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Integrated Segmentation and Interpolation of
Sparse Data

Adeline Paiement, Majid Mirmehdi, Senior Member, IEEE, Xianghua Xie, Member, IEEE,
and Mark C. K. Hamilton

Abstract—We address the two inherently related problems
of segmentation and interpolation of 3D and 4D sparse data
and propose a new method to integrate these stages in a level
set framework. The interpolation process uses segmentation
information rather than pixel intensities for increased robustness
and accuracy. The method supports any spatial configurations of
sets of 2D slices having arbitrary positions and orientations. We
achieve this by introducing a new level set scheme based on the
interpolation of the level set function by radial basis functions.
The proposed method is validated quantitatively and/or subjec-
tively on artificial data and MRI and CT scans, and is compared
against the traditional sequential approach which interpolates
the images first, using a state-of-the-art image interpolation
method, and then segments the interpolated volume in 3D or
4D. In our experiments, the proposed framework yielded similar
segmentation results to the sequential approach, but provided
a more robust and accurate interpolation. In particular, the
interpolation was more satisfactory in cases of large gaps, due to
the method taking into account the global shape of the object,
and it recovered better topologies at the extremities of the shapes
where the objects disappear from the image slices. As a result,
the complete integrated framework provided more satisfactory
shape reconstructions than the sequential approach.

Index Terms—3D/4D object modeling, segmentation, interpo-
lation, level set methods, RBF.

I. INTRODUCTION

MODELING from 3D and 4D tomographic volumes
raises two closely intertwined issues, segmentation and

interpolation. Segmentation is required to partition the 3D
space containing the object and to distinguish data points
belonging to the object from background points. Typical
datasets include sets of 2D slices, ranging from simple stacks
of parallel slices to more complicated spatial configurations
with slices having various positions and orientations (see Fig.
1). 3D datasets can contain slices of both the object of interest
and its environment, and independent 2D segmentation of the
constituent 2D slices is not suitable to reconstruct 3D or 4D
volumes, since these segmentations may not be consistent
with each other. Therefore, all the slices are better segmented
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Fig. 1. Examples of sparse sets of slices – slice thickness is imposed by
scanner’s limitations, while spacing is adjusted as a compromise between
accuracy and patient comfort. (a) simple stack of parallel slices, (b) standard
spatial configuration of a cardiac MRI: stack of parallel short-axis slices plus
a few long-axis ones, and (c) radial dataset.

simultaneously in 3D or 4D. Interpolation is necessary since
data often do not span the whole 3D space – thus offering
only partial support to segmentation. Some medical imaging
modalities require integrating the signal over a thick slice of
the volume in order to improve the signal quality by increasing
the signal to noise ratio. This sets an undesirable limit on the
possible slice spacings. For example, for cine cardiac MRIs
produced by a 1.5T scanner, a typical slice thickness is 7mm,
hence slice spacing is usually 7mm or larger. In addition,
clinicians sometimes choose to acquire largely spaced slices
in order to decrease the acquisition time and reduce patient
discomfort, resulting in very sparse volumes containing large
gaps between the 2D slices, as illustrated in Fig. 1. This is
a common practice, especially for imaging modalities such
as cardiac MRI, when image capture can be very difficult
for patients who are asked to remain perfectly still until the
end of the acquisition and to hold their breath repeatedly for
around 10 seconds and occasionally up to 30 seconds at a time.
Such data acquisition protocols result in gaps with widths of
around 8mm to 16mm for in-plane pixel sizes of ∼1.8mm.
These gaps make the 3D segmentation even more complicated
and data must be interpolated in order to reconstruct a more
representative 3D volume. In the 4D case, data must also be
interpolated between the available time frames. Clearly, the
success of one stage (segmentation or interpolation) depends
on the accuracy of the other.

Traditionally, segmentation and interpolation are performed
iteratively. Two sequential approaches exist which perform
these two stages in opposing order. Some works first segment
the slices independently, and then interpolate a surface from
the 2D contours, e.g. [1], [2]. As mentioned earlier, the
drawback of this approach is that the independent 2D segmen-
tations may not be consistent with each other, and incorrect
segmentations would not provide a reliable ground for the
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shape interpolation. Liu et al. proposed in [3] a new method
to interpolate surfaces from segmentation contours obtained
from image slices having arbitrary positions and orientations.
In their work, the segmentations are performed manually to
ensure they are correct. More commonly, other works perform
the interpolation of the slices first in order to reconstruct a 3D
volume, e.g. as in [4]–[7], and then perform the segmentation.
The problem of interpolation between images having different
orientations is ill-posed, and most of these works, e.g. [7],
apply only to one or two stacks of parallel and equally spaced
images. In addition, methods based on the interpolation of
image intensities across and in-between frames may be very
sensitive to differences of gain and contrast in the images, thus
producing interpolation artifacts which may bias the segmen-
tation stage that follows. This deficiency was demonstrated
in our earlier work [8], where interpolation produced dark
lines which attract the segmenting contour. In order to avoid
creating interpolation artifacts, Woo et al. proposed in their
work on superresolution by volume fusion [9] to equalize
the intensities of corresponding regions in three non-isotropic
volumes using an intensity matching method based on spline
regression, prior to reconstructing a high resolution fused
volume. However modifying the intensities of medical images
may be controversial because of the risk in erasing valuable
information and creating erroneous features.

These sequential approaches lack robustness and an under-
performance of one stage can lead to further challenges in,
and even failure of, the subsequent stage. However, only a few
attempts have been made to combine these stages in a single
framework. Some works have segmented sparse volumes made
up of 2D slices by registering and deforming a model on the
images, thus relying on the continuity of the model to handle
the gaps, e.g. [10] with ASM models, [11] with combined 2D
AAMs and a 3D shape model, [12] with a triangulated surface
model, and [13] with a parametric model. This can be seen
as integrated segmentation of the images and interpolation of
the shape of the segmented object in the gaps. These methods
have the drawbacks inherent in all model based approaches –
they require prior knowledge and a training phase, and lack
flexibility. Another method which combines segmentation and
interpolation was presented in our earlier work in [8]. It is
based on the flexible level set method and does not require
prior knowledge. We will describe the method in more detail
in the next section. Table I presents a summary of existing
methods for object modeling from 3D sparse medical data,
together with their main drawbacks.

The novel contributions of this work can be summarized
as follows. We integrate segmentation and interpolation into a
new radial basis function (RBF) interpolated level set frame-
work which benefits from the simplicity and flexibility of level
set methods, the numerical stability of RBF interpolated level
set segmentation methods, and the interpolation abilities of
RBFs. To the best of our knowledge, this is the first framework
which uses RBFs for both segmentation and interpolation. Fur-
thermore, like in our earlier work [8], the proposed framework
interpolates the level set segmenting surface rather than the
image intensities, but using a different interpolation scheme
which results in better quality interpolations (this will be

quantitatively shown in the Results section). This approach
is an important aspect of our method since it enables us
to handle and exploit images having different gains and
contrasts, and even images from different imaging modalities,
simultaneously. Further, it uses shape information provided
by the segmenting surface in order to yield a more robust
interpolation than intensity-based methods. Also, our proposed
method is very general and can model objects (i) of any shape,
since it is not limited to a given class of objects like model
based methods, (ii) from data having any number of 2D slices
and any positions and orientations of its slices, (iii) from
any image modality by a proper choice of the segmentation
method, e.g. edges, intensity or prior knowledge, and (iv) using
any strictly positive definite (SPD) RBF.

Next, we review some related works and identify improve-
ments we make on existing methods. Then in Section III,
we describe our proposed method and give implementation
guidelines1, including parameter setting. Validation tests and
comparative results are presented in Section IV, and Section
V concludes the paper.

