
HAL Id: hal-02327639
https://hal.science/hal-02327639

Submitted on 22 Oct 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

The duality between a non-Hermitian two-state
quantum system and a massless charged particle

Robert Botet, Hiroshi Kuratsuji

To cite this version:
Robert Botet, Hiroshi Kuratsuji. The duality between a non-Hermitian two-state quantum system
and a massless charged particle. Journal of Physics A: Mathematical and Theoretical, 2019, 52 (3),
pp.035303. �10.1088/1751-8121/aaf479�. �hal-02327639�

https://hal.science/hal-02327639
https://hal.archives-ouvertes.fr


The duality between a non-Hermitian two-state
quantum system and a massless charged particle

Robert Botet
Laboratoire de Physique des Solides Bât.510,
CNRS UMR8502 / Université Paris-Saclay, Centre d’Orsay, F-91405 Orsay, France

E-mail: robert.botet@u-psud.fr

Hiroshi Kuratsuji
Faculty of Science and Engineering, Ritsumeikan University-BKC
Noji-Hill, Kusatsu City, 525-8577, Japan

13/11/2018

Abstract. We show that the equations for the dynamics of a non-Hermitian two-
state quantum system are the same as the equations of motion for a massless charged
particle in an electromagnetic field. Using simple analytical arguments to prove this
unexpected duality between two very different domains in Physics, we further exemplify
it through a case-study of polarization of light propagating in a dichroic medium with
magneto-optic activity.
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1. Introduction

Any real physical system is open, in the sense that it exchanges energy or mass with
its environment [1, 2], even if only subjected to a measurement event. In other words,
a perfectly isolated system is either a theoretical ideal or an approximation of a real
system. This explains why the study of the dynamics of open quantum systems became
one of the fundamental topics in modern physics [2, 3, 4].

In quantum physics, the non-conservation of the total energy of the system is
generally associated with non-Hermitian Hamiltonian [5], leading to subtle behaviours
and complex dynamics of the quantum systems.

Non-Hermitian Hamiltonians can be simplistically divided into two groups:
Hamiltonians with complex eigenvalues, and Hamiltonians with real eigenvalues.

Dissipative quantum systems belong to the former group and this concept was
introduced in the context of adiabatic measurements on metastable systems [6]. Another
important approach is the “continuum shell model”, developed for the study of nuclear
resonant states. In this theory, the system is separated into discrete states in the
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quantum structure, and a continuum of scattering states [7]. The effective non-
Hermitian Hamiltonian results from Feshbach’s projection scheme [8]: the real parts
of the eigenvalues of the Hamiltonian correspond to the energies, while the imaginary
parts give the widths of the resonance states [9]. Also in nuclear physics, the complex-
valued optical model potential is used to describe reactions between two nucleons [10].

The latter group (i.e. Hamiltonians with real eigenvalues) comprises theories
extending the regular quantum systems with Hermitian Hamiltonians, for instance
quantum systems ruled by special complex-valued potentials with space-time reflection
symmetry (PT -symmetry, where P denotes the parity operator and T the time-reversal
operator) [11]. This class of Hamiltonians is part of the more general subset of the
pseudo-Hermitian operators [12] (that is an operator A such that A† = ηAη−1, with
η a Hermitian automorphism and † the Dirac’s notation for the conjugate-transpose).
The pseudo-Hermitian symmetry appears naturally as soon as real input regarding the
energy spectrum is required [13].

Effective non-Hermitian Hamiltonians appear in various domains of physics. The
following is a non-exhaustive list of physical examples: [12],[14],[15],[16],[17],[18],[19].

2. Scope of the paper

In the present work, we are interested in the non-Hermitian dynamics of two-state
quantum systems, the paradigm of the simplest non-trivial quantum system [20], either
intrinsically (e.g. the spin-1/2 particle), or as an approximation (e.g. the ensemble
consisting of the ground state and the first excited state of a low-temperature quantum
system). We then further consider general non-Hermitian Hamiltonians (including the
above-cited examples).

We discovered a peculiar physical feature hidden behind two-level quantum systems,
namely the two-state non-Hermitian quantum dynamics is equivalent to the motion of
a massless charged particle in an electromagnetic field.

Not only is this mathematical mapping a fundamental revelation, one may also
better understand the complex behaviours of non-conservative quantum systems, thanks
to the much more intuitive analogy illustrated by the trajectory of a charged particle in
an electromagnetic field.

In Section 3, we formulate the dynamics of the non-Hermitian two-state system
in Bloch variables, subsequently deriving the analogy with the motion of a massless
charged particle in Section 4. Section 5 is then devoted to a full example in Optics
while Section 6 is a note about the structure of a pseudo-electromagnetic field. Possible
extensions to ensembles of N two-state quantum systems are discussed in Section 7,
before the Conclusion.
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3. Bloch representation of the non-conservative quantum two-state system

The standard description of a two-state system requires representation of the state of the
system as a wavefunction, Ψ, in a two-dimensional complex Hilbert space. We consider
here the single-mode wavefunction.

