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ABSTRACT

Context. At the dynamical center of the Milky Way, there is the closest supermassive black hole: Sgr A*. Its non-flaring luminosity
is several orders of magnitude lower than the Eddington luminosity, but flares can be observed in the infrared and X-rays. This flaring
activity can help us to understand radiation mechanisms from Sgr A*.
Aims. Our aim is to investigate the X-ray flaring activity of Sgr A* and to constrain the physical properties of the X-ray flares and
their origin.
Methods. In March and April 2011, we observed Sgr A* with XMM-Newton with a total exposure of ≈ 226 ks in coordination
with the 1.3 mm Very-Long-Baseline Interferometry array. We performed timing analysis of the X-ray emission from Sgr A* using
a Bayesian-blocks algorithm to detect X-ray flares observed with XMM-Newton. Furthermore, we computed X-ray smoothed light
curves observed in this campaign in order to have better accuracy on the position and the amplitude of the flares.
Results. We detected two X-ray flares on March 30 and April 3, 2011, which for comparison have a peak detection level of 6.8 and
5.9 σ in the XMM-Newton/EPIC (pn+MOS1+MOS2) light curve in the 2−10 keV energy range with a 300 s bin. The former is
characterized by two sub-flares: the first one is very short (∼ 458 s) with a peak luminosity of Lunabs

2−10 keV ∼ 9.4 × 1034 erg s−1, whereas
the second one is longer (∼ 1542 s) with a lower peak luminosity (Lunabs

2−10 keV ∼ 6.8 × 1034 erg s−1). The comparison with the sample
of X-ray flares detected during the 2012 Chandra XVP campaign favors the hypothesis that the 2011 March 30 flare is a single flare
rather than two distinct subflares. We model the light curve of this flare with the gravitational lensing of a simple hotspot-like structure,
but we cannot satisfactorily reproduce the large decay of the light curve between the two subflares with this model. From magnetic
energy heating during the rise phase of the first subflare and assuming an X-ray photons production efficiency of 1 and a magnetic
field of 100 G at 2 rg, we derive an upper limit to the radial distance of the first subflare of 100+19

−29 rg. We use the decay phase of the
first subflare to estimate a lower limit to the radial distance of 4 rg from synchrotron cooling in the infrared.
Conclusions. The X-ray emitting region of the first subflare is located at a radial position of 4−100+19

−29 and has a corresponding radius
of 1.8 − 2.87 ± 0.01 in rg unit for a magnetic field of 100 G at 2 rg.
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1. Introduction

Our Galaxy hosts Sgr A* at its dynamical center. It is the clos-
est supermassive black hole (SMBH) at a distance of about 8
kpc (Genzel et al. 2010; Falcke & Markoff 2013). Sgr A* has
a mass, MBH, of about 4 × 106 M�, which was determined
thanks to the measurements of star motions (Schödel et al. 2002;
Ghez et al. 2008; Gillessen et al. 2009). The Galactic center
SMBH is usually in a steady state, emitting predominately at
radio to submillimeter wavelengths. Its bolometric luminosity
is about 1036 erg s−1 (Yuan et al. 2003), which corresponds to
≈ 2 × 10−9 LEdd with LEdd = 3.3 × 104(MBH/M�)L�. To explain
this low luminosity, researchers have developed various mass-
accretion flow models, such as the advection-dominated accre-
tion flows (ADAF; Narayan et al. 1998) and jet-disk models like
the ejection of magnetized plasma (Falcke et al. 1993).

Wang et al. (2013) have recently inferred the temperature
and density profile of the X-ray emitting gas around Sgr A*with
the help of deep Chandra observations. They have shown that
≤ 1% of the gas initially captured by the SMBH at the Bondi
radius reaches the innermost region around Sgr A*; i.e, ≥ 99%
of the gas is ejected, which is consistent with the predictions

of radiatively inefficient accretion flow (RIAF) models. There-
fore, Sgr A* is the ideal astronomical target for investigating the
physics of mass accretion and ejection onto SMBH in the regime
of a low mass-accretion rate, a state where they are supposed to
spend most of their lifetime (Ho et al. 2008). This physical un-
derstanding could then be extended to the normal galaxies that
dominate the population of galaxies in the local Universe.

The detections of flares from Sgr A* (first discovered in X-
rays; Baganoff et al. 2001) have provided a valuable way to scru-
tinize accreting matter close to the event horizon. The X-ray
flare frequency is 1.1 (1.0-1.3) flare per day with L2−8 keV ≥

1034 erg s−1 (Neilsen et al. 2013), though episodes of higher X-
ray flaring activity can also be observed (Porquet et al. 2008;
Neilsen et al. 2013). The bulk of X-ray flares detected so far have
faint-to-moderate amplitudes with factors of about 2 to 45 com-
pared to the non-flaring luminosity (L2−8 keV ≈ 3.6×1033 erg s−1;
Baganoff et al. 2003; Neilsen et al. 2013), and three very bright
flares (factors of 100-160 times the non-flaring luminosity) have
been observed to share very similar spectral properties (Porquet
et al. 2003, 2008; Nowak et al. 2012). The light curves of the
X-ray flares can exhibit deep drops with short duration indicat-
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ing that the X-ray emission comes from a region as compact as
seven Schwarzschild radii (RS ≡ 2GMBH/c2 = 1.2× 1012 cm for
Sgr A*, i.e., ≈ 0.6 AU; Porquet et al. 2003).

When near-infrared (NIR) and X-ray flares are detected si-
multaneously, their light curves have similar shapes, and there is
no apparent delay (< 3 min) between the peaks of flare emission
(e.g., Yusef-Zadeh et al. 2006; Dodds-Eden et al. 2009; Eckart
et al. 2012). The current interpretation is that both X-ray/NIR
flares come from a region close to the event horizon, while de-
layed sub-mm (e.g., ≈ 100 min; Marrone et al. 2008) and mm
peaks (up to 5 hours; Yusef-Zadeh et al. 2009) have been in-
terpreted as the adiabatic cooling of an expanding relativistic
plasma blob. While NIR flares are known to be due to syn-
chrotron emission (Eisenhauer et al. 2005; Eckart et al. 2006),
the X-ray flare emission mechanism has not been settled yet,
with arguments for synchrotron (Dodds-Eden et al. 2009; Bar-
rière et al. 2014), inverse Compton (Yusef-Zadeh et al. 2012),
and synchrotron self-Compton (Eckart et al. 2008) models.

We report here the results of our Sgr A* observation cam-
paign performed with XMM-Newton from March 28 to April
5, 2011 in coordination with the 1.3 mm Very-Long-Baseline
Interferometry array (VLBI). In Sect. 2 we describe the XMM-
Newton observations and data processing. In Sect. 3 we present
our timing analysis of Sgr A*. In Sect. 4 we describe the spectral
analysis of the two flares from Sgr A* detected during this 2011
campaign. In Sect. 5 we compare these flares with those detected
in the 2012 Chandra XVP campaign. We also try to model the
first subflare with a simple hotspot model and estimate a lower
and upper limit to the radial distance of this subflare. Finally, in
Sect. 6 we summarize our main results.