II. RELATED WORKS

Object modeling from sparse medical data using a level
set method has been carried out, to some extent, in our
earlier work on segmentation and interpolation of sets of slices
[8]. Level set methods evolve a contour or a surface driven
typically by a data term which matches the contour or surface
to the data, and a smoothing term which ensures the contour
or surface remains smooth. In [8], the data term evolves the
parts of the level set implicit surface which are in the planes
of the 2D slices in order to segment those images, and the
implicit surface is diffused in the gaps between the slices
using a Mean Curvature Flow (MCF) [14]. This curvature
based smoothing term ensures continuity and smoothness in
the gaps between the 2D slices. Any segmentation algorithm
may be used to segment the 2D slices, and it is even possible
to use different algorithms simultaneously to process images
having different gains and contrasts, and images from different
modalities acquired in different scans, provided that they are
properly aligned and scaled. A fundamental shortcoming of
MCF is that it tends to produce minimal surfaces which,
depending on the application, may not be appropriate. Indeed,
Chopp and Sethian in [14] showed that a cylinder evolved
under the MCF between two fixed rings becomes a catenoid
if the rings are close enough, and disappears if the distance
between the rings is larger than a maximum distance. This
caused the numerous catenoid-like shapes in Fig. 2. It may
be more suitable to take into account the global geometry of
the object in order to produce a better interpolation. Surfaces
yielded by diffusion using the Surface Diffusion Flow (SDF)
[15] are minimal curvature surfaces and tend to be more
visually satisfactory, but similarly to MCF, SDF is also not
easily scalable. In particular, for large datasets and/or large
gaps between the slices, many SDF iterations are required
at each segmentation iteration in order to successfully drive

1Our software will be publicly available at http://www.bristol.ac.uk/vi-lab/
projects/sparseobjectmodelling/.
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TABLE I
SUMMARY OF EXISTING APPROACHES FOR 3D MODELING FROM SPARSE MEDICAL DATA

Approach Type of segmentation Type of interpolation Main drawbacks

Sequential
Segmentation followed

by interpolation 2D Surface interpolation Robustness of
segmentation First step

Interpolation followed by
segmentation 3D Image interpolation Ill-posed interpolation

problem is critical

Model based 3D, registration and
deformation of a model Model continuity Training + Lack of flexibility

Interpolated level set surface [8] 3D level set Diffusion of the level set
surface in gaps

Robustness of the interpolation

(a)

(b)

Fig. 2. Interpolation by surface diffusion in gaps using an MCF – the modeled
object is the left ventricle cavity of a heart reconstructed from a MRI dataset.
(a) global view, (b) zoom of the highlighted part of (a).

the level set implicit surface from one side of the gap to the
other. In addition, for bigger volumes or gaps, the method
often fails to propagate the implicit surface satisfactorily, as
in Figs. 3a and 3b where it is not interpolated smoothly in
the gaps of a vertebra dataset, and in Fig. 3c where it failed
to propagate to the upper and lower parts of brain ventricles,
which extend further up and down inside the skull, as shown
by the raw data of Figs. 3d and 3e. Our proposed method
performs interpolation of the level set implicit surface in a
novel way which exploits interpolation properties of RBFs
and yields a more satisfactory interpolation of the shape of
the object than [8]. In particular, [8] uses a local approach
based on diffusion of the level set implicit surface in the gaps,
while the proposed method can achieve a global interpolation
of the shape.

RBFs have been applied to both segmentation and interpola-
tion in the past, as shown in Table II, and are particularly popu-
lar for interpolation of scattered data, e.g. [16]. In [17], Carr et
al. used this interpolation to fit an implicit surface to scattered
3D points in order to model objects from 3D point clouds.
Recently, Wang et al. [18] presented a new use of RBFs
by segmenting images using a level set function interpolated
by RBFs, thus transforming the partial differential equation
(PDE) governing the motion of the level set’s interface into a
simpler ordinary differential equation (ODE) and obtaining a
more numerically stable scheme. However, this new level set
segmentation method requires inverting and storing a matrix
whose size depends on the size of the dataset. It is therefore
unsuitable for processing large datasets such as 3D and 4D
data. This work was then further improved by some authors
who addressed this inversion issue by deriving new ODEs
using a variational method, resulting in more memory and
computationally efficient schemes. Amongst them, Slabaugh

(a) (b)

(c) (d) (e)

Fig. 3. Interpolation by surface diffusion in gaps using an SDF. Vertebra from
a CT-scan: (a) view from the front, and (b) zoom of the highlighted part of
(a), and (c) brain ventricles from an MRI dataset, viewed from the side. Both
datasets are made up of parallel slices. The brain dataset is shown in (d) from
the side and (e) from the front, with parts removed in order to allow a better
visualization of the ventricles, in purple.

et al. in [19] proposed to use any RBFs which are anisotropic
with an analytic derivative, such as 2D anisotropic Gaussians,
and derived an evolution equation for both region-based and
edge-based segmentation algorithms. The number, locations
and anisotropic properties2 of the RBFs are updated at each
iteration in addition to their usual weighting coefficients, and
some RBFs may be merged and added when required. In
comparison, our new RBF interpolated level set framework
is more easily implemented since it neither requires updating
the properties of each individual RBF, but only their weights,
nor the merging and adding of RBFs. Bernard et al. in [20]
used B-spline RBFs to interpolate the level set function, and
derived an evolution equation for it, for the case of region-
based segmentation only.

In summary, RBF based approximation methods do not offer
any segmentation of the data or of the volume containing
them, while methods such as [19], [20] do not offer inter-
polation and can not be used on sparse data. Our proposed
method combines these two uses of RBFs – segmentation and
interpolation – in order to make sense of scattered data. Our
framework benefits from the high numerical stability of RBF
interpolated level set segmentation methods, so that large time
steps can be used, and frequent renormalizations to maintain

2σx and σy for the 2D anisotropic Gaussians.
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TABLE II
SUMMARY OF THE MAIN EXISTING USES OF RBFS

Use of RBF Segmentation Interpolation
Interpolation of scattered data,

e.g. [16] ×

Object modeling from point
clouds, e.g. [17] ×

Interpolation of a level set implicit
function, e.g. [18]–[20] ×

Proposed method × ×

a signed distance function are not required, like they are
for conventional level sets. It is a variational method and is
therefore more computationally efficient than methods such
as [18], so it can handle large datasets such as 3D and 4D
data. Further, as mentioned earlier, our proposed framework
is more general than methods such as e.g. [19], [20], since
any segmentation criteria and any SPD RBF may be used, in
any number of dimensions.

III. PROPOSED INTEGRATED SEGMENTATION AND
INTERPOLATION FRAMEWORK

Let φ(x) be a level set function and ψi(x) = ψi(‖x‖) a SPD
RBF centered on a control point xi. φ may be interpolated as

φ(x) =

N∑
i=1

αiψi(x) =

N∑
i=1

αiψ(x− xi), (1)

where αi are weighting coefficients. The method proposed by
[18] to evolve φ through α = [α1 . . . αN ]

T involves inverting
and storing an N × N matrix, which may be very time
consuming and memory hungry when dealing with the large
number of points N which compose a 3D or 4D dataset.
Instead, we derive the evolution of α by minimizing an energy
functional E [φ] governing the segmentation of the space Ω:

E [φ] =

∫
Ω

F [φ (x)] dx =

∫
Ω

F

[
N∑
i=1

αiψi(x)

]
dx. (2)

F [φ] may be any functional and is defined by the chosen seg-
mentation method. Conventional variational level set methods
derive an evolution equation for φ from (2) through a gradient
descent method as

∂φ

∂t
(x) = −∂E

∂φ
(x) = −∂F

∂φ
(x) . (3)

Using (1), (3), and the chain rule, a gradient descent method
on (2) yields the evolution equation for αi:

dαi
dt

= − ∂E
∂αi

= −
∫

Ω

∂F

∂αi
(x) dx

= −
∫

Ω

∂F

∂φ
(x)

∂φ

∂αi
(x) dx

=

∫
Ω

∂φ

∂t
(x)ψi (x) dx.

