500–

503], respectively.
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5.5.1 H H →γγW W ∗

Events in the H H → γγW W ∗ channel are selected in the final state γγ`ν j j , covering 34.3% of

the total H H → γγW W ∗ signal. The search looks for both SM non-resonant and resonant H H

production in the mass range between 260 and 500 GeV [228,498]. The signal is extracted by means

of a maximum-likelihood fit to the distribution in mass of the photon pair, mγγ. In the non-resonant

analysis and in the search for resonances of mass 400 GeV and higher, the pT of the di-photon

system, pγγ

T , is required to exceed 100 GeV, in order to reduce backgrounds. Within a mass window

centred on mH = 125.09 GeV and of size equal to 2 times the experimental resolution on mγγ, 7

events are observed in the data, in agreement with an expected background of 6.1±2.3 events. In the

search for resonances of mass below 400 GeV, where no pγγ

T > 100 GeV cut is applied, 33 events are

observed in the data, while 24±5.0 events are expected from background processes. The expected

signal contribution from SM non-resonant H H production amounts to 3.8 ·10−2 (4.6 ·10−2) in case

the requirement on pγγ

T is applied (not applied). The distributions in mγγ, obtained when no cut on

pγγ

T is applied and with the pγγ

T > 100 GeV cut applied, are shown in Figure 5.19. The event yields, as

well as the distributions in mγγ, observed in the data agree with the SM expectation in both cases.

As no evidence for a H H signal is observed, the analysis proceeds by setting an upper limit on the

H H signal cross section. The observed (expected) limit on the cross section for non-resonant H H

production with SM kinematics amounts to 230 (160) times the SM prediction. In the corresponding

Run 1 analysis, 4 events were observed in the signal mass window of the mγγ distribution, compared

to 1.65±0.47 events expected from background processes and 7.2·10−3 signal events expected from

SM non-resonant H H production, and an observed (expected) upper limit of 1150 (680) times the

SM cross section was set.

Figure 5.19: Distribution in mγγ observed in the ATLAS analysis of H H → γγW W ∗, compared to the
expected contribution from SM single Higgs boson plus SM non-resonant H H production (dash-
dotted line) and other backgrounds (dashed line), when no cut on the pT of the di-photon system
is applied (left) and with a cut of pγγ

T > 100 GeV applied (right) [228].

5.5.2 H H →W W ∗W W ∗

The ATLAS analysis of H H → W W ∗W W ∗ [464] selects events in a combination of final states with

2, 3, and 4 leptons. In the di-lepton channel, the contamination from background processes is

reduced by requiring the two leptons to be of the same charge. The combination of the 2, 3, and 4

lepton final states covers 10.7% of the total H H →W W ∗W W ∗ signal. Similar to the H H → γγW W ∗

analysis, the analysis of the H H →W W ∗W W ∗ final states exploits both SM non-resonant and BSM

resonant production in the mass range 260 to 500 GeV. In addition, the presence of heavy scalars S of

mass 135 < mS < 165 GeV originating from the decay of resonances X of mass 280 < mX < 340 GeV,
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X → SS is probed. An automatic optimisation of event selection criteria ("rectangular cuts"), im-

plemented in the package TMVA [371], is employed in order to enhance the ratio of signal over

background events, before the signal gets extracted by means of a maximum likelihood fit to the

event yields in nine event categories. Events selected in the di-lepton channel are analysed in three

event categories, containing events with either two electrons (ee), two muons (µµ), or one elec-

tron plus one muon (eµ), respectively. In the 3 lepton channel, events containing zero and events

containing one or more pairs of leptons of the same flavour and opposite charge are analysed sep-

arately. Events selected in the 4 lepton channel are analysed in four event categories, based on the

multiplicity of same flavour and opposite charge lepton pairs and the mass of the 4 lepton system.

The event yields observed in the data is compared to the SM expectation for the H H signal and

for background processes in Figure 5.20. The data is in agreement with the SM expectation. The

analysis proceeds by setting upper limits on the H H signal cross section. The combined fit of the

nine event categories yields an observed (expected) limit on the cross section for non-resonant H H

production with SM kinematics of 160 (230) times the SM prediction.

Figure 5.20: Event yields observed in the ATLAS analysis of H H → W W ∗W W ∗ [464], compared to
the expected contribution of background processes and to a non-resonant H H signal of SM kine-
matics and production rate amounting to 20 times the SM value. The symbol NSFOS denotes the
number of lepton pairs of same-flavour and opposite-charge, while the low and high m4` categories
refer to events in which the mass of the 4 lepton system is below and above 180 GeV, respectively.

5.5.3 H H →τ+τ−τ+τ−

The CMS search for H H → τ+τ−τ+τ− [499] is performed in the final state with 2 leptons and 2

τh, corresponding to 31.2% of the total H H → τ+τ−τ+τ− signal. The analysis is performed in

six event categories, based on the flavour of the leptons (ee, µµ, eµ) and on their charge (same-

sign, opposite-sign). Events containing pairs of leptons of the same flavour, opposite charge, and

mass within the range 70 to 110 GeV are rejected, in order to remove background arising from

Z /γ∗ → `+`− Drell-Yan production. The multi-jet background is estimated from data, while the

contribution of other backgrounds is modelled using the MC simulation. The signal extraction is

based on a maximum-likelihood fit to the distribution in mass of the 2 leptons plus 2 τh system

in case of the three event categories containing opposite-sign lepton pairs. In the event categories

with same-sign lepton pairs, the small number of background events precludes the usage of a shape

analysis and the event yields are instead used as input to the maximum-likelihood fit ("cut and
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count" analysis). The analysis is still blinded. Based on the expected signal acceptance and effi-

ciency and on the expected background contamination, the analysis is expected to be sensitive to

resonant H H signals produced with a cross section of order 10 pb.

5.5.4 Potential improvements

A common feature of the three channels H H → γγW W ∗, W W ∗W W ∗, and τ+τ−τ+τ− is that their

sensitivity is limited by small signal yields and sizeable statistical uncertainties with the present

data. Significant gains in analysis sensitivity have been achieved in the "established" channels

H H → bb̄bb̄, bb̄γγ, and bb̄τ+τ− during LHC Runs 1 and 2, thanks to improvements in the analysis

methods (up to a factor 2-3 improvement in sensitivity for the same luminosity). Significant poten-

tial exists to likewise improve the sensitivity of the "new" channels H H → γγW W ∗, W W ∗W W ∗,

and τ+τ−τ+τ−.

In the H H → γγW W ∗ channel, potential improvements include the use of multivariate meth-

ods to enhance the separation of the H H signal from backgrounds, the reconstruction of the mass

of the H H system by means of an algorithm similar to the “High Mass Estimator" (HME) algorithm

developed for the analysis of resonant H H production in H H → bb̄W W ∗, described in Ref. [205],

the replacement of the pγγ

T > 100 GeV cut by event categories based on pγγ

T , and the extension of

the analysis to the γγ`ν`ν and γγ j j j j final states.

Potential improvements to the sensitivity of the H H →W W ∗W W ∗ channel comprise the sub-

stitution of the "rectangular cuts" that are employed for separating the H H signal from backgrounds

by more modern multivariate methods such as BDTs or NNs, and by upgrading the analysis from a

"cut and count" approach to a shape analysis, based on the output of a BDT or NN. Besides improv-

ing the separation of the H H signal from the background, we expect that a shape analysis based on

the output of the BDT or NN will have the further benefit of providing useful constraints to the sys-

tematic uncertainties, compared to the simple "cut and count" approach. Non-prompt and fake

leptons constitute a sizeable source of background in particular in the final state with 2 leptons of

the same charge, where it amounts to 30-40% of all backgrounds. We expect significant reductions

of this background may be achievable thanks to anticipated improvements in the identification of

leptons with multivariate methods in the future.

Potential improvements to the sensitivity of the H H → τ+τ−τ+τ− channel are expected from

extending the analysis to cover further final states (4 leptons, 3 leptons plus 1 τh, 1 lepton plus 3 τh,

4 τh) and to determine reducible backgrounds other than multi-jet production from data instead of

from the MC simulation. The latter is expected to not only reduce the systematic uncertainties, but

also the statistical uncertainties on the background expectation, as samples of backgrounds with

large cross sections, for example Drell-Yan production, have a higher event statistics already in the

LHC Run 2 data, compared to the event statistics presently available by MC simulation. Moreover,

the current CMS analysis of H H production in the final state with 2 leptons and 2 τh neglects the

signal contribution arising from the decays H H → τ+τ−W W ∗ and W W ∗W W ∗. We expect these

decays to provide a significant contribution to the overall H H signal yield.

A further improvement in the sensitivity of the H H → τ+τ−τ+τ− channel may be achieved by

using an algorithm for reconstructing the mass of the H H system, presented at the workshop. The

algorithm is based on a dynamical likelihood approach [478,479] and represents an extension of the

SVfit algorithm [481, 482] that is used in the CMS H H → bb̄τ+τ− analysis presented in section 5.3.

Measurements of the energies and momenta of the visible τ decay products and of the missing

transverse energy are combined in a probability model for the H H → τ+τ−τ+τ− decay with con-

straints on the mass of each τ+τ− pair to equal mH = 125.09 GeV. Details of the algorithm are given
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in Ref. [504]. The algorithm achieves a resolution on mH H , the mass of the H H system, of 22%

(7%) in simulated H H → τ+τ−τ+τ− signal events in which the Higgs boson pair originates from

the decay of a narrow resonance X of mass mX = 300 (500) GeV and produces a final state with 2

leptons and 2 τh. The quoted resolutions include the effect that the algorithm chooses an incorrect

assignment of the 2 leptons and 2 τh to the first and second H boson in 13% (2%) of simulated signal

events at mX = 300 (500) GeV, which causes the Higgs mass constraint to be applied to the wrong

combinations of leptons and τh, thereby degrading the resolution on mH H . In case the algorithm

could be improved to always choose the correct assignment, the resolution on mH H would im-

prove to 4% (6%) for signal events of mX = 300 (500) GeV. Distributions in the ratio of reconstructed

to true mass of the H H system are shown in Figure 5.21, separately for simulated H H → τ+τ−τ+τ−

signal events in which the correct assignment ("correct pairing") is chosen and events in which the

incorrect assignment ("spurious pairing") is chosen by the algorithm.
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Figure 5.21: Distributions in the ratio of reconstructed to true mass of the H H system, mH H /mtr ue
H H ,

in simulated H H → τ+τ−τ+τ− signal events of true H H mass 300 GeV (left) and 500 GeV
(right) [504]. The x-axis ranges from 0.2 to 5.

In summary, we expect that the sensitivity of channels without b-jets will increase faster com-

pared to the sensitivity of channels with b-jets as more LHC data becomes available in the future

and more refined and sophisticated analysis techniques get utilised in the new channels. In our

view, it is a worthwhile effort to study the feasibility of these new channels in preparation for the

upcoming HL-LHC data-taking period.

5.6 H H production in the VBF mode

T. J. Burch

At the current LHC centre of mass energy of 13 TeV, the VBF H H production cross section is an

order of magnitude smaller than the gluon-gluon fusion (ggF) process, which is the predominant

mode studied so far in this review (see the detailed discussion in Chapter I and in particular Ta-

ble 1.1). Being initiated by quarks rather than gluons, the signature of the VBF production mode

differs greatly from ggF. Its distinctive topology is characterized by the presence of two separated

quarks in the final state, which are reconstructed as high energetic jets in the forward region of

the detector with large separation across the beam direction. Both the large invariant mass (m j j )

and rapidity separation of the outgoing VBF jets are particularly effective in isolating this peculiar

signature.

The VBF H H production proceeds at tree level through the three Feynman diagrams shown in
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Fig. 5.23. The left, middle, and right diagrams scale with c2V , cV
2 and cV c3, respectively, where c2V

and cV are the coefficients of the H HV V and HV V couplings, normalized to their SM values.

A study of this process at the LHC and future colliders with
p

s = 100 TeV, to explore the sensi-

tivity to higher-dimension operators, is reported in Ref. [455]. Here the emphasis was on the large

mH H domain, where the behaviour of the longitudinal-longitudinal component of the amplitude is

characterized by the destructive interference between the first two diagrams:

A(VLVL → H H) ∼ ŝ

v2 (δc )+O (m2
W /ŝ) (5.15)

where:

δc = c2V − c2
V (5.16)

The quantity δc vanishes in the SM as well as in BSM extensions where the Higgs boson belongs to

an SU(2) doublet, and the growth of the amplitude with energy is suppressed. The study of the high

mH H behaviour is therefore a powerful probe of δc and of the gauge structure of the Higgs sector.

While the constraints on cV are currently derived by searches for single Higgs boson VBF pro-

duction at 1.21+0.22
−0.21 times the value predicted by the SM [117], the other two couplings are far less

constrained. The HHVV vertex is unconstrained from current data, hence searches for VBF H H pro-

duction provide the only direct probe to the associated parameter. Furthermore, enhancements of

this coupling with respect to its SM prediction may yield to a significant increase of the VBF H H

cross section, by as much as two orders of magnitude at twice the value predicted by the SM, as

shown in Fig. 5.22 [455]. Such an enhancement would be noticeable with the full Run 2 data. Fur-

thermore the VBF H H production probes the Higgs self-coupling as well, resulting in an additional

constraint.

A phenomenological study that exploits the bb̄bb̄ final state is reported in Ref. [455], applying

boosted jet tagging techniques – justified by the high pT of the Higgs bosons in the relevant kine-

matic region – to minimise the dominant background processes. An example of the impact of δc 6= 0

is shown in Fig. 10.13 of Sec. 10.3, for VBF H H production at future colliders. In that figure the di-

Higgs mass spectrum, the rapidity separation and invariant mass of the VBF jets, in the SM and in

a cV = 1, c2V = 0.8 scenario are compared to the expected backgrounds (in the parton-level sim-

ulation). These observables have long been used in searches for single Higgs boson through VBF

production at the LHC. After the detector simulation of fully showered events, Ref. [455] carried out

a detailed study of the shape of the mass distribution, reporting that at the LHC with an integrated

luminosity of 300fb−1 the c2V coupling can be measured with about 40% precision at the 68% CL.

This results in a strong motivation to extend the current searches to the H H VBF production mode

during Run 2 and 3, although this analysis of the bb̄bb̄ final state shows clearly that the VBF channel

is less sensitive than ggF to the Higgs boson self-coupling4.

In the CMS H H → bb̄γγ search [442], a VBF signal model has been considered for the first time

experimentally. However, signal events in this analysis were chosen via a BDT trained on ggF H H

events, thereby limiting the potential for sensitivity improvement. The efficiency times acceptance

for SM-like VBF H H events using this model is 13%, with 10% in the high mass region (greater than

350 GeV) and 3% in the low mass region (below 350 GeV). Ultimately, considering this VBF H H

signal in the analysis designed to target ggF H H → bb̄γγ improves the sensitivity by 1.3% (while

the VBF H H cross section represents 5% of the total one). Figure 5.25 illustrates the small impact

of including a VBF signal on the overall sensitivity of the search for ggF H H → bb̄γγ in CMS. A

4The sensitivity to κλ arises from the threshold region mH H ∼ 2mH where multi-jet background buries the signal
even for large modifications of the Higgs couplings with respect to their SM values.



152 Chapter 5. Overview of HH searches at the LHC

LHC s !14 TeV

"1.0 "0.5 0.0 0.5 1.0

0.5

1

5

10

50

100

!

"
#p
p
$
h
h
%&
"
#p
p
$
h
h
% S
M

Figure 5.22: VBF H H production cross section as a function of the coupling deviation from the SM
value for the H HV V (H H H) vertex in blue (red). The solid line is after acceptance cuts, the dashed
line is after analysis cuts applied on the rapidity difference and m j j [455].
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Figure 5.23: Leading order Feynman diagrams for Higgs pair production via vector boson fusion.
The HHVV vertex (left), corresponding to the c2V coupling, is not probed by single Higgs boson
processes. The HVV vertex (center) corresponds to the cV coupling, is constrained by single Higgs
boson measurements. The HHH vertex (right) involves the Higgs boson self-coupling.
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Figure 5.24: Distribution of the mH H , the difference in rapidity |∆y j j | (left) and invariant mass m j j

(right) of the VBF jets associated to a H H pair in a phenomenological study [455] at 14 TeV. Dis-
tributions are also shown for a c2V value at 0.8 times the SM prediction. The background includes
multi-jet events, t t̄ and Higgs boson production via ggF where additional radiation can mimic VBF
jets.
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Figure 5.25: Higgs candidate mγγ (left) and m j j (middle) distributions, as well as the BDT clas-

sifier score (right) in the CMS H H → bb̄γγ analysis after kinematic selection criteria are applied.
The contribution of the VBF H H process is shown in pink, normalized to 105 times its cross sec-
tion [442].

dedicated category with event selections designed to specifically target VBF production will lead to

a much better improvement of the sensitivity when combined with an analysis targeting ggF H H

production, due to the aforementioned signal purity obtainable in such a category. In addition to

taking advantage of VBF specific m j j and ∆η distributions, different mH H regimes can be used in

order to isolate VBF production from the dominant ggF production mode: at large values of mH H ,

VBF production is enhanced relative to the ggF production of H H pairs [451]. Given the difficulty

of measuring SM H H production due to its small cross section, any such gain is invaluable in im-

proving an analysis. Furthermore, should H H production be observed due to a BSM enhancement,

such a model would be vital in understanding the source and nature of that said enhancement.

The very first experimental search targeting VBF H H production has been presented by ATLAS

in the bb̄bb̄ final state [409], using the data collected during 2016–2018 and corresponding to an

integrated luminosity of 126fb−1. The analysis strategy follows very closely the analogous search in

the same final state for the ggF initiated process and described in Sec. 5.1. The main differences

are the use of a multivariate jet energy regression, described in Sec. 4.3, to correct the energy of b-

jets which improves by about 10% the jet energy resolution; and of course of VBF specific selection

requirements. The event selection requires at least four central (|η| < 2) b-tagged jets with pT >
40 GeV and at least two forward (|η| > 2) jets with pT > 30 GeV to ensure compatibility with the

VBF H H production mode. The two forward jets with highest pT have to satisfy requirements on

both their angular separation, |∆η| > 5, and their invariant mass, m j j > 1 TeV. In addition to the

VBF H H production, also the V H H process, resulting in the H H j j topology has been taken into

account, although it is found to have a negligible contribution after the VBF specific event selection
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requirements.

This search sets 95% CL upper limit on the non-resonant VBF H H production cross section of

1600 fb, where the expected value is 1000 fb. The results are also interpreted as a function of c2V ,

while cV and κλ are set to their SM values. The observed (expected) excluded range is c2V < -1.00

and c2V > 2.67 (c2V <-1.07 and c2V > 2.78), which is not sensitive yet to the SM prediction (c2V = 1).

This search tests large deviations of c2V from their SM predictions, which result in a harder mH H

spectrum and higher momentum for the b-jets from the Higgs boson decay.

Similarly to the searches for resonant ggF Higgs boson pair production, VBF H H production

involving an intermediate resonance may be considered. This kind of search would be comple-

mentary to the ggF searches, as in this case the vector bosons are the ones coupling to the new

resonance, which then decays to a pair of Higgs bosons. However, this production mode is not

particularly well studied (see Ref. [242] for an analysis in the context of a model with warped extra

dimensions), since its very small cross section poses a question on the ability of the LHC to impose

significant constraints through this type of search. Nevertheless, the VBF H H search reported in

Ref. [409] has been interpreted also in the context of resonant production and results are reported

in the resonance mass range of 260–1000 GeV, where two classes of signals have been tested to

perform a rather inclusive search under both the narrow and broad hypotheses for the resonance

width.
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Experimental collaborations typically publish the results of their BSM searches in the context of

particular models. The CLs method [505] is used to derive exclusion limits on some model param-

eter space, by comparing the compatibility of the data to background-only and signal plus back-

ground hypotheses. Then, a test statistics from the likelihood ratio is used to discriminate between

the two hypotheses. Reasonably well motivated, but somehow arbitrary benchmark models are

often used for the signal hypothesis. Examples include generic resonances decaying to H H of spin-

0 [262,487] or spin-2 with particular choices of the natural width [237], as well as the SM H H process

with the production cross section re-scaled by an arbitrary factor. The observed (and expected) up-

per cross section limits in the context of these models are often the final result of the publication,

and the specific values obtained are often published as HEPData [506].

Often the theoretical community devises new models to which existing searches might be sen-

sitive. Given the lengths of time between experimental publications (and the difficulty from exper-

imental collaborations to interpret their data in all available models) theorists might want to assess

the sensitivity of existing published results to their model. If the hypothesised signal is sufficiently

similar to those already presented in benchmark models used by the experiments (in width, result-

ing kinematic, etc.), the results on the benchmarks can be directly applied. On the other hand, if

the properties of the signal differ significantly, the current presentation of results for H H searches

via specific benchmarks leave few options for re-interpretation.

There are several methods to explore to fully exploit the scientific potential of the experimental

results. This section describes some possibilities discussed by the community and their relative

strength. LHC experiments are encouraged to provide more information in their publications to

allow possible re-interpretations of their results within the particle physics community. The impact

of the available experimental results would consequently increase by allowing a more rapid testing

of exciting new theoretical predictions.

6.1 Examples from other BSM searches

The difficulty of the re-interpretation of the Higgs pair production searches lies in their sophisti-

cated profile likelihood fits. As these analyses fit a full distribution (mH H or an MVA score, typically),

it is difficult to provide an upper limit on the cross section without an assumption on the shape of

the signal distributions.

155
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A possible alternative is to use a simpler approach, such as event counting after the application

of analysis cut, “cut and count”, that is less dependent from the signal shape, since this information

is not directly used in the likelihood fit. Instead, a simple implementation of the analysis selections,

along with parameterised efficiency provided by the experimental collaborations, is sufficient to

calculate a predicted signal yield, which can be compared to the model-independent cross sec-

tion upper limits. The physics groups of both ATLAS and CMS experiments searching for SUSY

and exotic new particles, provide information that is interpretable in this manner for many of their

searches [507, 508]. A number of frameworks to facilitate combination of such results and to allow

for the fast testing of models against different experimental results are available, such as CHECK-

MATE [368] and GAMBIT [509]. In particular, GAMBIT provides a framework for quickly simulat-

ing a provided signal model, testing its yields in a variety of encoded signal regions from a variety of

analyses, and for testing the compatibility of a signal to the data by calculating the combined like-

lihood over these analyses (assuming complete orthogonality between different analyses) by sum-

ming over the various individual log likelihoods. For example, GAMBIT has recently re-interpreted

and combined several ATLAS and CMS SUSY searches to set new constraints on chargino and neu-

tralino production at the LHC, showing a small excess that individual analyses published by the ex-

perimental collaborations were not sensitive to [510]. This result enables the experimental groups

to focus on a potential hint of new physics revealed by the existing data.

While some searches are amenable to simple, re-interpretable “cut and count” approaches,

some sensitivity would be lost by the H H searches if this approach were to be taken. This is be-

cause the shape of the signal distributions provides important information for the discrimination

against background. Adopting this approach for the presentation of di-Higgs results is therefore

disfavoured.

Another commonly used method for generic result presentation is utilised by several ATLAS

and CMS searches for di-jet resonances [511], where the signal is extracted by fitting the di-jet mass

distribution, similarly to H H searches. Results are provided in the context of specific models and,

additionally, experimental efficiencies and upper cross section limits on generic gaussian-shaped

signals of various widths are also provided in HEPData. These allow to map the experimental results

to various classes of models, as most resonant signals will look similar to a Gaussian with some

width which depends on the details of the model. An example from ATLAS’s 13 TeV di-jet resonance

search is shown in Fig.6.1 [512]. This was used to re-interpret the results in the context of stop

production in R-parity violating models [513], allowing for the strongest observed limits on stop

particles at the LHC, as shown by the red lines in Fig. 6.2. This approach is particularly promising

for the presentation of H H results, as many interesting BSM models predict resonant signals whose

shapes are approximately Gaussian. However, for non-resonant signals, where the shapes are not

as easy to parameterise this method would not work. Moreover, MVA techniques would limit the

use of such simple signal parameterisation.

The CMS Collaboration, in the context of SUSY searches, has adopted a new way of share the

results with the HEP community by publishing “simplified” likelihoods [514]1. The covariance ma-

trices for the various elements of the uncertainties on the background model are published along

with the recipes for reconstructing the likelihood. An example is shown in Fig. 6.3, and an example

of the results one can obtain using the simplified likelihood compared to the full likelihood for a

dark matter search are shown in Fig. 6.4. The likelihood can therefore cover arbitrarily complicated

functions and numbers of signal regions. This method is promising for the presentation of di-Higgs

results, as a full description of the mH H distribution and the relationship of the uncertainties among

1See also [515] for important considerations regarding systematic uncertainties.
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Figure 3: Covariance between the total rate of background contributions expected in each of
the search regions.

where µ̂ and ˆ̂q are the values of the parameters µ and q respectively, which maximise the like-
lihood. The values q̂µ are the values of q which maximise the likelihood for a fixed value of µ.
The value of µ̂ is usually referred to as the “best-fit” value.

A common estimate of the uncertainty in µ is to determine the interval in µ such that q(µ)  1
and define the uncertainty as the difference between the end points of that interval and µ̂.
Furthermore, the profiled likelihood ratio is a common test statistic for setting limits and quan-
tifying excesses in BSM searches performed by the CMS collaboration, a full description of
which can be found in Ref. [14]. The uncertainty in µ often provides a good indication of the
sensitivity of a search to a given BSM signal.

Figure 5 shows the value of q(µ) as a function of µ. The values when q(µ) is defined using the
likelihood of Equation 4 are shown and compared to the same definition but assuming no cor-
relations between the background yields by setting Vij = 0 for i 6= j. In this case, the systematic
uncertainty in each region is assumed to be independent of the systematic uncertainty in any
other region. The results substituting LS ! L in Equation 9, namely using the full likelihood
of Equation 1, are also shown. The simplified likelihood shows good agreement with the full
likelihood. For this example, ignoring the correlations results in a discrepancy in the estimate
of µ̂. In addition, the width of the curve ignoring the correlation is larger than the other curves
which will lead to an overestimation of the uncertainty on µ. In general, this agreement will
depend on the relative importance of the off-diagonal terms in the covariance matrix and for
smaller correlations, the agreement can be expected to improve.

Figure 6.3: The covariance of backgrounds in various search regions, which can be used to calculate
a simplified likelihood function [514].

bins can be succinctly encapsulated in the covariance matrix.

6.2 Options for the future

One possibility to improve the re-interpretability of the published results is to simply make available

the statistical objects and the code used to develop the profile likelihood for each specific search.