2. XMM-Newton observations and data processing

2.1. Observation set-up

These X-ray observations of Sgr A* with XMM-Newton (AO-
8, 5 × 33 ks; PI: D. Porquet) were designed to perform the first
simultaneous observational campaign in X-rays and at 1.3 mm
with the VLBI (Doeleman et al. 2008), in order to constrain the
location X-ray flares. Five observing nights with the 1.3 mm
VLBI were planned in 2011 between March 28 and April 5,
using the weather forecast each day at noon for the final op-
timized scheduling (PI: S. Doeleman). The merged visibility
window of the 1.3 mm VLBI array formed by the Atacama
Pathfinder Experiment (APEX) in Chile, the Submillimeter Tele-
scope (SMT) in Arizona, the Combined Array for Research in
Millimeter-wave Astronomy (CARMA) in California, and the
Submillimeter Array (SMA) in Hawaii is 10:45–15:45 UT. Since
X-ray flare peaks appear to occur before submillimeter peak
(Marrone et al. 2008) and since they can last up to three hours
(Baganoff et al. 2001), our XMM-Newton observations started
about three hours before the VLBI visibility window. We ob-
served Sgr A* with XMM-Newton continuously from about
07:40 UT to about 16:00 Universal Time (UT), which is a du-
ration of 30 ks. The XMM-Newton visibility windows finally
constrained the five following dates: 2011 March 28 and 30 and
April 1, 3, and 5. The 1.3 mm VLBI observations were obtained
on 2011 March 29 and 31 and April 1 (simultaneous with XMM-
Newton), 2, and 4; the results of these observations will be
reported elsewhere. Two complementary Chandra observations
were obtained to extend the X-ray coverage on 2011 March 29
and March 31 from 10:29 UT to 15:29 UT (Cycle 12; PI: F.
Baganoff), the former being simultaneous with VLBI. The re-
sults of these observations will be reported elsewhere.

Table 1. XMM-Newton observation log for the Spring 2011 campaign.

Orbit ObsID Start Timea End Timea Duration
(TT) (TT) (s)

2069 0604300601 Mar. 28, 07:54:14 Mar. 28, 21:13:55 47981
2070 0604300701 Mar. 30, 08:11:26 Mar. 30, 21:14:28 46942
2071 0604300801 Apr. 01, 08:23:50 Apr. 01, 19:23:59 39609
2072 0604300901 Apr. 03, 07:56:23 Apr. 03, 19:21:36 41113
2073 0604301001 Apr. 05, 07:13:49 Apr. 05, 21:11:49 50280

Notes. (a) Start and end times of the EPIC MOS camera observations in
terrestrial time (TT) referential.

The two XMM-Newton/EPIC MOS cameras (Turner et al.
2001) and the XMM-Newton/EPIC pn camera (Strüder et al.
2001) were operated in the full frame window mode with the
medium filter. EPIC pn camera starts to observe after EPIC MOS
cameras and stops before them. The effective starting and end
times of each observation are reported in Table 1. These times
are the time of the beginning and the stop of the observation
with EPIC MOS cameras in the terrestrial time (TT) referential.
For this observation, the relation between terrestrial time and UT
is UT = TT − 66.18s (NASA’s HEASARC Tool: xTime1).

2.2. Data processing

We observed Sgr A* five times with XMM-Newton in early 2011
for a total effective exposure of ≈ 226 ks. We use the version
13.5 of the Science Analysis Software (SAS) package for the
data reduction and analysis, with the latest release of the current
calibration files (CCF; as of 04/04/2014). The MOS and pn event
lists were produced using the SAS tasks emchain and epchain,
respectively. The full detector light curves in the 2−10 keV en-
ergy range computed by these tasks reveal that the observation
was only slightly affected by weak soft proton flares. The count
rate of these soft protons was high only during the last four,
three, one, and four hours of the 1st, 2nd, 3rd, and 4th observa-
tions, respectively.

We concentrate on analysis of the central point source,
Sgr A*and, in particular, on the search for the variabil-
ity of its X-ray emission. To do this, we define the
source+background region as a 10′′-radius disk around the
VLBI radio position of Sgr A*: RA(J2000)=17h45m40s.0409,
DEC(J2000)=−29◦00′28′′.118 (Reid et al. 1999). We do not reg-
ister the EPIC coordinates again because the absolute astrom-
etry for the EPIC cameras is about 1′′.2 (Guainazzi 2013). To
create the light curves, we selected the events for MOS and
pn with PATTERN≤ 12 and #XMMEA_SM, and PATTERN≤ 4 and
FLAG==0, respectively. The contribution of the background pro-
ton flares was estimated using a ≈ 3′ × 3′ area with a low level
of X-ray extended emission, located on the same CCD at ≈ 4′ -
north of Sgr A*, where the X-ray emission of point sources were
subtracted. This data reduction is the same as in Porquet et al.
(2008).

For each observation and detector, we first built the
source+background (extracted from the 10′′-radius region) and
the background (extracted from the 3′ × 3′ region) light curves
in the 2−10 keV energy range with 300 s time bins. During this
operation, we used the epiclccorr task to apply relative cor-
rections to those light curves. The relative corrections specify
the good time intervals (GTI) of the event list according to the
corresponding CCD and compute the livetime, i.e., select the

1 The website of xTime is: http://heasarc.gsfc.nasa.gov/cgi-bin/Tools-
/xTime/xTime.pl
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time inside each CCD frame where the events were collected
effectively (no FIFO reset/overflow, minimum ionizing parti-
cles, or read-out-time). Then, this task subtracts the background
light curve (scaled to the same source extraction area) from the
source+background light curve and scales up count rates and er-
rors affected by the lost of exposure. Finally, the background-
subtracted light curves of the three detectors were summed to
produce the EPIC light curves. Any missing count rate in a de-
tector was inferred by the one observed by the other detectors us-
ing a scaling factor between them. To do this, we calculated the
scaling factor between the detectors during a time period where
all three cameras were turned on. The pn count rate is 1.31 times
the sum of the MOS count rates.