(4)

Let us rename ∂φ
∂t (x) in (3) as S (x). S is the speed of the

moving front and is generally defined on the contour C only.
Therefore, we can simplify (4) into
dαi
dt

=

∫
C

S (x)ψi (x) dx ≈
∫

Ω

δε (φ (x))S (x)ψi (x) dx,

(5)
where δε is an approximation of the Dirac function δ. The
restriction of S to the contour C is necessary to ensure the
stability of the method, i.e. if the object to be segmented is
small with respect to the size of the image, the speeds of
the background points would have an overwhelming effect
in (4) – they would therefore occlude the influence of the
more important speeds of the points located on the object
edges. Our experiments showed that δε should be larger with
increasing flatness of the RBF in order to allow the contour
to converge smoothly without oscillating around the edges of
the segmented object. In practice, we used

δε (x) =

{
1+cos(πx

ε )
2ε x ≤ ε

0 x > ε
, (6)

with ε = 1 for sharp RBFs and ε = 3 for flatter RBFs. S
depends on the chosen segmentation method which may be
any method of choice. When segmenting sparse data, no data
is available to compute a front’s speed in the gaps, so S is set
to 0 there.

RBF based interpolation methods usually define one control
point per data point. Instead, we choose to define one control
point per voxel of a discrete space, allowing (5) to be re-
written as a convolution which can then be solved efficiently
using the FFT:

dαi
dt

=
∑
C

S (x)ψi (x)

≈
∑
Ω

δε (φ (x))S (x)ψ (xi − x)

≈ ((δε (φ) · S) ? ψ) (xi) .

(7)

dαi
dt is then used to update α:

αt+1 = αt + dt · dα
dt
. (8)

This step implicitly updates the level set function since φ is
defined completely by α according to (1). In addition, (1)
implies that:

∂φ

∂t
(x) =

N∑
i=1

dαi
dt

ψi(x). (9)

Note that this ∂φ
∂t (x) is different from the one calculated by

conventional level set methods in (3). The initial α may be
easily computed in the Fourier domain:

φ(x) =

N∑
i=1

αiψ(x− xi) = (α ? ψ) (x) , (10)

α̂ (f) =
φ̂

ψ̂
(f) . (11)

where α̂, φ̂ and ψ̂ are the Fourier transforms of α, φ and ψ
respectively.
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We also note that unlike conventional level set methods, the
proposed evolution scheme for the RBF interpolated level set
does not use ∇φ (see (7) and (8)). In addition, our experiments
showed that φ tends to remain a smooth function as a result of
the smoothing effect of the two convolutions by a decreasing
RBF in (7) and (9). It is therefore unnecessary to regularly
normalize φ to maintain |∇φ| = 1. Finally, it is not necessary
to compute an extended velocity for points which are not on
the contour, as must be done with conventional level sets,
because only contour points are used in (7).

Algorithm 1, in Fig. 4, sums up this integrated segmentation
and interpolation method, and Fig. 5 illustrates the concept
with an example of how an image with a gap can be seg-
mented. It should be stressed that Algorithm 1 can be applied
to any sparse medical dataset since it does not make any
assumption on the type of data and on the positions and ori-
entations of its 2D slices. The distinction in the processing of
different imaging modalities only arises in the computation of
the front speed S, which depends on the chosen segmentation
algorithm only. This choice is based on the type of data and the
imaging modality, and will be discussed in the next section.

1: Initialize a contour C through a level set function φ (x)
2: Compute the initial coefficients α using (10)
3: repeat
4: for all x in C do
5: Compute S (x) according to the chosen segmen-

tation method
6: end for
7: Compute dα

dt using (7)
8: Update αt+1 using (8)
9: until convergence

Fig. 4. Algorithm 1: Integrated segmentation and interpolation of sparse data.

A. Choice of RBF

An evolution scheme similar to that presented above can be
derived for conditionally positive definite RBF, with the level

(a) (b) (c)

Fig. 5. Segmentation and interpolation of an image with a gap. (a) initial
contour in blue, (b) front speed S – green: positive; red: negative, (c)
final segmentation. Note that using (7) and (9) one can assess that ∂φ

∂t
is

respectively negative and positive at points A and C, thus pushing the contour
towards the edges of the object, positive at point D, pushing the contour
towards the other side of the gap, and negative at point B, preventing it from
leaking elsewhere in the gap.

set function approximated as

φ(x) = p(x) +

N∑
i=1

αiψi(x), (12)

where p is a polynomial which accounts for the linear and
constant portions of φ. However, in our experiments such
functions yielded rather poor results, with over-smoothed ∂φ

∂t
and final φ. Thus, only globally defined SPD RBFs would be
recommended for applications similar to ours.

We wish to emphasize on the importance of the global sup-
port of the RBF. Indeed, even if the segmentation stage could
work with both compactly supported and globally defined
RBFs, the interpolation stage may fail where gaps are larger
than their support. We tested Gaussian RBFs and inverse mul-

tiquadric RBFs of the form ψ(x) =
(
‖x‖2 + γ2

)− β2
, where

γ defines the shape of the RBF, and found that the flatness of
the RBF has much more influence on the segmentation and
interpolation quality than its type. In addition, the fast decay
of the Gaussian function makes the evolution of the contour
very slow in gaps (see (7)). Therefore, we chose to use inverse
multiquadric RBFs, with β equal to the number of dimensions
of the data to ensure the decrease is not too steep. The choice
of γ allows a finer tuning of the decrease rate.

B. Choice of Parameter γ

The flatness of ψ, through the value of γ, influences the
quality of the segmentation and of the interpolation, as will
be discussed below. Its choice depends on the nature of the
data, however the same value for γ can be used for processing
similar datasets, e.g. in our Experiment 3 in Section IV-D.

The proposed segmentation and interpolation framework
has the interesting property of being very robust to noise,
as illustrated in Fig. 6. This is due to the two consecutive
Gaussian-like smoothings that (7) and (9) apply to S in order
to obtain ∂φ

∂t , resulting in an isolated noisy point and its
associated noisy value for S having a reduced influence on the
final value of ∂φ

∂t . Note that these smoothings do not prevent
the contour from segmenting sharp corners in Figs. 6d and
6f. The amount of denoising can be adjusted by setting the
flatness of ψ through the choice of γ.

A value for γ that is too low would result in an RBF that is
too sharp and provides only local interpolation, as only the
directly adjacent slices would have an influence on a gap,
resulting for example in a ‘staircase-like’ shape in the case
of parallel slices (Fig. 10d). Such situations arise for datasets
containing large gaps, and/or in slices that are at a small angle
with the object’s surface. This latter scenario is illustrated in
Fig. 7 and evaluated in experiments on kidney and heart CT-
scans reported in Subsection IV-C. In those two cases, a large
γ needed to be used in order to obtain a smooth and globally
interpolated shape.

On the other hand, a value for γ that is too high, together
with inadequate initial conditions, may prevent small holes
and/or small objects from being segmented as they would be
treated as noise – see examples in Fig. 8k and Fig. 10c. In
addition, if the surface of the modeled object has some fine
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(a) (b) (c)

(d) (e) (f)

Fig. 6. Denoising effect: (a) initial noisy image, segmentation by the piecewise
constant model used in [21] using (b) conventional narrow-band level set, (c)
Chan-Vese level set scheme [21], and (d) proposed level set scheme. (e) initial
noisy image with ‘slices’ of missing information (dashed areas), (f) same as
(d) but with gaps being interpolated by the proposed scheme. The piecewise
constant model was used to compute ∂φ

∂t
for (b) and (c) and S for (d) and

(f). The schemes of (b) and (c) could not be used with the incomplete image
(e) because they can not handle missing information.

Fig. 7. Example of dataset whose slices (black lines, seen from the side) have
a small angle (red) with the surface of the modeled object (blue), resulting in
a larger distance ab (yellow) between two neighboring parts of the surface,
hence requiring a high degree of smoothing in the gaps.

details, such as bumps which are small in comparison to the
gap sizes, then a particularly high value of γ results in a highly
smoothing segmenting contour that misses the fine details, as
illustrated in Fig. 9b.