These fits are usually interpreted in the ROOFIT framework [516]. The full information on the signal

and background shapes and a complete list of systematic uncertainties affecting both is contained

in the so called “workspace” within ROOT files. Although the binary format of these containers

utilised by ROOFIT makes the replacement of the signal model with an arbitrary shape difficult.

PYHF [517] is a ROOT-free implementation of the underlying HISTFACTORY [518] probability

distribution functions that addresses this issue by describing the workspace in human-readable

JSON [519] format.

Another similar and promising avenue is RECAST [520], currently used by the ATLAS Collab-

oration. It provides a container-based archiving system for the full implementation (selection and

statistical analysis) of a search. For an analysis preserved in the RECAST framework, a set of LHE

files describing a specific BSM signal can be provided and the full simulation and statistical inter-

pretation can be run automatically, producing a final CLs value for a particular BSM signal. This

is very useful for collaborations to quickly re-spin analyses using their full simulation and analyses

methods. Figure 6.5 shows an example from the ATLAS SUSY re-interpretation effort in RPV scenar-

ios [513], where the blue lines were obtained entirely using the RECAST framework implementation

of an existing Run 2 search for gluinos in final states with many b-jets [521].

The use of RECAST is currently limited internally to the collaborations. Any additional inter-

pretation of the published results would need to go through the normal approval and publication

process within the ATLAS collaboration. Some effort is being invested to streamline these processes

for simple interpretations, but this remains a difficult prospect. So while RECAST would provide

the most accurate re-interpretations possible (by using the full, official detector simulations and no
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Figure 12: Expected and observed µ95%
up as a function of mMED, assuming a DM mass of 10 GeV,

for a (a) scalar or (b) pseudoscalar mediator for the Monojet search. Coupling values of gq =
0.25 and gDM = 1 are assumed for the simplified model for DM production. The results are
compared between the limits calculated using the full and the simplified likelihoods.
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Figure 13: Expected and observed exclusion contours defined as the boundary of the region
where µ95%

up < 1 in the mMED–mDM plane for a (a) vector or (b) axial vector mediator for the
Monojet search. Coupling values of gSM = 0.25 and gDM = 1 are assumed for the simplified
model for DM production. The results are compared between the limits calculated using the
full and the simplified likelihoods. The colour scale shows the ratio of µ95%

up calculated using
the simplified likelihood to the value using the full likelihood.

Figure 6.4: The expected and observed limits, for an example dark matter model, where the fit uses
either the full, experimental likelihood or the simplified likelihood [514].
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compromises in the statistical analysis), the suitability as a tool for commonplace re-interpretation

is limited, at least in its current form.

6.3 Machine-learning vs interpretability

A potential challenge, especially as analyses techniques become more sophisticated, is how to re-

interpret results obtained with multi-variate analyses such as BDTs or NNs. While truth-level distri-

butions produced without full detector simulation (or, smeared distributions produced via a partial

simulation such as DELPHES [522]) may be sufficient to re-produce the characteristics of simple

analyses, the more complicated MVA approach may encode aspects of the detector that are more

difficult to reproduce.

While this is a valid concern, the level of agreement between the truth-level and fully simulated

samples can be assessed directly by the experimental collaborations. In some cases, such as the

ATLAS SUSY stop 1-lepton search [523], this has already been done, and the agreement between

the fully-simulated and truth-level inputs, run through the same Boosted Decision Tree, agree to

within 10%. As the accuracy of most re-interpretation approaches is similar, this shows that at least

in some cases, using a BDT does not necessarily preclude re-interpretation. This same analysis in

fact published the XML configuration files used by the TMVA [371] implementation of the BDT,

allowing for others to easily re-run exactly the same selection. Similar possibilities exist for NNs

from a KERAS model [524], for example, where the model can be saved in JSON or YAML [525]

formats. Publishing the full configuration of the MVA is an approach that other analyses could

follow to ensure the results can continue to live beyond the initial publication.

6.4 Considerations for non-resonant signatures and EFT

Re-interpretation is important for both resonant and non-resonant H H signatures. The discussion

so far has focused on resonant signatures, but most applies transparently to the non-resonant sig-

natures as well. As long as results are described as cross section upper limits on known models,

or likelihoods are published where arbitrary signals can be included directly, limits on new signal

types can be calculated or extracted. Of course, depending on the particular model to be tested the

assumptions of the analysis may not be optimal, but the sensitivity of a given analysis to a particular

non-resonant signal can always be derived.

There are several other approaches to consider as well, especially in the context of EFT, dis-

cussed in Chapter 2, which can generate a large variety of potential signal dynamics. As described

in Sec. 2.4, CMS and the authors of [180] have proposed the use of shape benchmarks to form a

basis of possible signals for an HEFT analysis. CMS interprets the results of the non resonant H H

searches for each of these shape benchmark hypotheses, and theorists can study their own par-

ticular model and identify the shape benchmark which best describes the signal, allowing a quick

and simple extraction of the upper limit on the cross section. This approach has the advantage of

making the cross section limit setting trivial in the case the signal under test is sufficiently similar

to a benchmark. On the contrary, it cannot be used for a particularly unique signal which is not

included by any of the benchmarks.

Experiments provide upper limits to the H H cross section production for different benchmarks.

Anyone who has interest to explore a particular portion of the EFT phase space can use those bench-

marks to obtain an estimate of how strongly this portion is constrained by H H data. A map of the

EFT phase space to the specific shape benchmarks can be derived with a dedicated tool available at
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Figure 6.6: Mapping of benchmarks into κλ × κt phase space (top) obtained using recast tool
http://rosetta.hepforge.org/ [173]; benchmark mapping and excluded region of the EFT pa-
rameter phase space obtained using CMS combined limits on the benchmarks with a data sample
of 35.9fb−1 collected at

p
s = 13TeV [69] (bottom-left); upper limits obtained using benchmark map-

ping compared to the upper limit obtained using directly EFT shapes if the recast approach from
Ref. [173] based on 3fb−1 of CMS data collected at

p
s = 13TeV (bottom-right);

http://rosetta.hepforge.org/ [173]. This map can be then used to estimate the upper limits

on each combination of EFT parameters

An example of this procedure is shown in Fig. 6.6, where the map between κt , κλ and the shape

benchmarks is provided on the top. The exclusion limits derived by the CMS collaboration will be

discussed in Sec. 7.2 and in Fig. 7.6 the upper limit for each benchmark by combining different

final states is shown. Benchmark limits are then reported on the EFT map and compared to theory

predictions in bottom-left of Fig. 6.6. The jump in limits at κt ≈ 2 and κλ ≈ 0 is the typical feature

of the discrete benchmark approach. When the benchmark changes between two neighbouring

points there is a discontinuity in the limit. If this discontinuity happens in the vicinity of the 95%
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CL exclusion boundary, it propagates to the exclusion limits. Nevertheless it is a rare effect and the

benchmark approach allows to have a stable estimate the excluded regions on EFT parameters.

We also show in Fig. 6.6 bottom-right, the direct comparison of limits obtained with the shape

benchmarks and those directly derived from an EFT analysis. The limits were obtained by a simple

counting experiment based on a recast of public CMS results [173]. The observed difference was

rather small.

If an excess is present in the data related to a non-resonant production it is possible to spot it in

one of the benchmarks. For example just looking at the upper limits on the SM-like production may

hide an excess at very low or very high mH H values incompatible with the SM. A detailed analysis

could be then be performed on different EFT points that belong to a given cluster using their real

mH H shapes [111].

The Simplified Template Cross Section Method (STXS) described in Sec. 7.6 takes a similar ap-

proach for single Higgs measurements by defining simple fiducial regions for cross section mea-

surements of Higgs properties and kinematics. As single Higgs boson production has been convinc-

ingly observed in many channels and phase space regions, these are cross section measurements

and not just upper limits. Many of these regions, for example those for t t̄ H production with high

pT Higgs bosons, are potentially sensitive to deviations from the SM values of the self-coupling pa-

rameter. Generically, EFTs can cause simultaneous changes in several of these fiducial regions, but

because the results are presented as easily interpretable measured cross sections, it is possible to

determine the compatibility of a particular EFT model with the data. This can play an important

role for understanding which EFT model should be explored by the experimental collaborations, as

obviously excluded phase space points can be ruled out before expensive simulation is performed.

6.5 Conclusions and recommendations

We have reviewed several ways of enabling di-Higgs searches published by the experimental collab-

orations to be re-interpreted after their publication within the HEP community. With the timescale

between publications potentially increasing as the LHC datasets grow, the ability to re-interpret

existing searches will be critical to allow the LHC data to be used to their full potential in a timely

manner in the coming years. Several different options are possible, but experimental collaborations

are encouraged to consider the following:

(i) if possible, provide the full likelihood developed by the analyses, preferably in an easy to mod-

ify format such as the PYHF JSON;

(ii) if the first item is not possible, consider providing covariance matrices which allow for the

reproduction of the likelihoods used by the searches to some degree of accuracy. This requires

potentially more work from the analysis teams, with smaller accuracy for re-interpretations,

so it is less preferred than the first option;

(iii) where possible, provide the full configuration of the machine learning algorithms used by

analyses. Ideally these would be accompanied by a detailed comparison between fully simu-

lated samples and truth-level samples, so that re-interpretations can assess the applicability

of using the MVA without the full detector simulation.

By following these practices, the impact of the searches for BSM signals published by the LHC exper-

iments will increase beyond their initial publications, and the results will be fully exploited within

the HEP community for years to come.
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LHC results

Editors: B. Di Micco, J. Schaarschmidt

7.1 H H results and combination: status and perspectives

The ATLAS and CMS collaborations have searched for Higgs boson pair production at 8 and 13 TeV,

as reviewed in detail in Chapter 5. These searches have tested both resonant and non-resonant

H H production for new physics contributions. In particular for the non-resonant case, results have

been provided either by assuming the SM prediction for the H H kinematic and that only the total

cross section is affected by BSM contributions, or by assuming BSM effects would impact only the

Higgs boson self-coupling while all the other couplings are unaffected and equal to their SM values.

Although observing non-resonant H H production at the level predicted by the SM is likely not

possible until the end of the HL-LHC data taking, it nevertheless remains extremely important to

probe this process with current dataset to constrain BSM models allowing for large increase of the

H H production cross section.

The H H decay final states that have been studied are described in detail in the previous chap-

ters. Here all results and their combination are summarised and discussed.

The combination is performed by building a single likelihood function using all signal and back-

ground normalisation regions, correlating properly theoretical and experimental systematic uncer-

tainties and ensure consistency in the definition of the parameters of interest, for resonant searches,

sometime different mass values are probed by different channels, therefore an interpolation proce-

dure needs to be applied in order to properly test each mass point.

7.2 Non-resonant production mode

7.2.1 SM-like production

ATLAS has searched for the non-resonant production in the H H → bb̄γγ, H H → bb̄bb̄, H H →
bb̄τ+τ−, H H → bb̄W W ∗, H H → W W ∗γγ and H H → W W ∗W W ∗ final states. For the H H →
bb̄W W ∗ final state, only the single lepton channel has been included in the combination. CMS has

instead combined searches in the H H → bb̄γγ, H H → bb̄bb̄, H H → bb̄τ+τ− and H H → bb̄V V ∗

channels, using only the di-lepton channel for H H → bb̄V V ∗. The 95% CL expected and observed

upper limits on the signal strength µ=σH H /σSM
H H are reported in Table 7.1 for each individual final

163
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state. Their combination has allowed the two experiments to set an observed (expected) upper limit

on H H production at 6.9 (10), 22.2 (13) times the SM, for ATLAS and CMS respectively, using data

collected in 2015 and 2016 at 13 TeV [68, 69].

Search channel Collaboration 95% CL Upper Limit
observed expected

bb̄bb̄
ATLAS 13 21
CMS 75 37

bb̄γγ
ATLAS 20 26
CMS 24 19

bb̄τ+τ− ATLAS 12 15
CMS 32 25

bb̄V V ∗ (`ν`ν)
* ATLAS 40 29

CMS 79 89

bb̄W W ∗ (`νqq)
ATLAS 305 305
CMS – –

W W ∗γγ ATLAS 230 160
CMS – –

W W ∗W W ∗ ATLAS 160 120
CMS – –

Combined
ATLAS 6.9 10
CMS 22 13

Table 7.1: List of H H searches at the LHC based on the p −p data collected by ATLAS and CMS at
13 TeV and corresponding to about 36 fb−1. Observed and expected upper limits on the SM H H
production cross section are normalised to the SM prediction [19]. The ATLAS search for bb̄V V ∗

(`ν`ν) is not included in the combination and uses 139fb−1 of integrated luminosity.

The best final state for the non-resonant H H production is bb̄τ+τ− in ATLAS, and bb̄γγ in CMS.

The expected upper limit on non-resonant SM H H production cross section for ATLAS decreases by

71% with respect to the best single channel (bb̄τ+τ−), and for CMS by 68%, with respect to the best

limit provided by the bb̄γγ channel. This shows that the combination significantly outperforms

single channel performance, as a result of the comparable sensitivity of the H H → bb̄γγ, H H →
bb̄τ+τ− and H H → bb̄bb̄ final states in particular.

The differences between the ATLAS and CMS sensitivities in each channel, are also the result

of different optimisation of the experimental analysis strategies, besides object reconstruction per-

formance. ATLAS employs BDT discriminators for all the analysis categories in the H H → bb̄τ+τ−

search, boosting the sensitivity of this final state with respect to the analogues CMS search. Like-

wise CMS uses a sophisticated MVA categorisation for the bb̄γγ search, while the equivalent ATLAS

search does not. Future improvements in the analysis techniques would lead to a further increase

of the sensitivity, in addition to the larger integrated luminosity that will become available. Besides

bb̄τ+τ− and bb̄γγ, in ATLAS also the bb̄bb̄ is one of the main final state contributing to the com-

bined result, thanks to the good b-tagging performance and improved b-jet triggers (see Sec. 4.2 and

4.6). Both the ATLAS and CMS experiments have used the value of 33.53 fb as the H H production

cross section predicted by the SM, it has been recently updated from Ref. [19]. A more recent eval-

uation recommends a value of 31.05 fb (see Table 1.1), this was used to derive the HL-LHC projec-

tions [30] reported in Chapter 8. For more details on the theoretical prediction, see Chapter 1. The

impact of systematic uncertainties is currently not negligible. ATLAS has evaluated the expected

sensitivity to the SM non-resonant production in the ideal case where no systematic uncertainties

are considered and quotes an improvement of about 13% on the upper limit.
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7.2.2 Higgs self-coupling constraint

As described in Sec. 2.1.3 it is possible to consider special classes of new physics models, that modify

only the Higgs boson self-coupling, λH H H , as κλ =λHHH/λSM
HHH.

Different techniques have been developed to test several κλ values, limiting the number of

events to simulate. The gluon-gluon fusion H H production process depends on the box and trian-

gle amplitudes as described in Sec. 1.1, and the differential pp → H H cross section can be expressed

as a second degree polynomial in κλ,

dσ

dΦ
= A+Bκλ+Cκ2

λ (7.1)

where dΦ represents the infinitesimal phase space volume. This expression is valid at all order

in QCD, higher order QCD corrections will affect, in fact, the values of the A,B ,C coefficients but

not the functional dependence from κλ.

In a first approach, this feature can be used to simulate H H events for any value of κλ using

only three different hypotheses for κλ by solving the following system of equations:

(
dσ

dΦ

)
1

= A+Bκλ1
+Cκ2

λ1
(7.2)(

dσ

dΦ

)
2

= A+Bκλ2
+Cκ2

λ2
(7.3)(

dσ

dΦ

)
3

= A+Bκλ3
+Cκ2

λ3
(7.4)

and computing the dependence of the coefficient A,B ,C from the differential cross section in a

given phase space. In practice this is achieved with a linear combination of the three reference hy-

potheses with coefficients obtained by the inversion of the 3×3 coefficient matrix obtained from

the equation above. A natural choice for two κλ values of the reference samples is κλ = 0,1, cor-

responding to the box-only and the SM cases. In order to optimise the signal generation, the third

value can be chosen close to the expected sensitivity, which corresponds to κλ = 10,20 depending

on the individual final state.

The three samples have to be properly normalised to the best cross section prediction, which

can be also parameterised as a second degree polynomial with coefficients a,b,c. Figure 7.1 shows

the comparison of several cross section predictions: LO; NNLO+NNLL in the mt →∞ approxima-

tion rescaled with the NNLO+NNLL SM cross section obtained including finite mt NLO contribu-

tion and mt → ∞ NNLO corrections; finite mt NLO for all κλ values rescaled with the NNLO SM

cross section obtained with the FTApprox method (partial mt finite).

The corresponding second degree polynomial parameters are shown in Table 7.2. The ratio

of the parameters to their LO computation is also shown and it is almost equal for all parameters

for the prediction shown in the last row, that is actually used by the LHC experiments, but shows

differences up to 15% with the recent finite mt NLO computation, second and third row of the table.
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Figure 7.1: Left: pp → H H production cross section as a function ofκλ. Right: ratio of the pp → H H
to its SM expectation, obtained for κλ = 1. Different calculations, as used by the LHC experiments
are shown.

computation A [fb] A/A(LO) B [fb] B/B(LO) C [fb] C/C(LO)
LO mt fin 35.0 -23.0 4.73
NLO mt fin 62.6 1.79 -44.4 1.93 9.64 2.04
NLO mt fin × NNLO SM FTApprox 70.0 2.00 -49.6 2.16 10.8 2.28
NNLO + NNLL mt →∞×

NNLO+NLL SM (partial mt fin) 71.3 2.04 -47.7 2.08 9.93 2.10

Table 7.2: Second order polynomial parameters (A +B ·κλ+C ·κ2
λ) for different computations as

used by the LHC experiments and new recommendations. The column X/X(LO) shows the ratio of
the parameter with respect to their LO prediction.
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A second approach [111]is derived from the clustering technique, as described in Sec. 2.4, and

requires the production of a large number of samples at the LO at generator level (LHE files). Then,

the following ratio is built:

RH H ≡ σH H

σSM
H H

(7.5)

where the A, B, C coefficients are extracted in slices of mH H and cosθ∗H H once for all. These

weights can then be used to reweight H H events for any value of κλ. The corresponding cross

section value is then obtained by rescaling the best SM prediction:

σH H =σbest precision
H H ·RH H , (7.6)

While the first method properly takes into account the best predictions available up to date and

is well suited to test severalκλ values, it is rather complex to extend to a large number of EFT param-

eters. The second method takes advantage that the relative coefficients are rather independent of

the QCD order, at which the calculations are performed, as already observed in the first method. It

is less precise but one can account once for all in 5D EFT space the 15 parameters that are necessary

to describe it. In the following ATLAS uses the first method while CMS the second.

Any modification to the κλ value would affect both the H H production cross section and decay

kinematics. These effects are fully simulated for each κλ value considered in the scan performed

by the ATLAS and CMS collaborations. Modifications to the Higgs boson decay branching fractions

through one loop electroweak corrections (see Sec. 2.3.2) are not considered in the analyses of the

two collaborations, although they can modify the results up to 10%. Figure 7.2 shows the upper

limit on σ(pp → H H) for a given value of κλ published by the ATLAS and CMS collaborations.
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Figure 7.2: Expected and observed 95% CL upper limits on the H H production cross section as a
function of κλ for ATLAS (left) and CMS (right) [68, 69]. The SM expectation and its uncertainty are
also reported. All other Higgs boson couplings are set to their SM values.

The shape of the upper limit curve follows the signal acceptance, shown in Fig. 7.3, for the

H H → bb̄τ+τ− and H H → bb̄γγ case. In the bb̄bb̄ search also the invariant mass of the four b-jets,

which is used to extract the signal, is affected by κλ, while the BDT score and the mγγ distributions

used to extract the signal in the H H → bb̄τ+τ− and H H → bb̄γγ analysis respectively, do not show a

κλ dependence as strong as in the bb̄bb̄ final state. The dependence of the signal acceptance from

κλ is shown in Fig. 7.3. The maximum of the acceptance is obtained for κλ ∼ 2, where the cross

section is minimum as shown in Fig. 7.2. This κλ value corresponds to the maximum destructive

interference between the box and the triangle diagrams, resulting in a harder mH H spectrum (see
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Fig. 1.13 and Fig. 2.3) that increases the signal acceptance. For |κλ| > 10 the triangle diagram be-

comes dominant and the upper limit becomes symmetric in κλ. The ATLAS and CMS combined

upper limits on the H H cross section as function of κλ are shown in Fig. 7.4. The combination of

the ATLAS and CMS results is also shown. It has been derived from the published ATLAS and CMS

expected and observed upper limits, assuming that the likelihoods have gaussian shape and that,

for each of the two experiments, the observed and expected likelihoods differ only by a shift on the

mean value, while they have the same width. The combination of ATLAS and CMS results has been

performed without including correlation of systematic errors between the two experiments. Due to

the 2σ excess in CMS results, the combined observed result is slightly worse than the ATLAS one.

The corresponding intervals where the κλ is observed (expected) to be constrained at 95% CL

are listed in Table 7.3 for the main channels.

7.2.3 More general EFT scans

As discussed in Chapter 2, BSM contributions could be constrained in a model independent ap-

proach using the EFT formalism. In the HEFT model (Sec. 2.1.3) five anomalous Higgs boson cou-
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Final state collaboration allowed κλ interval at 95% CL
observed expected

bb̄bb̄
ATLAS -11 – 20 -12 – 19
CMS -23 – 30 -15 – 23

bb̄τ+τ− ATLAS -7.3 – 16 -8.8 – 17
CMS -18 – 26 -14 – 22

bb̄γγ
ATLAS -8.1 –13 -8.2 – 13
CMS -11 – 17 -8.0 – 14

Combined
ATLAS -5.0 – 12 -5.8 – 12
CMS -12 – 19 -7.1 – 14

Our combination Both experiments -6.8 – 14 -4.6 – 11

Table 7.3: The observed and expected 95% CL intervals on κλ for the combination and the indivi-
dual final states analysed for non-resonant H H production at 13 TeV with about 36 fb−1. All other
Higgs boson couplings are set to their SM values [68, 69]. The bb̄bb̄ CMS values are obtained by
extrapolating the published CMS values outside the published range [-20,20].

plings (Eq. 2.19) relevant for H H production are identified: chhh ≡ κλ, ct ≡ κt and three additional

interaction vertexes ct t , cg g hh and cg g h .

When imposing no new interactions in the model: ct t = cg g hh = cg g h = 0, the pp → H H cross

section depends only from κt and κλ through the diagrams in Fig. 1.1 (a). The BSM amplitude of

the process can then be written as:

A = κ2
t A1 +κtκλA2

where A1 and A2 are given by the SM top-box and triangle diagrams. The cross section is propor-

tional to |A |2 therefore the following expression holds:

σpp→H H (κt ,κλ) ∝
(
κ4

t |A1|2 +2κ3
tκλℜA1A

∗
2 +κ2

tκ
2
λ|A2|2

)
(7.7)

where with the overline we indicate the average of the quantity over the phase space of the process,

factorising κ4
t we obtain

σpp→H H (κt ,κλ) ∝ κ4
t

|A1|2 +2

(
κλ
κt

)
ℜA1A

∗
2 +

(
κλ
κt

)2

|A2|2
 (7.8)

From this expression it is clear that it is impossible to extract κλ constraints from H H production

without assumptions on κt , this is more evident in the representation in Fig. 7.5. The κt and κλ pa-

rameters can be constrained also using single Higgs measurements as described in Sec. 7.6, these

measurements impose a different correlation pattern between κt and κλ, therefore a future com-

bination of single H and H H measurements is expected to provide a more model independent

determination of κλ.

A five dimensional scan of the HEFT couplings is computationally excessive, therefore a clus-

tering strategy has been developed to group together possible combinations of coupling values that

present similar kinematic properties as discussed in detail in Sec. 2.4. Twelve clusters have been

identified, in addition to the SM (κλ = 1) and the κλ = 0 scenarios. Within each cluster, the repre-

sentative points in the EFT space shown in Table 2.2 are identified as benchmarks. Each benchmark

predicts a different mH H distribution as shown in Fig. 2.12, that affects the signal acceptance and

the final discriminant of the analyses determining different sensitivities for different benchmark

points. The CMS experiment has adopted this approach and provided the observed and expected
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exclusion limits on the H H cross section for the different EFT benchmarks, which are shown in

Fig. 7.6.
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Figure 7.6: The 95% CL upper limits on the non-resonant H H cross section for different EFT bench-
mark topologies (bins 1 to 12). Each benchmark represents a possible modification in both the pre-
dicted rate and kinematic distributions. The last two bins show the 95% CL upper limits for κλ = 1
(SM) and 0. Each of the four final states is shown separately together with their combination [69].

7.3 Resonant H H production mode

In addition to the non-resonant production, searches for resonant H H are performed in the mH H

range from 250 to 3000 GeV, for spin-0 under the narrow width approximation1 and spin-2 reso-

nances (see Sec. 3.3).

1The width of the signal mass distribution is much smaller than the experimental resolution.
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For the resonant hypothesis the ATLAS and CMS collaborations have both analysed the bb̄bb̄,

bb̄W W ∗, bb̄τ+τ− and bb̄γγ channels. ATLAS has also included W W ∗W W ∗ and W W ∗γγ, while

CMS bb̄V V ∗ has investigated the di-lepton final state. No evidence for a signal is observed, and

upper limits at 95% CL have been set on the production cross section for spin-0 resonances and

they are shown in Fig. 7.7. In the same figure limits obtained by the combination of all channels

are also shown. The most sensitive channels for both the ATLAS and CMS collaborations are bb̄bb̄,

bb̄τ+τ− and bb̄γγ. Their sensitivity for the ATLAS and CMS experiments are compared in Fig. 7.8.

The spin-2 model has been tested for several values of the k/M̄pl, namely < 0.5 from CMS and

1.0 and 2.0 from ATLAS, as shown in Fig. 7.9. As k/M̄pl increases, the resonance width becomes

larger and the narrow width approximation, used by the CMS collaboration, is valid only for k/M̄pl <
0.5. The ATLAS analyses take into account the natural width of the resonance in the simulation of

the signal processes.