3. Timing analysis

3.1. Bayesian blocks analysis

To identify the flaring and non-flaring levels under a certain
probability using the unbinned event arrival time, we used the
Bayesian blocks analysis proposed by Scargle (1998) and re-
cently improved by Scargle et al. (2013b). The Bayesian blocks
analysis of an event arrival time list from one of the EPIC cam-
eras allowed us to segment the observing period with statistically
different count rate levels and created a succession of constant
count rate blocks. The time defining two successive blocks is
called a change point. The count rate within each block is simply
the number of events it contains divided by its effective exposure
(livetime). The non-flaring and flaring levels are identified as the
lowest and higher blocks, respectively. The duration of the flares
are determined as the time range of the Bayesian block corre-
sponding to the elevated count rate. This algorithm gives us the
duration of the flaring and non-flaring levels with better accu-
racy than in a binned light curve since it uses the best temporal
resolution available.

The number of change points is controlled by two input
parameters: the false detection probability (p1) and the prior
estimate of the number of change points, ncp_prior. We use
p1 = exp(−3.5) (Neilsen et al. 2013; Nowak et al. 2012), i.e.,
the probability that a found change point is a real change point
is 1− exp(−3.5) = 96.8% and the probability that a flare (at least
two change points) is a real flare is 1 − p2

1 = 99.9%. We cannot
use the geometric prior of Scargle et al. (2013b) since our data
contain more events and our non-flaring level is lower than in the
simulations used by Scargle et al. (2013b), see Appendix A for
a detailed explanation.

We used the EXPOSU## extension (## corresponding to the
CCD number where the source extraction region is located) of
the event list to compute the detector live time from the nom-
inal TIMEDEL of the corresponding instrument, i.e., the in-
tegration time without the time of the shift of a CCD line to
the readout node, which is about 0.0687022 and 2.59 s for
pn and MOS, respectively. The Bayesian-block algorithm is
used on the list of event of the source+background and of the
background in which we selected the GTI (i.e., we reject the
time where the camera did not observe). It allows us to cor-
rect the light curve source+background from the flaring back-
ground following the recipe of Scargle et al. (2013a). Indeed,
thanks to Bayesian blocks, we know what the background count
rate is and where the high-background levels are. We can cor-
rect the source+background event list of any background con-
tribution by applying a weight to each event, which is w =
CRsrc+bkg/(CRsrc+bkg + CRbkg) with CRsrc+bkg the count rate of
the Bayesian blocks of the source+background event list and

CRbkg the count rate of the corresponding Bayesian block of
the background that is surface-corrected 2. Then, the Bayesian-
blocks algorithm is applied a second time to this corrected
source+background event lists. This method is used on the three
cameras separately.

3.2. Smoothed light curve

We compute a smoothed light curve by applying a density es-
timator (Silverman 1986; Feigelson & Babu 2012) on the un-
binned event arrival times using GTI to suppress camera switch-
off. The density estimator improves the characterization of light
curve features, e.g., the amplitude and the time of a local max-
imum or minimum. The density is computed using quantreg
in R package, which convolves the event arrival times with a
smoothing kernel. We modify quantreg to use the Epanech-
nikov kernel, which is defined as K(x) = 3

4

(
1 − x2

)
for | x |≤ 1

and K(x) = 0 for | x |> 1. We chose the Epanechnikov ker-
nel since it has "good performance" (Feigelson & Babu 2012);
moreover, it is defined on a finite support, which allows us to
control any boundary effects. The density estimator can be ex-
pressed as

f̂ (t, h) =
1
N

N∑
i=1

w(t)
livetime

× K
( t − ti

h

)
(1)

Then, we insert observing gaps using GTIs and combine the
light curves of the three instruments. with h the width of the
kernel window, N the number of count in the event list, ti the ar-
rival time of the event i and t the time at which we compute the
smoothed light curve, w(t) the weight that corrects the density at
the time t from the flaring background thanks to the Bayesian-
blocks algorithm (see above Sect. 3.1) and livetime is the live
time in the time interval [ti − h/2, ti + h/2]. The time t is chose
by the user. Here, we take an even time grid with point inter-
val of 5 s 3. We choose a constant window width of the kernel
h = 100 s. The smoothed count rate (CR) is obtained from the
density by CR = N f̂ (t, h). The error of the smoothed light curve
is assumed to be Poissonnian (=

√
n with n the number of count

in the kernel window).

3.3. Results

The EPIC (pn+MOS1+MOS2) background-subtracted light
curves of Sgr A* in the 2−10 keV energy range, with a time
bin interval of 300 s, are shown in Fig. 1. Our Bayesian-blocks
analysis of the event list for individual detectors shows that dur-
ing the first exposure, no flares were detected and the activity of
the source region is constant. The first flare (#1) was observed
on 2011 March 30 and the last flare (#2) on 2011 April 3. The
non-flaring level is determined as the count rate of the longest
time interval of the Bayesian blocks of the non-flaring level,
which allows very good accuracy on the count rate of the non-
flaring level. On 2011 March 28, March 30, April 1, April 3, and
April 5, the total non-flaring level was equal to 0.179 ± 0.003,

2 With this recipe we keep all the source+background events, sowe
do not have to remove (arbitrarily) some individual events from the
event list as proposed by Stelzer et al. (2007) to subtract the background
events.
3 The position of local extrema can be easily computed with required
accuracy directly from the first derivative of Eq. 1.
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Fig. 1. XMM-Newton/EPIC (pn+MOS1+MOS2) light curves of Sgr A* in the 2–10 keV energy range obtained in Spring 2011. The time interval
used to bin the light curve is 300 s. The X-ray flares are labeled from 1 to 2. The horizontal lines below these labels indicate the flare durations.
The non-flaring level of Sgr A* corresponds to only 10% of the non-flaring level of these light curves (Porquet et al. 2008).

Fig. 2. XMM-Newton light curve of the 2011 March 30 flare from
Sgr A* in the 2–10 keV energy range. Top panel: The XMM-
Newton/EPIC pn light curve binned on 100s. The crosses are the data
points of the light curve. The horizontal dashed lines represent the
non-flaring level found by the Bayesian-blocks algorithm. The verti-
cal dashed lines show the start and stop of the Bayesian block. The
solid line is the smoothed light curve. The gray curves are the errors
associated with the smoothed light curve. Bottom panel: The XMM-
Newton/EPIC (pn+MOS1+MOS2) light curve binned on 100s. The
horizontal dashed line represents the non-flaring level calculated as the
sum of the non-flaring level in each instrument found by the Bayesian
blocks. The vertical dashed lines represent the beginning and the end of
the flare calculated by the Bayesian-blocks algorithm on pn camera. The
solid line is the smoothed light curve, which is the sum of the smoothed
light curve for each instrument (calculated on the same time range). The
gray curves are the errors associated with the smoothed light curve.