3.1. General dynamic equations for a two-state wavefunction

The time-evolution of the wavefunction Ψ is ruled by a first-order (in the time t)
differential equation and the corresponding equation for its adjoint state, Ψ†:

i~
∂Ψ

∂t
= ĤΨ , − i~

∂Ψ†

∂t
= Ψ†Ĥ† , (1)

in which Ĥ is the Hamiltonian operator including all forms of energy (kinetic and in-
teractions), and Ĥ may depend on time. When the system is non-conservative (i.e.
when the wavefunction modulus, |Ψ|2, is not constant with time), the Hamiltonian is
non-Hermitian, Ĥ ̸= Ĥ†, and the eigenvalues of Ĥ may take complex values [21].

Evolution equation of the form (1) is known as the non-relativistic Schrödinger
equation of a two-level system, the Dirac equation in the relativistic spin-1/2 case, etc.

In other applications, the dynamics equation may be formally identical to (1)
though with minor differences: the operator Ĥ is not related to any physical energy but
rather, to an evolution operator, while a spatial coordinate plays the role of the time
and ~ is replaced by another fundamental parameter. In Section 5, we shall examine
in detail just such an example: the evolution of the polarization of an electromagnetic
plane-wave propagating in an optically active medium. In this case, we apply to (1)the
substitution: ~ = h/2π → ň = λ/2π (i.e. the reduced wavelength), with the operator
Ĥ corresponding to the complex dielectric tensor.

3.2. Dynamics in the Bloch representation

Let us consider the general 2× 2 Hamiltonian in its matrix form:

Ĥ =

(
h11 h12
h21 h22

)
, (2)

in which the four complex coefficients h11, h12, h21, h22 may depend on time and space,
and no symmetry is assumed.

Whether Ĥ is Hermitian or not, the Hamiltonian operator can always be expanded
over the basis comprising σ̂0 (the 2× 2 identity matrix) and σ̂ ≡ (σ̂1, σ̂2, σ̂3) (in which
σ̂1, σ̂2, σ̂3 are the usual Pauli matrices [22]):

Ĥ =κ σ̂0 + α σ̂1 + β σ̂2 + γ σ̂3 (3)

=

(
κ+ γ α− iβ

α + iβ κ− γ

)
,
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with the complex-valued coefficients:

κ =
h11 + h22

2
,

α =
h12 + h21

2
, β = i

h12 − h21
2

, γ =
h11 − h22

2
.

One can also use the shortened notation:

Ĥ = κ σ̂0 +K · σ̂ , (4)

with the 3D vector: K = (α, β, γ) ∈ C 3.
It is worth noting that K2 = (E+ − E−)

2/4, with E± the two eigenvalues of the
Hamiltonian (3). When Ĥ is non-Hermitian, these eigenvalues may take complex values.

In general, the state of the system can be fully represented in terms of the
Bloch vector, i.e. using the set of the expectation values, Sj = Ψ†σ̂jΨ, for the four
Pauli operators {σ̂j}j=0,1,2,3. Due to the identity σ̂2

j = σ̂0, the four real parameters
S0, S1, S2, S3 are not independent, and the identity:

S2
1 + S2

2 + S2
3 = S2

0 (5)

remains valid at any time for a single-mode wave, even if the system is not conservative.
From (1), the time evolution of these parameters is given by the four equations:

i~
dSj

dt
= Ψ†

(
σ̂jĤ − Ĥ†σ̂j

)
Ψ . (6)

Using the representation (3) and the identity: (aσ)(bσ) = (ab) σ̂0 + i(a × b)σ, the
equations (6) may be written under the form:

i~
dS0

dt
=(κ− κ⋆)S0 + (K −K⋆)S , (7)

i~
dS

dt
=(κ− κ⋆)S+ (K −K⋆)S0 − iS× (K +K⋆) , (8)

with S = (S1, S2, S3) the unnormalized Bloch vector of the two-state system [23]. Using
(8), relations (7) and (5) are equivalent. Moreover, if the Hamiltonian is Hermitian –
that is: κ and K have real values – the system is conservative. Consequently S0 =

constant.

Let us introduce the real coefficient Γ (named below: damping coefficient), and the
two real-valued 3D vectors E and B (named below: pseudo-electric and pseudo-magnetic
vectors, respectively), defined as:

κ =
~
2
(κ0 − iΓ) ,

K =
i~
2
q (E + icB) , (9)
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in which q is a real parameter of constant value that we will arbitrarily take as positive,
and c is the velocity of light in vacuum (we have to select this value of c in order to map
the field (E ,B) onto an electromagnetic field in the next Section). The combination
E + icB written in (9) becomes reminiscent of the fundamental Silberstein-Majorana
representation of a real electromagnetic field [24].

