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Abstract

Nutrition related health conditions can seriously decrease quality of life; a sys-
tem able to monitor the kitchen activities and eating behaviour of patients could
provide clinicians with important indicators for improving a patient’s condition.
To achieve this, the system has to reason about the person’s actions and goals.
To address this challenge, we present a behaviour recognition approach that relies
on symbolic behaviour representation and probabilistic reasoning to recognise the
person’s actions, the type of meal being prepared and its potential impact on a
patient’s health. We test our approach on a cooking dataset containing unscripted
kitchen activities recorded with various sensors in a real kitchen. The results show
that the approach is able to recognise the sequence of executed actions and the pre-
pared meal, to determine whether it is healthy, and to reason about the possibility
of depression based on the type of meal.

1 Introduction
Nutrition affects our health and is an important factor for having a healthy lifespan
[7]. Nutrition related diseases thus can impact our well-being and reduce the quality of
life. This is particularly true for long term physical conditions, such as diabetes, eating
disorders, or mental conditions such as depression, that affect the patient’s willingness
to prepare and consume healthy food, or people suffering from dementia disorders
whose ability to prepare food is hampered by the disease’s progression [10]. To reduce
the costs associated with hospitalisation and treatment of these conditions, different
works have attempted to provide automated home monitoring of the patient that besides
reducing the hospitalisation costs, potentially improves the wellbeing of the patient as
they can be monitored and treated in home settings [2].

To build such systems, one needs to recognise the user actions and goals as well as
the causes behind the observed behaviour [5]. To achieve that, different works make use
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of knowledge-based models [9]. In contrast to data-driven approaches that rely on large
amounts of sensor data and which can learn only situations that are present in the data,
knowledge-based approaches have the advantage that they are able to reason beyond
the sensor data. Thanks to the rules that define the possible behaviour, they can provide
information about the person’s situation, e.g. caused by the progression of the disease
[10]. The main challenge for rule-based approaches is that they are usually unable to
cope with the problems associated with real world scenarios: (a) the variability of the
user behaviour results in complex models that are often computationally infeasible, and
(b) the presence of imperfect sensors makes the purely symbolic models unable to cope
with the ambiguity.

To address these problems, some works propose approaches that combine rules and
probabilistic inference, such as [3, 8]. This type of models is also known as computa-
tional state space models (CSSMs) [4]. CSSMs combine symbolic representation with
probabilistic reasoning to cope with the combination of behaviour variability and sen-
sor noise [3, 4]. One challenge with CSSMs is that so far they have only been applied to
scripted scenarios which implies simplified settings that do not address the challenges
of complexity and behaviour variability present in real settings. Another challenge is
the reconstruction of the user activities and goals from low level sensor data. As [11]
point out, “bridging the gap between noisy, low-level data and high-level activity mod-
els is a core challenge”. In this work, we address the above challenges by presenting
first empirical results showing that CSSMs are able to reason about the user’s actions
and goals in unscripted kitchen scenarios based on low level sensor data.

2 Related Work
There are different rule-based approaches that can reason about the person’s actions
and goals based on context information. One such approach is where ontology-based
behaviour libraries are explicitly provided by human experts [9]. One problem with
this type of approaches is that “library-based models are inherently unable to solve
the problem of library completeness caused by the inability of a designer to model all
possible execution sequences leading to the goal” [13].

A second option for arriving at a suitable model is to mine action sequences from
observations of human behaviour. Such approaches manually define an initial library
of behaviours. Later, behaviour variations are added or removed based on observations
of the user activities [1]. Although this approach provides a solution to the problem
of keeping behaviour libraries up-to-date, it still relies on initial manual definitions of
behaviour variations.

To address the problem of designing models that represent the behaviour variability
without relying on large amounts of sensor data, some works propose computational
state space models [3, 8, 4, 13]. CSSMs describe the actions in terms of preconditions
and effects, and some of them allow probabilistic reasoning about the user state, goals
and context. The manually defined model is very compact as it requires the definition
of several action templates that are automatically expanded into different execution
sequences based on the causal relations between them. This provides an alternative
solution to the problem of manually defining all execution sequences, or relying on
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large amounts of annotated sensor data to learn them.
So far, CSSMs have been used only in controlled experiments with predefined ex-

ecution sequences. Such experiments limit the behaviour variability typical for real-
world problems, which in turn simplifies the CSSM model needed to recognise this
behaviour. To our knowledge, so far there is no empirical evidence that CSSMs are
able to cope with the behaviour complexity typical for a real world daily activities.
What is more, so far CSSMs have been used for goal recognition only based on sim-
ulated data [3, 8]. In a previous work we proposed a CSSM model that is able to
recognise the protagonist’s activities during unscripted kitchen tasks [12]. The model
was tested on simulated sensor data. In this work, we extend this model for activity
recognition based on real sensor data by building the appropriate observation model
and actions’ durations. Furthermore, we extend the model for goal recognition and
we show first empirical evidence that it is possible to perform both activity and goal
recognition based on noisy sensor data in real-world everyday scenarios.