0, 185 ± 0.004, 0.177 ± 0.003, 0.183 ± 0.004 count s−1, and
0.179 ± 0.003 count s−1, respectively. It is consistent with the
one previously observed with XMM-Newton (e.g., in 2007, Por-
quet et al. 2008). This non-flaring emission is a combination of
emission coming from the complex of stars IRS 13, the candi-

Fig. 3. XMM-Newton light curve of the 2011 April 3 flare from Sgr A*
in the 2–10 keV energy range. Top panel: The XMM-Newton/EPIC pn
light curve binned on 100s. The crosses are the data points of the light
curve. The horizontal dashed lines represent the non-flaring level found
by the Bayesian-blocks algorithm. The vertical dashed lines show the
start and stop of the Bayesian block. The solid line is the smoothed
light curve. The gray curve are the errors associated with the smoothed
light curve. The time period during which the camera did not observe is
shown with a light gray box. Bottom panel: The XMM-Newton/EPIC
(pn+MOS1+MOS2) light curve binned on 100s. The horizontal dashed
line represents the non-flaring level calculated as the sum of the non-
flaring level in each instrument found by the Bayesian blocks. The ver-
tical dashed lines represent the beginning and the end of the flare calcu-
lated by the Bayesian-blocks algorithm on pn camera. The solid line is
the smoothed light curve, which is the sum of the smoothed light curve
for each instrument (calculated on the same time range). The gray curve
are the errors associated with the smoothed light curve.

date pulsar wind nebula G359.950.04, and a diffuse component,
which all contribute 90% of this non-flaring level in the 2−10
keV energy range (Baganoff et al. 2003; Porquet et al. 2008)
and the emission from Sgr A* which contribute only 10%. Fig-
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ures 2 and 3 focus on the flare light curves obtained with EPIC
(pn+MOS1+MOS2) and EPIC pn with a bin time interval of
100s. The comparison with the EPIC MOS1 and MOS2 light
curves can be found in Appendix B. We also show the Bayesian
block corresponding to each camera with a dashed line. Table 2
gives the characteristics of these X-ray flares.

The first flare has two components: a short (∼ 458 s) and
symmetrical subflare and a longer (∼ 1542 s) and fainter sym-
metrical subflare. Between these two subflares, the smoothed
light curve returns at 17.87h and during less than 100s to a lower
level, which is consistent with the non-flaring state. The first flare
is seen in EPIC MOS1 camera with a shift of ≈ 75 s of its max-
imum at the first peak but the double subflare configuration is
not seen in the EPIC MOS2 camera. The amplitude of the flare
in the smoothed light curve corresponds to 6.8 σ (the standard
deviation of the non-flaring level in the 300 s binned light curve)
after subtracting the non-flaring level computed by the Bayesian-
blocks algorithm.

The second flare is seen by the Bayesian-blocks algorithm
in pn and EPIC MOS2 cameras but not in MOS1. This can be
explained by the detection limit of the algorithm and the lower
sensitivity of the MOS cameras (see details in Appendix B). The
time start of this flare is lower than or equal to the start of the
observation. In EPIC MOS2 camera we can see an enhancement
of the count-rate level after 8.25 h on April 3 but the Bayesian
block algorithm detected also an enhancement at the beginning
of the observation (before 8 h). Because of the time delay of
observation start of EPIC pn camera, we caught with this camera
only the end of this flare 4. The amplitude of the flare subtracted
from the non-flaring level corresponds to 5.9 σ.

We also computed the hardness ratio using the 2 − 4.4 keV
and 4.4−10 keV energy bands for all observations, but we found
no significant spectral change during the flare interval. The peak
count rates of the first and second flares are three and eight times
less than that of the bright flare reported in Porquet et al. (2003).
The durations of theses flares are 1.4 and 1.8 times shorter than
this bright flare.

4. Spectral analysis

We did a spectral analysis of the first flare. The extraction re-
gion is the same as the one we used to construct the light curves,
i.e., a circle of 10′′ radius centered on the Sgr A* radio position.
The spectrum analysis was only done on the pn instrument since
the flare in MOS1 and MOS2 has a number of counts that is
too small to constrain the spectral properties. The X-ray photons
were selected with PATTERN≤ 4 and FLAG==0. The time interval
of the flare was constrained by the results of the Bayesian-blocks
algorithm (see Table 2). The background time interval is com-
posed of two subintervals: the first one began at the start of the
March 30 observation (see Table 1) and ended 300s before the
beginning of the flare to avoid any bias. The second one started
300s after the end of the flare and stopped at the end of the March
30 observation.

The spectrum, response matrices, and ancillary files were
computed with the SAS task especget. We used ISIS version
1.6.2-27 (Houck & Denicola 2000; Houck 2002) to fit the spec-
trum with X-ray emission models. The model that we used is

4 A coordinated near-infrared observation was obtained with
VLT/NACO on 2011 April 3 from 06:30 to 08:18 UT (ESO’s archive),
which detected the rise of this flare (S. Gillessen, 2011, private com-
munication), but lead to only 22 min of simultaneous observation with
EPIC MOS before the flare peak that we observed in X-rays.

an absorbed power law with dust scattering (dustscat; Predehl
& Schmitt 1995). NuSTAR observations of Sgr A* confirm that
this model is still a good description of the flare spectra above
10 keV (Barrière et al. 2014). We used TBnew for the absorp-
tion model, the interstellar medium abundances developed by
Wilms et al. (2000), and the cross sections from Verner et al.
(1996). These lower metal abundances and updated cross sec-
tions imply decreasing the column density (Nowak et al. 2012)
input to the dustscat model (Predehl & Schmitt 1995) by a factor
of 1.5 times. It uses the NH vs. τscatt relation obtained with wabs
(Anders & Ebihara 1982’s abundances, Morrison & McCammon
1983).

The results of the fit using 90% confidence level are hydro-
gen column density (NH) of 6.7+8.2

−6.7 × 1022 cm−2, photon index
(Γ) of 1.5+1.5

−1.3, absorbed flux between 2 and 8 keV (Fabs
2−8 keV) of

2.5 × 10−12 erg s−1 cm−2 and unabsorbed flux between 2 and 10
keV (Funabs

2−10 keV) of 3.5+3.1
−1.0 × 10−12 erg s−1 cm−2. The extracted

spectrum and best fit are shown in Fig. 4.
We can compare the spectral parameters of this flare with

those of the two brightest flares detected with XMM-Newton,
which have the better constrained spectral parameters thanks
to the high throughput and no pileup. The very bright flare
of 2002 October 3 was fitted using the same modeling with
Γ = 2.3 ± 0.3, NH = 16.1+1.9

−2.2 × 1022 cm−2 , and Funabs
2−10 keV =

26.0+4.6
−3.5 × 10−12 erg s−1 cm−2 (Porquet et al. 2003; Nowak et al.