We can then write the explicit forms of the pseudo-electric and pseudo-magnetic
fields in terms of the initial Hamiltonian:

E =
i

~q

α⋆ − α

β⋆ − β

γ⋆ − γ

 ; cB = − 1

~q

α⋆ + α

β⋆ + β

γ⋆ + γ

 . (10)

The vector B represents essentially the Hermitian part of the Hamiltonian, and E the
non-Hermitian part.

A general type of non-Hermitian Hamiltonian is encountered in the context of open
quantum systems in contact with a decohering and dissipative environment. For such
a system, non-equilibrium quantum dynamics result from a Hamiltonian composed of
two terms [25, 26]:

Ĥ = Ĥ+ − iΓ̂ , (11)

in which both operators Ĥ+ (the Hamiltonian of the isolated quantum system) and Γ̂

(the decay rate operator) are Hermitian [26]. If the quantum system is two-level, (10)
implies that the pseudo-magnetic field is only related to the Hermitian operator Ĥ+.
Likewise, the pseudo-electric field is only related to the anti-Hermitian operator −iΓ̂, in
agreement with the remark written after Equ.(10).

3.3. Lorentz invariants of a pseudo-electromagnetic field

The scalar electromagnetic Lorentz invariants, L1 ≡ E2 − c2B2 and L2 ≡ cEB, of a
pseudo-electromagnetic field are directly related to K, since they are proportional to
the real and the imaginary parts of K2:

K2 = −~2q2

4
(L1 + 2 iL2) . (12)

As a consequence: if the field (E ,B) turns out to be a real electromagnetic field, then
K2 (which is essentially the squared difference of the eigenvalues of the Hamiltonian Ĥ)
is Lorentz-invariant.

In addition, it is clear from (12) that the condition L2 = 0 is a necessary condition
for the eigenvalues of Ĥ be real. This remark will be used in Section 5 when we discuss
cases where the pseudo-electric field and the pseudo-magnetic field are orthogonal each
other.



6

3.4. The dynamic equations for the Bloch vector

Let us now write the evolution equations of the Bloch vector in terms of the pseudo-
electromagnetic field. Using the definitions of κ and K as: i(κ−κ⋆) = ~Γ, i(K−K⋆) =

−~q E and (K +K⋆) = −~q cB, equations (7)-(8) can be rewritten as:

dS0

dt
= q (S · E)− ΓS0 , (13)

dS

dt
= q (S0E + cS×B)− ΓS . (14)

One then notices in these equations that the parameter Γ appearing in (13)-(14) is
essentially the inverse of a relaxation time, in the Bloch sense [27]. In particular, when
Γ ̸= 0 and the pseudo-electromagnetic field vanishes, [i.e. (E ,B) = (0, 0), the full
solution of (13)-(14) becomes:

S0(t) = S0(0) e
−Γ̄t ; S(t) = S(0) e−Γ̄t ,

Γ̄ =
1

t

∫ t

0

Γ(t′)dt′ , (15)

where the real parameter Γ̄ is equal to Γ when Γ does not depend on the time. Dissi-
pation imposes that Γ(t) > 0, resulting in Γ̄ > 0.

A way to remove the coefficient Γ from the evolution equations is to consider
the normalized Bloch vector n = S/S0 (unitary because of (5)). Using this auxiliary
quantity, equation (14) reads:

dn

dt
= q n× (cB − n× E) , (16)

characterizing the quantum state of system’s evolution as the motion of the point
n = (sin θ cosϕ, sin θ sinϕ, cos θ) expressed in spherical coordinates on the unit Bloch
sphere. This description is related to the spinor representation of a two-state system ‡.

4. The analogy with the motion of a massless, charged particle

In the identity (12), we defined the two electromagnetic Lorentz invariants, L1,L2, as
if (E ,B) were a true electromagnetic field. These invariants also appear naturally in
the evolution equation of the Bloch vector. For example, writing the equations (13)-
(14) under the matrix form: d(S0, S1, S2, S3)/dt = M (S0, S1, S2, S3), the characteristic
polynomial of the 4× 4 real matrix M is found to be: (X + Γ)4 + L1(X + Γ)2 −L2

2. It
means that the dynamics of the non-Hermitian two-state system is entirely determined
by the three scalar quantities: Γ,L1,L2.

‡ The case of the n-state quantum system, with n ≥ 3, can be studied similarly using 2n−1 real Bloch
components. However, theory of electromagnetism in the 2n− 1-dimensional space, e.g. [50], is not as
limpid as in the 3-dimensional case
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Let us then consider the relativistic 4-momentum, P, of a virtual particle of 3-
momentum p and total energy E, according to the following expression:

P ≡
(
E

c
,p

)
= e Γ̄t (S0, S1, S2, S3) , (17)

in which Γ̄ is defined as in (15). Although scaling by exp(Γ̄t) in (17) is not compulsory,
it helps reduce the equations of motion below to a simpler form. If we do not consider
the scaling, then a dissipative force [28] must be added.