At higher resonance masses, the bb̄bb̄ channel dominates the sensitivity in both experiments,

thanks to the large branching fraction of H → bb̄, the good signal efficiency and the decreasing

background at high mH H value. Also the boosted bb̄τ+τ− final state, which has been investigated

by CMS, significantly contributes to the combination for resonance masses above 1 TeV. ATLAS has

also investigated bb̄W W ∗ in the single lepton final state [462] in a regime where the H → bb̄ system

is boosted and the W W decay is resolved, but it is not as competitive as the bb̄bb̄ final state at high

mass. CMS additionally has explored the bb̄W W ∗ single lepton channel where both Higgs bosons

are boosted, and demonstrated good sensitivity for resonances below 1.5 TeV in mass [528]. All this

has been possible thanks to the developments of dedicated techniques used to identify boosted

H → bb̄ events, as discussed in Sec. 4.1 and Sec. 4.2.1.
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for k/M̄pl = 1.0 [68]; Bottom right: ATLAS combination and breakdown by final state for k/M̄pl =
2.0 [68].
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7.4 Interpretation in complete models

The ATLAS collaboration has provided interpretations of spin-0 resonance limits in two models,

the hMSSM model (Sec. 3.4.3) and the EWK-singlet model (Sec. 3.1, with a Z2 symmetry). The ex-

clusion limits in the model parameter space are shown in Fig. 7.10 and Fig. 7.11 respectively. The

interpretation is derived in the narrow width approximation, in this sense results are valid only

when the scalar resonance width is much smaller than the detector resolution. This happens when

ΓS/mS < 2% in the bb̄γγ case, 5% in the bb̄τ+τ− case and 10% in the bb̄bb̄ case. Regions where

ΓS/mS > 2% have been removed from Fig. 7.10, while in Fig. 7.11 regions where ΓS/mS >10% were

removed and are indicated with a dashed region, while only the bb̄bb̄ and bb̄τ+τ− channels are

combined when ΓS/mS >2% and only bb̄bb̄ results are shown for ΓS/mS > 5%.
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Figure 7.10: Expected and observed 95% CL exclusion limits in the tanβ-mA parameter space of the
hMSSM model [68].
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LHC experiments and their combination estimated for the Run 2 integrated luminosity (140fb−1)
and the Run 2 and 3 (300fb−1).

7.5 Impact of systematic errors and concluding remarks

The results presented in this chapter, based on 27.5–36.1 fb−1 p−p collision data, are limited by the

size of the available dataset rather than systematic uncertainties. The overall impact of systematic

uncertainties and their leading contributions are shown for the ATLAS analyses in Table 7.42.

Upper limit percentage variation NR Spin-0 Spin-2 k/M Pl = 1 Spin-2 k/M Pl = 2
1 TeV 3 TeV 1 TeV 3 TeV 1 TeV 3 TeV

Simulation statistics 3% 1% - 2% - 1% -
Background modelling 5% 7% 9% 11% 15% 16% 21%
Signal theory 1% - - - 1% - -
Tau 2% - - - - 1% -
Jet - 1% 2% 2% 3% 5% 4%
b-tagging 1% 2% - 3% - 4% -
All 13% 12% 11% 19% 18% 29% 25%

Table 7.4: Percentage variations of the upper limits on the cross section of various signal models due
to systematic uncertainties for the ATLAS analysis [68]3. The variations are calculated by computing
the ratio between the difference of the upper limits obtained including all systematic uncertainties
with the one obtained by removing the systematic uncertainty under study, and the nominal upper
limit including all systematic uncertainties. The variations from the six leading systematic uncer-
tainties and from all systematic uncertainties (“All”) are listed. The row “All” is obtained by removing
all systematic uncertainties. When the fractional change is less than 1%, “-” is shown. “NR” indi-
cates the non-resonant signal model.

Assuming that systematic errors will remain sub-dominant while keeping the current analysis

sensitivity, an expected limit of 5 times the SM prediction is reachable with the analysis of the full

Run 2 dataset by the ATLAS and CMS collaborations.

In the non-resonant analysis the dominant sources of systematic uncertainties are associated to

2The related CMS publications do not provide this information, but we don’t expect large differences in systematic
uncertainties between the ATLAS and CMS searches.

3The table is extracted from the auxiliary material available on the ATLAS webpage https://atlas.web.cern.ch/
Atlas/GROUPS/PHYSICS/PAPERS/HDBS-2018-58/



176 Chapter 7. LHC results

the background estimation methods, especially for the modelling of the multi-jet component in the

bb̄bb̄ and bb̄τ+τ− analyses, for which no reliable simulation is yet available. The data-driven ap-

proaches used extrapolate the multi-jet parameterisation from signal-free control regions in data.

The precision of these data-driven methods is expected to improve with the increasing size of the

available dataset, while the uncertainty associated to the extrapolation technique is an intrinsic

limitation of this approach.

Other sources that contribute to systematic uncertainties are related to objects reconstruction

and identification. Both ATLAS and CMS experiments are working on more precise evaluations

of these object-related uncertainties and improvements on this subject are expected in the future.

Further contributions are the uncertainty on the integrated luminosity and the limited MC statis-

tics. For the latter, future progress in fast simulation techniques and truth level filtering techniques

will allow to generate larger simulated samples and therefore hopefully mitigate these statistical

limitations.

For searches of high mass resonances, where the signal is expected to appear on the tails of

steeply falling invariant mass distribution of the non-resonant background, the analyses are now

strongly limited by the number of events available in the current dataset.

In the future, more final states will be combined. The orthogonality between the various searches

must be carefully ensured, especially when combining similar final states, such as bb̄W W ∗, bb̄Z Z∗

and bb̄τ+τ−. They can all result in a signature with two b-jets, two leptons and missing transverse

energy.

A potential combination of ATLAS and CMS based on the full Run 2 dataset will be consid-

ered, which increases the sensitivity significantly compared to single-experiment results as shown

in Fig. 7.4. The treatment of systematic uncertainties and correlations between ATLAS and CMS

needs to be carefully studied. A useful reference is the ATLAS and CMS Higgs coupling combina-

tion [179] and the procedure for this combination outlined in [529] by the LHC Higgs Combination

Group. Theoretical uncertainties on the signal process should be correlated, likewise simulation-

based background uncertainties may be correlated, while the data-driven background uncertain-

ties should not. A harmonised treatment of the signal process in terms of MC generators, theoretical

uncertainties, as well as the same mass points, will facilitate such a combination.

By combining the ATLAS and CMS data, the expected upper limit on the non-resonant cross sec-

tion should reach the sensitivity of about 3.5 times the SM prediction at the end of Run 2 (140fb−1),

and to 2.4 times the SM at the end of Run 3 (300fb−1). If instead the impact of the systematic uncer-

tainties will not be sub-dominant contributions, the sensitivity at the end of Run 3 would be about

5 times the SM expectation, and it would be completely driven by the systematic uncertainties, as-

suming no improvements on the analysis strategy. Concerning κλ, Fig. 7.12 shows the expected

limit on the pp → H H cross section as a function of κλ using Run 2 and Run 3 extrapolations as-

suming negligible systematic errors. Without important improvements to the analysis strategies,

but assuming it will be possible to reduce the impact of the systematic errors, κλ is expected to be

constrained in the interval −1.2 < κλ < 7.5 at 95% CL at the end of Run 3.

7.6 Constraints onκλ from single Higgs boson measurements

B. Di Micco, S. Manzoni, C. Vernieri

In addition to the direct determination of the Higgs self-coupling through the study of Higgs boson

pair production, an indirect measurement is also possible exploring the NLO EW corrections to

single Higgs measurements, as discussed in detail in Sec. 2.3.2. The first experimental constraint
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Measurement Reference L

t t̄ H (H → bb̄ and multileptons final states) [530, 531] 36.1 . fb−1

H → γγ (including t t̄ H) [446, 471, 532] 79.8fb−1

H → Z Z∗(including t t̄ H) [533, 534] 79.8 fb−1

VH H → bb̄ [402, 535] 79.8 fb−1

H →W W ∗ [536] 36.1 fb−1

H → τ+τ− [537] 36.1 fb−1

Table 7.5: List of the ATLAS measurements of Higgs production and decay modes, combined to
derive a constraint on the value of the Higgs boson self-coupling, κλ. The measurements used in
this analysis are based on data collected at 13 TeV corresponding to an integrated luminosity of up
to 79.8fb−1.

on κλ from single Higgs measurements has been determined by the ATLAS experiment [136], by

fitting data from single Higgs boson analyses taking into account the NLO κλ dependence of the

cross section and the branching fractions of the ggF, VBF, W H , Z H and t t̄ H production modes and

the γγ, W W , Z Z , ττ and bb̄ decay modes, as listed in Table 7.5. Differential information has also

been exploited through the use of the Simplified Template Cross Section categories (described in

Sec. 6.4).

Each analysis separates the measured events into orthogonal kinematic and topological cate-

gories depending on the reconstructed final state. These categories partially account for the kine-

matic dependence and they have been optimised to maximise the sensitivity to their associated

truth-level region. Although the gluon-gluon fusion production mode is subdivided in bins of jet

multiplicity and transverse momentum of the Higgs boson, p H
T , differential corrections are not yet

available4 and therefore the corresponding STXS bins related share the same parameterisation as

for the inclusive ggF production. Nevertheless, such contributions have been evaluated in the

Heavy Top Quark expansion [178], that is valid for p H
T << mt , i.e. p H

T < 150 GeV (see Sec. 2.3.2)

and result to be small. The t t̄ H production mode is considered inclusively in one single bin, as

no differential measurement is available yet. The g g → Z H cross section is not parameterised as a

function of κλ, because the theoretical computation is still missing and it should contribute mostly

in high p H
T regions where the sensitivity to κλ is expected to be small.

The values of the kinematic dependent C1 linear coefficients, Eq.( 2.34), that parameterise the

sensitivity of the measurement to κλ have been derived for each STXS region defined in the mea-

surement. The values obtained are reported in Table 7.6.

The NLO EW K -factors, that includes one loop EWK correction not involving κλ, are com-

puted inclusively for each production mode and not in STXS bins, as in the regions of phase space

where these corrections are most significant (typically for high Higgs boson transverse momen-

tum), the sensitivity to the Higgs boson trilinear coupling is minimal [133]. The selection efficien-

cies have been evaluated as function of κλ and a negligible dependency has been found, thus they

are assumed to be constant. The exception is t t̄ H production mode, which shows a 10% increase

for κλ < −10, but in this interval the reduction of the cross section due to the κλ dependence is

about 80%, therefore largely dominating over the efficiency variation. This assumption will be re-

evaluated in the ggF production mode once a complete computation of the differential NLO EW

corrections will become available.

A likelihood fit is performed to constrain the value of the Higgs boson self-coupling κλ, while

4They would involve higher order calculations including two loop corrections
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STXS region
VBF WH ZH

C i
1 ×100

VBF+V(had)H

VBF-cuts +p j 1
T < 200 GeV, ≤ 2 j 0.63 0.91 1.07

VBF-cuts +p j 1
T < 200 GeV, ≥ 3 j 0.61 0.85 1.04

VH-cuts +p j 1
T < 200 GeV 0.64 0.89 1.10

no VBF/VH-cuts, p j 1
T < 200 GeV 0.65 1.13 1.28

p j 1
T > 200 GeV 0.39 0.23 0.28

qq → H`ν

pV
T < 150 GeV 1.15

150 < pV
T < 250 GeV, 0 j 0.18

150 < pV
T < 250 GeV, ≥ 1 j 0.33

pV
T > 250 GeV 0

qq → H``
pV

T < 150 GeV 1.33

150 < pV
T < 250 GeV, 0 j 0.20

qq → Hνν
150 < pV

T < 250 GeV, ≥ 1 j 0.39

pV
T > 250 GeV 0

Table 7.6: C i
1 coefficients for each region of the STXS scheme for the VBF, WH and ZH production

modes. The definition of the STXS regions can be found in Ref. [136] . In the VBF categories, “VBF-
cuts” [19] indicates selections applied to target the VBF di-jet topology, with requirements on the di-
jet invariant mass (m j j ) and the difference in pseudorapidity between the two jets; the additional

≤ 2 j and ≥ 3 j region separation is performed indirectly by requesting p H j j
T ≶ 25 GeV. “VH-cuts”

select the W, Z → j j decays, requiring an m j j value close to the vector boson mass [19]. The C i
1

coefficients of the pV
T > 250 GeV regions are negligible, O(10−6), and are set to 0.

λκ
5− 0 5 10 15

)
Λ

-2
 ln

 (

0

1

2

3

4

5

6

7

8

9

10
 PreliminaryATLAS

-1 = 13 TeV, 36.1 - 79.8 fbs

 = 125.09 GeVHm

σ1

σ2

Stat. only
Stat. + Exp. Sys.
Stat. + Exp. Sys. + Theory Sig.
Total = Stat. + Exp. Sys. + Theory Sig. and Bkg. 

Figure 7.13: The profile likelihood scan performed as a function of κλ on data [136].
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all other Higgs boson couplings are set to their SM values (κi ,F = κi ,V = 1 in Eq. 2.32 and 2.35).

Thus, for a large variety of BSM scenarios, where new physics modifies only the Higgs boson self-

coupling, the constraints on κλ derived through the combination of single Higgs measurements

can be directly compared to the constraints set by double Higgs production measurements. The

profile likelihood scan performed as a function of κλ is shown in Fig. 7.13. The central value and

uncertainty of the modifier of the trilinear Higgs boson self-coupling is determined to be:

κλ = 4.0+4.3
−4.1 = 4.0+3.7

−3.6(stat.)+1.6
−1.5(exp.)+1.3

−0.9(sig.th.)+0.8
−0.9(bkg.th.) (7.9)

where the total uncertainty is decomposed into components for statistical, experimental and the-

ory uncertainties on signal and background modelling. The 95% CL allowed interval for κλ is

−3.2 < κλ < 11.9 (observed) and −6.2 < κλ < 14.4 (expected). This interval is competitive with the

one obtained from the direct H H searches using an integrated luminosity of 36.1 fb−1, which is

−5.2 < κλ < 12.1 (observed) and −5.8 < κλ < 12.0 (expected). The dominant contributions to the κλ
sensitivity derive from the di-boson decay channels γγ, ZZ, WW and from the ggF and t t̄ H produc-

tion modes. The differential information currently provided by the STXS binning in the VBF, W H

and Z H production modes does not improve the sensitivity to κλ significantly. However, differen-

tial information should help most in the t t̄ H production mode. A dedicated optimisation of the

kinematic binning, including the most sensitive ggF and t t̄ H production modes, still needs to be

fully theoretically and experimentally explored and might improve the sensitivity in the future.

While the sensitivity on κλ derived from single Higgs processes in an exclusive fit is compa-

rable to those from H H direct searches, the constraints become significantly weaker when BSM

deformations to the single Higgs couplings are taken properly into account. Two additional fit con-

figurations with a simultaneous fit to (κλ, κV) or to (κλ, κF) have been considered. These fits target

BSM scenarios where new physics could affect only the Yukawa type terms (κV = 1) of the SM or

only the couplings to vector bosons (κF = 1), in addition to the Higgs boson self-coupling (κλ) [275].

This set of results provides a rough indication of the simultaneous sensitivity to both Higgs boson

self-coupling and single Higgs boson couplings with the data statistics currently available for the

input analyses.

Figure 7.14 shows negative log-likelihood contours on (κλ, κV) and (κλ, κF). The constraining

power of the measurement is reduced by including additional degrees of freedom to the fit. In

particular, the sensitivity to κλ is degraded by 50% (on the expected lower 95% C.L. exclusion limit)

when determining simultaneously κV and κλ.

These observations have been confirmed recently by a preliminary CMS result [538], based on

a part of Run 2 dataset.

Similarly, the sensitivity to κλ from double Higgs measurements completely vanishes if the cou-

pling to the top quark (κt ) is left free to float, due to a κ4
t dependence of the total pp → H H cross

section (see Sec. 7.2 and Fig. 7.5). Therefore a determination of κλ which would take into account

BSM contributions affecting κt , κF or κV would be possible only through a simultaneous analysis

of both single and double Higgs measurements. As the experimental sensitivity increases, the ad-

dition of more differential information, in particular for t t̄ H and ggF, would allow the inclusion of

more relevant EFT operators in the analysis, as κt and cg g (cf. discussion at the end of Sec. 2.3.2).
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Figure 7.14: Negative log-likelihood contours at 68% and 95% CL as function of (κλ, κF) under the
assumption of κV = 1 (left), and as function of (κλ, κV) under the assumption of κF = 1) (right). The
best fit value is indicated by a cross while the SM hypothesis is indicated by a star [136].



Part III

Higgs boson potential at future colliders

181



183

M. E. Peskin, M. Selvaggi

Even after collecting all of its projected integrated luminosity, the bounds that can be obtained

on the Higgs boson self-coupling at the LHC will still be quite loose. These results will be sensitive

to possible large or resonant enhancements of the self-coupling, discussed in Chapter 3. However,

they will not yet be able to establish that the self-coupling is non-zero if its true value is close to that

predicted by the Standard Model. In most scenarios, then, colliders beyond the LHC will be needed

to establish the the size of Higgs self-coupling both qualitatively and quantitatively. The expected

capabilities of such future colliders are the topic of the final part of this document.

In Chapter 8 we present the projections for the HL-LHC, a machine that will collide protons at

a centre of mass energy of 14 TeV and deliver about 3 ab−1. The projections for circular and linear

lepton colliders are then discussed in Chapter 9. Finally, in Chapter 10 the prospects for future high

energy (27 and 100 TeV) hadron colliders are reviewed. As a summary, the capabilities of the various

colliders are compared at the end of this Part.
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Higgs self-coupling at HL-LHC

Editors: N. de Filippis, M. Selvaggi

S. Gori, C. Vernieri

By the end of the LHC Run 3 in 2024, the ATLAS and CMS experiments are each expected to have

collected about 300 fb−1 of integrated luminosity.

A long Shutdown 3 (LS3) is scheduled between 2024 and the middle of 2026, to prepare the

accelerator and the experiments for the High Luminosity phase of the LHC (HL-LHC), when the

instantaneous peak luminosity will reach 7.5×1034 cm−2s−1, corresponding to about 200 inelastic

p −p collisions per beam-crossing on average. The HL-LHC is expected to run at a centre of mass

energy of 14 TeV and with a bunch spacing of 25 ns. The CMS and ATLAS collaborations are ex-

pected to collect an integrated luminosity of about 3000-4000 fb−1 in approximately ten years. The

ATLAS and CMS experiments will undergo major upgrades to maintain the excellent performance

of the event reconstruction, in order to fully profit of the HL-LHC potential, despite the challenging

radiation levels and data taking conditions.

The inner detectors are expected to be completely replaced in both experiments with new all-

silicon, radiation tolerant tracking systems, extending their coverage to |η| < 4.0 [539–541], enabling

pileup jet rejection in the forward region. The existing readout electronics of the calorimeters and

muon spectrometers will be completely replaced due to both the limited radiation tolerance and

the incompatibility with the upgraded trigger systems [542–546].

The large increase of pileup is one of the main experimental challenges for the HL-LHC physics

program. Both ATLAS and CMS are planning for the first time to exploit the time spread of the

interactions to distinguish between collisions occurring very close in space but well separated in

time, with a timing resolution of 30 ps per track. CMS is developing a timing detector sensitive

to minimum ionizing particles (MIPs) between the tracker and the electromagnetic calorimeters,

covering the region of |η| < 3 [547]. ATLAS is pursuing a High-Granularity Timing Detector, based

on low gain avalanche detector technology, covering the pseudorapidity region between 2.4 and

4.0 [548].

The upgraded detectors will be read out at an unprecedented data rate and both the trigger and

the data acquisition systems (DAQ) will undergo a substantial upgrade [427, 549, 550]. Following

the current design, the ATLAS and CMS trigger systems will continue to feature two levels: a first

hardware-based first level (L1) consisting of custom electronic boards and a second software-based

level, running on standard processors. ATLAS proposes a L1 trigger with a maximum rate of 1 MHz

and 10 µs latency, and a hardware-based tracking sub-system as co-processor to achieve further

185
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rejection. The CMS upgraded L1 trigger will allow a maximum rate of 750 kHz, and a latency of

12.5 µs and will include, for the first time, tracking information and high-granularity calorimeter

information. Selected events will be stored permanently at a rate of 7.5/10 kHz (CMS/ATLAS) for

offline processing and analysis.

8.1 Measurement of the Higgs boson self-coupling at HL-LHC

The study of the double Higgs boson production is one of the key goal of the HL-LHC physics pro-

gram. Despite the small production cross section compared to the single Higgs boson production,

more than 105 H H pairs per experiment are expected to be produced by the HL-LHC.

An overview of the main H H production modes at
p

s = 14 TeV and the corresponding theoret-

ical predictions is provided in Chapter 1 and in particular in Table 1.1.

The ATLAS and CMS collaborations have derived their projected sensitivity to the H H produc-

tion at the HL-LHC either through extrapolations from existing Run 2 results or using parametric

simulations of the expected detector performance, assuming an average pileup of 200 collisions per

bunch crossing. Only the production of H H pairs through gluon-gluon fusion is considered, as the

other production mechanisms are more than an order magnitude smaller. Although analyses tar-

geting the VBF production mode will benefit at the HL-LHC from the extended tracker acceptance

and, consequently, the improved ability to identify forward jets from the hard-scattering interac-

tion, which will yield to an increased background rejection in this channel.

To derive the HL-HLC expected sensitivity, several assumptions have been made to model the

systematic uncertainties from theoretical and experimental sources.

Theoretical uncertainties have been assumed to be reduced by a factor of two with respect to

those used in the Run 2 analyses, thanks to the expected developments in both higher-order calcu-

lation as well as in the reduction of PDF uncertainties. Experimental systematic uncertainties are

assumed to scale as
p

L , where L is the integrated luminosity, until a pre-defined lower limit is

reached, depending on the intrinsic detector limitations, according to detailed simulation studies

of the upgraded detector. The common recommendations for the systematic uncertainties for HL-

LHC studies are summarised in Table 8.1 [551]. All the uncertainties related to the limited number

of simulated events are neglected, assuming that large simulation samples will be available. The

uncertainty on the luminosity is set to 1%, which is the goal of ATLAS and CMS to be able to fully

exploit the HL-LHC physics potential 1. Uncertainties are kept at the same value as in the latest

public results available. It is assumed that the degradation due to higher pileup conditions will be

compensated by improvements in the reconstruction algorithms.

8.2 Double Higgs boson production measurements

For the study of the H H production at HL-LHC, the most promising decay channels from the Run

2 searches were exploited by the ATLAS and CMS collaborations [176, 535, 552]: bb̄bb̄, bb̄τ+τ−,

bb̄γγ. In addition CMS has investigated also the potential of bb̄W W ∗ (W W → `ν`′ν′) and bb̄Z Z∗

(Z Z → ```′`′) with `,`′ =e, µ at the HL-LHC. The ATLAS and CMS studies are described in the

following two paragraphs.

1This will demand the design of hardware for luminosity monitoring with performance intrinsically linear with
pileup and radiation hardness.
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Source Uncertainties
Luminosity 1-1.5%

Muon efficiency (ID, iso) 0.1-0.4%
Electron Efficiency (ID, iso) 0.5%

Tau efficiency (ID, trigger, iso) 5% (if dominant 2.5%)
Photon efficiency (ID, trigger, iso) 2%

Jet Energy Scale 1-2.%
Jet Energy Resolution 1-3%

b-jet tagging efficiency 1%
c-jet tagging efficiency 2%

light jet mis-tag rate 5% (at 10% mis-tag rate)

Table 8.1: Summary of the systematic uncertainties used to extrapolate the results at the HL-LHC
by ATLAS and CMS. These are representative values. The dependence for example of pT and η and
the operating points, if applicable, need to be taken into account [551].

ATLAS projections Studies by the ATLAS collaboration were made by extrapolating the recent re-

sults obtained at
p

s = 13 TeV with Run 2 data with approximately 24.3 fb−1 and 36 fb−1 of integrated

luminosity for the bb̄bb̄ and the bb̄τ+τ− analyses respectively. While the challenging data-taking

conditions at HL-LHC could worsen the b-tagging efficiency, the new inner tracker detector as well

as novel reconstruction techniques could provide a sizeable improvement. It was estimated that

the upgrades of the inner tracker [540] would lead to an 8% improvement in b-tagging efficiency.

For the bb̄bb̄ decay channel, the dominant systematic uncertainty is associated to the mod-

elling of the multi-jet background, using control regions in data, which is left unchanged with re-

spect to the published results. The high number of pileup events at the HL-LHC poses challenges

in maintaining high acceptance when triggering on multi-jet final states. The sensitivity has been

studied as a function of the minimum online jet pT requirement, and the minimum jet pT used in

the offline analysis is set by the four-jet trigger threshold. An increase of the jet pT threshold to 75

GeV would degrade the sensitivity by 50% relative to the 40 GeV offline threshold of the correspond-

ing Run 2 result used for this extrapolation [427]. The ATLAS results for the bb̄τ+τ− (µτh ,eτh and

τhτh , based on the Run 2 data, currently set the world’s strongest limit by a single channel. The

Run 2 BDT distributions, used to separate the signal from the background processes, are scaled to

the integrated luminosity of 3000 fb−1, taking into account the change of cross section with the in-

creased centre of mass energy. In the Run 2 analysis one of the dominant systematic uncertainty is

due to the limited statistics of the simulated samples used to estimate background processes and it

is neglected in these extrapolations.

The analysis of the bb̄γγ channel is based on truth level particles convoluted with the detector

resolution, efficiencies and fake rates, as derived from fully simulated samples using the upgraded

ATLAS detector layout and assuming a pileup of 200 collisions per bunch crossing. The event se-

lection makes use of a multivariate analysis with a BDT exploiting the full kinematic information

of the event [535]. The systematic uncertainties follow the prescriptions summarised in Table 8.1.

Their effect is very small since this channel will still be dominated by statistical uncertainties at the

end of the HL-LHC operations.

CMS projections The CMS estimates of the sensitivity to H H production were derived using a

parametric simulation based on the DELPHES [522] software2, which provides a model of the CMS

2The parameterisation is based on the results obtained with a full simulation of the CMS detector and dedicated
reconstruction algorithms.
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detector response in the HL-LHC conditions.

The bb̄γγ is the most sensitive decay channel thanks to the excellent H → γγ invariant mass

resolution and the improved b-tagging performance, as expected from the inclusion of the timing

detector [547]. The inclusion of the track timing information 3 provides an increase in the b-tagging

efficiency of about 4–6% depending on the pseudorapidity, evaluated for the same mis-tag rate. A

multivariate kinematic discriminant is employed to suppress the background contributions, mostly

originated from non-resonant γγ production in association with heavy flavour jets.

For the bb̄τ+τ− decay channel, (µτh ,eτh and τhτh), the separation of the H H signal from the

background processes (mostly t t̄ and Drell-Yan production of τ+τ− pairs) is achieved with a ma-

chine learning approach based on a deep neural network (DNN), using a wide set of kinematic

variables.