Hence, the value of γ is highly dependent on the nature of
the data, i.e. on the amount of denoising required, the size
of the object and of the gaps, and the level of detail on the
surface of the object – these can not be automatically evaluated
before the object is modeled and, at this point, can only be
assessed subjectively by the user from 3D visualizations of
the data. Thus, its choice would be extremely difficult to
automate, and currently needs to be determined by the user.
However, as will be illustrated in our experiments, γ needs to
be roughly tuned only, and the same value can generally be
used for all datasets of a same type. In the simplest cases, an
appropriate value for γ may be found easily which provides a
tradeoff between a suitable amount of denoising and a global

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Fig. 8. Influence of γ and the initial position of the contour on the
segmentation of a small hole illustrated via three examples. (a), (b), and (c)
initial contour, (d), (e) and (f) zoom on front speed S at an intermediate
state – green: positive; red: negative, (g), (h) and (i) zoom on ∂φ

∂t
at an

intermediate state – light grey: positive; dark grey: negative, (j), (k) and
(l) final segmentation. Left column: a sharp RBF (γ = 0.1) segments the
small hole in the middle of the object. Middle column: a flat RBF (γ = 2,
same initialization) treats the hole as noise and fails to delineate it, and Right
column: initialization close enough to the edges of the small hole allows the
speeds produced by the hole’s edges to prevail against speeds produced by the
object’s points, resulting in the hole being segmented even with a flat RBF
(γ = 2).

(a) (b)

Fig. 9. Influence of the RBF flatness (via parameter γ) on the smoothing of
surface details – the cavities of the left ventricle and atrium are segmented as
one object. (a) a sharp RBF (γ = 2) captures the irregularities of the edge of
the modeled object, while (b) a flat RBF (γ = 6) smoothes the segmentation
and yields a less detailed contour. This image is a central long-axis slice of
a CT-scan of the heart.
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(a) (b) (c)

(d) (e) (f)

Fig. 10. Small object or hole preserving approach – the modeled object
is the LV cavity of the heart of Fig. 2 with one central short-axis slice in
the left column and 3D view in the right column. Processing of a dataset
in two stages: (a) and (d) initial segmented and locally interpolated surface
using a sharp RBF (γ = 0.7), and (b) and (e) final segmented and globally
interpolated surface using a flat RBF (γ = 3), to be compared with (c) and (f)
processing of the dataset using a flat RBF (γ = 3) only. The small object or
hole preserving approach (two first columns) segments the papillary muscle
inside the LV cavity, while the simplest approach with a single flat RBF
(γ = 3), in the right column, treats it as noise.

enough interpolation, e.g. γ = 1.5 was obtained empirically
to model brain ventricles from five different datasets acquired
by two different MRI scanners at 1T and 1.5T. In other
cases, we recommend two approaches, detailed below, which
seek to provide a high degree of smoothing in the gaps
while preserving the segmentation quality. The first approach
preserves small objects and small holes which otherwise would
be treated as noise when using a large value for γ. The second
preserves also small details on the surface, e.g. small bumps,
but at the expense of a slightly less satisfactory interpolation.

To obtain smooth and globally interpolated shapes while
preserving small objects or holes – when a level set contour
is initialized close to the edges of small objects or small holes,
the speeds produced by these edges prevail against speeds
produced by non-edge points, as illustrated in Figs. 8f and
8i, and the contour is therefore able to segment these small
objects or holes (Fig. 8l). We generate such initializations
automatically by first processing the data with a low value
for γ, which yields the required level of denoising while
preserving small objects and holes (Figs. 10a and 10d). This
places the contour at the required initial position, i.e. on the
edges of the modeled object and of the smaller objects and
holes, e.g., as in Fig. 10a, with the left ventricle (LV) cavity
and the papillary muscle that is inside it. Then, starting from
the contour or surface just obtained, we process the data with
a high value of γ in order to refine the interpolation (Figs. 10b
and 10e). Note that in Fig. 10b, the papillary muscle is still
found, while it was not when the same value for γ was used,
without preliminary segmentation, in Fig. 10c, and hence it
was erroneously included in the LV cavity.

To preserve fine details on the surface at the expense of
slightly less smooth and globally interpolated shapes – to
prevent fine surface details being lost when a particularly high
degree of smoothing in the gaps is required, we suggest the
application of several RBFs, each having a different flattening
strength, in the same interpolation, i.e.

φ(x) =

L∑
l=1

∑
xi∈Ωl

αliψ
l(x− xi), (13)

where ψl is the RBF of flatness level l and Ωl is the domain
of the control points associated with RBFs of flatness level l,
such that ∪

l
Ωl = Ω and Ωla ∩ Ωlb = ∅ when la 6= lb. These

domains should be chosen such that sharp RBFs are used at
data points, e.g. in the planes of 2D images, while, in the gaps,
RBFs’ flatness increases progressively away from data points.
αli is simply the previous coefficient αi associated with the
RBF ψl centered at point xi. We use this notation to establish
that xi and αi are now associated with an RBF of a given
flatness level l. Eqs. (7) and (9) then become:

dαlii
dt

=
(
(δε (φ) · S) ? ψli

)
(xi) , (14)

with li such that xi ∈ Ωli , and

∂φ

∂t
(x) =

L∑
l=1

∑
xi∈Ωl

dαli
dt

ψl(x− xi)

=

L∑
l=1

∑
xi∈Ωl

Hl (xi)
dαli
dt

ψl(x− xi)

=

L∑
l=1

((
Hl ·

dαl

dt

)
? ψli

)
(x)

(15)

with Hl being equal to 1 inside Ωl, and 0 elsewhere. When
using this surface-detail preserving approach, the initial α can
not be computed as easily as in (10). However, it is easy to
update φ directly using (14) and (15), without keeping track
of α. Although the resulting shapes will have a much higher
degree of smoothing in the gaps than when using a sharp RBF
only, they will be globally interpolated in the middle of the
gaps only, where γ is the highest, while the interpolation will
be more local close to the data, as illustrated in Fig. 11d.
Hence, the resulting interpolation is less satisfactory than with
the small object or hole preserving approach.

Fig. 11 illustrates the ability of the two proposed approaches
to process the extreme case of sets of parallel slices having
particularly large gaps and a small angle with the modeled
object’s surface, hence requiring an exceptionally high degree
of smoothing in the gaps. In Fig. 11a, the small object or
hole preserving approach smoothes out the fine details on the
surface of the modeled object, while in Fig. 11b the surface-
detail preserving approach is better at reconstructing them.
On the other hand, in the dataset of Fig. 11c only four slices
were available and thus did not contain much information on
the fine details of the object’s surface. Therefore, the small
object or hole preserving approach could be used, with a
very flat RBF (γ = 12) at the second step, without losing
a significant amount of information. This approach yielded a
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(a) (b) (c) (d)

Fig. 11. Segmentation and interpolation of large gaps and small angle between
the images and the modeled object’s surface – the modeled objects are the
LV cavity of a heart from sets of parallel long-axis CT-scan slices. Gap size:
(a) and (b) 15 pixels, (c) and (d) 20 pixels. Reconstruction by, left column:
the small object or hole preserving approach (γ = 3 then (a) γ = 9, and (c)
γ = 12), and right column: the surface-detail preserving approach (γ ranging
from 3 to (b) 12, and (d) 15).

better interpolation than the surface-detail preserving approach
(Fig. 11d).

C. Choice of Segmentation Algorithm

The proposed framework may be used with any segmenta-
tion algorithm since no constraint is set on the computation
of S. This choice of algorithm is dictated by the type of data
and the imaging modality. Medical slices may be segmented
using a number of image segmentation algorithms, such as
edge based and region based methods, e.g. [22], [23] and [21],
as well as methods that use prior knowledge, e.g. [24], [25].

When a dataset contains images with different gains and
contrasts, or coming from different modalities, S (x) can
be computed independently for each image, using different
segmentation algorithms. Then, the values in S (x) for all
images can be jointly used to compute dαi

dt in (7). An example
of the use of this approach may be found in Experiment 3,
where T1 and T2 weighted MRIs of a brain are processed
simultaneously.