Let us also introduce the temporal variable τ defined as:

dτ =
E

c
dt . (18)

Clearly, τ is an increasing function of time t since the energy E is real and positive.
Thanks to definitions (17) and (18), the state-evolution equations (13)-(14) now

become:

dE

dτ
= q E · v , (19)

dp

dτ
= q (E + v ×B) , (20)

where we introduce the 3-velocity, v, of the virtual particle such that: v/c = n = S/S0

(since: p = Ev/c2 for a relativistic particle [29]). In particular, the magnitude of the
velocity is here a constant: v2 = c2, resulting from the identity S2 = S2

0 .
Amazingly, the equations (19)-(20) are exactly the same as the equations of motion

of a charged (charge: q), massless (since v2 = c2), spinless, particle [29] subjected to the
Lorentz force due to the external pseudo-electromagnetic field (E ,B). We henceforth
denote such a virtual MassLess, Charged, particle as a ‘MLC particle’.

To complete this case-study, let us give the time-evolution equation for the particle’s
velocity. The corresponding nonlinear equation derived either from (20)-(19) or from
(16), is:

dv

dt
= qc

(
E + v ×B − v

c

(v
c
· E
))

. (21)

We therefore find the usual expression for the acceleration of a MLC particle propagat-
ing in an electromagnetic field (E ,B) [30].

To summarize, we showed in (13)-(14) and (19)-(20), that the time-evolution of the
normalized Bloch vector S/S0 of a non-conservative two-state quantum system ruled by
the non-Hermitian Hamiltonian Ĥ, is identical to the τ -evolution of the reduced velocity
v/c of a massless charged particle in a pseudo-electromagnetic field (E ,B).

The variables τ and t are related through the equation c dτ = Edt, and the real-
valued pseudo-electromagnetic field (E ,B) is related to the Hamiltonian Ĥ through the
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equation: Ĥ = (~/2)[κ0σ̂0 − qcBσ̂ + i(−Γσ̂0 + qEσ̂)].

Although a spinless MLC particles does not appear to exist in the real world, we
do not know of any strong reasons forbidding its existence [31], and many works have
been devoted to the dynamics of this hypothetical particle [32].

An advantage of establishing this equivalence between a non-Hermitian quantum
system and MLC particle dynamics is that the movement of a charged particle in an
electromagnetic field is intuitive to understand, whereas the comprehension of open
quantum system dynamics – even if two-state –, is not often immediately apparent.

5. An example: the constant crossed pseudo-electromagnetic field

We discuss hereafter the case where the second Lorentz invariant, L2 as defined in (12),
vanishes. This means that the pseudo-electric and -magnetic fields are orthogonal, since
L2 = cEB = 0. This situation is usual when the eigenvalues of the Hamiltonian are
required to take real values (since: L1 ≤ 0 ;L2 = 0 from the relation (12) in this case).
But instead, we shall consider here a more general situation in which the eigenvalues of
the non-Hermitian Hamiltonian may be complex.

Let us consider the case of the MLC particle in a constant crossed electromagnetic
field:

E = E

1

0

0

 ; B = B

0

0

1

 , (22)

in which E and B are the constant amplitudes of the pseudo-electric and pseudo-magnetic
fields, respectively. Without loss of generality, we choose the direction of the z-axis such
that B > 0.

In order to ascertain the trajectory of the MLC particle, we also need to define its
initial state using its position, x(0), and initial velocity, v(0).

x(0) =

0

0

0

 ; v(0) =

c0
0

 . (23)

To simplify the present demonstration, we have set the initial particle velocity to be
parallel to the pseudo-electric field, but this is by no means a necessary constraint;
more general initial conditions simply lead to more complicated expressions for the
particle trajectory.
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5.1. Examples of crossed pseudo-electromagnetic fields and a special optical system
case-study.

A generic example of a quantum system that manifests a crossed pseudo-electromagnetic
field is a two-level system coupled to a dissipative environment such that the total
non-Hermitian Hamiltonian of the system is the sum of a Hermitian part and of an
anti-Hermitian part [33]:

H = −~Ωσ̂1 − i~Ω (γσ̂0 + a2σ̂2 + a3σ̂3) , (24)

with Ω, γ, a2, a3 four real coefficients. Using the definitions presented in (9), one
obtains readily the pseudo-electromagnetic field under the form: qE = −2Ω(0, a2, a3),
qcB = 2Ω(1, 0, 0) for which the Lorentz invariant L2 vanishes, (i.e. E and B are
orthogonal. An important case discussed in [33, 34, 35] is a2 = 0. In this case, the
pseudo-electromagnetic field is found to be similar to (22) (except for a spatial rotation
of π/2 around the y-axis), with the coefficients E = −2Ωa3/q, B = 2Ω/qc, while the
damping coefficient is Γ = 2Ωγ.

A concrete example of this type of quantum system is the direct photodetection of
fluorescent photons emitted by a two-level atom [34]. In this case, the electromagnetic
field acts as a quantum probe [2].