3 Computational Causal Behaviour Models
The CSSM approach we chose for our problem is called Computational Causal Be-
haviour Models (CCBM) which has been shown to perform adequate activity recogni-
tion in problems with large state spaces and noisy sensor observations [4, 13]. CCBM
relies on the idea of Bayesian filtering to recognise the person’s actions and goals based
on observations. Figure 1 shows the dynamic Bayesian network (DBN) structure of a
CCBM model. Informally, CCBM can be divided into two parts: observation model,
which provides the probability of having an observation given a certain system state
and system model, which provides the probability of the current system model state
given the previous state. The observation model is defined through Yt = (Wt, Zt),
the observation data for time step t, e.g sensor data collected from low level sensors or
simulated data. So far CSSMs had either performed only activity recognition using real
sensor data [4, 13] or they have used simulated data to perform goal recognition [3, 8].
In this work we use low level sensor data to perform both activity and goal recognition.
The system model consists of causal model (expressed through Gt, At, St), duration
model (expressed through Dt and Ut), and action selection heuristics (which are not
represented in Figure 1). Gt is the current goal the person is pursuing. In difference to
[4, 13] who assume that the current goal is a constant, in this work we follow different
goals and the goal can change dynamically over time. St is the high-level model state
(the state describing the person’s behaviour). It is either the result of applying a new
action At or carrying over the old state St−1. Actions can last longer than a single
time step, i.e. they have durations. Ut denotes the starting time of an action, while the
boolean random variable Dt indicated the termination status of the previous action. Vt

is the time stamp associated to the DBN slice.
In CCBM the causal model is presented in terms of rules that describe the possible

initial and goal states, the conditions that have to hold in order for an action to be
executable and the changes to the world after the action is executed. To select a new
action CCBM uses action selection heuristics such as goal distance, cognitive heuristic
etc. The duration model is expressed through probability distribution indicating the
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Figure 1: DBN structure of a CCBM model. Adapted from [4].

probability of terminating the action given the starting time of the action. For more
details on CCBM see [4, 13].

4 Experimental Setup
Data Collection A sensor dataset consisting of 15 runs of kitchen activities was
recorded in the SPHERE House which is part of the SPHERE project (a Sensor Plat-
form for HEalthcare in a Residential Environment) [14]. The SPHERE House in Bris-
tol (UK) is a 2-bedroom house equipped with a variety of environmental sensors. The
sensor network in the kitchen of the house collects data on temperature, humidity, light
levels, noise levels, dust levels, motion within the room, cupboard and room door state,
and water and electricity usage. A head-mounted camera was used to record the actions
of the participants to allow for annotation of the observations. The resulting dataset can
be downloaded from [6].

Data Processing The original sensor data is in JSON format. The data was converted
so that for each type of sensor there is a separate column. This conversion produced
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multiple rows with the same timestamp (in milliseconds). Rows with the same times-
tamp were then combined as long as per sensor type there was only one unique value.
As this new format produces NAs for some sensors at a given time (due to the way
in which the data is initially collected from the sensors), the NAs between two sensor
readings were replaced with the first value. As the state of the most sensors is being
read at a certain sampling rate but additionally there is a reading when a change in the
state is detected, we believe that this simple replacement of NAs is sufficient. The re-
sulting data contained identical observations for different action labels. To reduce the
impact of this artefact on the model performance, a sliding window of 5 time steps with
overlapping of 50% was used and the observations in this window were represented by
the maximum value for each sensor in the window.

CCBM Models In this work we use extended version of the model proposed in [12]
where they use it for activity recognition on simulated data. Here, we extend the model
by adding probabilistic action durations and goal recognition and use it with real sensor
data for following different goals.

Causal model: 15 specialised models, specifically fitted for the corresponding exe-
cution sequence, were developed. Furthermore, a general model was developed which
can handle all sequences in the dataset. Each of the models can recognise the fol-
lowing action classes: clean, drink, eat, get, move, prepare, put, unknown. The model
dimensions for the two model implementations can be seen in Table 1. Some additional

Table 1: Parameters for the different models.
Parameters General model Specialised model
Action classes 8 8
Ground actions 92 10 – 28
States 450 144 40 – 1288
Valid plans 21 889 393 162 – 15 689

discussion on the models can be found in [12].
Goals in the model: The model has three types of goals: 1) the type of meal the

person is preparing (13 goals); 2) whether the meal / drink is healthy or not (4 goals);
3) whether the person is depressed or not (2 goals). For 3) we rely on the assumption
that the person is depressed when they are preparing ready meals instead of cooking.

Duration model: The durations of the model were calculated based on the annota-
tion. Empirical probability was assigned to each action class, indicating how long the
model can stay in the same state before transitioning to another state.