The choice of the segmentation algorithm is as crucial to
the success of interpolation as it is for segmentation, since
interpolation relies on the position of the level set implicit
surface in the image through the term S in (7). Thus, the
outcome of the interpolation stage and of the integrated frame-
work relies heavily on the choice of a robust segmentation
algorithm by the user. It may be noted that the integration
of interpolation and segmentation allows using 3D or 4D
segmentations rather than the less robust independent 2D
segmentations. Nevertheless, segmentation remains a difficult
task, and is central to the success of the integrated framework.
We note however that the failure of the segmentation in a part
of the volume has only an impact on the interpolation in the
neighborhood of this part, while in the rest of the volume
where the segmentation is satisfactory, the framework recovers
quickly. This is illustrated in Fig. 12 where a set of slices
has been segmented and interpolated after replacing a central
horizontal slice by a wrong one to simulate a failure in its
segmentation.

(a) (b) (c)

Fig. 12. Recovering after a local failure in the segmentation – the modeled
object is the LV cavity of a heart of Figs. 2 and 10. (a) dataset viewed from
the side – green: true slices; red: erroneous slice, (b) reconstructed object
(same view), and (c) original object.

D. Choice of Time Step

The proposed framework is very robust to numerical insta-
bilities thanks to the use of an ODE rather than the traditional
level set’s PDE, and no numerical instabilities would arise,
even for very large time steps, and without using any renormal-
ization. We can therefore choose the time step depending on
the maximum number of pixels the implicit surface is allowed
to travel through in one iteration. Indeed, at a given position,
a level set interface moves by distance D, defined as

D(x) =
dt · ∂φ∂t (x)

‖∇φ (x)‖
. (16)

If D is too large, the implicit surface may pass through small
objects without seeing them. In our experiments, we usually
set D = 1 at the beginning of the process, which was then
reduced automatically and progressively when oscillations of
the implicit surface around the edges of the segmented object
were detected. Lower D values allow the implicit surface to
stabilize on object edges and to segment them more accurately.

IV. EXPERIMENTS AND VALIDATION

To evaluate our proposed RBF based level set method,
the interpolation aspect of the framework is assessed and
compared with existing methods using both artificial and real
medical data. In particular, we concentrate on the ability of
the proposed method to handle sparse data by interpolating
an object’s shape in gaps, as this is the main contribution of
this work. We do not evaluate the quality of the segmentation
since this quality largely depends on the chosen segmentation
algorithm, and this choice is highly dependent on the nature
of the data. As the proposed framework is general enough
to be used on data from a variety of different modalities
(e.g. MRIs and CT-scans as shown in our experiments),
and can accept any level set segmentation algorithm for the
computation of the speed S of the level set implicit surface
in (7), as outlined in Subsection III-C, we do not recommend
any specific segmentation algorithm and let the user choose the
most appropriate method depending on their data. Therefore,
the choice of an optimum segmentation algorithm is beyond
the scope of this work, and we only evaluate the quality of
the interpolation.
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Amongst several segmentation methods we experimented
with, such as [21], [22] and [23], we selected the piecewise
constant (PC) model used in [21] as the most suitable segmen-
tation approach for validation of our framework on artificial
data made of piecewise constant regions. For validation on
real data, a method similar to [26] was used, which is based
on a piecewise model and on a Parzen window method
to estimate the distributions of image intensity inside and
outside of the object. However, we did not use the contour
smoothing and implicit function regularization of [26] because
our proposed method tends to produce smooth contours and
does not require regularization, as mentioned in Section III-D.
Also, we optimized the width of the Parzen window using log-
likelihood maximization, while [26] set it equal to the standard
deviations in the two regions. This was simple and generic
enough to allow processing various types of images, e.g. both
MRIs and CT-scans, with various amounts of noise.

We compare against the traditional sequential approach
which performs interpolation and segmentation separately in
turn, and our previous integrated method [8] which diffuses a
level set segmenting surface in the gaps, but implemented with
an SDF, rather than our original use of MCF. As explained in
Section I, two sequential approaches exist: A) 2D segmen-
tations of the image slices, followed by interpolation of the
surface from the obtained binary masks, and B) interpolation
of the images, followed by 3D segmentation of the obtained
3D volume. The type B sequential approach is more popular
in automatic sequential processing of medical images, due to
the more robust results produced by 3D segmentations over
independent 2D segmentations of the slices. In addition, a fair
comparison of the interpolation stage of the sequential and
integrated approaches requires using the same segmentation
stage in both methods. The proposed integrated framework can
only use 3D and 4D segmentation by design, while sequential
approach A is restricted to 2D independent segmentations.
Due to these reasons, we compare against version B of the
sequential approach, and we implement it with the state-of-
the-art image interpolation method of Cordero et al. [7], and
the same level set segmentation method as in our proposed
integrated framework.

The image interpolation method in [7] uses non-rigid reg-
istration to find matching points in two images, and then
interpolates the intensity between these points. The registration
is obtained by optimizing, in multiresolution, the maximum
a posteriori of a Markov Random Field (MRF), defined as
the field of quantized deformations at control points. The
MRF integrates intensity and gradient magnitude matching
constraints between two corresponding areas of the registered
images, a smoothness prior which penalizes large gradients
of the transformation, and a topology preservation prior. Both
forward and backward registrations are computed, in order
to ensure that the whole procedure is unbiaised, and both
results are used to compute the interpolation. Indeed, for
each gap point, two sets (one for each forward and backward
transformation) of two corresponding points are selected, so
that the transformation path which links them passes through
the gap point. The intensity at the gap point is then obtained
as the linear combination of the intensities at the locations of

the four matching points, weighted by terms that reflect the
confidence in the selection of the image points.

We evaluate especially the ability of the methods to inter-
polate data having various spatial configurations, i.e. slices
having arbitrary positions and orientations. This allows ex-
ploiting all available information without having to discard, for
example, slices of unsupported orientations. Also, particular
attention is paid to the quality of the interpolation in cases
where a high amount of smoothing is required in the gaps.
This is the case of gaps being comparatively too wide with
respect to the size of the object and/or of slice orientations
which do not match the principal orientation of the imaged
object. Finally, we evaluate the capability of interpolating a va-
riety of shapes, which can allow reconstructing either various
objects or objects having a high degree of shape variability,
e.g. some pathological organs such as brain ventricles of a
patient suffering from hydrocephalus (see Fig. 17). Note that
methods which integrate segmentation and interpolation in
a model based framework are not general enough to allow
processing shapes that have high variability, and we know of
no other authors’ work that integrates the whole process of
segmentation and interpolation. Here, we compare against a
typical sequential approach that we represent as one which
consists of interpolation of the images first, e.g. using [7], and
then segmentation in a second step (hereafter referred to as
SM+[7] for “Sequential Method implemented with [7]”), and
against our previous integrated segmentation and interpolation
method [8], which was described in Section II.

A. Data and Method

We applied our proposed method to a wide range of real
data of different modalities: (i) In Experiment 2 we used a
collection of quasi-isotropic data from which a number of
slices were removed in order to create gaps. These sets were
one CT-scan of the acetabulum bone made up of parallel slices
with pixels size of 0.49mm and slices spaced at 0.5mm, a CT-
scan of the whole body with pixel size of 0.78mm and gaps
of 0.8mm between the slices, from which we segment the LV
cavity and kidney, and two MRI scans of a spherical phantom,
with pixel sizes of 0.87mm and 1.44mm, and slice spacings
of 0.9mm and 1.5mm respectively. (ii) In Experiment 3 we
used five sparse MRIs of neonatal brains made of two stacks
of T1 and T2 images, where each stack was composed of
parallel images with a pixel size of 0.78mm and slices spaced
at 3.3mm. We also used two sparse CT-scans of bones whose
parallel slices had pixels of size 0.35mm and slices that were
spaced at 0.5mm. (iii) In Experiments 4, 5 and 6, we used 16
sparse cardiac MRIs made of a stack of short-axis (SA) images
and 0 to 12 long-axis (LA) images. The pixels ranged in size
from 1.77mm to 2.08mm, while there were 5mm to 20mm
gaps between the parallel SA images, and 25 time frames.