Two complementary strategies were explored to identify the bb̄bb̄ signal contribution depend-

ing on the event topology. In the case where the four jets from the bb̄bb̄ decay could all be recon-

structed separately, “resolved" topology, the use of multivariate methods was explored to efficiently

discriminate the H H signal from the overwhelming multi-jet background. Alternatively when the

two Higgs bosons are produced with a high Lorentz boost, they are reconstructed as two large radius

jets (“boosted” topology), as described in Sec. 4.1. While the large majority of SM H H events falls

in the resolved category, boosted topologies help to suppress the multi-jet background and provide

sensitivity to BSM scenarios where the differential H H production cross section is enhanced at high

mH H by the presence of g g H H or t t̄ H H effective contact interactions.

Comparison between ATLAS and CMS Different assumptions and optimisation strategies have

been adopted by the ATLAS and CMS collaborations which have impacted the reported sensitivity

at the HL-LHC. A short summary of the main ones follows:

• ATLAS assumed a better b-tagging performance with respect to CMS (approximately 5% larger

efficiency for the same mis-tag rate);

• A second local minimum appears for the ATLAS likelihood while it is almost absent for CMS,

and it is mostly due to the bb̄γγ contribution, as shown in Fig. 8.1-right. This is a result of

the different optimisation strategies of the two experiments. ATLAS bb̄γγ analysis has been

optimised to maximise the sensitivity to the SM signal and events with low mH H values are

not used, while the CMS analysis accounts for a dedicated category of events with low values

of mH H to gain sensitivity to different hypotheses of the κλ value.

• ATLAS employs a dedicated γγ+HF QCD simulation sample for the bb̄γγ analysis, while CMS

uses an inclusive γγ+jets sample. The limited statistics of the CMS simulated samples in the

signal region reduced the quality of the BDT training and prevented from using the category

with the best expected signal over background ratio.

• the mγγ resolution for the bb̄γγ analysis takes into account the variable ageing of the calorime-

ters with respect to the Run 2 values. The degradation of the CMS mγγ resolution is due to the

expected, slow but steady, ageing of the crystals in the barrel of CMS ECAL with the accumu-

lated luminosity and radiation dose [553], while the ATLAS LAr calorimeter is not expected to

suffer from ageing [542];

3By using timing information he number of spurious reconstructed secondary vertices is reduced by 30%.



8.2. Double Higgs boson production measurements 189

Statistical-only Statistical + Systematic
ATLAS CMS ATLAS CMS

H H → bb̄bb̄ 1.4 1.2 0.61 0.95
H H → bb̄τ+τ− 2.5 1.6 2.1 1.4
H H → bb̄γγ 2.1 1.8 2.0 1.8
H H → bb̄V V ∗ - 0.59 - 0.56
H H → bb̄Z Z (4`) - 0.37 - 0.37
Combination 3.5 2.8 3.0 2.6

4.5 4.0

Table 8.2: Significance in standard deviations of the individual channels as well as their combina-
tion, under the assumption of a SM rate for H H production [176].

• For the τh reconstruction performance, ATLAS has extrapolated from Run 2 performance,

while CMS parameterised the efficiency and the fake rate for the HL-LHC scenario, resulting

in a worse sensitivity in the fully hadronic decay channel.

8.2.1 Results

The sensitivity of all channels studied for HL-LHC is shown in Table 8.2. From the table is evi-

dent that the bb̄γγ and bb̄τ+τ− decay channels provide the best sensitivity, followed by bb̄bb̄. The

bb̄W W ∗ and bb̄Z Z∗ analyses although limited by the small branching fraction, provide additional

sensitivity when combined with the other channels. Results from the analyses of different decay

channels have been statistically combined within each collaboration. Systematic uncertainties as-

sociated to common backgrounds and the H H signal were taken into account as correlated nui-

sance parameters across the corresponding decay channels. The uncertainties associated to the

same physics objects, such as the to the b-tag efficiency, were also correlated.

Considering only statistical uncertainties, the combined significance of the ATLAS (CMS) anal-

ysis was found to be 3.5σ (2.8σ) for the SM H H production rate. This is reported in Table 8.2, where

the individual values for each channel are also shown.

The combined sensitivity to the self-coupling modifier parameter κλ is assessed by generating

an Asimov dataset containing the background plus SM signal. The individual contributions to the

scan of the likelihood as a function of κλ, for each decay mode, are shown in Fig. 8.1-right. The

structure of the likelihood function, characterised by two local minima, is a result of the quadratic

dependence of the total cross section on κλ, while the relative height of the two minima depends

on the analysis acceptance as a function of κλ and the relative sensitivity to differential mH H infor-

mation. Considering only statistical uncertainties, κλ is constrained at 95% confidence level (CL) to

−0.4 ≤ κλ ≤ 7.3 and −0.18 ≤ κλ ≤ 3.6 for ATLAS and CMS, respectively.

A simple statistical combination of ATLAS and CMS analyses was also performed, by treating all

channels as uncorrelated contributions. This is a reasonable assumption, despite the theory and

the luminosity uncertainties being expected to be correlated between the experiments, since their

impact is negligible on the individual results. A combined significance of 4σ can be achieved, when

all systematic uncertainties are included, reaching 4.5σ neglecting all of them.

The combined likelihood scan as a function of κλ is reported in Fig. 8.1-left. The 95% (68%) CL

intervals is 0.1 ≤ κλ ≤ 2.3 (0.5 ≤ κλ ≤ 1.5). The hypothesis corresponding to the absence of self-

coupling (κλ =0) would be excluded at the 95% CL in these projections for HL-LHC. The lower limit

on κλ is slightly higher for CMS thanks to the contribution of the H H → bb̄bb̄, H H → bb̄V V ∗ and

H H → bb̄Z Z (4`), while the upper limit is similar.
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Figure 8.1: Minimum negative-log-likelihood as a function of κλ. Left: The ATLAS, CMS and com-
bined results. Right: Results are shown by decays channels for ATLAS and CMS separately [176].
Since the H H → bb̄V V ∗ and H H → bb̄Z Z (4`) channels are exploited only by the CMS experiment,
the likelihoods for those two channels are scaled to 6000fb−1 in the combination.

The expected measured values of κλ for the different channels, as well as the combined mea-

surement, are shown in the first box of Fig. 8.3.

8.3 Single Higgs measurements

As discussed in Secs. 2.3.2 and 7.6, a complementary strategy to extract information on the trilin-

ear coupling is through precise measurements of single Higgs production, decays and kinematic

distributions.

In particular differential cross section measurements as a function of the Higgs boson transverse

momentum, p H
T , are used to extract an indirect constraint on the Higgs boson self-coupling, as they

allow to disentangle the effects of modified Higgs boson self-coupling values from other effects such

as the presence of anomalous Higgs couplings to the top quark. The kinematic dependence of these

deviations are determined by reweighting signal events, on an event by event basis, using the tool

described in Ref. [554], similarly to the procedure adopted in Sec. 7.6 for the LHC results. The CMS

experiment has performed the first HL-LHC analysis of this kind, for the t t̄ H production mode

followed by the decay H → γγ [135], exploiting both hadronic and leptonic t t̄ decay modes.

The left panel of Fig.8.2 shows the expected t t̄ H and t H differential cross sections times branch-

ing ratio, for the fiducial phase space defined in [135], in bins of p H
T , which derives κλ. dependent

corrections to the tree level cross sections as a function of the kinematic properties of the event. As-

suming 3 ab−1 of HL-LHC data, uncertainties at the level of 20–40% in the differential cross sections

are expected.

The profile log-likelihood scan as a function of κλ is shown in the right panel of Fig. 8.2. For

simplicity, in the scan, all other Higgs boson couplings are assumed to have their SM values. In

particular the Higgs coupling to top quarks is set to its SM value, κt = 1. A constraint of −4.1 ≤ κλ ≤
14.1 can be derived at 95% CL. Slightly more stringent results can be obtained considering only the

statistical uncertainty.

The obtained bounds are much weaker compared to the direct measurement using double
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Figure 8.2: Left, The expected differential t t̄ H and t H cross sections times branching ratio, along
with their respective uncertainties, in bins of p H

T . Right, Profile log-likelihood scan as a function of
κλ [135].

Higgs pair production. They make use however of only one production mode and one decay chan-

nel, resulting less competitive than the present limit from single Higgs measurement published by

the ATLAS collaboration (see Sec. 7.6). Combining all other production mechanisms and decays,

should therefore lead to more stringent constraints on the self-coupling. This highlights an inter-

esting complementarity on the determination of the Higgs self-interaction strength between double

and single Higgs production mechanisms.

Many models that predict sizeable deviations in κλ, also predict deviations in the other Higgs

couplings. Therefore, global fits that include single Higgs differential measurements, as well as di-

rect constraints from double Higgs measurements are needed to constraints all parameters (see

Sec. 7.6). The SMEFT framework described by 9 free parameters, or the HEFT with 5 parameters

can be used to perform these global fits (see Chapter 2).

As discussed in Sec. 2.3.2 (see, in particular, the right panel of Fig. 2.11), while H H measure-

ments are expected to drive the bound on κλ, differential single Higgs data is nonetheless relevant

as it can help lifting the degeneracy between minima around δκλ ∼ 5.

A summary plot for the different expected direct and indirect constraints on the Higgs boson

self-coupling at the HL-LHC is provided in Fig 8.3. In particular the results from a global fit are

compared to the constraints derived by assuming BSM effects would impact κλ only (exclusive fit).

The content of this chapter is based on the studies presented in [176, 551].
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Chapter 9

Higgs self-coupling at future e+e−

colliders

Editor: M. Peskin

9.1 Introduction

The Higgs self-coupling can be measured at e+e− colliders in two different ways, in parallel to the

ways that this coupling is studied at hadron colliders. On one hand, the Higgs self-coupling can be

measured using single Higgs production processes. Here, the use of e+e− beams offers two advan-

tages. First, e+e− colliders promise an intrinsic precision in single Higgs measurements that will be

higher than at hadron colliders, reaching or exceeding the 1% level. Second, e+e− colliders offer a

larger number of independent single Higgs observables that can be used to great effect in the inter-

pretation of the measurements. In particular, runs of e+e- colliders at two different energies offer a

way to lift degeneracies that plague a global fit of inclusive analyses at hadron colliders and prevent

them from separating the Higgs self-couplings from the Higgs couplings to the other SM particles.

On the other hand, the self-coupling can also be measured using the double Higgs production pro-

cesses. At e+e− colliders, this method uses the reactions e+e− → Z H H (double Higgs-strahlung)

and e+e− → νν̄H H (vector boson fusion).

In this chapter, we will discuss all of these aspects in turn. We will set the stage in Sec. 9.2 by

describing the proposed next-generation e+e− Higgs factories in terms of their expected energies

and integrated luminosities. All of these proposed facilities can carry out the single Higgs analysis,

though only colliders that reach a centre-of-mass (CM) energy of at least 500 GeV have access to

double Higgs production. In Sec. 9.3, we will describe the capabilities of these facilities for deter-

mining the Higgs self-coupling through single Higgs measurements. The discussion here and in the

next few sections is given in the simplest model context, in which a variable κλ is added to the SM

and determined in a 1-parameter fit. This analysis shows a significant improvement compared to

what can be achieved at HL-LHC with the single Higgs technique. However, one should be careful

in interpreting the result obtained in this 1-parameter fit as, in any BSM scenario, other parameters

will affect the single Higgs measurements and should be properly taken into account in a global fit.

This point is discussed in some detail later in the chapter.

In Sec. 9.4, we discuss general features of the H H reactions available at e+e− colliders. Follow-

ing this, we review in Secs. 9.5 and 9.6 the analyses of H H production reactions and the projected

193
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accuracy of the determination of κλ.

In Secs. 9.7 and 9.8, we will revisit these measurements in the context of the general description

of new physics effects by the SMEFT. Once we have determined that κλ is not equal to 1, we are in

the domain of physics beyond the SM. The same new physics that alters κλ can also, in principle,

alter the other couplings of the Higgs boson and, thus, can create changes in measured single- and

double-Higgs cross-sections that have nothing to do with the Higgs potential. It turns out that e+e−

measurements offer incisive tools for separating the effect of κλ 6= 1 from other new physics effects

on the primary observables. Thus, in most cases, it is possible to determine the magnitude of κλ
specifically and to separate its effects from those of other, quite general, effects of new physics. We

present the analysis first, in Sec. 9.7, for the determination from double-Higgs production and then,

in Sec. 9.8, for the determination from single Higgs production.

Sec. 9.9 reviews a first attempt to determine both the Higgs cubic and quartic couplings from

e+e− observables. The analysis here is given in a 2-parameter model that does not include other

possible new physics effects expected in BSM scenarios. We note that, as in the 1-parameter fit of

single Higgs measurements, inclusion of these other BSM parameters can dramatically change the

results and prevent the assignment of a robust bound on the quartic self-coupling. Finally, Sec. 9.10

gives some conclusions.

9.2 Scope of the proposed e+e− Higgs factories

A. Blondel, P. Janot

At this time, four proposals for next-generation e+e− colliders are under consideration in differ-

ent regions of the world. Two of these are circular colliders—the Circular Electron-Positron Collider

(CEPC) and the Future Circular (Lepton) Collider (FCC-ee). The other two—the International Lin-

ear Collider (ILC) and the Compact Linear Collider (CLIC)—are single-pass linear colliders. All four

facilities aim at providing precision measurements of the electroweak and Higgs interactions at high

energy and, in particular, measuring parameters of the Higgs boson with unprecedented precision.

The measurements of κλ and most other Higgs boson parameters at e+e− colliders are expected to

be statistics-limited, so it is important to pay attention to the sizes of the total data sets proposed for

these machines. The purpose of this section is to provide a guide to the data sets currently proposed

for the various stages of each machine.

The two circular colliders, CEPC and FCC-ee, have similar physics programs. The CEPC con-

ceptual design report was presented in 2018 [555, 556]. The FCC-ee conceptual design report was

presented in 2019 [557]. Both colliders propose a program of data-taking at 240 GeV, plus a pro-

gram of precision electroweak measurements at the Z pole and WW threshold. In each case there

are two detectors, taking a total of 5.6 ab−1 at 240 GeV in the CEPC proposal and 5 ab−1 in the FCC-

ee proposal. The FCC-ee plan also includes a second stage at 350 GeV and 365 GeV to reach the t t̄

threshold, with 0.2 + 1.5 ab−1 of data. For the CEPC, a run at the t t̄ threshold has been studied, but

it is not part of the proposed program at this time. The FCC-ee group has also discussed a scenario

with 4 detectors, taking a total of 12 ab−1 in the 240 GeV stage and 5.5 ab−1 at 365 GeV [558]. We

will refer to this scenario below as “FCC-ee (4IP)”. It has been suggested that the addition of Energy

Recovery Linacs to the FCC-ee will allow running at 500 GeV; that proposal is still at a preliminary

stage [559].

The CLIC conceptual design report was presented in 2012 [560]. An update of the design and

run plan was recently presented in [561] and the corresponding physics case described in [562].

CLIC is proposed to be constructed in three stages, the first at 380 GeV with 1 ab−1 of integrated
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Figure 9.1: Feynman diagrams contributing to the shift of the H Z Z vertex due to the 1-loop effect
of the Higgs self-coupling [128].

luminosity, the second at 1.5 TeV with 2.5 ab−1 , and the third at 3 TeV with 5 ab−1 .

The FCC-ee proposal with two detectors and the CLIC proposal were included in the report [563]

that sets out the future collider projects at CERN to be considered in the update of the European

Strategy for Particle Physics.

The ILC completed its technical design report in 2013 [564]. A recent review of the ILC design

and physics capabilities can be found in [565]. The ILC is proposed to be constructed in two stages,

the first at 250 GeV with 2 ab−1 of integrated luminosity, the second at 500 GeV with 4 ab−1, with an

additional short run at 350 GeV with 200 fb−1. The current proposal for the ILC does not include a

run at 1 TeV, but this is within the capabilities of the ILC technology. Parameters for 1 TeV running

were already given in the 2013 TDR. The reports [566] and [565] describe a possible run at 1 TeV

taking 8 ab−1 of data.

9.3 Determination of the Higgs self-coupling from single Higgs reactions

— CEPC, FCC-ee, CLIC, ILC

A. Blondel, C. Grojean, P. Janot

We first consider the determination of the trilinear Higgs self-coupling from single Higgs reac-

tions. The idea of this analysis is similar to that presented in Sections 7.6 and 8.3. If κλ 6= 1, loop

diagrams containing the triple-Higgs vertex will produce radiative corrections to Higgs boson pro-

duction cross-sections and decay rates that are proportional to κλ. These radiative corrections are

at the percent level. Since e+e− colliders are designed to measure Higgs boson cross-sections and

branching ratios at or below this level, their measurements can provide interesting constraints on

κλ. The study of these constraints was initiated by McCullough [128], who pointed out that these

give a radiative correction that, for (κλ−1) = 1, increases the cross-section for e+e− → Z H by about

1.5% at
p

s ∼ 240–250 GeV. Some more subtle aspects of McCullough’s analysis will be discussed in

Sec. 9.8.

For e+e− colliders, the most important such loop diagrams are those shown in Fig. 9.1. These

diagrams correct the H Z Z vertex that appears in the production reaction e+e− → Z H and the decay

H → Z Z∗. The very similar diagrams with external W bosons correct the HW W vertex that appears

in the production reaction e+e− → νν̄H and the decay H → W W ∗. The radiative correction to the

H t t̄ vertex, which contributes to the decay h → g g in 2 loops, gives a smaller effect and will not be

considered here.

Recently, the ECFA Higgs@Future Colliders working group has performed fits to the expected

set of single Higgs measurements to assess the sensitivity to deviations of the Higgs self-coupling

from its SM value [567]. These fits use the expected measurement accuracies for the various single

Higgs observables given in the references cited in the previous section. The results are shown in
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collider 1-parameter full SMEFT
CEPC 240 18% -
FCC-ee 240 21% -
FCC-ee 240/365 21% 44%
FCC-ee (4IP) 15% 27%
ILC 250 36% -
ILC 250/500 32% 58%
ILC 250/500/1000 29% 52%
CLIC 380 117% -
CLIC 380/1500 72% -
CLIC 380/1500/3000 49% -

Table 9.1: Uncertainties on the value of κλ expected from precision measurements of single Higgs
observables at e+e− colliders, from [567]. The collider scenarios are listed by name and CM energy.
More details on each can be found in Sec. 9.2. Results are given for a 1-parameter fit to the SM
plus a varying κλ and for a fit that includes the possibility of other new physics effects modelled by
the SMEFT. Cases in which the SMEFT analysis does not close are denoted by “-”. The physics of
the SMEFT analysis is described in Sec. 9.8 In [567], the projected uncertainties from single Higgs
analyses are presented combined with an assumed independent uncertainty of 50% from the HL-
LHC H H analysis. We have removed that combination here to clarify the size of the constraint that
comes specifically from e+e− colliders.

Table 9.1.

The table lists uncertainties from a 1-parameter fit, corresponding to the model in which the SM

is modified only by a shift of the parameter κλ, and a fit to a larger model including the complete

set of new physics effects that can be parametrized by dimension-6 SMEFT operators. The ECFA

Higgs@Future Colliders group has reported its results as combined with an expected 50% uncer-

tainty in κλ expected from the HL-LHC. To clarify the extra information that will come from e+e−

measurements, the values given in the table remove the HL-LHC contribution and quote results

from e+e− measurements alone. In some cases of the multi-parameter fit, the analysis does not

close and the e+e− results alone do not give a competitive constraint. Those cases are indicated in

the Table by a “-”.

In all cases, the 1-parameter analysis seems to indicate a substantial sensitivity to the Higgs

self-coupling. Including the possibility of other new physics effects weakens this sensitivity, but, for

some scenarios, the constraint is still a powerful one. We discuss the physics of the multi-parameter

fit in Sec. 9.8.

9.4 H H production processes at e+e− colliders

The cross-sections for the Z H H and νν̄H H production processes at e+e− colliders are shown in

Fig. 9.2. The cross-sections are shown in this figure for unpolarised beams. Planned analyses at

linear e+e− colliders will make use of polarised beams. Since the νν̄H H process, in particular, re-

quires the initial state e−L e+R , working with polarised beams can raise the cross-section significantly,

by almost a factor of 2. Still, these cross-sections are very small, and the processes are difficult to

recognise even in the relatively clean environment of an e+e− collider.

In both cases, the H H production processes are multi-body reactions whose cross-sections in-

crease slowly from threshold. Energies much higher than the nominal threshold energies of 250 GeV

and 341 GeV are needed to produce a significant event sample. The Z H H process is thus not ac-
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Figure 9.3: Diagrams contributing to e+e− → νν̄H H .

cessible at 350 GeV, but it can be studied at an e+e− centre-of-mass energy of 500 GeV. The νν̄H H

reaction, which is a 4-body process, requires still higher energies, optimally, CM energies above

1 TeV. The ILD group has studied these reactions at CM energies of 500 GeV and 1 TeV [568–570].

The CLICdp group has studied these reactions at CM energies of 1.5 TeV and 3.0 TeV [571]. We de-

scribe the analyses below. In both cases, the analyses are done in the framework of full simulation

using detailed detector models. This simulation framework is reviewed in Secs. 6 and 7 of [565].

The diagrams for both processes include a diagram with the Higgs self-coupling in interference

with diagrams in which the two Higgs bosons are radiated separately from W or Z propagators. The

SM diagrams for e+e− → νν̄H H are shown in Fig. 9.3. Note that both processes appear at the tree

level in the SM and, since we are in the electroweak world, the tree level is a good approximation to

the full result.

A remarkable feature of the e+e− reactions is that the two processes have opposite dependence

on κλ. That is, the self-coupling diagram interferes constructively with the other SM diagrams in

the case of Z H H and destructively in the case of νν̄H H . The dependence of the cross-section on

the variation of the Higgs self-coupling is shown in Fig. 9.4. This means that, whatever the sign of

the deviation of κλ from 1, one of the two processes will have an increased cross-section and will

thus have increased statistical sensitivity to the actual value of κλ.
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Figure 9.4: The dependence of the cross-sections for H H production as a function of the Higgs
self-coupling λ for e+e− → Z H H (red line) and for e+e− → νν̄H H (blue line). The values of both
λ and σ are scaled to their SM values. Note that the exact results depend on the assumed beam
polarisations, here taken in the ILC scheme.

Figure 9.5: Reconstruction of the Higgs boson mass in the measurements of the e+e− → Z H H cross-
section described in [570]: left: highest energy Higgs boson in events with Z → `+`−; right: highest
energy Higgs boson in events with Z → qq̄ .

9.5 Measurement of H H production — ILC

J. Tian

The ILC in its second stage will have sufficient CM energy to observe the reaction e+e− →
Z H H . Full simulation studies show that discovery of this double Higgs-strahlung process is pos-

sible within the planned program of the ILC with 4 ab−1 of data at 500 GeV. The run plan assumes

polarisation of 80% for the electron beam and 30% for the positron beam, with the beam polari-

sations divided among LR/RL/LL/RR polarisations as 40%/40%/10%/10%. Using the ILD detector

model in full simulation analyses, the ILD group studied the extraction of the Z H H process from

background in the di-Higgs decay channels hh → bb̄bb̄ [568,570] and hh → bb̄W +W − [569]. At this

point in the ILC program, the absolute branching ratios of the Higgs boson into the bb̄ and W W ∗

channels will already be known with sub-percent accuracy [565]. The measurements ofσ·BR for the

two channels can then be applied directly to determination of the H H production cross-section.

The measurement of the Z H H cross-section in the bb̄bb̄ mode is described in detail in the Ph.D.
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thesis of Dürig [570]. She presents three parallel analyses for the channels of Z decay to charged

leptons, to neutrinos, and to quarks (including bb̄). In each case, a kinematic fit is carried out on

the 4- or 6-jet system, and the output parameters from this fit are supplied to multivariate classifiers.

The reconstructed Higgs masses in the cases of charged leptonic and hadronic Z decays are shown

in Fig. 9.5. The most important backgrounds come from Z Z Z , Z Z H , and continuum bb̄qq̄qq̄

production. The final selections correspond to efficiencies of 36%, 19%, and 19% for the charged

lepton, neutrino, and quark decay channels, respectively.

Scaling the results from the bb̄bb̄ and bb̄W W analyses to the expected luminosity of 4 ab−1,

the combination of the various channels yield a precision of 16.8% on the H H total cross section.

Assuming a 1-parameter fit to the SM with only the Higgs self-coupling as a free parameter, this

corresponds to an uncertainty of 27% on that coupling κλ.

At still higher energies, vector boson fusion becomes the dominant H H production channel. In

a linear collider, luminosity is expected to increase linearly with CM energy. Thus, studies at 1 TeV

assume a data sample of 8 ab−1 [565]. It is shown in [568,569] that the H H production cross-section

can readily be observed. In the same context of varying the trilinear Higgs coupling only, κλ can be

determined to a precision of 10%.

The impact of the centre-of-mass energy on the trilinear Higgs coupling measurement is stud-

ied by extrapolating the full simulation results done at 500 GeV and 1 TeV to other energies. The

extrapolation is done in such as way as to take into account the dependence on
p

s for both the

total cross-sections and the interference contributions [572]. The results are shown in Fig. 9.6 as

the blue lines for the two reactions. In addition to the results from realistic full simulations, the

expectations for the ideal case, assuming no background and 100% signal efficiency, are shown as

the red lines in the figure. The differences between the blue and the red lines are large, a factor of

4–5. This suggests that there is much room for improvement in the clustering algorithm used to

identify 2-jet systems with the Higgs boson mass, which would lead to improvement in the final

results. Improvements could also come from better flavour-tagging algorithms and inclusion of ad-

ditional signal channels such as Z → τ+τ−. The figure does imply that
p

s = 500–600 GeV is optimal

for e+e− → Z H H . On the other hand,
p

s energies of 1 TeV or above would be needed for optimal

measurement of e+e− → νν̄H H .

Since large deviations of the trilinear Higgs coupling are expected in some new physics models,

it is interesting to see how the expected precision would change in that case. Using the depen-
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Figure 9.7: Expected precision of λ when λ is enhanced or suppressed from its SM value.

dence of the cross-section of the two reactions on the Higgs self-coupling shown in Fig. 9.4, we can

convert the expected precision of the ILC measurements just described to precision on the Higgs

self-coupling at highly enhanced or suppressed values. The results are shown in Fig. 9.7. The two

reactions, useful at 500 GeV and 1 TeV respectively, are complementary in determining the trilinear

Higgs coupling. If the trilinear Higgs coupling is indeed a factor of 2 larger than its SM value, as

expected in models of electroweak baryogenesis described in Sec. 3.6, the Z H H process at 500 GeV

is especially useful and would already provide a measurement with 15% precision on the enhanced

value of the self-coupling.