Observation model: Two types of observation models were trained with a decision
tree: 1) OMo: All data was used both for training the OM and for testing the CCBM
model. 2) OMp: The first run was used for training the OM and the remaining runs
were used for testing the CCBM. The first run was chosen because it is the only run
where all action classes appear.

The decision tree for OMo without any additional underlying model achieved mean
accuracy of .52. The decision tree for the OMp achieved mean accuracy of .39. This is
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to be expected as the tree was trained only on the first run and in each of the remaining
experiments, a different meal was prepared usually by a different person.

Experiments For each of the observation models, the following experiments were
conducted: 1) activity recognition of the action classes based on: the specific CCBM
model (we call this model CCBMs); the general CCBM model with one goal1 (we
call this model CCBMg); the general CCBM model with multiple goals2 (we call
this model CCBMg1). 2) goal recognition on: the different meals and drinks that
can be prepared (the goal recognition is done with the CCBMg1 model); whether
the prepared meal is healthy (we call this model CCBMg2); whether the person is
depressed (we call this model CCBMg3).

5 Results
Figure 2 shows the results from the activity recognition with the different observation
and system models. It can be seen that for both OM, the CCBM models performed bet-
ter than the classification with decision tree. For most models, Shapiro-Wilk normality
test did not reject the null hypothesis that the samples come from normal distribution
with the exception of CCBMs and CCBMg1 with OMp (p value ≤ 0.03). For that
reason, to test whether the results significantly differ from each other we performed
both signed t test and Wilcoxon test. Both tests showed that all CCBM models with
OMo do not significantly differ from each other (p ≥ 0.84 for t test and p ≥ 0.74 for
Wilcoxon test). This indicates that the general models do not significantly reduce the
recognition rate in comparison to the specialised model. This however showed that all
three CCBM models with OMo significantly differ from the decision tree tested on the
training data (p ≤ 0.006 for t test and p ≤ 0.003 for Wilcoxon test). On the other hand,
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Figure 2: Accuracy for the activity recognition.

both tests illustrated that the CCBM models with OMp and the decision tree where
a test and train dataset was used do not significantly differ (p ≥ 0.73 for t test and p
≥ 0.86 for Wilcoxon test). This stands to show that the very ambiguous observation

1This means that all possible meals are described with “OR” statement.
2This means that all possible meals are described as separate goals.
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model does not allow for the system model to improve the activity recognition perfor-
mance. However, it also shows that despite the inaccurate OM, the system models do
not reduce the recognition performance.

Figure 3 shows the results from the goal recognition for the different observation
models. Here we measure the F score, as for some of the experiments more goals
were recognised than were followed during the experiment. Surprisingly, OMp did not
reduce recognition of the goal for healthy meal and the type of meal. On the contrary,
despite the ambiguous OM and the low activity recognition results, the models were
able to perform better than when using OMo. On the other hand, the recognition of
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Figure 3: Accuracy for the goal recognition.

whether the person is depressed or not was lower with OMp than with OMo. To test
whether the results for the two OM significantly differ, we performed a Wilcoxon test
(the Shapiro-Wilk normality test rejected the null hypothesis that the samples come
from a normal distribution with a p ≤ 0.001). The Wilcoxon test showed that results
for the two OMs for meal recognition and healthy meal do not significantly differ (p
= 0.86 for CCBMg1, and p = 0.40 for CCBMg2). This means that the models
perform comparably and that the inaccurate observation model OMp does not reduce
the accuracy of recognising the person’s goal. The results however showed that the
OM has influence on the recognition of whether the person is depressed or not (p =
0.004 for CCBMg3). In other words the more accurate OMo significantly improved
the recognition of the cause for the prepared meal. Figure 4 shows an example of the
probability of preparing a healthy meal / drink for one of the experiments. The true
goal is “healthy meal” and it can be seen that after time step 125 the model converges
to the real goal. Although in this example, the protagonist pursues only one goal, in
4 of the experiments the goal changes throughout the experiment as the protagonist
prepares more than one meal or drink.

6 Conclusion and Future Work
This work investigates the applicability of CSSMs to real world everyday activities. We
applied the approach to a sensor dataset containing 15 unscripted meal preparations.
The results showed that the approach is able to perform activity recognition without
reducing the recognition quality compared to the performance of decision tree. They
also showed the approach is able to perform goal recognition and to accurately reason
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Figure 4: Evolving of the goals’ probability with the accumulation of new observations
during the experiment execution.

about the type of meal, whether it is healthy and whether the person preparing the meal
is depressed even in the case of poor activity recognition results. These first results
show that the approach has the potential to reason about the person’s behaviour and the
causes behind it that could hint at (the progression of) medical conditions.

In the future, we intend to compare the results from the goal recognition to state of
the art approaches, such as HMMs. Furthermore, we intend to add the data from depth
cameras to the observations and to investigate the influence of the type of sensor on the
model performance.
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