The interdependency of the segmentation and interpolation
in the proposed framework makes it difficult to evaluate the
interpolation stage alone and especially to assess its quality
separately from the accuracy of the segmentation on real
data. However, we note that as long as the segmentation is
correct, the result of the interpolation stage depends only
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on the spatial configuration of the images and on the shape
of the reconstructed object. For this reason, we evaluated
the interpolation stage, in Experiment 1, and established its
limits of performance in the case of a perfect segmentation,
by segmenting and interpolating artificial data that is very
simply and reliably segmented, e.g. images made of piecewise
constant regions. We used the PC segmentation model used in
[21], which is intensity based, and we produced 3D datasets
in which images are made of two regions of constant intensity,
inside and outside of the object to model, respectively. One
radial and one axial set were made by extracting radial and ax-
ial slices respectively from a volume containing a geometrical
object made of a cylinder and a hemisphere. Then, 32 more
sets were made from the cardiac MRI datasets of Experiment
4. First, two models of the LV cavity were generated by
segmenting, using the proposed method, two real cardiac MRI
datasets containing almost no gaps, hence requiring only a
minimal amount of inter-slice interpolation. Then, these two
models were used to generate 16 new datasets each, by using
the positions and orientations of the 2D slices of our 16 cardiac
MRI datasets and by replacing their intensities by those of the
models. Therefore, even if the slices of these 32 sets are black
and white images, they contain the shape of real hearts. Their
positions and orientations are also realistic since they are taken
from real cardiac MRIs. See Fig. 13 for some examples.

For comparative evaluation against [8] and SM+[7], we
measured accuracy on the 3D shape of the segmented and
interpolated objects (again because the proposed method and
our previous method [8] cannot separate segmentation from
interpolation). For better parity, the segmentation algorithm of
our framework was used to segment the interpolated volume
produced by Cordero et al. [7]. We used the Jaccard coefficient
as an accuracy measure of the combined segmentation and
interpolation. In Experiment 1, the groundtruth was the models
used to produce the artificial data. In Experiment 2, in order
to assess the accuracy of the interpolation on real data, we
compared the reconstruction of the objects from the datasets
with gaps against the reconstructions from the original full
volume datasets. The same segmentation method was used
in both cases to ensure that the segmentation results are
similar and that the comparisons only evaluate the accuracy
of the interpolation. In Experiments 3, 4, 5 and 6, we perform
subjective comparisons on the non-isotropic real datasets. The
values of γ used in the experiments are given in Table III.

B. Experiment 1: Quantitative Analysis on Artificial 3D Data

For the proposed method and [8], we segmented and inter-
polated the artificial 3D datasets starting from a small spherical
surface located at the centre of the volume, using the PC model
used in [21] to drive the segmentation.

Fig. 13 presents the segmented and interpolated surfaces of
the radial and axial datasets and of an example of a modi-
fied cardiac MRI. Table IV provides the Jaccard coefficients
indicating the proportions of voxels correctly assigned to the
objects. For the two LV models, the coefficients are averaged
over the 16 datasets made from each model. In the case of
the proposed method, the Jaccard coefficients were obtained

TABLE III
VALUES OF PARAMETER γ USED IN THE EXPERIMENTS

Experiment Modeled object
Spatial

γ
configuration

Experiment 1
Geometric model All 3

LV models A and B All 0.5 then 4

Experiment 2

Phantom Low Res. All 20
Phantom High Res. All 20

Acetabulum All 9

Kidney

5 pix. spacing 3 to 7
10 pix. spacing 3 to 9
15 pix. spacing 3 then 9
20 pix. spacing 3 then 12

LV cavity

5 pix. spacing 3 to 7
10 pix. spacing 3 to 9
15 pix. spacing 3 to 12
20 pix. spacing 3 then 12

Experiment 3
Vertebrae All 1.5

Brain ventricles All 1.5

Experiment 4 LV cavity All 0.7 then 3

Experiment 5 4D LV cavity All 2 (β = 4)

Experiment 6 LV + RV All 0.7 then 3

using the small object or hole preserving approach presented
in Subsection III-B, with γ being equal to 0.5 and 4 in
the first and second steps respectively, for all LV datasets.
Even when no attempt was made to tune γ to match the
individual spatial configurations of the datasets, the proposed
method yielded better results than our previous method [8],
with average accuracy measures of 0.943 against 0.906 for
our previous method. We obtained a more global interpolation
than our previous method [8] on both the geometrical and LV
datasets, and managed to reach all the slices of the axial set,
obtaining an accuracy of 0.967 (Fig. 13a), while [8]’s diffusion
method optimized the contour only locally, failing to recover
the topology of some parts of the LV cavity properly (blue
circle in Fig. 13c), and could not reach images located further
away than its narrowband width in the axial data set, resulting
in an accuracy of only 0.524 (Fig. 13b).

For the proposed method, we identified two difficult types
of surface areas whose reconstructions most contributed in
reducing the Jaccard accuracy measure. The first type is the
centres of gaps where the object’s surface has a sharp angle
with the image planes, as was illustrated in Fig. 7, and which
require a flat RBF in order to compensate for the increased
distance between the data points and obtain a global and
smooth interpolation. For example, this is the case for gaps
near the apex of the LV models and at the bottom of the
hemisphere of the axial dataset. Note that very large gaps
would have the same effect, as will be illustrated in Experiment
2. As discussed in Section III-B, a tradeoff must be found
in this case, between a flat RBF which takes into account
the global geometry of the object, and a sharper RBF which
better preserves the surface’s details. In this experiment, the
small object or hole preserving approach achieved this tradeoff
satisfactorily for the LV models, thus minimizing the decrease
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Fig. 13. Segmentation and interpolation of 3D artificial data. (a) radial dataset
– top: central horizontal slice, bottom: 3D view, (b) axial dataset – top: central
vertical slice, bottom: 3D view, (c) LV cavity model – top: central vertical
slice, bottom: 3D view. The blue circle highlights a failure of [8] to recover
the topology of part of the LV cavity.

TABLE IV
JACCARD COEFFICIENTS ON ARTIFICIAL 3D DATA

Dataset Our previous
method [8]

Proposed
method

Radial 0.775 0.984

Axial 0.524 0.967

LV A 0.931 ± 0.022 0.951 ± 0.018

LV B 0.913 ± 0.021 0.931 ± 0.020

All LV 0.922 ± 0.023 0.941 ± 0.021

All datasets 0.906 ± 0.075 0.943 ± 0.022

of the Jaccard measure, and a high value for γ could be used
with the axial dataset. The second type is the disappearance of
a structure between two slices where the proposed method has
no other choice than to guess the shape of the missing extrem-
ity, and it does so by attempting to preserve the smoothness of
the global shape, and therefore produces plausible, yet possibly
wrong, reconstructions. This is particularly true for large gaps
where the amount of missing information is high. Overall,
we found that the reductions of the Jaccard accuracy measure
were due to the accumulation of several small deviations from
the groundtruth surface, scattered over all the surface and with
a slightly higher concentration in these two types of difficult
areas. Note that the radial dataset does not suffer from any of
these difficulties, and achieved the best Jaccard coefficient.

C. Experiment 2: Quantitative Analysis on Real 3D Data

We also evaluated our framework on real quasi-isotropic
datasets from which a number of slices were removed in order

TABLE V
JACCARD COEFFICIENTS ON REAL 3D DATA

Dataset
Slice

spacing SM+[7]
Proposed method

(pixels) Horz. Horz.+Vert.