9.6 Measurement of H H production — CLIC

P. Roloff, U. Schnoor

In the CLIC program, the Higgs self-coupling would be studied at the 1.5 TeV and 3 TeV stages.

The planned integrated luminosities for these stages are 2.5 ab−1 and 5 ab−1, respectively, with 80%

polarisation of the electron beam and an unpolarised positron beam. The luminosity is planned to

be divided between the L and R orientations at 80%/20%. As in the ILC program, the CLIC program

of single Higgs measurements will produce values of the Higgs branching fractions to the major

decay modes with sub-percent accuracy [573, 574].

The study [571] describes analyses of the Z H H and νν̄H H reactions by the CLICdp group.

These studies are based on full-simulation analyses with the CLIC_ILD detector model. In this

study, the second CLIC stage is taken to be at 1.4 TeV. All relevant background processes are in-

cluded in the simulation data.

The νν̄H H process is studied in the bb̄bb̄ and bb̄W W ∗ Higgs decay channels. The main back-

ground contributions originate from diboson production and Z H production. A Boosted Decision

Tree (BDT) is used to extract the νν̄H H signal in the dominant decay channel of bb̄bb̄ production.

The measurement benefits from the clean collision environment of e+e− linear colliders as well as

the excellent heavy flavour tagging capabilities and the accurate jet energy resolution realised in the

CLIC detector model.

In the studies at 1.4 TeV, evidence for νν̄H H production is found with a significance of 3.6 σ,

and the Z H H process can be observed at this stage with a significance of 5.9 σ. In the studies at
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described in the text [571].

3 TeV with e− beam polarisation, the νν̄H H reaction is observed already with 700 fb−1. With the

total integrated luminosity of 5 ab−1, the νν̄H H cross-section can be measured with a precision of

7.3%, assuming that it takes the SM value.

The extraction of the Higgs self-coupling at CLIC is based on the total cross-section measure-

ments, combined with information from the differential cross-section to distinguish effects of the

self-coupling diagram in Fig. 9.3. Because of the destructive interference in the νν̄H H process,

there is an ambiguity in the interpretation of the total cross-section result, since the cross section

for λ/λSM = 2.2 is the same as that predicted in the SM; see Fig. 9.4. This ambiguity can be resolved

using the Z H H measurement, but it is also resolved by measuring the H H invariant mass distribu-

tion in the νν̄H H reaction. Figure 9.8 shows how the measured shape of this distribution changes

as λ/λSM is varied. As λ/λSM increases, this mass distribution decreases noticeably in the region

500 < m(H H) < 1000 GeV while the peak of the distribution at m(H H) ∼ 400 GeV rises dramatically.

The value of λ/λSM can then be extracted from a template fit to the binned distribution of the

invariant mass of the reconstructed Higgs boson pair in bins of the BDT response. This value can be

combined with the result of the Z H H cross-section measurement at 1.4 TeV to extract the value of

the trilinear Higgs self-coupling and its uncertainties. The resulting constraint that will be provided

by the CLIC measurements is found to be

0.93 ≤λ/λSM ≤ 1.11 (9.1)

at the 68 % C.L. Section 2.2.1 of [562] describes a fit in which this result is combined with a global

fit to single Higgs observables using the SMEFT framework. The final constraint on κλ is essentially

unchanged from Eq. (9.1).



202 Chapter 9. Higgs self-coupling at future e+e− colliders

Figure 9.9: Parameter scan of the models considered in [125], showing the predicted shifts of values
of the H H H and H Z Z couplings from the SM predictions. The colour of each point indicates the
strength of the electroweak phase transition in the corresponding model, with blue and red indicat-
ing strong first-order transitions.

9.7 SMEFT interpretation of H H measurements

J. Tian

Up to this point, we have considered H H production only using the model in which κλ =λ/λSM

is free to vary while the other possible new physics effects have been ignored. This is probably too

stringent an assumption. A modification of the Higgs sector that can give rise to a large change

in the Higgs self-coupling will probably also affect other SM couplings [125]. These changes will

independently lead to changes in the prediction for the H H production cross-section. A robust

search for a deviation in the Higgs self-coupling should take this into account.

An example of this effect of new physics is shown in Fig. 9.9. This figure refers to a class of mod-

els in which the Higgs self-coupling is modified through mixing with a SM singlet scalar field. This

is a subset of the models considered in Sec. 3.1, without separately observable scalar resonances.

These models can still generate a large shift in the Higgs self-coupling to produce a first-order elec-

troweak phase transition as required for successful electroweak baryogenesis. This mechanism also

generates smaller tree-level shifts in the HW W and H Z Z couplings. As the figure shows, some

models in this class generate shifts of the single Higgs couplings visible at the HL-LHC, while other

models produce smaller effects, requiring the higher precision available at e+e− colliders for their

observation. These modifications of the Higgs boson couplings to vector bosons will modify the SM

predictions for the H H production cross-sections in a manner that is independent of the modifi-

cation generated by a shift in κλ. To claim a measurement of κλ, the influence of the altered HV V

couplings must be separated out.

In Secs. 2.1.3 and 2.3.1, we have discussed such a more general analysis for the process g g →
H H at hadron colliders. We described using the SMEFT to take into account possible new physics

effects on the H H production cross-section that are independent of changes in the Higgs self-

coupling. We have shown that the SMEFT can be used as a tool to quantify the influence of these

orthogonal effects of new physics and that, in principle at least, these effects can be controlled by
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Figure 9.10: Feynman diagrams contributing to e+e− → Z H H in the SMEFT with dimension-6 op-
erators included. The vertices shown are also typically modified from their SM values by dimension-
6 perturbations [132].

making a global fit to the SMEFT parameters.

A similar analysis has been carried out for the reaction e+e− → Z H H at 500 GeV [132]. Because

the e+e− cross-section depends on fewer operators than the cross-section at hadron colliders, it is

possible to include the effects of all relevant dimension-6 operators that appear in the SMEFT. When

this is done, it is seen that new physics effects different from the shift in the Higgs self-coupling can

potentially have a major influence on the H H cross section, easily swamping the variation due to

κλ. Fortunately, the high precision expected for single Higgs and other measurements at an e+e−

collider will allow these effects to be controlled.

The full set of diagrams contributing to e+e− → Z H H in the SMEFT at tree level, including SM

vertices and all contributing dimension-6 operators, is shown in Fig. 9.10. One should note that,

in general, the vertices in these diagrams are not equal to the SM vertices but rather include extra

pieces due to the dimension-6 perturbations.

The complete variation of the tree level cross-section with the SMEFT coefficients is given in

[132]. Some of the smaller terms in the complete expression are difficult to explain without ref-

erence to the renormalization scheme used there. Here we will write a simplified formula that

gives the dependencies on the most important SMEFT coefficients. We assume here the case of

unpolarised beams. In the SMEFT, κλ receives two different contributions from coefficients of

dimension-6 operators. In particular, we saw in Eq. (2.11) that

κλ = 1+ c6 −
3

2
cH , (9.2)

where the parameter c6 is the coefficient of an operator that modifies the Higgs potential and cH

is a universal rescaling of all Higgs couplings that originates from a modification of the Higgs field

kinetic term. When we speak of a new physics modification of the Higgs potential within the SMEFT,

we are speaking specifically about the generation of a nonzero value for c6.
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In terms of these two parameters and other coefficients of electroweak dimension-6 operators,

the ratio of the unpolarised total cross-section for e+e− → Z H H at 500 GeV to its SM value is given

at the tree level by the expression

σ/σSM (Z H H) = 1+0.56c6 −4.15cH +15.1(cW W )+62.1(cHL + c ′HL)−53.5cHE +·· · , (9.3)

where the omitted terms are less important. The coefficients listed here come from the SMEFT

Lagrangian terms

∆L = cH

2v2 ∂
µ(Φ†Φ)∂µ(Φ†Φ)− c6λ

v2 (Φ†Φ)3 + cW W

2v2 Φ
†ΦW a

µνW aµν

+i
cHL

v2 JµH (L̄γµL)+4i
c ′HL

v2 J aµ
H (L̄γµt aL)+ i

cHE

v2 JµH (ēγµe) , (9.4)

where W a
µν is the SU(2) field strength, L is the left-handed lepton doublet (νe ,e)L , and JµH , J aµ

H

are the Higgs currents (Φ† ↔
D µΦ) and (Φ†t a ↔

D µΦ), respectively. In the full expression, the cross-

section depends on a total of 17 SMEFT coefficients. Some of the numerical factors in Eq. (9.3)

are uncomfortably large. And, unfortunately, because the phase space for e+e− → Z H H is very

restricted at 500 GeV and the cross section is quite small, there is no useful additional information

from the differential distributions to separate the various dependencies.

However, it turns out that the accuracy of precision measurements at e+e− colliders is enough to

solve the problem. The parameters cHL , c ′HL , cHE are tightly constrained by precision electroweak

measurements, even at the current LEP level of precision. At a linear e+e− collider, the parameters

cH and cW W are constrained by the measurement of the total cross section for e+e− → Z H , the

polarisation asymmetry in this total cross-section, and the Higgs branching ratio to W W ∗. The

analysis [575] describes a global fit to the data set that will be acquired in the ILC program. The

parameters in this fit include the full set of dimension-6 operators that contribute to the measured

cross sections at the tree level. From the results of this analysis, it is found that, apart from the

c6 term, the expression in Eq. (9.3) can be evaluated with an uncertainty of 2.8% from the cH and

cW W terms and 0.9% from the cHL , c ′HL , and cHE terms. These errors are slightly correlated, so the

total uncertainty from SMEFT coefficients other than c6 (including those not mentioned here) is

2.4%. This gives a systematic error on the extraction of c6 of 5%, to be added in quadrature to the

larger statistical error estimated in Sec. 9.5 [132]. In many of the models shown in Fig. 9.9, the value

of cW W is large enough that it makes a significant correction to the value of the H H production

cross-section. Nevertheless, this correction will be known from the single Higgs data and can be

subtracted without loss of accuracy in the determination of c6.

With the contributions from these additional dimension-6 operator coefficients under control,

the measurement of the total cross-section for the reaction e+e− → Z H H can be interpreted as a

model-independent measurement of c6 within the broad class of models describable by the SMEFT.

It would be interesting to perform a similar analysis for the νν̄H H process. To do this, we would

need to have the analogue of Eq. (9.3) for this reaction. We expect a result of a similar form. One

difficulty to be aware of it that the factors in front of the coefficients cHL , c ′HL , and cHE grow as

s/m2
Z . However, these parameters can be controlled to an even greater degree than was taken into

account in [132] by the improvements in our knowledge of precision electroweak observables that

are expected from these e+e− colliders [557, 576].
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9.8 SMEFT interpretation of single Higgs reaction measurements

C. Grojean

Just as for the H H determination of the Higgs self-coupling, it is important to ask whether the

determination of the self-coupling from single Higgs measurements can be affected by other new

physics contributions. Here again we can use the SMEFT to quantify these effects and eventually to

separate them from the effects of the self-coupling.

However, there is an important difference between the situation for the single Higgs determi-

nation and that described in the previous section. In Eq. (9.3), the contributions from all of the

SMEFT parameters appeared with numerical coefficients of order 1. However, for the correspond-

ing expressions in the single Higgs case, while most of the SMEFT parameters enter with order-1

coefficients, the contribution from c6 which we are most interested in has a coefficient of order 1%.

This is expected, since most of the relevant SMEFT operators enter these formulae at the tree-level,

while c6 enters only at the 1-loop level. For example, for the ratio of the unpolarised cross-sections

for e+e− → Z H at 250 GeV, the formula corresponding to Eq. (9.3) is

σ/σSM (Z H) = 1+0.015c6 − cH +4.7(cW W )+13.9(cHL + c ′HL)−12.1cHE +·· · . (9.5)

Thus, very strong constraints are needed on all of the additional variables in Eq. (9.5) to extract any

information about c6. The extraction of c6 is also more subtle than in the case of H H production,

since the same data that supplies these constraints is also used to determine the value of c6.

In [114], Di Vita and collaborators explained that the expected accuracy of single Higgs measure-

ments at e+e− colliders will be such that it is feasible to extract a value of c6 despite this difficulty.
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They noted, in particular, that the enhancement of the H Z Z and HW W couplings highlighted by

McCullough and discussed in Sec. 9.3 has a special feature that aids this process. This radiative

correction arises from the Feynman diagrams shown in Fig. 9.1. It is useful to consider these di-

agrams as being evaluated with the Higgs boson and one Z or W boson on mass shell while the

other vector boson is off-shell at a variable momentum invariant Q =
√

Q2. The value of the sum

of diagrams has a characteristic dependence on Q that cannot be reproduced as a sum of effects

of point like dimension-6 SMEFT operators. This is shown in Fig. 9.11. The diagrams give an en-

hancement that is not monotonic as a function of Q but rather has a sharp cusp at the Z H thresh-

old (Q = mH +mZ ). Measurements at e+e− Higgs factories will measure this function at several

different values of Q: at values of Q equal to the CM energies at the various collider stages in the

cross-section σ(e+e− → Z H), at Q ∼ 40 GeV in the partial width Γ(H →W W ∗), at Q ∼ 30 GeV in the

partial width Γ(H → Z Z∗), and at Q2 . 0 in the vector boson fusion cross-section σ(e+e− → νν̄H).

Fig. 9.11 shows the expected accuracy of the three most important of these measurements in the

FCC-ee and ILC programs and indicates how the set of three measurements can provide indepen-

dent values for the SMEFT parameters c6, cH , and cW W .

Some caution should be used in interpreting this plot directly. The errors shown for Γ(H →
W W ∗) are those from the SMEFT fits done in [567] using the expected results from the full FCC-ee

and ILC programs. Thus, they use the values of the indicated cross-section plus other data. A full

SMEFT analysis would include many other measurements than the three indicated here, including

other measurements that put powerful constraints on cW W . On the other hand, such an analysis

would be based on 17 SMEFT parameters, not just the few indicated in Eq. (9.5).

The analysis that we have described does not include possible loop corrections to the other

Higgs couplings, for example, the influence of the loop corrections to the Hbb vertex or the H t t

vertex on Γ(H → g g ). In these cases, however, the vertex is measured only at one value of Q, so the

effect of c6 is indistinguishable from a simple Q-independent shift of the coupling strength, which

is controlled by a separate SMEFT parameter. Because of this, only the corrections to the H Z Z and

HW W couplings give sensitivity to c6.

A complete fit of the SMEFT parameters to the expected single Higgs data from the proposed

Higgs factories has recently been carried out by the ECFA Higgs@Future Colliders working group [567].

The results of this analysis for the projected uncertainty in c6 are shown in Fig. 9.12. The results are

those shown in the second column of Table 9.1, except that the numbers in the figure are combined

with an expected 50% uncertainty on c6 from the measurement of the H H production cross-section

at the HL-LHC.

The results in Fig. 9.12 and Table 9.1 show that it is very important for the closure of the 17-

parameter fit to have data on e+e− → Z H at two different CM energies. The cross section for this

reaction falls off rapidly at energies above 250 GeV, so the plan of the FCC-ee to take data at 250 GeV

and 365 GeV is more optimal from this perspective. For ILC, there is some compensation in that the

function shown in Fig. 9.11 has a larger variation with Q from 250 GeV to 500 GeV. For CLIC, though

running above 1 TeV allows the excellent measurements of H H production described above, the

Z H process is well measured only at the 380 GeV stage and so c6 is poorly constrained by the single

Higgs analysis.

Finally, though, the FCC-ee and ILC programs would be expected to yield a measurement of

c6 from single Higgs processes with an uncertainty of 40–60%, independently of any results from

H H production. This is comparable to the expected precision from the HL-LHC. This indirect de-

termination would then provide a welcome independent measurement of the self-coupling. This

measurement is expected to be statistics-limited and so would benefit from an increase in the run-
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Figure 9.12: Uncertainties on the Higgs self-coupling projected for the High-Luminosity LHC
and for other future colliders, at various stages, by the ECFA Higgs@Future Colliders working
group [567]. The results are presented as uncertainties on κ3 = κλ. In the bar graphs, results from
the direct method are shown with solid bars and result from the indirect method with hatched bars.
The estimates for the indirect determination of the self-coupling are based on a multi-parameter
SMEFT analysis which also takes into account projected results from the LHC. Estimates in paren-
theses correspond to a 1-parameter fit without other new physics effects. The results for all e+e−

colliders include the projected single-H and H H results from the HL-LHC, approximated by a 50%
uncertainty in κλ.

ning time or, in the case of circular machines, doubling the number of detectors. We emphasise

again that this measurement is essentially free of model dependent assumptions within the broad

class of models that can be described by the SMEFT.

9.9 The quartic Higgs self-coupling

F. Maltoni, D. Pagani

Up to this point in our discussion of e+e− probes of the Higgs potential, we have only considered

dimension-6 operators in the SMEFT. For operators that specifically modify the Higgs potential, we

have considered only one higher-dimension operator, the operator with coefficient c6 in Eq. (2.10)

whose main role is to shift the coupling λ3. More general modifications of the Higgs potential are

available from operators of higher dimension. It is relevant to ask whether inclusion of this possi-

bility affects the determination of c6 or λ3.

This question was studied for the first time in Ref. [134]. This paper considered the two-parameter

Higgs potential modification

∆L =− c̄6

v2

(
Φ†Φ− v2

2

)3

− c̄8

v4

(
Φ†Φ− v2

2

)4

, (9.6)
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as in eq. (2.22), including the dimension-6 and also a dimension-8 perturbation. From this effective

Lagrangian one can define

c6 ≡ (2v2/m2
h)c̄6

c8 ≡ 4(2v2/m2
h)c̄8 . (9.7)

Then, similarly to eq. (2.11),

κλ ≡ λ3

λSM
3

= 1+ c6

κ4 ≡ λ4

λSM
4

= 1+6c6 + c8 . (9.8)

In this context, it is possible to analyse processes with single Higgs production, H H production,

and H H H production to deduce constraints on c6 and c8. It is important to note that the restriction

of the fit to two possible operators is a simplification with respect to the analyses described in the

previous sections. First, cH and other possible dimension-6 operator coefficients are not included

in this analysis. We have already seen in Sec. 9.7, though, that the relevant operator coefficients

would already be strongly constrained by expected measurements of single Higgs observables at

e+e− colliders. But, further, the effects of many more new operators appearing at dimension 8

are not included. This analysis assumes that their coefficients are suppressed with respect to c8.

Nevertheless, this analysis represents a first step toward answering this question.

The study [134] derives constraints on these two parameters by considering the deviations in

the total cross section for Higgs production processes at e+e− colliders of increasing energy, treating

both s-channel Z and W fusion reactions, and both tree-level and one-loop effects of the higher-

dimension operators. The specific processes considered, and the loop order at which the two cou-

plings first appear, are:

Process λ3 λ4

Z H , νe ν̄e H one-loop two-loop

Z H H , νe ν̄e H H tree one-loop

Z H H H , νe ν̄e H H H tree tree

(9.9)

In Ref. [134], both tree and one-loop effects are included for each process. Two-loop corrections

are not included. It is important to note that, while the one-loop effects on single Higgs cross-

sections can be computed without reference to an underlying EFT framework, the one-loop correc-

tions to the H H and H H H cross-sections are UV-sensitive and require renormalization. Using the

SMEFT formalism and taking advantage of the parameterisation in eq. (9.6), the authors of Ref. [134]

worked out these UV-finite expressions.

By changing the values of c6 and c8, one can independently change the values of λ3 and λ4. As

already noted, UV-finite radiative corrections due to c6 and c8 are taken into account. The anal-

ogous study for future hadron colliders, was first presented in Ref. [160]. This is technically more

challenging because of the need to consider two-loop calculations in the g g fusion channel. That

analysis is described in Sec. 10.3.

With this formalism in hand, Ref. [134] presented constraints on the c6 and c8 couplings that

would be obtained from the run programs of the proposed e+e− colliders CEPC, FCC-ee, ILC, and

CLIC. The strongest constraints apply to ILC and CLIC at energies of 500 GeV and above, where H H

and eventually H H H production is observable. In this case, we can consider the possibility that
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ŝ [GeV]

ZHHH (c6 = 0, c8 = 0)
ZHHH (c6 = 0, c8 = −1)
ZHHH (c6 = 0, c8 = 1)

100× σ02(ZHHH)

Figure 9.13: Leading order total cross-sections for Z H H H (left) and W fusion H H H (right) in e+e−

collisions, for representative values of c6 and c8. The red solid curves are the SM values. The results
refer to the ideal beam polarisation choice Pe− =−1.0, Pe+ =+1.0.

c8 can be large and quote joint constraints on the two variables. In particular, we can compare the

allowed range of c8 to the theoretical limit c8 . 31 quoted in Eq. (2.24). A limitation of this strategy

is that the H H H cross-sections at e+e− colliders are quite small. The SM cross-sections are shown

in Fig. 9.13.

In Fig. 9.14, we show as light and dark green regions the 90% CL regions in this parameter space

that would be obtained from successive stages of running at ILC and CLIC from the measurements

of H H and H H H production cross-sections, assuming that the true answer is the SM cross-section.

The top plots show these constraints in the (c6,c8) plane; the bottom plots show the constraints in

the (κλ,κ4) plane. For ILC, the analysis considers results from Z H H production at 500 GeV and its

combination with results from Z H H H and W fusion H H(H) at 1 TeV. (The relevant cross-sections

for H H H production are too small to be measured at 500 GeV.) For CLIC, the analysis considers

Z H H(H) and W fusion H H(H) production at 1.4 TeV and 3 TeV stages. The luminosities and

polarisations assumed are given in Table 3 of [134]; these differ in some details from the current

proposals in Refs. [565] and [577]. We also show as red bands the limits on c6 from single Higgs

measurements at ILC and CLIC, using the indirect method described in the Sec. 9.8, and assuming

that the two-loop dependence on c8 is negligible. The CLIC constraints are stronger than ILC ones,

thanks to the higher energies and the greater accessibility of H H H processes. On the other hand,

the c6 constraints from single Higgs production are stronger at the ILC. Both this constraint and the

measurement of W fusion at higher energies can be used to remove the two-fold ambiguity seen in

the plots for ILC500. Scenarios in which the measured cross sections differ from those of the SM

have been investigated, assuming that they correspond to the more general case |c6| < 5 and and

c8 = 0. For positive and large values of c6, the constraints on both c6 and c8 become stronger than

in the SM case, analogously to what we have already pointed out in the discussion of Fig. 9.7 for the

case of c6 only.

The conclusion of this study is that the first coarse bounds on the value of c8, and in turn on

λ4, can be set at future e+e− colliders. The SM rate for triple Higgs production is not measurable

at these e+e− colliders, even at the highest energies considered. But the cross-section strongly de-

pends on λ4, and so it is possible to obtain significant constraints. The combination of results from

double and triple Higgs production at high energies improves the constraints. The W fusion chan-

nel will give the strongest bounds. For this reason, by increasing the energy, the precision of the

constraints on λ3 and λ4 will improve, regardless of the true value of λ3. The constraints that can

obtained at CLIC at 3 TeV via W boson fusion H H H production are similar to those that would be

obtained at a future 100 TeV hadron collider.
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Figure 9.14: Combined 90% CL constraints on the cubic and quadratic Higgs self-couplings from
the e+e− colliders ILC (left) and CLIC (right). The upper plots show the constraints in the (c6,c8)
plane; the bottom plots show the constraints in the (κλ,κ4) plane. The red regions marked ILC-H
and CLIC-H refer to a combination of all single Higgs measurements at all energy stages for each
collider under study. In all cases only the perturbative region described in Sec. 2.2, |c6| < 5, |c8| < 31,
has been considered.

9.10 Conclusions

The conclusion of this section have now become clear:

• An e+e− collider with significant integrated luminosity at two different CM energies (e.g., 250

and 350 GeV or 250 and 500 GeV) will be able to determined the Higgs self-coupling from

measurements of single Higgs reactions. This determination would be robust and model-

independent, in the sense that it would be insensitive to the presence of other new physics

effects as parameterised by the SMEFT. For currently proposed e+e− colliders, the precision

on the Higgs self-coupling would be 44% for FCC-ee and 58% for ILC, comparable to the pre-

cision expected from HL-LHC. With four interaction points or double the running time, the

FCC-ee precision would improve to 27%.

• The ILC at 500 GeV would also be able to determine the Higgs self-coupling from the mea-

surement of the Z H H production cross section. This measurement would also be robust and

model-independent, in the same sense as above. The expected precision on the self-coupling

is 27%. This could be combined with the single Higgs determination to reach a precision of

24%.
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• The ILC at 1 TeV or CLIC in its proposed program at 1.5 and 3 TeV would be expected to de-

termine the Higgs self-coupling to a precision of 10% by the measurement of H H production

using the Z H H and νν̄H H channels. Though it is likely that this measurement would be

model-independent in the sense above, that issue needs further study.

• The FCC-ee(4IP), ILC and CLIC programs would all be able to provide very strong evidence

(> 4σ) for or against an increase of the Higgs self-coupling by a factor 2, as actually expected

in models of electroweak baryogenesis.

There are reasons to guess that our knowledge of the Higgs self-coupling might be even bet-

ter than that described here. First, all estimates from e+e− colliders are based on current full-

simulation analyses. We have shown in Fig. 9.6 large gaps between the results of these analyses

and those of ideal analyses with perfect signal/background discrimination. There is considerable

room to be more clever when we are directly working with data.

Second, these results from e+e− colliders will be combined with results from pp colliders op-

erating in the same time frame. In particular, all four proposed Higgs factories are expected to

constrain the parameter cΦG in Eq. (2.10), which contributes at the tree level in a SMEFT analysis

of g g → H H , by measuring the H g g coupling to 1% precision [565]. Complementarity between

e+e− and pp measurements will eventually lead us to the most precise understanding of the Higgs

self-coupling.



Chapter 10

Higgs self-coupling at future hadron
colliders

Editor: M. Selvaggi

At future hadron colliders, the Higgs self-coupling can be probed predominantly via Higgs pair

production. Additional indirect constraints can also be obtained from single Higgs production.

However, as will be discussed later they are not competitive with the direct method when 5-10%

(silver level) precision is within reach.