Another instance of crossed pseudo-electromagnetic field is found in the context of
the operators with PT -symmetry. We take the example proposed in [36]:

Ĥ =

(
r + t cosϕ− is sinϕ is cosϕ+ t sinϕ

is cosϕ+ t sinϕ r − t cosϕ+ is sinϕ

)
, (25)

in which the coefficients s and t are real and such that: |s| ≤ |t| for the energy spectrum
to take real values. Consequently, the definitions given in (9) would lead to a pseudo-
electromagnetic field under the form:

~
2
qE = s

 cosϕ

0

− sinϕ

 ;
~
2
qcB = −t

sinϕ

0

cosϕ

 , (26)

with the orthogonality property: L2 = cEB = 0. Unsurprisingly, the condition of
real-valued energies (given by |s| ≤ |t|) results in the inequality L1 ≡ E2 − c2B2 =

(2/~q)2(s2 − t2) ≤ 0, such that K2 ≥ 0 because of (12).
If ϕ = 0, then we find the exact condition described in (22). In the more general

case where ϕ ̸= 0, it is clear from (26) that this corresponds to a simple rotation of the
pseudo-electromagnetic field by the angle ϕ around the y-axis.

We now consider a whole other situation corresponding to the following optical
system: a dichroic, birefringent, dielectric medium with x, y, z the principal axes
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[37]. A constant external magnetic field, H = (0, 0, H), is applied to the optically-
active medium. We seek to examine the circular polarization of a monochromatic
electromagnetic plane wave of frequency ω, propagating along the z-direction. This
problem has been studied within the context of the non-Hermitian matrices in [38].

The electric induction, D, of the wave is related to its electric field E by the
constitutive relation [39]:

D = ϵE+ ifH × E ,

in which the first term results in dichroism and the second term in the Faraday effect.
The magneto-optic parameter f is real and is characteristic of the medium. The
magnetic permeability of the medium is expected to be µ0. In the basis (x, y, z), the
dielectric tensor expresses as:

ϵ =

ϵ0 + iκx 0 0

0 ϵ0 + iκy 0

0 0 ϵ0 + iκz

 ,

where the constitutive coefficients κx, κy, κz are positive and proportional to the
respective absorption coefficients along the three axes.

Within the envelope approximation, the evolution of the wave polarization can
be written as a two-state Schrödinger-like equation [40]. Indeed, the spatial part of
the electric field of the wave is written: E = F exp(ik0z), in which k0 = ω/c is the
wavenumber in vacuum. The spatial variations of the envelope function, F = (Fx, Fy, 0),
are expected to be much slower than the fast-oscillating term exp(ik0z) (envelope
approximation). Then, neglecting d2F/dz2 in front of the dF/dz terms in the Maxwell
equations, the following evolution equation is obtained:

iň
dF

dz
=

1

2ϵ0

(
−iκx ifH

−ifH −iκy

)
F . (27)

The equation (27) is of the general form (1), with the real coordinate z = c t playing
the role of the time in the equation, and the reduced wavelength in vacuum, ň ≡ λ/2π,
replaces the reduced Planck constant ~. That way, the effective Hamiltonian Ĥeff (related
to the dielectric tensor) is defined. One can note that Ĥeff is not Hermitian, due to the
dichroic coefficients κx, κy expressing energy dissipation.

If we are interested in the circular polarization state of the wave, it is more
practical to change the representation from the linear-polarization basis to the circular-
polarization basis. This is achieved by considering the transformation:(

F+

F−

)
= T

(
Fx

Fy

)
, (28)

with T the unitary matrix:

T =
1√
2

(
1 −i
1 i

)
. (29)
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In the circular-polarization basis, the effective Hamiltonian is: Ĥc = TĤeffT
−1, hence

the representation:

iň
dF±

dt
= ĤcF±

Ĥc =
c

2ϵ0

(
−i(κx + κy)/2− fH i(κy − κx)/2

i(κy − κx)/2 −i(κx + κy)/2 + fH

)
, (30)

in which we used the two-state function: F± = (F+, F−, 0). We note that this symmetric
Hamiltonian is a particular case of the more general PT -symmetric Hamiltonian (25)
in which ϕ = 0 and the coefficients s and t are real and respectively equal to:
s = (c/2ϵ0)(κy − κx)/2 and t = −(c/2ϵ0)fH.

Using the definition (3), one obtains readily the vector:

K =
c

2ϵ0

i(κy − κx)/2

0

−fH

 ,

and the coefficient κ = −ic(κx + κy)/4ϵ0. Then, from the definition (9), the damping
coefficient is: Γ = c(κx + κy)/(4ňϵ0), and the constant crossed pseudo-electromagnetic
field takes on the form in (22):

qE =
c

4ňϵ0
(κy − κx)

1

0

0

 , qcB =
c

2ňϵ0
fH

0

0

1

 . (31)

In this representation, qE and qcB both possess the dimension of the inverse of a
characteristic time.

5.2. Case of a constant pseudo-magnetic field alone

If E = 0 and Γ = 0 (that is the conservative case), the total energy, E, of the MLC
particle is constant. The equation (21) for the particle velocity becomes:

dv

dt
= q cv ×B .