2012). The bright flare of 2007 April 4 was also fitted using the
same modeling with Γ = 2.4+0.4

−0.3, NH = 16.3+3.0
−2.6 × 1022 cm−2 and

Funabs
2−10 keV = 16.8+4.6

−3.0 × 10−12 erg s−1 cm−2 (Porquet et al. 2008;
Nowak et al. 2012). In Fig. 5, the confidence contours of these
two bright flares show that these NH and Γ parameters are well
constrained. However, those of the 2011 March 30 flare are not,
since there are few events collected from this flare, which implies
that the number of spectral bins with a minimum signal-to-noise
ratio of 4 is small. The photon index and hydrogen column of
the flare of 2011 March 30 agree with those of the flare of 2007
April 4 and 2002 October 3 within the confidence levels for two
parameters of 90% and 99%, respectively.

The second flare on 2011 April 3 does not contain enough
counts to constrain the spectral parameters. Its unabsorbed lumi-
nosity given in Table 2 is calculated with ISIS by fixing the pho-
ton index Γ to 2 and column density to NH = 14.3 × 1022 cm−2,
i.e., to the spectral values of the 2002 October 3 flare (Por-
quet et al. 2003; Nowak et al. 2012). Thus, the only free pa-
rameter is the unabsorbed flux, which is Funabs

2−10 keV = 3.91 ×
10−12 erg s−1 cm−2. The unabsorbed luminosity between 2 to 10
keV is 2.7+2.4

−0.8 × 1034 erg s−1 for a 8 kpc distance.

5. Discussions

5.1. The 2011 March 30 flare vs. the 2012 Chandra XVP
campaign flares

We compared the spectral properties of the 2011 March 30 flare
with the ones reported by Neilsen et al. (2013) from the 2012
Chandra XVP campaign. In this paper, the spectral properties of
all Chandra flares have been derived by assuming the spectral pa-
rameters of the brightest flares obtained by Nowak et al. (2012):
Γ = 2 and NH = 14.3 × 1022 cm−2. We use two physical quanti-
ties given in the Table 1 of Neilsen et al. (2013): the unabsorbed
2−10 keV luminosity and the duration of the flare. We also de-
rived two other physical quantities that are independent of the
instrumental characteristics: the unabsorbed 2−10 keV fluence
in erg (the product of the unabsorbed 2−10 keV luminosity with
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Table 2. Characteristics of the X-ray flares observed by XMM-Newton/EPIC in 2011.

Flare Day Start Timea End Timea Duration Totalb Peakc Lunabs
2−10 keV

d

(#) (yy-mm-dd) (hh:mm:ss) (hh:mm:ss) (s) (cts) (count s−1) (1034 erg s−1)
1 2011-03-30 17:46:20.69 18:19:40.86 2000.16 211 ± 25 0.284 ± 0.013 2.69+2.4

−0.7
2 2011-04-03 ≤08:16:35.65 08:41:02.04 ≥ 1457.67 ≥ 154 ± 24 0.165 ± 0.012 ≥ 2.9

Notes. (a) Start and end times (TT) of the flare time interval defined by the Bayesian-blocks algorithm (Scargle et al. 2013b) on the EPIC/pn data;
(b) Total EPIC/pn counts in the 2–10 keV energy band obtained in the smoothed light curve during the flare interval (determined by Bayesian
blocks) after subtractingf the non-flaring level obtained with the Bayesian-blocks algorithm; (c) EPIC pn count rate in the 2–10 keV energy band
at the flare peak (smoothed light curves) after subtracting the non-flaring level; (d) Unabsorbed 2–10 keV average luminosity of the flare computed
from the total counts collected during the flare (i.e., the average count rate) and assuming a distance of 8 kpc, see Sect. 4 for details.

the duration) and the unabsorbed 2−10 keV peak luminosity. To
compute the peak luminosity of the Chandra flares, we first de-
rived the mean count rate in each flare as the pileup corrected
fluence in counts (see Eq. 1 Neilsen et al. 2013) divided by the
flare duration, and then we computed the linear relation between
the unabsorbed 2−10 keV luminosity and the mean count rate
(higher the mean count rate, higher the luminosity). We obtained
Lunabs

2−10 keV/1034 erg s−1 = −0.031 + 136.7 (CR/count s−1) with a
correlation parameter r of 0.9997. Then, we applied this relation
to the peak count rate given in Table 1 of Neilsen et al. (2013) to
obtain the peak luminosity for each flare. The relations between
these four physical quantities are shown in Fig 6.

Since we used quantities that are independent of the instru-
ment, we can compare flares observed with Chandra and XMM-
Newton. First, we place the two brightest flare seen by XMM-
Newton in the three diagrams. The unabsorbed 2−10 keV flu-
ence, duration, and unabsorbed 2−10 keV luminosity are re-
ported in Nowak et al. (2012). The unabsorbed 2−10 keV peak
luminosity are computed as the ratio between the peak count rate
and the mean count rate multiplied by the unabsorbed 2−10 keV
luminosity in the flares (Porquet et al. 2008). We can see that
these flares have high luminosities and fluences. They are thus in
the upper righthand corner of the diagrams representing the un-
absorbed 2−10 keV peak luminosity and the unabsorbed 2−10
keV fluence.

We also represent our first flare as a single flare (diamond)
and as two distinct subflares (squares) defined as follows. The
first subflare starts at the beginning of the Bayesian blocks cor-
responding to the 2011 March 30 flare and stops at the time
corresponding to the minimum of the smoothed light curve be-
tween the two subflares. The beginning of the second subflare
is the end of the first one, and its end corresponds to the end of
the Bayesian block. The live time of the single flare (Table 3) is
shorter than the flare duration reported in Table 2. The mean rate
of the flare is given by the Bayesian-blocks algorithm. The mean
rate in each subflare is the number of counts in each subflare
divided by their live time. To be consistent with Neilsen et al.
(2013) for direct comparison purpose, the unabsorbed 2−10 keV
luminosity is computed with the same spectral parameter (Γ = 2
and NH = 14.3 × 1022 cm−2), which implies that the luminos-
ity of the flare is slightly different than those computed with our
present best fit spectral analysis (see Sect. 4). The derived quan-
tities for the first flare (#1) and the first (#1.1) and second (#1.2)
subflares are reported in Table 3.

In Fig. 6, we can see that the unabsorbed 2−10 keV lumi-
nosity of the total flare and the two subflares are nearly the same
since they have more or less the same mean count rate, but the
fluence of the first sub-flare is small compared to the second sub-
flare owing to the shorter duration. Thus, the first subflare lies
within the shortest and less energetic flares detected by Chandra,
but the apparent lower detection limit of 400 s in the flare dura-

tion is probably due to the method used by Nowak et al. (2012) to
identify flares in Chandra light curves. In fact, they use a Gaus-
sian fit on the light curve binned with 300 s, which implies that
they might missed flares whose duration is below 300 s.