The cross sections for several production channels are given in Table 10.1, where the quoted sys-

tematic uncertainties reflect today’s state of the art. The most studied channel, in view of its large

rate, is gluon-gluon fusion. In the SM, a large destructive interference between the leading diagram

with a top-quark loop and that with the self-coupling occurs. While this interference suppresses the

SM rate, it makes it more sensitive to possible deviations from the SM couplings, the sensitivity be-

ing enhanced after NLO corrections are included, as shown in the case of gg→H H in Ref. [24], where

the first NLO calculation of σ(gg→H H) inclusive of top-mass effects was performed. As shown in

Fig. 10.1(left), for values of κλ close to 1, 1/σH H dσH H /dκλ ∼ −1 , and a measurement of κλ at the

few percent level therefore requires the measurement and theoretical interpretation of the Higgs

pair rate at a similar level of precision. Table 10.1, already discussed in Chapter 1, shows that the

current theoretical systematic uncertainty on the signal is at the 5% level (for a complete discus-

sion see Chapter 1), which is already competitive with the statistical and experimental systematic

uncertainties that are achievable at a
p

s = 100 TeV collider. It is furthermore reasonable to expect a
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Figure 10.1: Left: Total H H cross section at
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Ref. [24]
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p
s 14 TeV 27 TeV 100 TeV

ggF H H 36.69+2.1%
−4.9% ±3.0% 139.9+1.3%

−3.9% ±2.5% 1224+0.9%
−3.2% ±2.4%

VBF H H 2.05+0.03%
−0.04% ±2.1% 8.40+0.11%

−0.04% ±2.1% 82.8+0.13%
−0.04% ±2.1%

Z H H 0.415+3.5%
−2.7% ±1.8% 1.23+4.1%

−3.3% ±1.5% 8.23+5.9%
−4.6% ±1.7%

W +H H 0.369+0.33%
−0.39% ±2.1% 0.941+0.52%

−0.53% ±1.8% 4.70+0.90%
−0.96% ±1.8%

W −H H 0.198+1.2%
−1.3% ±2.7% 0.568+1.9%

−2.0% ±2.1% 3.30+3.5%
−4.3% ±1.9%

t t̄ H 0.949+1.7%
−4.5% ±3.1% 5.24+2.9%

−6.4% ±2.5% 82.1+7.9%
−7.4% ±1.6%

t j H H 0.0367+4.2%
−1.8% ±4.6% 0.254+3.8%

−2.8% ±3.6% 4.44+2.2%
−2.8% ±2.4%

Table 10.1: Signal cross sections (in fb) for various H H production mechanisms (from Chapter 1).

further reduction of such uncertainties to the percent level. In Fig. 10.1(right) the differential mH H

distribution is shown for different values of the Higgs self-coupling. At high mH H the s-channel

“triangle” contribution is suppressed and the box diagram dominates. Conversely at low mH H the

triangle diagram, that contains information on the Higgs self-coupling is enhanced. Information

on the Higgs self-coupling can thus be extracted from the differential mH H distribution.

The Higgs self-coupling can be probed via a number of different Higgs boson decay channels.

Given the small cross section, typically at least one of the Higgs bosons is required to decay to a

pair of b-quarks. The bb̄γγ decay mode has been singled out as the golden channel despite the

small branching ratio (BR = 0.25%). The second most sensitive decay mode is bb̄τ+τ− with a large

branching fraction (BR ≈ 6%). Other sensitive final states include bb̄bb̄ and bb̄Z Z∗ (4`).

The results are presented in terms of the achievable precision on the self-coupling modifier κλ.

The results of 27 TeV (HE-LHC) and 100 TeV (FCC-hh) studies are summarised in Table 10.2. Projec-

tions at 27 TeV colliders studies are extracted from Ref. [578] and the recently published in Ref. [176].

Most of the material presented in the following section summarises the results obtained as part of

the 100 TeV collider Conceptual Design Report studies (CDR) FCC-hh detector performance stud-

ies [579] and the Ref. [580].

HE-LHC (27 TeV, L = 15 ab−1) FCC-hh (100 TeV, L = 30 ab−1)

δκλ 10-20% 5-7%

Table 10.2: Expected precision on the direct Higgs self-coupling measurement at future 27 and 100
TeV p −p colliders.
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10.1 The Higgs-self coupling at
p

s = 27 TeV

F. Maltoni, D. Pagani, M. Selvaggi, A. Shivaji, X. Zhao

The results presented in Chapter 8 performed in the context of HL-LHC have been extended to

provide estimates of the prospects at the HE-LHC, assuming a centre of mass collision energy of 27

TeV and L = 15 ab−1 of data [176].

The detector performance is assumed to be that of the HL-LHC ATLAS detector. Comparisons

between simulation at centre of mass energy of 14 and 27 TeV have been performed and have shown

that the kinematics of the Higgs boson decay products, as well as the H H invariant mass distribu-

tion, are similar. However the Higgs particles produced in double Higgs production tend to point

more frequently in the forward region at 27 TeV, which slightly decreases the acceptance (by around

10%). This effect has not been taken into account and the impact is expected to be small. The event

yields for the various background processes have been scaled by the luminosity increase and the

cross section ratio between the two centre of mass energies.

Without including systematic uncertainties a significance of 7.1 and 10.7 standard deviations

has been found for the bb̄γγ and bb̄τ+τ− channels respectively. The hypothesis of no Higgs self-

coupling is expected to be excluded by these channels with a significance of 2.3 and 5.8 standard

deviations respectively. Finally the κλ parameter is expected to be measured with a 68% CL pre-

cision of δκλ ≈ 40% and δκλ ≈ 20% for the two channels respectively. Fig. 10.2 shows that the κλ
parameter could be measured with a precision of 10 to 20% under these assumptions. It should be

emphasised that these results rely on assumptions of experimental performance in very high pileup

environment O(800-1000) that would require further validation with more detailed studies. We also

stress that no systematic uncertainties have been considered.

In contrast, phenomenological studies [578] focusing on the bb̄γγ channel alone find δκλ ≈
15%. Projections for the HE-LHC assuming the same uncertainties as for the HL-LHC (see Chap-
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ter 8), have been discussed in Ref. [176] and are shown in Figures 10.3. Inclusive and differential

single Higgs measurements are shown in the left plot. A global fit that includes the effect of all

possible deviations from the SM, gives at best a precision of 200% on the self-coupling. If only the

self-coupling modifier is allowed to vary, one finds 50% in the best case scenario using differen-

tial single Higgs information. The right plot shows a comparison of the achievable precision using

single and double Higgs measurements. Double Higgs production dominates the sensitivity with a

10-20% precision, depending on the assumed scenario of systematic uncertainties.

10.2 The Higgs self-coupling at
p

s = 100 TeV

All studies have been performed using simulation assuming an integrated luminosity L = 30 ab−1

at
p

s = 100 TeV assuming the reference Future Circular Collider hh (FCC-hh) detector [581]. The

detector simulation has been performed with the fast simulation tool DELPHES [522] using the

reference FCC-hh detector parameterisation. The signal samples have been generated at leading

order with MADGRAPH5_aMC@NLOand PYTHIA8 accounting for the full top mass dependence,

for several values of the self-coupling modifier, κλ. A self-coupling dependent K-factor to match

NNLL+NNLO accuracy was been derived from [24] and applied to the signal samples.

10.2.1 H H → bb̄γγ
G. Ortona, M. Selvaggi

The bb̄γγ decay mode provides a very clear signature of two photons and two b-jets in the final

state allow the large background rates to be controlled. The main backgrounds are γγ+jets, γ+ jets

(with at least one jet being mis-identified as a photon) as well as single Higgs production. The t t̄ H

sample was also generated at LO with up to one extra jet merged with the parton shower. The latest

NLO cross sectionσt t̄ H = 34 pb was used for this sample [580]. The gluon-gluon fusion single Higgs

contribution was generated at LO in the infinite top mass approximation with an extra bb̄ pair. The

VH sample has been produced at LO with up to two extra jet merged. The VBF contribution was

found to be negligible. The QCD backgrounds γγ+jets, and γ+ jets are simply generated at LO. All

samples have been generated using the 5 flavour scheme (5F) with a vanishing b-quark mass.
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Figure 10.4: Left: Di-jet system invariant mass spectrum before applying the di-jet invariant mass
selection. Di-Higgs (centre) and di-photon (right) candidates invariant mass spectra after applying
all selection criteria.

Detector and performance assumptions The FCC-hh detector is assumed to have a simi-

lar performance to the HL-LHC detectors. The photon identification efficiency is assumed to be

εγ = 95% for |η| < 2.5 and εγ = 90% for 2.5 < |η| < 4.0 regardless of the photon pT. The light

jet to photon mis-identification probability (fake-rate) is parameterized by the function ε j→γ =
0.002exp(−pT[GeV]/30). We assume a resolution on the di-photon pair invariant mass δmγγ = 1.3

GeV. The b-tagging efficiency εb and the light (charm) mis-tag rates εl (c)→b are assumed to be εb = 85%

and εl (c)→b = 1 (5)%. These numbers are similar to what has been assumed for the HL-LHC detec-

tors.

Event selection and signal extraction Events are required to contain at least two isolated pho-

tons and two b-tagged jets. Jets are clustered using particle-flow candidates with the anti-kT algo-

rithm with radius parameter R=0.4. We required pT(γ,b) > 30 GeV and |η(γ,b)| < 3.0. The Higgs

candidates are formed from the two jets and photons with highest pT(γ,b). The leading photon

and b-jet are required to have pT(γ,b) > 60 GeV, and the di-photon and di-jet pairs pT(γγ,bb̄) > 125

GeV. In order to suppress the t t̄H background, we veto leptons with pT(`) > 25 GeV and |η(`)| < 3.0

and require ∆Rbb̄ < 2.0. The jet pair mbb̄ is shown in Fig. 10.4 (left). Finally, we apply a window

cut on the invariant mass of the bb̄ pair 100 < mbb̄ < 130 GeV. The signal extraction is performed

via a two dimensional likelihood fit over the the photon pair and the Higgs pair invariant masses,

mγγ and mγγbb̄ , shown in Fig. 10.4 (centre) and (right). At the LHC the 2D distribution (mbb̄ , mγγ)

is fitted to maximally discriminate against background and optimise the precision on the signal

strength (see Sec. 5.2.5). The strategy differs at the FCC-hh where differential information on the

mH H distribution becomes accessible. The signal shape is parameterised by a Gaussian and the

sum of a Landau and an exponential distribution respectively.

Results and discussion The negative log-likelihood (NLL) distribution for the parameter κλ
with respect to the best-fit value obtained for varying systematic effects, background normalisa-

tions and detector assumptions is shown in Figures 10.5 and 10.6. The 1σ and 2σ lines correspond

to the 68% and 95% confidence levels (CL) respectively.

Figure 10.5 (left) shows the sensitivity obtained with different assumptions about the uncertain-

ties. With only the statistical uncertainty (blue curve), we find δκλ = 5.5%. When a 1% systematic

uncertainty on the signal normalisation is included (red curve) the expected precision decreases to

δκλ = 6%. The signal normalisation includes both theoretical uncertainties on the production cross

section as well as the uncertainty on the integrated luminosity. An additional uncertainty of 1%
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Figure 10.5: Expected precision on the Higgs self-coupling modifier κλ with no systematic uncer-
tainties (only statistical), 1% signal uncertainty, 1% signal uncertainty together with 1% uncertainty
on the Higgs backgrounds (left) and assuming respectively ×1, ×2, ×0.5 background yields (right).)

on the single Higgs backgrounds normalisation (green curve) is shown under the assumption that

the QCD background can be extrapolated from a control sample defined by |mγγ−mH | > 10 GeV,

with high statistics into the signal region. For the single Higgs background defining such a control

sample is more challenging and we therefore assume an uncertainty of 1% on the normalisation,

motivated by expected precision on these processes at the FCC-hh [582]. In this scenario we find

an expected precision δκλ = 6.5%. Figure 10.5 (right) shows how the precision is affected by varying

the overall background yields by factors of 2 and 0.5 and find an impact on the overall κλ precision

of ≈±1%.

Figure 10.6 shows the impact of detector performance related assumptions on the sensitiv-

ity. Figure 10.6 (left) shows the impact of degrading the energy resolution of the electromagnetic

calorimeter, which affects the δmγγ resolution. Figure 10.6 (centre) shows the impact of varying the

photon reconstruction efficiency and Fig. 10.6 (right) shows the impact of varying the jet-to-photon

fake rate. Each of these scenarios degrades the precision on the self-coupling by 1-2%. These less

optimistic performance assumptions roughly correspond to the expected performance of the AT-

LAS and CMS detectors at HL-LHC (see Chapter 8).

To summarise, within the stated assumptions on the expected performance of the FCC-hh de-

tector, a precision on the Higgs self-coupling of δκλ = 5% in the H H → bb̄γγ channel can be

achieved.

10.2.2 H H → bb̄Z Z (4`)
L. Borgonovi, E. Fontanesi

The large Higgs pair production cross section at 100 TeV allows for rare but cleaner final states

to become accessible. One example is the H H → bb̄Z Z (4`) decay channel (where ` = e±, µ±).

This channel is not accessible at the HL-LHC. Despite a small cross section at the FCC-hh (σbb̄4` =
178 ab), the presence of four leptons in association with two b-jets leads to a very clean final state

topology allowing to maintain a rather good signal selection efficiency while controlling the back-

ground. The main backgrounds processes are t t̄ (bb̄)H(4`), gg(H)+bb̄, Z(bb̄)H(4`) and t t̄ Z (``),

followed by minor negligible contributions such as 4`+ bb̄ continuum, t t̄ (b̄`ν`b`ν`)H(``) and

t t̄ZZ(4`).
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Figure 10.6: Expected precision on the Higgs self-coupling modifier κλ obtained by varying the
photon reconstruction performance. Left: Comparison of two scenarios with nominal (∆mγγ =
1.3 GeV) and degraded (∆mγγ = 2.9 GeV) energy resolution. Centre: Comparison of two scenarios
with nominal (εγ = 95%) and degraded (εγ = 85%) photon reconstruction efficiency. Right: Compar-
ison of three scenarios with nominal, degraded (×5) and improved (×0.2) photon mis-tag rate.

The t t̄ H , g g (H) + bb̄, Z (bb̄)H and t t̄ Z (``) background samples were generated at LO and

higher order radiative corrections were accounted for by applying K-factors of K (t t̄ H) = 1.22, K (g g H) =
3.2 and K (Z H) = 1.1 [580]. The contribution of the 4`+jets (Z Z∗, Z∗Z∗, Z Z ) continuum is evalu-

ated using a ```` j j (`= e±,µ±) sample, generated with the four leptons invariant mass in the range

[100, 150] GeV and only heavy flavour partons (b/c). This background contribution was found to

be negligible. The cross sections are summarised in Table 10.3.

H H → bb̄Z Z (4`) t t̄ H → bb̄4` g g (H)+bb̄ → bb̄4` Z H → bb̄4` t t̄ Z → bb̄4`

0.178 4.013 0.369 0.071 2594

Table 10.3: Cross section (fb) times branching ratio for the signal and the background pro-
cesses [580].

Event Selection Events are required to have exactly four identified and isolated muons (elec-

trons) with pT > 5(7) GeV and |η| < 4.0. Z boson candidates are formed from pairs of opposite-

charge leptons (`+`−). At least two di-lepton pairs are required. The Z candidate with the invariant

mass closest to the nominal Z mass is denoted as Z1; then, among the other opposite-sign lepton

pairs, the one with the highest pT is labelled as Z2. Z candidates must pass a set of kinematic re-

quirements that improve the sensitivity to the Higgs boson decay: the Z1 and Z2 invariant masses

have to be in the [40, 120] GeV and [12, 120] GeV ranges, respectively. At least one lepton is required

to have pT > 20 GeV and a second is required to have pT > 10 GeV. A minimum angular separation

between two leptons is required to be ∆R(`i ,` j ) > 0.02. The four leptons invariant mass, m4`, is

requested to be in the range 120 < m4` < 130 GeV.

At least two identified b-jets, reconstructed with the anti-kT algorithm inside a cone of radius

R = 0.4, are required. Their invariant mass is required to be in the range 80 < mbb̄ < 130 GeV and

the angular distance between the two b-jets has to be 0.5 < ∆Rbb̄ < 2. These cuts are particularly

effective to reject the t t̄ b̋ackground.

Results The invariant mass spectrum of the four leptons after the full event selection is shown

in Fig. 10.7 (left). The NLL on the self-coupling modifier κλ is shown in Fig. 10.7, (centre), for three

different assumptions for the systematic uncertainties:
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Figure 10.7: Left: Distribution of the four leptons invariant mass for the H H → bb̄Z Z (4`) signal
and all the analyzed background processes after the full selection for 30 ab−1. Centre: Expected
precision on the Higgs self-coupling. Right: Comparison of two scenarios (without systematic un-
certainties) with a cut on muon (electron) pT larger than 5 (7) GeV and 10 (10) GeV.

1. Statistical uncertainties only

2. 1% systematic uncertainty on signal and background: ∆S
S = ∆B

B = 1%

3. 3% systematic uncertainty on signal and background: ∆S
S = ∆B

B = 3%

The expected precision on the Higgs self-coupling modifier κλ without systematic uncertain-

ties is 14% at 68% CL, while when assuming a 1% systematic uncertainty on the signal and the

backgrounds the precision on the measurement of κλ becomes 15% while with a 3% systematic

uncertainty it decreases to 24%. Figure 10.7 (right) shows how the precision on the self-coupling

is affected by the variation of the detector configuration (for example, assuming a larger tracker

and/or higher magnetic field and consequently a minimum pT for muons and electrons of 10 GeV).

The precision on κλ degrades from 14% to 15% at 68% CL, considering statistical uncertainties only.

10.2.3 H H → bb̄bb̄ +jet
G. Ortona, M. Selvaggi

The fully hadronic channel has a high rate given the large Higgs branching fraction to a bb̄ pair, but

the overwhelming multi-jet background makes this measurement very difficult. This background

can be reduced by requiring the Higgs to be boosted such that the decay products are contained

inside a single, large-radius jet. A boosted configuration in which the both Higgs bosons have a

large boost and recoil against each other can be effective in terms of background rejection but it

provide low sensitivity to the Higgs self-coupling since the di-Higgs rate dependence on the trilinear

largely originates from configurations with low mH H . Following the approach in [583], we study the

configuration where the Higgs pair recoils against one or more jets, forcing the pair to have a small

invariant mass. The main backgrounds include at least four b-jets, where the two bb̄ pairs come

from either strong production (QCD), mainly from g → bb̄ splittings, either QCD and electroweak

production (QCD+EWK), e.g. Z bb̄, or pure EWK production, e.g. Z H or Z Z .

The signal sample consists of hh+jet and was generated taking into account the full top mass

dependence at leading order (LO) with the jet p jet
T (or equivalently the di-Higgs p H H

T ), pT > 200 GeV,

accounting for the full top mass. Higher order QCD corrections are accounted for with a K-factor

K =1.95 applied to the signal samples [583], leading to σH H j = 38 fb for p jet
T > 200 GeV and κλ=1.

The LO cross sections used for the backgrounds are computed with p jet
T > 200 GeV and areσbb̄bb̄ j (QCD) =

443.1 pb, σbb̄bb̄ j (QCD+EWK) = 6.2 pb and σbb̄bb̄ j (EWK) = 72 fb.
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Figure 10.8: 2-to-1 (τ2,1) subjettiness ratio (left) and soft-drop mass (left) spectra of the leading
Higgs large-radius jet candidate.

Event selection and signal extraction Jets are clustered using particle-flow candidates with

the anti-kT algorithm with a large parameter R = 0.8. The large cone size is chosen such that a

large fraction of the Higgs decay products will be included in the jet, hence the denomination “fat-

jets”. Events are first pre-selected by requiring at least two central fat jets that contain at least two

b-subjets. We assume a conservative 70% b-tagging efficiency. The fat-jets are selected if p j
T >

300 GeV and |η j | < 2.5. The two highest momentum double b-tagged fat-jets constitute our Higgs

candidates. We further ask the di-jet pair to be sufficiently boosted, p j j
T > 250 GeV, and the leading

jet to have a p j1
T > 400 GeV. The b-tagging performance inside boosted jets is assumed to be equal

to that of the resolved case. This is motivated by the relatively small boost of the Higgs fat-jets.

The two fat-jets must have a small opening angle ∆R( j1, j2) < 3.0. Finally, given that QCD splittings

are characterized by a large momentum imbalance in the daughter partons, we require a small

momentum imbalance (p j1
T −p j2

T )/p j j
T < 0.9.

Higgs jets are identified with standard boosted topologies techniques introduced in Chapter 4.2.1.

The N-subjettiness ratio τ2,1 observable [584] is shown in Fig. 10.8 (left) and the soft-drop mass mSD

is shown in Fig. 10.8 (right). Higgs jets are tagged by selecting jets with τ2,1 < 0.35 and 100 < mSD <
130 GeV, which yields signal tagging efficiency of 6% and a background mis-identification rate of

0.1%. Each of the two fat jets is required to be tagged. The signal extraction is performed via a

one-dimensional likelihood fit on the di-Higgs mass observable mH H , shown in Fig. 10.9 (left).

Results and discussion The negative log-likelihood (NLL) distribution of the parameter κλ is

shown in Fig. 10.9 (right). For the nominal detector and background yield assumptions we find

an expected precision of the self-coupling of δκλ = 30%. The uncertainty on the QCD background

yield is parameterised by varying the overall normalisation by factors of 2 and 0.5 yielding an impact

of the overall κλ precision by ≈±10%.

This measurement can be improved by extending the analysis in the semi-resolved phase space

region, where one Higgs is boosted and forms a fat-jet and the other is resolved, and into the fully

resolved region with four b-jets in the final state.
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Figure 10.9: Left: Invariant mass spectrum of the di-Higgs pair constructed from the two large-
radius jet Higgs candidates after the full event selection. Right: Expected precision on the Higgs
self-coupling modifier κλ assuming respectively ×1, ×2, ×0.5 the nominal background yields.)

10.2.4 H H → bb̄W W ∗

B. Di Micco

For the bb̄W W ∗ decay mode, only the channel where one W boson decays hadronically and the

other leptonically is considered. The dominant backgrounds are t t̄ and multi-jet background, with

smaller contributions from Drell-Yan and single top-quark production. Events are required to meet

the following requirements: pT(W W ) > 150 GeV, an invariant mass of the two b-jets system of 80 <
mbb̄ < 180 GeV and an angular distance between the two b-jets system of ∆Rbb̄ <2.0.

The signal selection is optimised using a BDT. The input variables used by the BDT are the lep-

tons, jets and neutrino 4-momenta as well as the azimuthal angular distance between various ob-

jects. The BDT is trained to discriminate the signal from the dominant background t t̄ . The event

selection on the BDT output score has been optimised to ensure a high S/
p

B ratio (where S is the

number of signal events and B the number of background events after the full event selection).

An example of an input distribution used in the BDT is shown in Fig. 10.10 (a), which is the

angular separation between the two W bosons. The output BDT distribution for the signal and

background is shown in Fig. 10.10 (b). With L = 30 ab−1, a significance of 5σ can be achieved using

the bb̄W W ∗ decay mode, corresponding to a precision of δκλ = 40%

10.2.5 Summary of 100 TeV studies

Reference [583] proposed using a boosted H H final state to enhance the self-coupling sensitivity

in the case of the bb̄τ+τ− final state, following the approach discussed in Sec. 10.2.3. A precision

δκλ = 8% can obtained at 68%CL in this decay mode.

Reference [578] performs a kinematic analysis of various H H distributions in the bb̄γγ final

state, considering quantities such as the invariant mass mH H , the Higgs pT and various angular

correlations. The projected 1σ sensitivity at 100 TeV (L = 30 ab−1) is found to be δκλ = 5%, consis-

tent with the results of the FCC-hh detector performance study, and with previous studies found in

the literature [580, 585].

A summary of the target precision in the measurement of κλ is given in Table 10.4. Within the

stated assumptions on the expected performance of the FCC-hh detector, a precision target on the
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Figure 10.11: Examples of two-loop diagrams contributing to double Higgs production.

Higgs self-coupling of δκλ = 5% appears achievable, by exploiting several techniques and decay

modes, and assuming the future theoretical progress in modelling signals and backgrounds.

bb̄γγ bb̄τ+τ− bb̄Z Z∗ (4`) bb̄W W ∗ (2j`ν) bb̄bb̄ +jet

δκλ 6% 8% 14% 40% 30%

Table 10.4: Precision of the direct Higgs self-coupling measurement in g g →H H production atp
s = 100 TeV with L = 30 ab−1 for various decay modes.

10.3 Other Probes of Multi-Linear Higgs Interactions

The quartic coupling F. Maltoni, D. Pagani, A. Shivaji, X. Zhao

At hadron colliders, di-Higgs boson production provides a direct access to the Higgs cubic self-

coupling while the Higgs quartic self-coupling can be in principle directly probed through triple

Higgs production [15, 17, 586–589]. On the other hand, also di-Higgs production is sensitive to the

Higgs quartic coupling via EW corrections; its measurement can thus provide an alternative way

to constrain the quartic coupling indirectly (see Fig. 10.11). The combined constraints that can be

achieved at a future 100 TeV collider on the trilinear and quartic coupling for the case of gluon-

gluon fusion, based on the results of Ref. [160] is presented in what follows 1. This study relies on

the theoretical framework (in particular the renormalization procedure) introduced in [134] and

1A similar study has also appeared in Ref. [177]. Differences among these two studies are commented in Ref. [160].
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extends the idea of probing the trilinear Higgs self coupling (λ3) via precise single Higgs measure-

ment [128–131, 133] to the case of the quartic (λ4) and di-Higgs production.

We consider the loop corrections to di-Higgs production through gluon-gluon fusion in the EFT

framework, taking into account both the c6 and c8 dependence in order to independently vary the

cubic and quartic self-couplings. Indeed, in our framework, c6 and c8 can be directly linked to the

self couplings via the relations κ3 ≡ λ3

λSM
3

= 1+ c6 and κ4 ≡ λ4

λSM
4

= 1+ 6c6 + c8 (see Equation 2.22) 2.

Our phenomenological predictions are based on the following approximation σ
pheno
NLO for the cross

section:

σ
pheno
NLO =σLO +∆σc6

+∆σc8
(10.1)

where the quantityσLO is the LO cross section, and∆σc8
captures all c8 contribution at NLO and

∆σc6
corresponds to the leading NLO contribution from c6 for large values of c6, or equivalently,

large values of λ3.

We consider here only the case of 100 TeV; results for HL-LHC can be found in ref. [160]. The

signal extraction is performed in the bb̄γγ channel assuming an integrated luminosity L = 30 ab−1

via a fit on the mH H distribution, following the approach described in Ref. [110].