5 0.970 0.989 0.990
Phantom 10 0.940 0.991 0.989
Low res. 15 0.923 0.978 0.987

20 0.863 0.962 0.977

5 0.993 0.992 0.990
Phantom 10 0.980 0.991 0.993
High res. 15 0.949 0.990 0.992

20 0.917 0.985 0.990

Kidney

5 0.955 0.953 0.955
10 0.895 0.887 0.900
15 0.840 0.845 0.869
20 0.771 0.802 0.846

LV

5 0.966 0.962 0.962
10 0.919 0.916 0.922
15 0.872 0.888 0.899
20 0.750 0.835 0.864

A
ce

ta
bu

lu
m 5 0.972 0.981 0.975

10 0.948 0.968 0.968
15 0.892 0.929 0.935
20 0.881 0.903 0.915

Average
of all
datasets

5 0.971 ± 0.014 0.975 ± 0.017 0.974 ± 0.016
10 0.936 ± 0.032 0.951 ± 0.047 0.954 ± 0.041
15 0.895 ± 0.043 0.926 ± 0.061 0.936 ± 0.054
20 0.836 ± 0.072 0.897 ± 0.079 0.918 ± 0.065
All 0.910 ± 0.066 0.937 ± 0.059 0.946 ± 0.049

to create gaps. We made 8 datasets from each original set,
4 being made of parallel slices spaced by 5, 10, 15 and 20
pixels respectively, and 4 with the same horizontal slices plus
one additional vertical slice in the center of the volume. In
order to demonstrate the versatility of the proposed method,
we performed these tests on different objects having various
shapes and sizes, and imaged using different modalities. The
same segmentation algorithm, based on pixel intensity classi-
fication using a Parzen window estimator, similar to [26], was
used for all compared methods.

We compare the reconstructions from the datasets that have
gaps against the reconstructions from the original full volume
datasets in order to assess the quality of the interpolation. As
already illustrated in Experiment 1, our previous method [8]
does not scale correctly to large datasets and fails to propagate
the contour in large gaps, so we only compare against SM+[7]
in this experiment.

Table V provides the Jaccard coefficients for all of the
datasets for SM+[7] and the proposed method when the
datasets were made up of parallel horizontal slices only (in the
third and fourth columns of the table), and parallel horizontal
slices plus one vertical slice (in the last column).

The LV and Kidney datasets required a particularly large
amount of smoothing in the gaps because of the combined
effects of very large gaps and the unmatched orientations of
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(all) parallel slices against the orientation of the organs, hence
causing those slices to have a small angle with the object
surface. Therefore, for the proposed method, they were recon-
structed using the surface-detail preserving approach for the
smaller gap sizes (5-15 and 5-10 pixels for the LV and Kidney
datasets respectively) and the small object or hole preserving
approach for the larger gaps. γ was tuned depending on the
gap size, ranging from 3 to 12, as shown in Table III. The
phantom and acetabulum datasets presented smoother surfaces,
therefore a simpler scheme was used for them, with a single
value of γ for all slice spacing. In these cases, γ was only
roughly adapted to the size of the object and the level of detail
of its shape, and was set to 9 for the acetabulum, and 20 for the
two types of phantom. For the method of Cordero et al. [7],
we used the three default parameters provided by the authors,
as we found that modifying them did not significantly change
the interpolation followed by segmentation results.

Even when γ was not finely tuned for all datasets, the
proposed method performed similarly or better than SM+[7].
While the segmentations of the slices, in the planes of the
images, were subjectively similarly good for the two com-
pared methods for all slice spacings, the interpolation by
the proposed method produced better results in the gaps
between the images, especially for larger gaps, with average
accuracy measures of 0.937 and 0.946 across all datasets and
all spacings, for parallel horizontal slices and horizontal plus
vertical slices respectively. Cordero et al. [7] only managed a
rate of 0.910 for parallel horizontal slices (and can not process
datasets that have vertical slices).

Cordero et al. [7] interpolates linearly between two neigh-
boring slices, thus producing a local interpolation of the shape,
while our proposed method can take into account more than
two slices, especially for large values of γ, and therefore it
provides a more global interpolation. This is illustrated in the
4th row of Fig. 14 where the results of Cordero et al. [7] for
20 pixel spacing are made of straight segments because of
the linear and local properties of the interpolation and yield
accuracy rates ranging from 0.750 to 0.917. On the contrary,
in the 5th and last rows of Fig. 14, the proposed method gave
a smooth and rather round shape, and accuracy rates of 0.802
to 0.985 and 0.846 to 0.990 respectively. Cordero et al. [7]
also struggled where the object disappears between two slices,
such as at the extremities of the phantom scans. This resulted
in protrusions at these positions – for example, their method
confused the object with a background of similar intensity in
the 20 pixel spacing Kidney dataset (see blue circle in the 4th
row of Fig. 14) which gave an accuracy rate of only 0.771.

The addition of a single vertical slice increased the ro-
bustness of the proposed method in large gaps (right column
of Table V and 3rd and 6th rows of Fig. 14), with average
accuracy rates across all five datasets of 0.897 to 0.918 for
20 pixel spacings, even if the position and orientation of the
additional slice were not chosen to match to the position and
orientation of the imaged object but instead were selected
arbitrarily. Recall, Cordero et al.’s approach [7] is inherently
unable to use LA images.

Fig. 15 illustrates another example of shape detail extraction
where, for the Kidney dataset with 5 pixels spacing, we can

see that the topology of the vessels recovered by the proposed
method is much closer to the original volume than Cordero et
al. [7]’s result, which fused some of the vessels together.

D. Experiment 3: Qualitative Analysis on Real CT-scans and
MRIs

In this experiment, vertebrae were segmented from CT-scans
(Fig. 16), and the ventricles of the brain were segmented from
neonatal brain MRIs (Fig. 17), using the Parzen estimator
based segmentation algorithm. The datasets were visually
inspected for any visible misalignment as a pre-processing step
and also considered not to require much smoothing (unlike the
data used in Experiment 2), because the gaps were smaller and
the slices were acquired roughly perpendicular to the principal
axes of the modeled objects. Therefore, the simplest scheme
with a single value of γ = 1.5 was used for all the datasets
of this experiment.

We did not compare against SM+[7] in this experiment,
because their method requires images spaced by at least twice
their pixel size, which was not the case for the vertebra CT-
scans, and it can not handle images from different modalities
simultaneously, such as the T1 and T2 images of the brain
MRIs. On the contrary, the proposed method could jointly
process the T1 and T2 images, by applying different segmen-
tation algorithms to the computation of S for each modality, as
suggested in Section III-C. Note that some methods perform
mutimodal segmentation on brain MRIs with small gaps by
“stacking” the image slices on top of each other, ignoring the
gaps. The drawback of such methods is that they would discard
any slice with a different orientation, such as sagittal and
coronal slices, if available. By preserving the original spacing
between the axial slices, our proposed framework can make
use of these different slices. In Fig. 17, this allowed using
an additional set of sagittal slices, which helped to segment a
feature which was missed when using the axial slices only.

It can be seen in Fig. 16 that our previous method [8] did not
interpolate the bone’s shape in the gaps satisfactorily, because
of its local approach. However, the proposed method produced
a much more satisfactory global interpolation. Similarly, in
Fig. 17, [8] failed to extend the contour to all the parts of the
brain ventricles due to the presence of large gaps in the data.
In addition, the high degree of noise in the brain MRI datasets
biased its segmentation. The proposed method did not suffer
from these issues and the segmenting contour reached all the
parts of the brain’s ventricles (Fig.17). The segmentation was
not impaired by the high level of noise, due to the inherent
robustness of the method to noise, as described earlier in
Section III-B.

E. Experiment 4: Qualitative Analysis on Real cardiac MRIs

We modeled the cavity of the LV (Fig. 18) from cardiac
MRIs, after visual inspection for no visible misalignment.
The clear intensity separation between blood-pool and muscle
allowed using the simple PC segmentation model. The datasets
required about the same degree of smoothing as those of
Experiment 3, but the simplest scheme with a single value
for γ failed to delineate the papillary muscles. Therefore, we
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Fig. 14. Segmentation and interpolation of various shapes from 3D real data at two different slice spacings (5 and 20 pixels respectively), and from a variety
of modalities. The blue circle highlights how [7] struggles to reconstruct extremities of objects for large slice spacings, especially where a background of
similar intensity can be confused with the object.