Its solution, consistent with the initial conditions (23), is:
vx
c

= cos(Ω0 t) ;
vy
c

= − sin(Ω0 t) , (32)

with the frequency:

Ω0 = qcB . (33)

The trajectory of the particle is then simply a circle of radius 2/qB in the plane z = 0:

x =
2c

Ω0

sin(Ω0 t/2) cos(Ω0 t/2) ; y = − 2c

Ω0

sin2(Ω0 t/2) ; z = 0 . (34)
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Subsequently, let us note that, in this non-dissipative case, the shortest time, tp(0),
for the particle to reverse the direction of its velocity (vx = +c→ vx = −c) is:

tp(0) =
π

Ω0

. (35)

This is the passage time as defined in [41].

This case corresponds to the pure Faraday effect, without any dichroic feature.
From solution (32), the Stokes vector, (S1/S0, S2/S0, S3/S0), is rotating around the S3-
axis with constant temporal frequency Ω0 on the Poincaré sphere (the analogue of the
Bloch sphere for optics polarization problems).

In terms of the optical system, the initial condition (S1(0) = 1) is the linearly-
polarized wave with x the polarization direction. Hence, the wave remains linearly
polarized (since S3(t) = 0) with a regular rotation of its polarization plane. Indeed,
the Faraday polarization angle is: φF = −Ω0t/2 = (f/4ňϵ0)Hz (since S2(t)/S1(t) =

− tanΩ0t). The time tp(0) is then the shortest time for the linear-polarization angle of
the wave to rotate by π/2.

5.3. The general case of a constant crossed electromagnetic field

In the general case where E ̸= 0 and B ̸= 0, the 3-acceleration of MLC particle is always
orthogonal to its 3-velocity v, and it is written as (see Equ.(21)):

dv

dt
= q v ×

(
cB − v

c
× E

)
. (36)

If, at a given time t, v(t) lies in the plane (x, y), the acceleration dv/dt is in the plane
(x, y) too, since both vectors B and v × E are along z. One deduces that for an initial
velocity v(0) along the x-axis, the whole trajectory of the particle for t > 0 is planar
and contained in the (x, y) plane.

It is now simple to write explicitly equation (36) for the components vx and vy
(since vz = 0 for the selected initial condition), using the expressions of the pseudo-
electromagnetic field (22):

1

Ω0

dvx
dt

=

(
1 +

E
Bc2

vy

)
vy , (37)

1

Ω0

dvy
dt

=−
(
1 +

E
Bc2

vy

)
vx , (38)

with Ω0 given by (33).
We then introduce the angle θ between the direction of the velocity and the direction

of the pseudo-electric field, namely: vx = c cos θ , vy = c sin θ. The equations (37)-(38)
shorten into a single equation in θ:

dθ

d(Ω0t)
= −

(
1 +

E
cB

sin θ

)
, (39)
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which is easy to solve. The form of this equation’s solution depends essentially on the
value of the parameter E/cB.

• the case of a small pseudo-electric field case: |E| < cB (i.e. L1 < 0)
The solution of (37)-(38) (including the initial condition θ = 0 for t = 0) leads to
the particle velocity:

vx
c

=
cos(Ωt− ψ) cosψ

1 + sin(Ωt− ψ) sinψ
, (40)

vy
c

= − sin(Ωt− ψ) + sinψ

1 + sin(Ωt− ψ) sinψ
, (41)

in which the frequency Ω and phase ψ are given by the expressions:

sinψ =
E
cB

, (42)

Ω = q
√
c2B2 − E2 = Ω0 cosψ . (43)

As in the previous Section, the passage time, tp, is defined as the smallest positive
time for which: vx = −c. One finds:

tp(E) =
π − 2|ψ|

Ω
(44)

=
2

qcB
arctan

√
c2B2/E2 − 1√

1− E2/c2B
, (45)

generalizing the relation (35) to the non-Hermitian case E ̸= 0.
The result (44) is a particular case of a more general formula giving the value of
the passage time tp for two-dimensional non-Hermitian Hamiltonian with constant
coefficients [42]. Using the notations as in (3), the general expression for the passage
time is:

tp =

∣∣∣∣ i2K log

(
α−K

α +K

)∣∣∣∣ , (46)

where K =
√
α2 + β2 + γ2 is real [43]. Then, using (9) and (22) in (46), one

recovers (45).
The main conclusion of [42] holds true in the present case: in the non-Hermitian
Hamiltonian case (where E ̸= 0), the value of the minimum time (45) to transform
a given polarization state into its orthogonal counterpart is always smaller than for
the Hermitian case (35). In other words, evolution is faster in non-Hermitian than
in Hermitian quantum mechanics [42].
One should notice that the problem of the minimal passage time in non-Hermitian
system can be tackled here in a new way, using the equivalence with the motion of
a massless charged particle. The question then transposes into finding the shortest
particle trajectory in the velocity space using a variational principle [44]. With this
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approach, equation (21) plays the key role in calculating the passage time.