In Fig. 10.12, we show the constraints that can be obtained on κ3 and κ4 (assuming the SM

case) employing the indirect method described here. For comparison we also include what can be

achieved via direct triple Higgs production. For the latter, we have followed the approach presented

in Ref. [580, 590] based on the bb̄bb̄γγ signature, assuming an optimistic (80%) and a conservative

(60%) scenarios on the b-tagging efficiency. As can be seen in Fig. 10.12, the bounds obtained from

triple Higgs production strongly depend on the b-tagging efficiency.

Within the conservative scenario the bounds obtained from double Higgs are stronger than

those obtained with the conservative assumption in the triple Higgs analysis. In particular, for the

Higgs quartic interaction we find that:

κ4 ∈
[−2.3,4.3

]
at 68%CL (10.2)

We stress however that double and triple Higgs production provide complementary constraints and

their combination can be used to improve the bounds on the (κ3,κ4) plane.

2It should to note that κ3 and κ4 can also be affected by the cH coefficient as in Equation 2.11 and neglected here.
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Figure 10.13: Distribution of the mH H (left) and posterior probability on the determination of δc2V

at the FCC-hh (see Equation 5.16).

The H HV V coupling Given the rates shown in Table 10.1, the next process of interest for the

production of Higgs pairs is vector boson fusion. A study of this process focusing on the sensitivity

to higher-dimension operators at the HL-LHC, was presented in Ref. [455] and already discussed

in Sec. 5.6. We simply remind here that the mH H differential observable is a powerful probe of the

gauge structure of the Higgs sector. The mH H distribution is reconstructed in the H H → bb̄bb̄ final

state.

Boosted-jet tagging techniques – justified by the high pT of the Higgs bosons in the relevant

kinematic region – have been applied to minimise the dominant backgrounds (4b, 2b2j, tt̄2j, Hjj).

An example of the impact of δc2V
= c2

2V − cV 6= 0 (as defined in Sec. 5.6, Eq. 5.16 as δc ) is shown

in Fig. 10.13, where the di-Higgs mass spectrum in the SM and in a cV = 1, c2V = 0.8 scenario are

compared to the expected backgrounds (in the parton-level simulation). A study of the shape of the

mass distribution results in the probability density distribution shown in the right plot of Fig. 10.13.

Several robustness tests have been performed, including assigning large uncertainties on the back-

ground rates. The signal itself is already known with a precision at level of few percent (see Ta-

ble 10.1). Since cV will be measured with a few per-mille precision at FCC-ee (independently of

whether it agrees or not with the SM), and given that the cubic Higgs self-coupling contribution

is suppressed at the multi-TeV mass values considered in this analysis, the constraints on δc2V
at

FCC-hh will translate directly into a constraint on c2V of better than ±1% which constitutes a large

improvement compared to the 40% precision that can be obtained at the HL-LHC.

The t t̄ H H coupling S. Banerjee, F. Krauss, M. Spannowsky

The t t̄ H H four-point vertex is often neglected as it is not present in the SM. However, this

vertex is accessible upon including the dimension 6 operator [450, 591–593]. This vertex arises for

example when considering the non-linear realisation of the SU (2)×U (1) symmetry [141, 594–597],

i.e., defined in Sec. 2.1.3, Eq. 2.19. While in a linearised realisation the t t̄H and the t t̄ H H vertices (ct

and ct t ) are correlated, one may probe these couplings independently in purview of the non-linear

EFT formalism. In Fig. 10.14 we show the various possible vertex deformations for the pp → t t̄ H H

channel.

In this section, without varying the Ga
µνGµν

a hh, H H H and t t̄ H vertices we want to see how far

the t t̄ H H coupling can be constrained at
p

s = 100 TeV. Unlike the other di-Higgs processes, this

channel shows a growth in cross section for |ct t | > 0 or for |κλ| > 0 (see Fig. 10.15). The t t̄ H H

cross section increases by a factor of ∼ 75 upon going from the 14 TeV to the 100 TeV machine (see

Table 10.1) .

Here we consider the final state comprised of six b-tagged jets, one isolated lepton (e,µ), at
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Figure 10.14: Feynman diagrams showing the impact of the three effective vertices, i.e., H H H , t t̄
H H and g g H H .
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Figure 10.15: σ/σSM as a function of κλ (left) and κt t̄ H H [GeV−1] (right), where κt t̄ H H =−mt ct t /v2.

least two light jets and /E T . We employ the technique outlined in Refs. [450, 593] to reconstruct the

two Higgs bosons and the hadronic top. There are several backgrounds at play, i.e., t t̄ Z Z , t t̄ H Z

(b-quarks coming from Z /H decays), t t̄ Hbb̄, t t̄ Z bb̄, t t̄bb̄bb̄ (b-quarks produced through gluon

splitting in QCD) and W plus four b-jets where W decays leptonically. Besides, there are fake sub-

dominant backgrounds, e.g., t t̄ cc̄cc̄ and W ±cc̄cc̄ (c mis-identified as b) or t t̄bb̄, t t̄ H , t t̄ Z , and

W±bb̄ associated with light jets. For the various scale choices and the details of the analysis, we

refer the readers to Ref. [593]. A log-likelihood CLs hypothesis test considering the SM as the null

hypothesis, assuming κλ = ct = 1, and zero systematic uncertainties gives at 68% CL:

−0.24 TeV−1 < κt t̄hh < 0.60 TeV−1 30/ab. (10.3)

where κt t̄ H H =−mt ct t /v2.



Higgs self-coupling at future colliders:
Summary

M. E. Peskin, M. Selvaggi

Future colliders will play a key role in the measurement of the Higgs self-coupling and the investi-

gation of the nature of the Higgs potential. There are two methods to probe the Higgs self-coupling,

using the measurement of H H production – requiring parton centre of mass energy sufficiently far

above the di-Higgs production threshold to provide a useful event sample – and using a global fit

to single-Higgs measurements – requiring a high level of control over other new physics effects that

contribute to the relevant observables.

In the past Chapters, we have evaluated how these methods can be used at proposed future

hadron and e+e− colliders. To summarise the capabilities of the various colliders we adopt the

scheme introduced in Sec. 3.8. The estimates of the precision on the self-coupling achievable at the

various future colliders is presented in Table 10.5.

By the end of Run 3 in 2023, the LHC will have collected, by combining the ATLAS and CMS

datasets, around 600fb−1 of integrated luminosity. Naive extrapolations of current results [68, 69]

indicate that double Higgs production as predicted by the SM will not be observed with the Run

3 dataset. Assuming current detector performance, it will be possible to set an upper limit on the

di-Higgs production cross-section of 1-3 times the SM value at 95 % CL at best. According to our

convention, such sensitivity would qualify as a bronze type measurement. A measurement of the

Higgs self-coupling is thus out of reach within Phase I LHC and requires either a larger dataset,

or/and a higher collision energy.

The HL-LHC will collide protons at 14 TeV (which constitutes a moderate although non-negligible

increase in centre of mass energy with respect to 13 TeV at current LHC), and is expected to produce

an integrated luminosity of 3 ab−1 per interaction point.

Such a large increase in the luminosity will allow for the milestone observation of double Higgs

production at 5σ. This would correspond to observation at the 95%CL that the Higgs self-coupling

is nonzero. Still, the corresponding precision on the Higgs self-coupling will be only of order 50%,

barely approaching the silver level of precision. This measurement will be largely driven by the mea-

surement of H H production. The projections for individual decay channels and their combination,

including indirect self-coupling constraints from single Higgs production have been summarised

in Chapter 8.

The goal for future machines beyond the HL-LHC should be to probe the Higgs potential quan-

titatively. This requires at least gold quality precision for the self-coupling parameter. Such level of

precision is achievable through the measurement of H H production at the highest energy lepton

machines (ILC1000 or CLIC3000) and hadron machines (FCC-hh).

The proposed e+e− Higgs factories—CEPC, ILC, CLIC, and FCC-ee—can access the Higgs self-

227



228 Chapter 10. Higgs self-coupling at future hadron colliders

collider single-H H H direct combined
HL-LHC 100-200% 50% 50%
CEPC240 49% − 49%

ILC250 49% − 49%
ILC500 38% 27% 22%
ILC1000 36% 10% 10%
CLIC380 50% − 50%
CLIC1500 49% 36% 29%
CLIC3000 49% 9% 9%
FCC-ee 33% − 33%

FCC-ee (4 IPs) 24% − 24%
HE-LHC - 15% 15%
FCC-hh - 5% 5%

Table 10.5: Sensitivity at 68% probability on the Higgs cubic self-coupling at the various future
colliders, as discussed in Chapters 8–10. Values for single-Higgs determinations below the first line
are taken from [567]. These values are quote here as combined with an independent determination
of the self-coupling with uncertainty 50% from the HL-LHC. Please see the discussion in the text on
the interpretation of this table.

coupling through analysis of single-Higgs measurements. This relies on the fact that these colliders

will measure a large number of individual single-Higgs reactions with high precision, allowing a

highly model-independent analysis of possible new physics contributions. It will be important to

have data at two different CM energies to reach the silver level of precision. This requires reaching

the second stage of a staged run plan: 365 GeV for FCC-ee, 500 GeV for ILC, 1.5 TeV for CLIC. Run-

ning beyond 240 GeV is not in the CEPC baseline plan. It should be added to achieve a competitive

result. For FCC-ee, running with 4 IPs has been considered to increase the data set and reach a

precision of 24% on the Higgs self-coupling. All of these points have been reviewed in Chapter 9.

In Chapter 10 we have reviewed the prospects for future energy hadron colliders beyond LHC,

in particular, the High Energy LHC (27 TeV) and the FCC-hh (100 TeV). These machines are also

planned to produce higher luminosities than the HL-LHC. The studies reported in Chapter 10 have

indicated that respectively 5% (FCC-hh) and 15% (HE-LHC) precision on the Higgs self-coupling

are within reach at those machines, based on the method of measuring the H H production cross

section.

Some caution is necessary in directly comparing the numbers given in Table 10.5. The values

for the single-Higgs method given in the lines below HL-LHC are combined with the HL-LHC pro-

jected error of 50% [567]. Thus, only values well below 50% represent a significant improvement.

The various estimates in the table are computed using different assumptions on the inclusion of

SMEFT parameters representing other new physics effects. We have tried to clarify these in the dis-

cussions of the individual analyses. In particular, many of the numbers from H H production are

derived from fits including the single parameter κλ only. At e+e− colliders it is more straightforward

to simulate the relevant backgrounds, but we have less experience with the high-energy regime

studied here. The uncertainties in the direct determinations at e+e− colliders are computed using

full-simulation analyses based on current analysis methods. These have much room for improve-

ment when the actual data is available. The analyses at hadron colliders are based on estimates

of the achievable detector performance in the presence of very high pileup. These are extrapola-

tions, but the estimates are consistent with the improvements in analysis methods that we have

seen already at the LHC.

Despite the uncertainties, it is clear that the highest-energy e+e− and hadron colliders can

achieve the gold level of precision set out in Sec. 3.8. With new resources, and with patient im-
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provement of the experimental state of the art, we will achieve an excellent understanding of the

underlying physics of spontaneous symmetry breaking generated by the Higgs boson.



230 Chapter 10. Higgs self-coupling at future hadron colliders



Acknowledgements

This research was supported in part by the COST Action CA16201 (“Particleface") of the European

Union. Monika Blanke, Simon Kast, Susanne Westhoff and José Zurita are supported in part by the

Heidelberg Karlsruhe Strategic Partnership (HEiKA) through the research bridge “Particle Physics,

Astroparticle Physics and Cosmology (PAC)”. The research of Monika Blanke and Susanne Westhoff

is supported in part by the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-

tion) under grant 396021762 – TRR 257 “Particle Physics Phenomenology after the Higgs Discov-

ery”. Simon Kast acknowledges the support of the DFG-funded Doctoral School “Karlsruhe School

of Elementary and Astroparticle Physics: Science and Technology” (KSETA). Susanne Westhoff is

supported in part by the Carl Zeiss foundation through an endowed junior professorship (Junior-

Stiftungsprofessur). The work of Gerhard Buchalla has been supported in part by the Deutsche

Forschungsgemeinschaft (DFG) under grant BU 1391/2-2 (project number 261324988) and the DFG

Cluster Exc 2094 "ORIGINS”. Sally Dawson is supported by the U.S. Department of Energy under

Grant Contract DE-SC0012704. Christoph Englert is supported by the STFC under grant ST/P000746/1.

The research of Arnaud Ferrari is supported by Vetenskapsrådet (DNR 2015-03942). Pier Paolo Gi-

ardino is supported by the Spanish Research Agency (Agencia Estatal de Investigacion) through

the contract FPA2016-78022-P and IFT Centro de Excelencia Severo Ochoa under grant SEV-2016-

0597. The work of Seraina Glaus is supported by the Swiss National Science Foundation (SNF).

Ramona Gröber is supported by the “Berliner Chancengleichheitsprogramm”. Christophe Grojean

and Tim Stefaniak are supported by Deutsche Forschungsgemeinschaft (DFG, German Research

Foundation) under Germany‘s Excellence Strategy – EXC 2121 “Quantum Universe” – 390833306.

The research of Stefania Gori is supported by the National Science Foundation under the CAREER

grant PHY-1915852. Peisi Huang is supported in part by United States National Science Foun-

dation under grant PHY-1820891, and the National Science Foundation supported Nebraska EP-

SCoR program under grant number OIA-1557417. Michael Kagan is supported by the US Depart-

ment of Energy (DOE) under grant DE-AC02-76SF00515 and by the SLAC Panofsky Fellowship.

Jonathan Kozaczuk is supported by NSF grant PHY-1719642. Ian M. Lewis is supported in part

by United States Department of Energy grant number DE-SC0017988. Heather E. Logan is sup-

ported by the Natural Sciences and Engineering Research Council of Canada and by the H2020-

MSCA-RISE-2014 grant no. 645722 (NonMinimalHiggs). Andrew J. Long is supported at the Uni-

versity of Michigan by the US Department of Energy under grant DE-SC0007859. The work of

Davide Pagani has been supported by the Alexander von Humboldt Foundation, in the frame-

work of the Sofja Kovalevskaja Award Project “Event Simulation for the Large Hadron Collider at

High Precision”, and by the Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Re-

search Centre SFB1258. Michael Peskin is supported by the US Department of Energy (DOE) under

grant DE-AC02-76SF00515. Tania Robens is supported by the European Union through the Euro-

pean Regional Development Fund - the Competitiveness and Cohesion Operational Programme

(KK.01.1.1.06). Nausheen R. Shah is supported by Wayne State University and by the United States

Department of Energy under grant number DE-SC0007983. Ambresh Shivaji very much appreci-

231



232 Chapter 10. Higgs self-coupling at future hadron colliders

ates the support from MOVE-IN Louvain incoming postdoctoral fellowship co-funded by the Marie

Curie Actions of the European Commission. For Suyog Shrestha, the work was partially supported

by the U.S. Department of Energy through the grant DE-SC0011726. Kuver Sinha is supported in

part by United States Department of Energy grant number DE-SC0009956. Matthew Sullivan is

supported by the Kansas EPSCoR grant program. Maximilian Swiatlowski is supported by the Uni-

versity of Chicago and through the NSF grant PHY-1707981. Rafael Teixeira De Lima is supported

by the SLAC Panofsky Fellowship. Caterina Vernieri is supported by the SLAC Panofsky Fellowship.



Bibliography

[1] P. W. Higgs, Broken symmetries, massless particles and gauge fields, Phys. Lett. 12 (1964)

132–133.

[2] P. W. Higgs, Broken Symmetries and the Masses of Gauge Bosons, Phys. Rev. Lett. 13 (1964)

508–509.

[3] P. W. Higgs, Spontaneous Symmetry Breakdown without Massless Bosons, Phys. Rev. 145

(1966) 1156–1163.

[4] F. Englert and R. Brout, Broken Symmetry and the Mass of Gauge Vector Mesons, Phys. Rev.

Lett. 13 (1964) 321–323.

[5] G. S. Guralnik, C. R. Hagen, and T. W. B. Kibble, Global Conservation Laws and Massless

Particles, Phys. Rev. Lett. 13 (1964) 585–587.

[6] T. W. B. Kibble, Symmetry breaking in nonAbelian gauge theories, Phys. Rev. 155 (1967)

1554–1561.

[7] ATLAS Collaboration, Observation of a new particle in the search for the Standard Model

Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1–29,

arXiv:1207.7214 [hep-ex].

[8] CMS Collaboration, Observation of a new boson at a mass of 125 GeV with the CMS

experiment at the LHC, Phys. Lett. B 716 (2012) 30–61, arXiv:1207.7235 [hep-ex].

[9] M. Shaposhnikov and C. Wetterich, Asymptotic safety of gravity and the Higgs boson mass,

Phys. Lett. B 683 (2010) 196–200, arXiv:0912.0208 [hep-th].

[10] F. L. Bezrukov and M. Shaposhnikov, The Standard Model Higgs boson as the inflaton, Phys.

Lett. B 659 (2008) 703–706, arXiv:0710.3755 [hep-th].

[11] I. Masina and A. Notari, The Higgs mass range from Standard Model false vacuum Inflation in

scalar-tensor gravity, Phys. Rev. D 85 (2012) 123506, arXiv:1112.2659 [hep-ph].

[12] N. Cabibbo, L. Maiani, G. Parisi, and R. Petronzio, Bounds on the Fermions and Higgs Boson

Masses in Grand Unified Theories, Nucl. Phys. B 158 (1979) 295–305.

[13] D. Buttazzo, G. Degrassi, P. P. Giardino, G. F. Giudice, F. Sala, A. Salvio, and A. Strumia,

Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089, arXiv:1307.3536
[hep-ph].

[14] G. Degrassi, S. Di Vita, J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, and A. Strumia,

Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP 08 (2012) 098,

arXiv:1205.6497 [hep-ph].

233



234 Bibliography

[15] T. Plehn and M. Rauch, The quartic higgs coupling at hadron colliders, Phys. Rev. D 72 (2005)

053008, arXiv:0507321 [hep-ph].

[16] T. Binoth, S. Karg, N. Kauer, and R. Rückl, Multi-Higgs boson production in the Standard

Model and beyond, Phys. Rev. D 74 (2006) 113008, arXiv:0608057 [hep-ph].

[17] B. Fuks, J. H. Kim, and S. J. Lee, Probing Higgs self-interactions in proton-proton collisions at

a center-of-mass energy of 100 TeV , Phys. Rev. D 93 (2016) 035026, arXiv:1510.07697
[hep-ph].

[18] F. Maltoni, E. Vryonidou, and M. Zaro, Top-quark mass effects in double and triple Higgs

production in gluon-gluon fusion at NLO, JHEP 1411 (2014) 079, arXiv:1408.6542
[hep-ph].

[19] LHC Higgs Cross Section Working Group Collaboration, Handbook of LHC Higgs Cross

Sections: 4. Deciphering the Nature of the Higgs Sector, arXiv:1610.07922 [hep-ph].

[20] E. N. Glover and J. van der Bij, Higgs Boson Pair Production Via Gluon Fusion, Nucl. Phys. B

309 (1988) 282.

[21] O. J. P. Eboli, G. C. Marques, S. F. Novaes, and A. A. Natale, Twin Higgs Boson Production,

Phys. Lett. B197 (1987) 269–272.

[22] T. Plehn, M. Spira, and P. M. Zerwas, Pair production of neutral Higgs particles in

gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46–64, arXiv:9603205 [hep-ph].

[Erratum: Nucl. Phys.B531,655(1998)].

[23] S. Borowka, N. Greiner, G. Heinrich, S. Jones, M. Kerner, J. Schlenk, U. Schubert, and T. Zirke,

Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark

Mass Dependence, Phys. Rev. Lett. 117 (2016) 012001, arXiv:1604.06447 [hep-ph].

[Erratum: Phys. Rev. Lett.117,no.7,079901(2016)].

[24] S. Borowka, N. Greiner, G. Heinrich, S. P. Jones, M. Kerner, J. Schlenk, and T. Zirke, Full top

quark mass dependence in Higgs boson pair production at NLO, JHEP 10 (2016) 107,

arXiv:1608.04798 [hep-ph].

[25] J. Baglio, F. Campanario, S. Glaus, M. Mühlleitner, M. Spira, and J. Streicher, Gluon fusion

into Higgs pairs at NLO QCD and the top mass scheme, Eur. Phys. J. C 79 (2019) 459,

arXiv:1811.05692 [hep-ph].

[26] D. de Florian and J. Mazzitelli, Two-loop virtual corrections to Higgs pair production, Phys.

Lett. B 724 (2013) 306–309, arXiv:1305.5206 [hep-ph].

[27] D. de Florian and J. Mazzitelli, Higgs Boson Pair Production at Next-to-Next-to-Leading Order

in QCD, Phys. Rev. Lett. 111 (2013) 201801, arXiv:1309.6594 [hep-ph].

[28] J. Grigo, K. Melnikov, and M. Steinhauser, Virtual corrections to Higgs boson pair production

in the large top quark mass limit, Nucl. Phys. B 888 (2014) 17–29, arXiv:1408.2422
[hep-ph].

[29] D. de Florian, M. Grazzini, C. Hanga, S. Kallweit, J. M. Lindert, P. Maierhöfer, J. Mazzitelli,

and D. Rathlev, Differential Higgs Boson Pair Production at Next-to-Next-to-Leading Order in

QCD, JHEP 09 (2016) 151, arXiv:1606.09519 [hep-ph].



Bibliography 235

[30] M. Grazzini, G. Heinrich, S. Jones, S. Kallweit, M. Kerner, J. M. Lindert, and J. Mazzitelli,

Higgs boson pair production at NNLO with top quark mass effects, JHEP 05 (2018) 059,

arXiv:1803.02463 [hep-ph].

[31] L.-B. Chen, H. T. Li, H.-S. Shao, and J. Wang, Higgs boson pair production via gluon fusion at

N3LO in QCD, arXiv:1909.06808 [hep-ph].

[32] J. Baglio, A. Djouadi, R. Gröber, M. M. Mühlleitner, J. Quevillon, and M. Spira, The

measurement of the Higgs self-coupling at the LHC: theoretical status, JHEP 04 (2013) 151,

arXiv:1212.5581 [hep-ph].

[33] L.-S. Ling, R.-Y. Zhang, W.-G. Ma, L. Guo, W.-H. Li, and X.-Z. Li, NNLO QCD corrections to

Higgs pair production via vector boson fusion at hadron colliders, Phys. Rev. D 89 (2014)

073001, arXiv:1401.7754 [hep-ph].

[34] F. A. Dreyer and A. Karlberg, Vector-Boson Fusion Higgs Pair Production at N3LO, Phys. Rev. D

98 (2018) 114016, arXiv:1811.07906 [hep-ph].

[35] F. A. Dreyer and A. Karlberg, Fully differential Vector-Boson Fusion Higgs Pair Production at

Next-to-Next-to-Leading Order, Phys. Rev. D 99 (2019) 074028, arXiv:1811.07918
[hep-ph].

[36] H. T. Li and J. Wang, Fully Differential Higgs Pair Production in Association With a W Boson

at Next-to-Next-to-Leading Order in QCD, Phys. Lett. B 765 (2017) 265–271,

arXiv:1607.06382 [hep-ph].

[37] H. T. Li, C. S. Li, and J. Wang, Fully differential Higgs boson pair production in association

with a Z boson at next-to-next-to-leading order in QCD, Phys. Rev. D 97 (2018) 074026,

arXiv:1710.02464 [hep-ph].

[38] R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, O. Mattelaer, et al., Higgs pair production at the

LHC with NLO and parton-shower effects, Phys. Lett. B 732 (2014) 142–149,

arXiv:1401.7340 [hep-ph].

[39] S. Dawson, S. Dittmaier, and M. Spira, Neutral Higgs boson pair production at hadron

colliders: QCD corrections, Phys. Rev. D 58 (1998) 115012, arXiv:9805244 [hep-ph].

[40] J. R. Ellis, M. K. Gaillard, and D. V. Nanopoulos, A Phenomenological Profile of the Higgs

Boson, Nucl. Phys. B 106 (1976) 292.

[41] M. A. Shifman, A. I. Vainshtein, M. B. Voloshin, and V. I. Zakharov, Low-Energy Theorems for

Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys. 30 (1979) 711–716.

[42] T. Inami, T. Kubota, and Y. Okada, Effective Gauge Theory and the Effect of Heavy Quarks in

Higgs Boson Decays, Z. Phys. C 18 (1983) 69–80.

[43] M. Spira, A. Djouadi, D. Graudenz, and P. M. Zerwas, Higgs boson production at the LHC,

Nucl. Phys. B 453 (1995) 17–82, arXiv:9504378 [hep-ph].

[44] B. A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys. C 69 (1995) 77–88,

arXiv:9505225 [hep-ph].

[45] K. G. Chetyrkin, B. A. Kniehl, and M. Steinhauser, Hadronic Higgs decay to order α4
s , Phys.

Rev. Lett. 79 (1997) 353–356, arXiv:9705240 [hep-ph].



236 Bibliography

[46] M. Krämer, E. Laenen, and M. Spira, Soft gluon radiation in Higgs boson production at the

LHC, Nucl. Phys. B 511 (1998) 523–549, arXiv:9611272 [hep-ph].

[47] Y. Schröder and M. Steinhauser, Four-loop decoupling relations for the strong coupling, JHEP

01 (2006) 051, arXiv:0512058 [hep-ph].

[48] P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, Five-Loop Running of the QCD coupling

constant, Phys. Rev. Lett. 118 (2017) 082002, arXiv:1606.08659 [hep-ph].

[49] M. Spira, Effective Multi-Higgs Couplings to Gluons, JHEP 10 (2016) 026, arXiv:1607.05548
[hep-ph].

[50] M. Gerlach, F. Herren, and M. Steinhauser, Wilson coefficients for Higgs boson production

and decoupling relations to O
(
α4

s

)
, JHEP 11 (2018) 141, arXiv:1809.06787 [hep-ph].

[51] G. Altarelli and G. Parisi, Asymptotic Freedom in Parton Language, Nucl. Phys. B 126 (1977)

298–318.

[52] D. Y. Shao, C. S. Li, H. T. Li, and J. Wang, Threshold resummation effects in Higgs boson pair

production at the LHC, JHEP 07 (2013) 169, arXiv:1301.1245 [hep-ph].

[53] D. de Florian and J. Mazzitelli, Higgs pair production at next-to-next-to-leading logarithmic

accuracy at the LHC, JHEP 09 (2015) 053, arXiv:1505.07122 [hep-ph].