We can see that, in all the diagrams, if we assume a sin-
gle flare, it lies in the mean of the flares seen by Chandra and
can then be considered as a genuine medium luminosity flare.
Furthermore, if we consider the minimum waiting time between
flares in the 2012 Chandra XVP campaign shown in Fig. 1 of
Neilsen et al. (2013), we can see that the nearest flares are sep-
arated by ∼ 3500 s. This waiting time can be considered as a
lower limit for observing two distinct flares. The two subflare
peaks of our first flare are separated with only 1000 s, which
favors a single flare.

5.2. Gravitational lensing of a hotspot-like structure

We modeled the light curve of the 2011 March 30 flare with a
single mechanism in order to explain the two subflares. Indeed,
the very short (∼ 458 s) first subflare and the second much longer
(∼ 1542 s) one peaking ∼ 1000 s later but with lower amplitude
can be the signature of a gravitational lensing of a hotspot-like
structure. We used a hotspot model and a ray-tracing code to
compute the observed intensity (Karas et al. 1992; Schnittman
& Bertschinger 2004; Broderick & Loeb 2005; Hamaus et al.
2009; Dexter & Agol 2009).

5.2.1. The hotspot model

We call a hotspot a spherical, optically thin structure, orbit-
ing around the black hole with Keplerian angular velocity. The
sphere is initially assumed to be in solid rotation around the
black hole. No shearing or expansion of the sphere is taken into
account. Such a hotspot is thus only defined by its radius R and
its orbital radius r in gravitational radius unit (rg ≡ 0.5RS). The
black hole inclination i is assumed to be close to an edge-on
view, i.e., i ≈ 90◦. Its actual value is a parameter of the model.
The emitted spectrum of the hotspot is assumed to follow a
power law, Iem

ν ∝ να, where α is a constant number, related to
the photon index Γ through Γ = 2 − α. It is then straightforward
to show that the observed intensity integrated over a range of
frequency ∆νobs is

Iobs =

∫
∆νobs

Iobs
ν dνobs ∝ g4−α (2)

where g ≡ νobs/νem is the redshift factor.
Maps of Iobs were computed by using the open-source ray-

tracing code GYOTO5 (Vincent et al. 2011). We computed maps of
300×300 pixels over one orbital period with a time step of about
5 This code can be freely downloaded at the URL gyoto.obspm.fr
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Table 3. Characteristics of the 2011 March 3 flare and its two subflares assuming Γ = 2 and NH = 14.3 × 1022 cm−2.

Flare Duration Live time Mean net count rate Lunabs
2−10 keV Peak count rate Lunabs

2−10 keV(peak)
(#) (s) (s) (count s−1) (1034 erg s−1) (count s−1) (1034 erg s−1)
1 2000 1750 0.16 5.7 0.28 9.5

1.1 458 416 0.16 5.8 0.28 9.4
1.2 1542 1324 0.16 5.7 0.17 6.8
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Fig. 4. XMM-Newton/EPIC pn spectrum of the 2011 March 30 flare.
The data are denoted by crosses. The vertical bars is the 1σ error in
the count rate and horizontal bars show the spectral bin in energy. The
events have been grouped with a minimum signal-to-noise ratio of 4.
Top: The result of the fit is shown by the continuous solid line. Bottom:
The χ2 residual in units of σ.
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Fig. 5. Confidence contours for Sgr A* spectral parameters. Contours
are the confidence levels of 68% (dotted line), 90% (solid line), and
99% (dashed line) for the two parameters in the graph. The three sets of
confidence contours represent the 2011 March 30 flare (black lines and
asterisk), the 2007 April 4 flare (light gray lines and X point), and the
2002 October 3 flare (dark gray lines and cross point).

δt ≈ 10 s, which is close to the time sampling of the smoothed
light curve. The light curve is obtained by summing each of these
maps over all pixels, which boils down to integrating over all
solid angles, i.e., to computing a flux.

The light curve of a hotspot seen edge-on shows a typical
double-bump feature (see Fig. 7). The primary maximum (t = 0
s) is due to the gravitational lensing of the light emitted by the
hotspot when it is on the opposite side of the black hole with
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Fig. 6. 2011 March 30 flare vs. the 2012 Chandra XVP campaign flares.
The X-ray flares from the Chandra XVP campaign (Neilsen et al. 2013)
are shown by crosses, the two brightest flares seen be XMM-Newton
are triangles, the 2011 March 30 flare is represented by a diamond, and
the two subflares are shown with squares.

respect to the observer. The secondary maximum (t ≈ 1000 s)
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Fig. 7. Normalized hotspot light curves obtained for an orbital radius
equal to the value of the best fit. The flux is in arbitrary units. Top:
hotspot radius equal to the best fit value. Inclination i varies over all
grid values. (The range of these parameters are defined in Sect 5.2.3.)
The closer the inclination to 90◦, the higher the ratio between the two
local maxima. Bottom: inclination fixed at its best fit value and R varies
over all grid values. The smaller R, the bigger the ratio between the two
subflare peaks. The time interval between the two local maxima is the
same for all curves in these two figures.

is due to the relativistic beaming effect: light emitted when the
source is moving toward the observer is boosted.

5.2.2. Constraining the orbital radius of the hotspot

The orbital radius is easy to constrain because it is directly
linked to the time interval between the two local maxima of
the light curve, as illustrated in Fig. 7. The variation of this
time interval as a function of the orbital radius r evolved like
this: δt ≈ 860, 960, 1040, 1130, and 1230s for r/rg =
10.5, 11, 11.5, 12, and 12.5. It is clear that if the hotspot model
is correct, then r/rg ≈11−12.

It is not obvious to constrain the remaining parameters (R and
i) by a quick comparison to the observed data. Both of them have
a strong impact on the flux ratio between the two local maxima,
as well as on the flux ratio between the primary maximum and
the local minimum between the two bumps.

5.2.3. Fitting the parameters of the hotspot model

Our hotspot model is defined by five parameters: the orbital ra-
dius r, the hotspot radius R, the black hole inclination i, the tem-
poral additive shift dt, and the flux multiplicative scaling d f .
The two last parameters are defined according to the following.
The smoothed light curve defines the zero of time: it is by defi-
nition the time of its primary maximum. Then, each theoretical
light curve is first shifted so that its zero of time corresponds to
its own primary maximum. The parameter dt allows the fitting
of any time shift between the theoretical and the observed light
curve. Each theoretical light curve is also scaled vertically. Each
of them is first divided by the maximum of all fluxes computed
by GYOTO (then all GYOTO fluxes are between 0 and 1). Each theo-
retical light curve is then again multiplied by the maximum value
of the smoothed light curve, from which the non-flaring ground
level was subtracted. (Then all GYOTO flux values are between 0
and M, the maximum of the smoothed light curve, in observed
unit.) The multiplicative d f fitting parameter is applied to these
rescaled theoretical light curves.