In the corresponding optical system, the solution (40)-(41) implies that the traveling
wave is linearly polarized, and that the wave polarization plane is rotating non-
uniformly, with the spatial period Ω0 cosψ/c. To be precise, the polarization angle,
φF , is such that:

− tan(2φF ) =
tan(Ωz/c− ψ)

cosψ
+

tanψ

cos(Ωz/c− ψ)
,

with the value of ψ given by (42), and Ω by (43).
The trajectory of the particle is found analytically from time-integration of
equations (40)-(41) and the use of initial conditions per (23) [45]. An example
of trajectory is given in Fig.1.

• the cse of a large pseudo-electric field case: |E| > cB (i.e. L1 > 0)
When the pseudo-electric field (the non-Hermitian terms) is dominant, the energies
take on complex values. The particle trajectory no longer exhibits spatial
oscillations. Instead of trigonometric functions, as in (40)-(41), hyperbolic functions
must be used [33] after replacing Ω by iq

√
E2 − c2B2.

From the general differential equations (37)-(38), one derives a simple result: for
larger times, the trajectory sticks to the special stationary solution:

vx
c

= ±
√
1− c2B2

E2
;
vy
c

= −cB
E

;
vz
c

= 0 , (47)

with dv/dt = 0. The sign of vx is determined by the initial conditions.
For the corresponding optical problem, this means that the Stokes vector tends to
the fixed point given by (47), after replacing vx/c → S1/S0, vy/c → S2/S0. In
other words, after traveling a long distance in the magneto-optical medium, the
wave becomes linearly polarized with a stable angle, φF , between the polarization
plane and the initial polarization plane, and: sin 2φF = ±cB/E (the sign of which
depends on the initial condition).

• the “exceptional point”: |E| = cB (i.e. L1 = L2 = 0)
The threshold between the oscillating behaviour and the fixed point occurs for
|E| = cB (an example is shown on the Fig.1). In the terminology of non-Hermitian
systems, this condition is called the “exceptional point” [46]. The complete solution
of the dynamics with the initial conditions vx(0) = c , vy(0) = 0 is therefore:

vx
c

=
2(1 + Ω0t)

(1 + Ω0t)2 + 1
;
vy
c

=
(1 + Ω0t)

2 − 1

(1 + Ω0t)2 + 1
;
vz
c

= 0 . (48)

It is clear that the velocity vx cannot attain negative values, so tp is no longer
defined.
The limit values (48) are recovered, and the angle of the limit polarization plane
with the initial polarization plane is π/4.
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Figure 1. Three examples of trajectories of a MLC particle with charge q = 1, in a
constant crossed pseudo-electromagnetic field. The dashed red circle is the Hermitian
case E = (0, 0, 0) ; cB = (0, 0, 29/21) ; the blue continuous curve is the non-Hermitian
case E = (20/21, 0, 0) ; cB = (0, 0, 29/21) ; the green dashed curve is the exceptional
point E = (29/21, 0, 0) ; cB = (0, 0, 29/21). In all three cases, the initial conditions
are: x(0) = (0, 0, 0) ; v(0)/c = (1, 0, 0). Unlike for a massive particle, the MLC
particle trajectory experiences a drift along the y-axis in the case of the non-vanishing
pseudo-electric field E along the x-direction, because the acceleration generated by E is
perpendicular to this field. The polarization state of the corresponding optical system,
here an electromagnetic plane wave subject to Faraday effect in a dichroic medium, is
the direction of the particle velocity: (S1, S2) = (vx/c, vy/c) (see text for details).

6. A note about the pseudo-electromagnetic field

One may be surprised to learn that the Lorentz force (20) applied to the MLC particle
when the field (E ,B) has nothing to do with a genuine electromagnetic field.

To clarify this point, we start from the description of the system in canonical
coordinates, xc and pc, in the phase space. With this approach, the spatial coordinates,
xc, are defined as conjugates to the canonical momentum, pc, through the Hamilton
equation dxc/dt = ∂Hc/∂pc, in which Hc is the canonical Hamiltonian [47]. The field
(E ,B) is generally a function of xc.

The total energy, E, and 3-momentum, p, of the MLC particle, must incorporate
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the structure of the scalar and vector potentials when they exist. The minimal coupling
procedure yields: E ≡ cS0 = Hc − qΦ, p = pc − qA, with q the “charge” coupling
the particle to the potentials (Φ,A). According to the relativistic quantum field theory
[48], the Hamiltonian Hc of the system can be expressed in terms of the potentials:

Hc =
√
m2c4 + p2c2 + qΦ ,

with m = 0, since the MLC particle is massless. The Hamilton equations:

dpc

dt
= −∂Hc

∂xc

;
dxc

dt
= +

∂Hc

∂pc

, (49)

then lead to (see the detailed derivation in §16 of [30]):

dp

dt
= q

[
−
(
dA

dt
− (v∇)A

)
−∇Φ + v × (∇×A)

]
. (50)

Denoting: E ≡ −∂A/∂t − ∇Φ and B ≡ ∇ × A, the right-hand term of (50) is the
regular Lorentz force: q (E + v ×B ) without having to invoke the Maxwell equations
[49].