[54] J. Alwall, R. Frederix, S. Frixione, V. Hirschi, F. Maltoni, et al., The automated computation of

tree-level and next-to-leading order differential cross sections, and their matching to parton

shower simulations, JHEP 1407 (2014) 079, arXiv:1405.0301 [hep-ph].

[55] J. Grigo, J. Hoff, K. Melnikov, and M. Steinhauser, On the Higgs boson pair production at the

LHC, Nucl. Phys. B 875 (2013) 1–17, arXiv:1305.7340 [hep-ph].

[56] J. Grigo, J. Hoff, and M. Steinhauser, Higgs boson pair production: top quark mass effects at

NLO and NNLO, Nucl. Phys. B 900 (2015) 412–430, arXiv:1508.00909 [hep-ph].

[57] G. Degrassi, P. P. Giardino, and R. Gröber, On the two-loop virtual QCD corrections to Higgs

boson pair production in the Standard Model, Eur. Phys. J. C 76 (2016) 411,

arXiv:1603.00385 [hep-ph].

[58] G. Heinrich, S. P. Jones, M. Kerner, G. Luisoni, and E. Vryonidou, NLO predictions for Higgs

boson pair production with full top quark mass dependence matched to parton showers, JHEP

08 (2017) 088, arXiv:1703.09252 [hep-ph].

[59] S. Jones and S. Kuttimalai, Parton Shower and NLO-Matching uncertainties in Higgs Boson

Pair Production, JHEP 02 (2018) 176, arXiv:1711.03319 [hep-ph].

[60] L. F. Richardson, The approximate arithmetical solution by finite differences of physical

problems including differential equations, with an application to the stresses in a masonry

dam, Philosophical Transactions of the Royal Society A 210 (1911) 307.

[61] J. Fleischer and O. V. Tarasov, Calculation of Feynman diagrams from their small momentum

expansion, Z. Phys. C 64 (1994) 413–426, arXiv:9403230 [hep-ph].

[62] R. Gröber, A. Maier, and T. Rauh, Reconstruction of top-quark mass effects in Higgs pair

production and other gluon-fusion processes, JHEP 03 (2018) 020, arXiv:1709.07799
[hep-ph].



Bibliography 237

[63] R. Bonciani, G. Degrassi, P. P. Giardino, and R. Gröber, Analytical Method for

Next-to-Leading-Order QCD Corrections to Double-Higgs Production, Phys. Rev. Lett. 121

(2018) 162003, arXiv:1806.11564 [hep-ph].

[64] J. Davies, G. Mishima, M. Steinhauser, and D. Wellmann, Double-Higgs boson production in

the high-energy limit: planar master integrals, JHEP 03 (2018) 048, arXiv:1801.09696
[hep-ph].

[65] J. Davies, G. Mishima, M. Steinhauser, and D. Wellmann, Double Higgs boson production at

NLO in the high-energy limit: complete analytic results, JHEP 01 (2019) 176,

arXiv:1811.05489 [hep-ph].

[66] X. Xu and L. L. Yang, Towards a new approximation for pair-production and

associated-production of the Higgs boson, JHEP 01 (2019) 211, arXiv:1810.12002
[hep-ph].

[67] D. De Florian and J. Mazzitelli, Soft gluon resummation for Higgs boson pair production

including finite Mt effects, JHEP 08 (2018) 156, arXiv:1807.03704 [hep-ph].

[68] ATLAS Collaboration, Combination of searches for Higgs boson pairs in pp collisions atp
s =13 TeV with the ATLAS detector, arXiv:1906.02025 [hep-ex]. Submitted to PLB.

[69] CMS Collaboration, Combination of searches for Higgs boson pair production in

proton-proton collisions at
p

s = 13 TeV , Phys. Rev. Lett. 122 (2019) 121803,

arXiv:1811.09689 [hep-ex].

[70] G. Heinrich, S. P. Jones, M. Kerner, G. Luisoni, and L. Scyboz, Probing the trilinear Higgs

boson coupling in di-Higgs production at NLO QCD including parton shower effects, JHEP 06

(2019) 066, arXiv:1903.08137 [hep-ph].

[71] G. Buchalla, M. Capozi, A. Celis, G. Heinrich, and L. Scyboz, Higgs boson pair production in

non-linear Effective Field Theory with full mt -dependence at NLO QCD, JHEP 09 (2018) 057,

arXiv:1806.05162 [hep-ph].

[72] P. Nason, A New method for combining NLO QCD with shower Monte Carlo algorithms, JHEP

11 (2004) 040, arXiv:0409146 [hep-ph].

[73] S. Frixione, P. Nason, and C. Oleari, Matching NLO QCD computations with Parton Shower

simulations: the POWHEG method, JHEP 11 (2007) 070, arXiv:0709.2092 [hep-ph].

[74] S. Alioli, P. Nason, C. Oleari, and E. Re, A general framework for implementing NLO

calculations in shower Monte Carlo programs: the POWHEG BOX , JHEP 06 (2010) 043,

arXiv:1002.2581 [hep-ph].

[75] J. Butterworth et al., PDF4LHC recommendations for LHC Run II , J. Phys. G 43 (2016) 023001,

arXiv:1510.03865 [hep-ph].

[76] S. Dulat, T.-J. Hou, J. Gao, M. Guzzi, J. Huston, P. Nadolsky, J. Pumplin, C. Schmidt, D. Stump,

and C. P. Yuan, New parton distribution functions from a global analysis of quantum

chromodynamics, Phys. Rev. D 93 (2016) 033006, arXiv:1506.07443 [hep-ph].

[77] L. A. Harland-Lang, A. D. Martin, P. Motylinski, and R. S. Thorne, Parton distributions in the

LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204, arXiv:1412.3989 [hep-ph].



238 Bibliography

[78] NNPDF Collaboration, Parton distributions for the LHC Run II , JHEP 04 (2015) 040,

arXiv:1410.8849 [hep-ph].

[79] A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht, M. Schönherr, and

G. Watt, LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015)

132, arXiv:1412.7420 [hep-ph].

[80] M. Cacciari, G. P. Salam, and G. Soyez, The anti-kT jet clustering algorithm, JHEP 04 (2008)

063, arXiv:0802.1189 [hep-ph].

[81] M. Cacciari and G. P. Salam, Dispelling the N 3 myth for the kt jet-finder, Phys. Lett. B 641

(2006) 57–61, arXiv:0512210 [hep-ph].

[82] M. Cacciari, G. P. Salam, and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896,

arXiv:1111.6097 [hep-ph].

[83] R. Gröber, M. Mühlleitner, M. Spira, and J. Streicher, NLO QCD Corrections to Higgs Pair

Production including Dimension-6 Operators, JHEP 09 (2015) 092, arXiv:1504.06577
[hep-ph].

[84] D. de Florian, I. Fabre, and J. Mazzitelli, Higgs boson pair production at NNLO in QCD

including dimension 6 operators, JHEP 10 (2017) 215, arXiv:1704.05700 [hep-ph].

[85] Les Houches 2019: Physics at TeV Colliders Standard Model Working Group Report, in

preparation.

[86] V. Hirschi and O. Mattelaer, Automated event generation for loop-induced processes, JHEP 10

(2015) 146, arXiv:1507.00020 [hep-ph].

[87] T. Gleisberg, S. Hoeche, F. Krauss, M. Schonherr, S. Schumann, F. Siegert, and J. Winter, Event

generation with SHERPA 1.1, JHEP 02 (2009) 007, arXiv:0811.4622 [hep-ph].

[88] J. R. Andersen et al., Les Houches 2017: Physics at TeV Colliders Standard Model Working

Group Report, arXiv:1803.07977 [hep-ph].

[89] S. Alioli, P. Nason, C. Oleari, and E. Re, NLO Higgs boson production via gluon fusion matched

with shower in POWHEG, JHEP 04 (2009) 002, arXiv:0812.0578 [hep-ph].

[90] E. Bagnaschi, R. V. Harlander, H. Mantler, A. Vicini, and M. Wiesemann, Resummation

ambiguities in the Higgs transverse-momentum spectrum in the Standard Model and beyond,

JHEP 01 (2016) 090, arXiv:1510.08850 [hep-ph].

[91] S. Alioli, F. Caola, G. Luisoni, and R. Röntsch, ZZ production in gluon fusion at NLO matched

to parton-shower, Phys. Rev. D 95 (2017) 034042, arXiv:1609.09719 [hep-ph].

[92] S. Frixione and B. R. Webber, Matching NLO QCD computations and parton shower

simulations, JHEP 06 (2002) 029, arXiv:0204244 [hep-ph].

[93] G. Ferrera and J. Pires, Transverse-momentum resummation for Higgs boson pair production

at the LHC with top-quark mass effects, JHEP 02 (2017) 139, arXiv:1609.01691 [hep-ph].

[94] T. Sjostrand, S. Mrenna, and P. Z. Skands, A Brief Introduction to PYTHIA 8.1,

Comput.Phys.Commun. 178 (2008) 852–867, arXiv:0710.3820 [hep-ph].



Bibliography 239

[95] T. Sjostrand, S. Ask, J. R. Christiansen, R. Corke, N. Desai, P. Ilten, S. Mrenna, S. Prestel, C. O.

Rasmussen, and P. Z. Skands, An Introduction to PYTHIA 8.2, Comput. Phys. Commun. 191

(2015) 159–177, arXiv:1410.3012 [hep-ph].

[96] S. Schumann and F. Krauss, A Parton Shower Algorithm Based on Catani-Seymour Dipole

Factorisation, JHEP 0803 (2008) 038, arXiv:0709.1027 [hep-ph].

[97] S. Höche and S. Prestel, The midpoint between dipole and parton showers, Eur. Phys. J. C 75

(2015) 461, arXiv:1506.05057 [hep-ph].

[98] R. Corke and T. Sjostrand, Improved Parton Showers at Large Transverse Momenta, Eur. Phys.

J. C 69 (2010) 1–18, arXiv:1003.2384 [hep-ph].

[99] R. Corke and T. Sjostrand, Interleaved Parton Showers and Tuning Prospects, JHEP 03 (2011)

032, arXiv:1011.1759 [hep-ph].

[100] B. Cabouat and T. Sjostrand, Some Dipole Shower Studies, Eur. Phys. J. C 78 (2018) 226,

arXiv:1710.00391 [hep-ph].

[101] S. Weinberg, Phenomenological Lagrangians, Physica A96 (1979) no. 1-2, 327–340.

[102] M. Carena and H. E. Haber, Higgs Boson Theory and Phenomenology, Prog. Part. Nucl. Phys.

50 (2003) 63–152, arXiv:0208209 [hep-ph].

[103] R. Contino, The Higgs as a Composite Nambu-Goldstone Boson, in Physics of the large and

the small, TASI 09, proceedings of the Theoretical Advanced Study Institute in Elementary

Particle Physics, Boulder, Colorado, USA, 1-26 June 2009, pp. 235–306. 2011.

arXiv:1005.4269 [hep-ph].

[104] G. Panico and A. Wulzer, The Composite Nambu-Goldstone Higgs, Lect. Notes Phys. 913

(2016) pp.1–316, arXiv:1506.01961 [hep-ph].

[105] B. Grzadkowski, M. Iskrzynski, M. Misiak, and J. Rosiek, Dimension-Six Terms in the

Standard Model Lagrangian, JHEP 10 (2010) 085, arXiv:1008.4884 [hep-ph].

[106] G. F. Giudice, C. Grojean, A. Pomarol, and R. Rattazzi, The Strongly-Interacting Light Higgs,

JHEP 06 (2007) 045, arXiv:0703164 [hep-ph].

[107] R. Contino, M. Ghezzi, C. Grojean, M. Muhlleitner, and M. Spira, Effective Lagrangian for a

light Higgs-like scalar, JHEP 07 (2013) 035, arXiv:1303.3876 [hep-ph].

[108] W. Buchmuller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor

Conservation, Nucl. Phys. B 268 (1986) 621–653.

[109] F. Goertz, A. Papaefstathiou, L. L. Yang, and J. Zurita, Higgs boson pair production in the D=6

extension of the SM , JHEP 04 (2015) 167, arXiv:1410.3471 [hep-ph].

[110] A. Azatov, R. Contino, G. Panico, and M. Son, Effective field theory analysis of double Higgs

boson production via gluon fusion, Phys. Rev. D 92 (2015) 035001, arXiv:1502.00539
[hep-ph].

[111] A. Carvalho, M. Dall’Osso, P. De Castro Manzano, T. Dorigo, F. Goertz, M. Gouzevich, and

M. Tosi, Analytical parametrization and shape classification of anomalous HH production in

the EFT approach, arXiv:1608.06578 [hep-ph].



240 Bibliography

[112] R. Contino, C. Grojean, D. Pappadopulo, R. Rattazzi, and A. Thamm, Strong Higgs

Interactions at a Linear Collider, JHEP 02 (2014) 006, arXiv:1309.7038 [hep-ph].

[113] S. Di Vita, C. Grojean, G. Panico, M. Riembau, and T. Vantalon, A global view on the Higgs

self-coupling, JHEP 09 (2017) 069, arXiv:1704.01953 [hep-ph].

[114] S. Di Vita, G. Durieux, C. Grojean, J. Gu, Z. Liu, G. Panico, M. Riembau, and T. Vantalon, A

global view on the Higgs self-coupling at lepton colliders, JHEP 02 (2018) 178,

arXiv:1711.03978 [hep-ph].

[115] M. E. Peskin and T. Takeuchi, A New constraint on a strongly interacting Higgs sector, Phys.

Rev. Lett. 65 (1990) 964–967.

[116] A. Falkowski and F. Riva, Model-independent precision constraints on dimension-6 operators,

JHEP 02 (2015) 039, arXiv:1411.0669 [hep-ph].

[117] ATLAS Collaboration, Combined measurements of Higgs boson production and decay using

up to 80 fb−1 of proton–proton collision data at
p

s = 13 TeV collected with the ATLAS

experiment, ATLAS-CONF-2018-031, 2018.

[118] CMS Collaboration, Combined measurements of Higgs boson couplings in proton-proton

collisions at
p

s = 13 TeV , Eur. Phys. J. C 79 (2019) 421, arXiv:1809.10733 [hep-ex].

[119] V. A. Kuzmin, V. A. Rubakov, and M. E. Shaposhnikov, On the Anomalous Electroweak Baryon

Number Nonconservation in the Early Universe, Phys. Lett. B 155 (1985) 36.

[120] M. E. Shaposhnikov, Possible Appearance of the Baryon Asymmetry of the Universe in an

Electroweak Theory, JETP Lett. 44 (1986) 465–468. [Pisma Zh. Eksp. Teor. Fiz.44,364(1986)].

[121] C. Grojean, G. Servant, and J. D. Wells, First-order electroweak phase transition in the

standard model with a low cutoff , Phys. Rev. D 71 (2005) 036001, arXiv:0407019 [hep-ph].

[122] A. Noble and M. Perelstein, Higgs self-coupling as a probe of electroweak phase transition,

Phys. Rev. D 78 (2008) 063518, arXiv:0711.3018 [hep-ph].

[123] D. E. Morrissey and M. J. Ramsey-Musolf, Electroweak baryogenesis, New J. Phys. 14 (2012)

125003, arXiv:1206.2942 [hep-ph].

[124] A. Katz and M. Perelstein, Higgs Couplings and Electroweak Phase Transition, JHEP 07 (2014)

108, arXiv:1401.1827 [hep-ph].

[125] P. Huang, A. J. Long, and L.-T. Wang, Probing the Electroweak Phase Transition with Higgs

Factories and Gravitational Waves, Phys. Rev. D 94 (2016) 075008, arXiv:1608.06619
[hep-ph].

[126] A. Falkowski and R. Rattazzi, Which EFT , JHEP 10 (2019) 255, arXiv:1902.05936
[hep-ph].

[127] F. Maltoni, E. Vryonidou, and C. Zhang, Higgs production in association with a top-antitop

pair in the Standard Model Effective Field Theory at NLO in QCD, JHEP 10 (2016) 123,

arXiv:1607.05330 [hep-ph].

[128] M. McCullough, An Indirect Model-Dependent Probe of the Higgs Self-Coupling, Phys. Rev. D

90 (2014) 015001, arXiv:1312.3322 [hep-ph]. [Erratum: Phys.

Rev.D92,no.3,039903(2015)].



Bibliography 241

[129] M. Gorbahn and U. Haisch, Indirect probes of the trilinear Higgs coupling: g g → h and

h → γγ, JHEP 10 (2016) 094, arXiv:1607.03773 [hep-ph].

[130] G. Degrassi, P. P. Giardino, F. Maltoni, and D. Pagani, Probing the Higgs self coupling via single

Higgs production at the LHC, JHEP 12 (2016) 080, arXiv:1607.04251 [hep-ph].

[131] W. Bizon, M. Gorbahn, U. Haisch, and G. Zanderighi, Constraints on the trilinear Higgs

coupling from vector boson fusion and associated Higgs production at the LHC, JHEP 07

(2017) 083, arXiv:1610.05771 [hep-ph].

[132] T. Barklow, K. Fujii, S. Jung, M. E. Peskin, and J. Tian, Model-Independent Determination of

the Triple Higgs Coupling at e+e- Colliders, Phys. Rev. D 97 (2018) 053004,

arXiv:1708.09079 [hep-ph].

[133] F. Maltoni, D. Pagani, A. Shivaji, and X. Zhao, Trilinear Higgs coupling determination via

single-Higgs differential measurements at the LHC, Eur. Phys. J. C 77 (2017) 887,

arXiv:1709.08649 [hep-ph].

[134] F. Maltoni, D. Pagani, and X. Zhao, Constraining the Higgs self-couplings at e+e− colliders,

JHEP 07 (2018) 087, arXiv:1802.07616 [hep-ph].

[135] CMS Collaboration, Constraints on the Higgs boson self-coupling from ttH+tH, H→ γγ

differential measurements at the HL-LHC, CMS-PAS-FTR-18-020, 2018.

[136] ATLAS Collaboration, Constraint of the Higgs boson self-coupling from Higgs boson

differential production and decay measurements, ATL-PHYS-PUB-2019-009, 2019.

[137] A. Falkowski, Higgs Basis: Proposal for an EFT basis choice for LHC HXSWG, .

https://cds.cern.ch/record/2001958.

[138] P. Sikivie, L. Susskind, M. B. Voloshin, and V. I. Zakharov, Isospin Breaking in Technicolor

Models, Nucl. Phys. B 173 (1980) 189–207.

[139] J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984)

142.

[140] J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange

Quark, Nucl. Phys. B 250 (1985) 465–516.

[141] G. Buchalla, O. Catà, and C. Krause, Complete Electroweak Chiral Lagrangian with a Light

Higgs at NLO, Nucl. Phys. B 880 (2014) 552–573, arXiv:1307.5017 [hep-ph]. [Erratum:

Nucl. Phys.B913,475(2016)].

[142] G. Buchalla, O. Cata, A. Celis, and C. Krause, Note on Anomalous Higgs-Boson Couplings in

Effective Field Theory, Phys. Lett. B 750 (2015) 298–301, arXiv:1504.01707 [hep-ph].

[143] J. de Blas, O. Eberhardt, and C. Krause, Current and Future Constraints on Higgs Couplings in

the Nonlinear Effective Theory, JHEP 07 (2018) 048, arXiv:1803.00939 [hep-ph].

[144] A. Delgado, K. Lane, and A. Martin, A Light Scalar in Low-Scale Technicolor, Phys. Lett. B 696

(2011) 482–486, arXiv:1011.0745 [hep-ph].

[145] W. D. Goldberger, B. Grinstein, and W. Skiba, Distinguishing the Higgs boson from the dilaton

at the Large Hadron Collider, Phys. Rev. Lett. 100 (2008) 111802, arXiv:0708.1463
[hep-ph].



242 Bibliography

[146] K. Agashe, R. Contino, and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys. B

719 (2005) 165–187, arXiv:0412089 [hep-ph].

[147] K. Haba, S. Matsuzaki, and K. Yamawaki, Holographic Techni-dilaton, or Conformal Higgs, in

Strong coupling gauge theories in LHC era. Proceedings, International Workshop, SCGT 09,

Nagoya, Japan, December 8-11, 2009, pp. 401–403. 2011. arXiv:1003.2841 [hep-ph].

[148] J. Galloway, M. A. Luty, Y. Tsai, and Y. Zhao, Induced Electroweak Symmetry Breaking and

Supersymmetric Naturalness, Phys. Rev. D 89 (2014) 075003, arXiv:1306.6354 [hep-ph].

[149] S. Chang, J. Galloway, M. Luty, E. Salvioni, and Y. Tsai, Phenomenology of Induced

Electroweak Symmetry Breaking, JHEP 03 (2015) 017, arXiv:1411.6023 [hep-ph].

[150] ATLAS Collaboration, Search for pair production of Higgs bosons in the bb̄bb̄ final state using

proton-proton collisions at
p

s = 13 TeV with the ATLAS detector, JHEP 01 (2019) 030,

arXiv:1804.06174 [hep-ex].

[151] ATLAS Collaboration, Search for Higgs boson pair production in the γγbb̄ final state with 13

TeV pp collision data collected by the ATLAS experiment, JHEP 11 (2018) 040,

arXiv:1807.04873 [hep-ex].

[152] ATLAS Collaboration, Search for Resonant and Nonresonant Higgs Boson Pair Production in

the bb̄τ+τ− Decay Channel in pp Collisions at
p

s = 13 TeV with the ATLAS Detector, Phys.

Rev. Lett. 121 (2018) 191801, arXiv:1808.00336 [hep-ex].

[153] V. Barger, T. Han, P. Langacker, B. McElrath, and P. Zerwas, Effects of genuine dimension-six

Higgs operators, Phys. Rev. D 67 (2003) 115001, arXiv:0301097 [hep-ph].

[154] L. Di Luzio, R. Grober, and M. Spannowsky, Maxi-sizing the trilinear Higgs self-coupling: how

large could it be?, Eur. Phys. J. C 77 (2017) 788, arXiv:1704.02311 [hep-ph].

[155] C. P. Burgess, V. Di Clemente, and J. R. Espinosa, Effective operators and vacuum instability

as heralds of new physics, JHEP 01 (2002) 041, arXiv:0201160 [hep-ph].

[156] J. Baglio and C. Weiland, The triple Higgs coupling: A new probe of low-scale seesaw models,

JHEP 04 (2017) 038, arXiv:1612.06403 [hep-ph].

[157] L. Di Luzio, G. Isidori, and G. Ridolfi, Stability of the electroweak ground state in the Standard

Model and its extensions, Phys. Lett. B 753 (2016) 150–160, arXiv:1509.05028 [hep-ph].

[158] F. Goertz, J. F. Kamenik, A. Katz, and M. Nardecchia, Indirect Constraints on the Scalar

Di-Photon Resonance at the LHC, JHEP 05 (2016) 187, arXiv:1512.08500 [hep-ph].

[159] L. Di Luzio, J. F. Kamenik, and M. Nardecchia, Implications of perturbative unitarity for

scalar di-boson resonance searches at LHC, Eur. Phys. J. C 77 (2017) 30, arXiv:1604.05746
[hep-ph].

[160] S. Borowka, C. Duhr, F. Maltoni, D. Pagani, A. Shivaji, and X. Zhao, Probing the scalar

potential via double Higgs boson production at hadron colliders, JHEP 04 (2019) 016,

arXiv:1811.12366 [hep-ph].

[161] S. Chang and M. A. Luty, The Higgs Trilinear Coupling and the Scale of New Physics,

arXiv:1902.05556 [hep-ph].



Bibliography 243

[162] F. Goertz, Electroweak Symmetry Breaking without the µ2 Term, Phys. Rev. D 94 (2016)

015013, arXiv:1504.00355 [hep-ph].

[163] D. Lopez-Val and T. Robens, ∆r and the W-boson mass in the singlet extension of the standard

model, Phys. Rev. D 90 (2014) 114018, arXiv:1406.1043 [hep-ph].

[164] J. E. Camargo-Molina, B. O’Leary, W. Porod, and F. Staub, Vevacious: A Tool For Finding The

Global Minima Of One-Loop Effective Potentials With Many Scalars, Eur. Phys. J. C 73 (2013)

2588, arXiv:1307.1477 [hep-ph].

[165] F. Staub, SARAH , arXiv:0806.0538 [hep-ph].

[166] F. Staub, SARAH 4 : A tool for (not only SUSY) model builders, Comput. Phys. Commun. 185

(2014) 1773–1790, arXiv:1309.7223 [hep-ph].

[167] R. S. Gupta, H. Rzehak, and J. D. Wells, How well do we need to measure the Higgs boson mass

and self-coupling?, Phys. Rev. D 88 (2013) 055024, arXiv:1305.6397 [hep-ph].

[168] A. Dobado, M. J. Herrero, W. Hollik, and S. Penaranda, Selfinteractions of the lightest MSSM

Higgs boson in the large pseudoscalar mass limit, Phys. Rev. D 66 (2002) 095016,

arXiv:0208014 [hep-ph].

[169] M. Carena, J. R. Espinosa, M. Quiros, and C. E. M. Wagner, Analytical expressions for

radiatively corrected Higgs masses and couplings in the MSSM , Phys. Lett. B 355 (1995)

209–221, arXiv:9504316 [hep-ph].

[170] F. Goertz, Indirect Handle on the Down-Quark Yukawa Coupling, Phys. Rev. Lett. 113 (2014)

261803, arXiv:1406.0102 [hep-ph].

[171] M. J. Dolan, C. Englert, and M. Spannowsky, Higgs self-coupling measurements at the LHC,

JHEP 10 (2012) 112, arXiv:1206.5001 [hep-ph].

[172] F. Goertz, A. Papaefstathiou, L. L. Yang, and J. Zurita, Higgs Boson self-coupling

measurements using ratios of cross sections, JHEP 06 (2013) 016, arXiv:1301.3492
[hep-ph].

[173] A. Carvalho, F. Goertz, K. Mimasu, M. Gouzevitch, and A. Aggarwal, On the reinterpretation of

non-resonant searches for Higgs boson pairs, arXiv:1710.08261 [hep-ph].

[174] G. Degrassi, M. Fedele, and P. P. Giardino, Constraints on the trilinear Higgs self coupling from

precision observables, JHEP 04 (2017) 155, arXiv:1702.01737 [hep-ph].

[175] G. D. Kribs, A. Maier, H. Rzehak, M. Spannowsky, and P. Waite, Electroweak oblique

parameters as a probe of the trilinear Higgs boson self-interaction, Phys. Rev. D 95 (2017)

093004, arXiv:1702.07678 [hep-ph].

[176] M. Cepeda et al., Higgs Physics at the HL-LHC and HE-LHC, arXiv:1902.00134 [hep-ph].
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