The spin parameter has a low impact on the light curve, thus
it is fixed to a = 0.99 (high spins lead to slightly smaller χ2 in
the fit) and not fitted. The photon index is fixed to Γ = 2 (Porquet
et al. 2003, 2008; Nowak et al. 2012; Barrière et al. 2014). Here

Fig. 8. Modeling of the 2011 March 30 flare pn light curve with a rotat-
ing hotspot. Best-fitting theoretical light curve (dot-dashed line) plotted
over the smoothed light curve (solid line, with 1σ error in gray). The
non-flaring level is given by the horizontal dashed line. The vertical
axis is in observed units, horizontal axis is in seconds. The lower panel
gives the residual in units of σ.

we are interested in determining whether the hotspot model is
viable or not, not in fitting in detail all the parameters.

The fitting is performed by determining the minimum of the
following χ2 on a grid of parameters

χ2(r,R, i; dt, d f ) =
∑
tobs

(
d f × fGyoto(r,R, i; dt; tobs) + fnon−flaring − fsmooth(tobs)

σsmooth

)2

(3)

where fGyoto is the theoretical light curve, fnon−flaring is the
non-flaring level of the observed data (determined from the
Bayesian-blocks analysis), fsmooth the pn smoothed light curve,
σsmooth the error on the smoothed flux, and the sum is per-
formed over a subset of the range of observed times taken
into account in the smoothing procedure, with a time step
of about 10 s. We use conservatively only the pn smoothed
light curve since pn is the most sensitive instrument. The
grid that we use for the three physical parameters is r ∈
[10.5, 11, 11.5, 12, 12.5], R ∈ [1.2, 1.4, 1.6, 1.8, 2, 2.2], and i ∈
[81.93, 83.08, 84.22, 85.37, 86.52, 87.66] where radii are in units
of GM/c2, the inclination is in degrees, with i = 90◦ being an
exact edge-on view (i.e., maximum lensing effect). For each set
of parameter values, the theoretical light curve corresponding to
(r,R, i) is read. It is rescaled as described above. Then the param-
eters dt and d f are fitted using the lmfit routine of the Yorick
software. The set of parameters that gives the smallest χ2 fol-
lowing this procedure is the best-fitting set. For the fitting, the
theoretical light curve is fitted to the smoothed data, interpolat-
ing linearly to determine the theoretical value at the smoothed
times.

Figure 8 shows the best fit that is found for the following
values of the parameters: r = 12rg,R = 1.4rg, i = 86.5◦, dt =
11.1 ± 4.0 s, d f = 1.40 ± 0.02. The 1σ error on the two last
parameters being computed by the lmfit routine. The final re-
duced χ2 is 0.85.

5.2.4. Viability of the hotspot model

The best fit illustrated in Fig. 8 clearly shows that one part of
the smoothed data is not well fit by the hotspot model: the lo-
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cal minimum of the light curve, in between the two bumps at
around 17h52m34s. At this point, the observed data reach the
non-flaring level while the model stays much higher, around
2.5 σ distant. The remaining data is explained well by the model
at the 1 σ level. However, this 2.5σ inadequacy of the model
at the local minimum is sufficient to reject the model. Indeed,
a hotspot-like model will always produce a local minimum at a
higher level than the non-flaring level. Indeed, this part of the
light curve is associated to the part of the trajectory where the
hotspot is moving from behind the black hole to the approaching
side of the orbit. At this position, the relativistic beaming effect
will always be significantly greater than at the receding side of
the orbit, which corresponds to the minimum flux level.

To be quantitative, we compare the flux ratio between the
lensing maximum and the non-flaring level and the lensing max-
imum and the local minimum flux level (in between the two
bumps), for all light curves computed in our grid. The first ratio
is always greater than ten, while the second ratio varies between
1.5 and 4. In conclusion, no set of parameters can give the same
ratio for these two quantities.

5.2.5. Refining the hotspot model

One may wonder whether, by adding more physics to the hotspot
model, this local minimum problem could be solved. To inves-
tigate this, we considered the two most natural ways of making
our model more sophisticated: considering an elongated hotspot
due to the shearing of the sphere by the differential Keplerian
rotation and allowing the hotspot to vary in radius (R) along its
trajectory. To model an elongated hotspot, we first computed the
effect of elongation over a hotspot of initial radius R = 1.8 over
the time elapsed between the triggering of the hotspot and the
local minimum. The precise triggering time of the hotspot is not
constrained, thus we assume the hotspot is created at the time
that corresponds to the minimum of the theoretical light curve
(thus at about −1500 s when t = 0 is set at the primary maxi-
mum). Under this assumption, the elapsed time between the cre-
ation of the hotspot and the local minimum is of ∆T ≈ 1800 s
for the best-fitting values of parameters. This is equivalent to one
third of the period. It is now straightforward to compute the dif-
ference of angular distance ∆θ covered by the most distant (in
terms of radial coordinate r) and least distant parts of a sphere
with radius R = 1.8 whose center is at a radius r = 11.5 from the
central black hole. Explicitly,

∆θ =
2π
3

r3/2
(
r−3/2

1 − r−3/2
2

)
, (4)

where r1 is the shortest distance to the black hole and r2 the
largest (the spin is neglected here). For the best-fitting hotspot,
∆θ ≈ π/3. This elongation has approximately multiplied the an-
gular extension of the initially spherical best-fit hotspot by three.
Thus, we model the elongated hotspot in a simple way by con-
sidering three spherical best-fit hotspots tangent one to the next,
orbiting the same orbit. The intensity emitted by each of the
spheres is divided by three with respect to the standard single
hotspot case in order to allow a simple comparison. Figure 9
shows the light curve associated to this elongated hotspot. Here,
the hotspot is always elongated and does not change shape as a
function of time.

To determine the effect of volume changing on the light
curve, we have modeled a swelling, single hotspot. The swelling
hotspot is modeled by requiring that the initial radius of the
hotspot is the best-fitting value, R0 = 1.8 and that it will increase
linearly with time until it reaches 2 R0 at the time corresponding
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Fig. 9. Comparison of the best-fit light curve (solid line) with the light
curve of an elongated (dashed line) and swelling (dotted line) hotspot
defined by the same parameters (see text for details). The flux is in ar-
bitrary units.

roughly to the local minimum observation. The emitted intensity
is inversely proportional to the sphere volume. Figure 9 shows
the light curve associated to this swelling hotspot.

Both toy models show that changing the shape of the hotspot
will not solve the central problem of the model: the local mini-
mum is always significantly higher than the non-flaring level. We
cannot formally exclude that a more sophisticated model, such
as a non-constant density hotspot, or a trajectory not confined
within the equatorial plane is able to fit our data. However, it is
important to note that our hotspot model is ruled out precisely
because the minimum of the flare light curve goes down to the
quiescent level. Without adding some ad hoc new components to
a simple hotspot model (like an obscuring component), it is clear
that the flare light curve will always have a minimum above the
quiescent level, since the hotspot will always be visible and make
a non-zero contribution to the total intensity. As a consequence,
we believe that fitting a hotspot-like model to our data would
require some fine tuning using extra parameters, which would
make the model less reliable.