(a) (b) (c)

Fig. 15. Recovery of the topology of vessels from the Kidney dataset with 5
pixels spacing. (a) original dataset processed by (b) SM+[7], and (c) proposed
method.

used the small object or hole preserving approach presented
in Subsection III-B, with γ = 0.7 and γ = 3 for the first
denoising stage and the second interpolation refinement stage
respectively, for all the datasets. The RBF of the latter stage
was sharp enough to preserve the details on the surface of the
modeled objects. The image interpolation method of Cordero
et al. [7] was ran and tuned by the authors of [7]. The cardiac
MRIs are made of 25 time frames, but only one time frame was
used, as methods [7], [8] were designed for 3D segmentation
and interpolation only. In addition, Cordero et al. [7] used only
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(a) (b)

Fig. 16. 3D segmentation and interpolation of the c1 vertebrae of Figs. 3a
and 3b from a CT-scan. (a) our previous method [8], (b) proposed method.
Top row: global view, bottom row: zoomed view.

Fig. 17. 3D segmentation and interpolation of the ventricles of the neonatal
brain of Fig. 3c from combined T1 and T2 MRIs. Top row: our previous
method [8], middle row: proposed method. From left to right: T1 central
slice, T2 central slice, axial 3D view, sagittal 3D view. Bottom row: Proposed
method which additional sagittal set of slices. Left: central sagittal slice, right:
sagittal 3D view.

SA slices from these sets and discarded all LA slices.
When subjectively compared, we observe that the seg-

mentations of the 2D images of the cardiac datasets were
similarly accurate for all three methods, but the interpolation
was better using the proposed method, as illustrated by the
blue highlighting circles in Fig. 18. Notably, the apex of the LV
is better segmented and interpolated by the proposed method
than by SM+[7] thanks to the use of the LA slices.

F. Experiment 5: Real 4D Data

An example of a 4D segmentation and interpolation per-
formed by the proposed method is shown in Fig. 19. As
in Experiment 4, we used the PC segmentation model. This

(a) (b) (c)

Fig. 18. 3D segmentation and interpolation of the LV cavity from three
different cardiac MRIs. (a) our previous method [8], (b) SM+[7], (c) proposed
method. The extraneous regions protruding from some LV cavities for all
methods in some images, e.g. orange circles in the second row above, are
parts of the right ventricle which have been wrongly segmented by the
chosen segmentation algorithm. The blue circles highlight situations where
the proposed method recovered a better topology than [8] and [7].

Fig. 19. 4D segmentation and interpolation of the LV cavity from a cardiac
MRI: 6 different time frames.

cannot be compared with [7], [8] since they do not handle
4D data as mentioned in the previous experiment. Cordero et
al. [7] can perform interpolation of the volume in each time
frame, but not across the time domain in an interframe fashion.

In Section III, FFTs were used to compute the convolutions
of (7), (14) and (15). As an additional bonus, FFT’s inherent
interpretation of periodic data allowed us to exploit the cyclical
nature of cardiac motion. Joint segmentation, interpolation and
tracking through time from non-periodic signals may be done
by padding the data with a number of blank frames.
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G. Experiment 6: Multiple Regions

This experiment aims to demonstrate the possibility to
extend the framework to several regions. Multi-region seg-
mentation is a common feature of level set methods, which the
proposed level set framework naturally inherits from. Multi-
region level set schemes have been proposed in the past, e.g.
by Vese and Chan [27], who used simultaneously a number
N of level sets in order to segment 2N piecewise constant or
piecewise smooth regions. The regions are defined as all the
possible intersections of the areas bounded by the different
level sets, and, by construction, they cannot overlap or create
vacuum. We used this region definition in order to segment
simultaneously the cavities of the left and right ventricles (RV)
of the heart and the myocardium from cardiac cine MRIs. In
Fig. 20a, the two areas which are inside one level set contour
and outside of the other (blue and red areas) are the LV and
RV cavities (Figs. 20b and 20c respectively). The myocardium
is the area where both level set functions are positive (green
area in Fig. 20a, and Fig. 20d). In this example, the PC method
was used for the segmentation. However, it was not robust
enough to segment the myocardium, whose intensities are very
similar to these of the background. Therefore, a constraint
has been added to the thickness of the myocardium in order
to prevent the contour from leaking to the background. We
used a method similar to what was presented in [28] for
edge based segmentation, but adapted to the PC segmentation
algorithm. An initial segmentation of the two LV and RV
cavities is computed in a first step, using two level sets which
are updated simultaneously and do not need to intersect and
interact as a result of the natural separation of the two cavities.
Then, the segmentation of the myocardium is added to the
process, driven by both a coupling term Scoupling between
the endo-cardium and the epi-cardium, and an image derived
term Simage, limited to the area of expected location of the
epi-cardium:

S = λScoupling + (1− λ)Simage . (17)

λ is a weighting coefficient and is set to 0.5 in our test. The
coupling term is computed as:

Scoupling =



−1 if φ1 ≤ −d− w
3

√
d−|φ1|
w if − d− w < φ1 < −d+ w

and SPC > 0

SPC if − d− w < φ1 < −d+ w

and SPC ≤ 0

SPC if φ1 ≥ −d+ w

.

(18)
φ1 is the value of the level set function associated with the
LV cavity contour (or endo-cardium) at the end of the initial
segmentation stage, and therefore it represents the (negative)
distance to this contour. d and w are the nominal distance
between the endo- and epi-cardium and the transition width
respectively. In [28] they are derived from an a priori model,
but for simplicity, they are set to 6 and 4 in our test. SPC is
the speed yielded by the PC segmentation model. The image

(a) (b) (c) (d)

Fig. 20. Segmentation of multiple regions using the proposed framework. (a)
SA slice with the LV, RV and myocardium segmentations colored in blue,
red, and green respectively. 3D reconstructions of (b) the LV, (c) the RV, (d)
the myocardium.

derived term is defined as:

Simage =

{
exp

(
− (x−d)2

2w

)
SPC if φ1 ≤ −d and SPC > 0

SPC otherwise
.

(19)

H. Timing

Our framework was implemented in C++, and the experi-
ments were run on a 1.6Ghz Unix machine. It is to be noted
that timing comparisons against SM+[7] mainly highlight
differences in the interpolation time, since our implementation
of the level set framework was used for the segmentation
stage of SM+[7]. Therefore, as will be detailed next, the
main differences arise from the additional interpolation step
of SM+[7], and varying numbers of iterations.

In the cases where the simple scheme with a single value
for γ could be used, the proposed method segmented and
interpolated the data in about 5 to 15 minutes, depending
on the size of the dataset. SM+[7] was moderately slower
by approximately 5 to 20 minutes, since the running time
of [7] had to be added to the segmentation time, and the
segmentation itself (using the same segmentation framework
as for the proposed method) was slightly longer due to the
higher number of data points.

Conversely, when two values for γ were used, due to the
dataset requiring more interpolation, the proposed method
needed more iterations and time (30 minutes to 2 hours)
to process the data. Indeed, the second, interpolation refin-
ing step, required 4 to 10 times more iterations than the
segmentation step in order to fully propagate the global
interpolation in the gaps and replace the existing local one.
Note that these computation times are still reasonable for
the intended applications, which do not require real time
processing. SM+[7] performed in the exact same way as in the
first case, with the same number of data points and iterations
required, and was therefore faster than the proposed approach
for this configuration.

V. CONCLUSION

We presented an integrated segmentation and interpolation
framework to reconstruct 3D and 4D sparse datasets based
on a novel RBF interpolated level set methodology. This
new framework can handle sets of 2D slices having any
spatial configuration, i.e. made of any number of slices having
arbitrary positions and orientations. The integrated framework
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was validated on artificial and real data, including MRIs and
CT scans. The method proved to be very robust, thanks to
the interdependency of the segmentation and interpolation pro-
cesses, and produced better results than our previous integrated
method [8] and the sequential approach implemented with
[7]. The proposed method is not affected by differences in
gains and contrasts in the image slices and is able to combine
different types of images in the same processing, e.g. T1
and T2 MRIs, provided they are properly aligned. For future
work, we plan to investigate the potential for the application
of the new framework to object reconstruction from sparse
and noisy 3D point clouds such as those produced by the
Microsoft Kinect sensor. We also wish to add registration
to this framework in order to handle sets of misaligned
slices, or possibly several point clouds simultaneously, for
increased signal quality. The inclusion of registration will be
mutually beneficial to all the elements of the framework, i.e.
segmentation, interpolation, and registration.
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