7. Possible extensions

In this Section, we wish to address briefly possible generalizations of our approach,
extending it to an ensemble of N two-level quantum systems.

7.1. Statistics of an ensemble of N incoherent, identical, two-state quantum systems
with non-Hermitian Hamiltonian

We consider, in this Section, a large number, N , of two-state quantum systems ruled by
the same non-Hermitian Hamiltonian. This ensemble is supposed to be incoherent, i.e.
the state of any individual system does not depend on the states of the other systems.

The quantum state of this statistical ensemble is generally a mixed state which can
be described by the averaged values of the Bloch parameters:

‹Sj› =
1

N

N∑
k=1

Sj(k) , j = 1, 2, 3 (51)

‹S0› = S0 , (52)

in which Sj(k) is the jth Bloch component of the individual system labelled k. The value
of S0 is the same for all the individual systems since we consider identical two-state
quantum systems. We introduce the usual vector notation: ‹S› = (‹S1›, ‹S2›, ‹S3›).

From the definition (51) and the Cauchy-Schwarz inequality, one finds:

‹S1›2 + ‹S2›2 + ‹S3›2 ≤ ‹S0›2 . (53)
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Equality is realized in (53) only in the case of the pure state, that is S(k) is a constant
independent on the system k. We conclude that a simple criterion to know if the system
is in a pure or mixed state is that the ratio ‹S›2/‹S0›2 is equal to 1 if the state is pure,
and less than 1 if the state is mixed.

The dynamic equations (13)-(14) for a single two-state quantum system are linear in
the individual Bloch vector S(k), hence the same equations hold for the time evolution
of the averaged Bloch vector ‹S› which characterizes the quantum state of the ensemble
of individual systems:

d‹S0›
dt

= q (‹S› · E)− ΓS0 , (54)

d‹S›
dt

= q (‹S0›E + c ‹S› ×B)− Γ‹S› . (55)

The argument introduced in the Section 4 to unveil the equivalence with the
massless charged particle, can be used here about the averaged Bloch vector. Let us
define the 4-momentum, P, of a virtual relativistic particle by:

P ≡
(
E

c
,p

)
= e Γ̄t (‹S0›, ‹S1›, ‹S2›, ‹S3›) , (56)

with Γ̄ defined in (15). If we define now the velocity of the virtual particle by:

v/c = ‹S›/‹S0› , (57)

the equations of motion (19)-(20) of the particle in the electromagnetic field (E ,B) are
again exactly recovered.

The only remarkable difference with the single system problem is that, now, the
mass of the virtual particle is strictly positive since v2/c2 < 1 (resulting from (53) and
(57)). The probabilistic mixture of pure states makes the mass of the virtual particle to
become positive.

Similar behaviour and consequences were previously noticed on an ensemble of N
incoherent polarized photons in [51]. This is indeed a particular case of our results on an
ensemble of identical two-state quantum systems. Brosseau’s analysis used the density
matrix of the ensemble to make clear the relation with the dynamics of an ensemble of
spin-1/2 systems.

7.2. N interacting two-state systems with non-Hermitian Hamiltonian

Lastly, the case of an ensemble of N interacting two-level systems ruled by a non-
Hermitian Hamiltonian may at first seem difficult to handle, but the analogy with an
ensemble of MLC particles is clear. Indeed, using the results above, one can speculate
that the dynamics of such an ensemble is equivalent to the collective motion of an
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ensemble of N particles, each of them in the local pseudo-electromagnetic field created
by all the other particles.

A standard way to solve this kind of problem is to use the mean-field approximation,
that is to replace the local pseudo-electromagnetic field by its average value. This is the
main approach to study the dynamics of Bose-Einstein condensates, for example [52].
Investigating this kind of collective dynamics beyond the mean-field solution, requires
generally numerical simulations, such as for the dynamics of real gases (e.g. [53]) or for
bird flocking (e.g. [54]).

8. Conclusion

We have established the unforeseen one-to-one mapping between the dynamics of a non-
Hermitian two-state quantum system and the motion of a massless, charged particle.

We have further exemplified such a correspondence by considering a typical two-
state system in optics, namely: the evolution of light polarization when light propagates
in a dichroic medium with magneto-optical effect. In this case, Faraday effect leads to
the Hermitian part of the two-state system dynamics, while dichroism results in a non-
Hermitian part. This translates into the simple motion of a massless charged particle in
a magnetic field and electric field respectively, whose values are derived explicitly from
the parameters of the optical system.

Our approach has not only bridged two vastly different domains of physics, it has
also paved a more intellectually-comforting way towards the understanding of intricate
non-Hermitian quantum problems. We believe that the analogy drawn with the motion
of a charged particle (albeit massless) in an electromagnetic field has rendered the
grasping of these problems more intuitive.
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