5.3. Constraining the radial distance of the first 2011 March
30 subflare from magnetic energy heating and
synchrotron cooling

We consider that the short duration of the rise phase of the first
subflare places a limit to the size of the flaring region (e.g.,
Dodds-Eden et al. 2009). Following Barrière et al. (2014), we as-
sume that the energy released during the flare is powered during
the rise phase by the magnetic energy available inside the flar-
ing region, which constrains the radial distance of the flare. By
identifying the decay phase of the first subflare with synchrotron
cooling, we derive a lower limit to the radial position of the first
subflare.

5.3.1. Timescales of the first subflare

We define the start time of the rise phase as the time when the
count rate of the smoothed light curve is too high to have been
produced by the Poissonnian fluctuation of the non-flaring level
at the 99.87% of confidence level (corresponding to Gaussian
single-sided confidence level of 3σ). This threshold level is de-
fined by CR0 = N/h, with h the width of the kernel window
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Fig. 10. Determination of the radial distance of the flaring region. Top
panel: Magnetic energy vs. radial distance for a magnetic field of 100 G
at 2 rg and an X-ray photon production efficiency and dimensionless
spin parameter of 1. The solid line is the distribution of the magnetic en-
ergy (see left y-axis) vs. the radial distance. The dashed and dotted lines
represent the central value of the X-ray fluence and its errors with 90%
confidence level, respectively. The vertical lines are the corresponding
upper limits to the distance. The dashed-dotted line represents the radius
of the emitting region (see right y-axis). Bottom panel: X-ray photons
production efficiency vs. radial distance for the fluence and its upper
and lower limit. The solid and dotted lines represent the efficiency for
the central value of the fluence and its errors within 90% confidence
level, respectively.

Fig. 11. Synchrotron cooling time vs. the radial distance. The solid line
represents the proper duration of the decay phase. The dashed inclined
line represents the synchrotron cooling time for infrared photons. The
dotted-dashed inclined line is the synchrotron cooling time for X-ray
photons. The corresponding vertical lines are the lower limit to the ra-
dial distance for each cooling timescale.

(h = 100 s) and N the lowest integer solution of the following

equation:

CDF =

N∑
n=0

(λh)n e−λh

n!
> 0.9987 (5)

with CDF the cumulative distribution function of the Pois-
sonnian distribution, λ the non-flaring rate (i.e., 0.107 ±
0.001 pn counts s−1). We find CR0 = 0.23 pn counts s−1 at
tstart = 17h44m59s on 2011 March 30. The end time of the
rise phase is the maximum of the smoothed light curve that is
reached at tmax = 17h46m54s. Thus, the rise phase duration is
∆trise = tmax − tstart = 115 s. The end time of the first sub-
flare is the time of the minimum between the two subflares:
tend = 17h52m34s. This leads to ∆tflare = tend − tstart = 455 s.

The proper duration of any event around an SMBH is always
longer than the observed duration due to time dilation in strong
gravity field. Therefore, we compute the proper-to-observed time
ratio versus radial position (see Appendix C). Hereafter we use
a dimensionless spin parameter of one.

5.3.2. Magnetic energy heating

We constrain the radius of the spherical flaring region by consid-
ering that the Alfven velocity cannot be higher than the speed of
light (Dodds-Eden et al. 2009): R < c∆τrise, where ∆τrise is the
proper duration of the rise phase. This leads to the upper limit to
the volume of the flaring region: V = 4

3πR3 < 4
3πc3∆τ3

rise. The
magnetic energy contained inside this volume is UB = B2V

8π with
B = B1RS 2rg/r the magnetic field vs. the radial distance r (see
Barrière et al. 2014, and references therein).

We define η, the X-ray photon production efficiency, as the
ratio of the flare fluence in X-rays to the available magnetic
energy. The flare fluence in X-rays is the product of the unab-
sorbed X-ray luminosity with the duration of the first subflare
(i.e., ∆τflare). Indeed, we have to compute the fluence released
during the whole first subflare since all the X-ray emission from
this event is powered by the magnetic heating of the emitting re-
gion. We compute this luminosity with the parameters that were
fitted to the flare spectrum, i.e., NH = 6.7×1022 cm−2 and Γ = 1.5
(see first part of Sect. 4). The average luminosity of the first
subflare is Lunabs

2−10 keV(flare) = 5.8+5.7
−1.7 × 1034 erg s−1. As a result,

η = Lunabs
2−10 keV(flare)∆τflare/UB. Therefore, the upper limit to the

radial distance can be computed by the relation

Lunabs
2−10 keV(flare)∆τflare <

B2
1RS

6

(
2rg

r

)2

c3∆τ3
riseη . (6)

If we assume a maximum efficiency (η = 1), the upper limit
to the radial distance is r < 100+19

−29 rg (see Fig. 10). The cor-
responding radius of the flaring region at this distance is R =
2.87 ± 0.01 rg.

We can neglect any magnification of the observed luminosity
compared to the proper luminosity at this radial distance. Indeed
in the hotspot model, the combined effects of the beaming and
the gravitational redshift on the proper luminosity are small at
r = 100 rg since the corresponding orbital period is ∼1.5 days,
which implies that any magnification has a long timescale and
a very small amplitude (Broderick & Loeb 2005; Hamaus et al.
2009). In the jet geometry, the Doppler factor is small owing
to the small inclination and the mild velocity of the Sgr A*
jet; therefore, the beaming factor, varying as the square of the
Doppler factor, is also small (Barrière et al. 2014).
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5.3.3. Synchrotron cooling

The electrons that were accelerated by the release of the
magnetic energy will cool by emitting synchrotron radiation
with the following timescale: τsync = 8 × (B/30 G)−3/2 ×(
ν/1014 Hz

)−1/2
min (Dodds-Eden et al. 2009). If the X-ray pho-

tons at 1018 Hz are the primary source of synchrotron cool-
ing, then τX

sync = 0.78
(
B1RS/100 G

) (
r/2rg

)3/2
s. From τX

sync >

∆τdecay, we derive r > 114 rg, which is not consistent with the
previously derived upper limit. Therefore, if the X-rays are the
primary source of synchrotron cooling in this subflare, sustained
heating must also be present during the decay phase.

We know that X-ray flares are always associated with NIR
flares (e.g., Dodds-Eden et al. 2009), which have power-law
spectra consistent with synchrotron process (Eisenhauer et al.
2005). Thus, we consider the synchrotron cooling time of NIR
photons (ν = 1014 Hz)–τNIR

sync = 78.9
(
B1RS/100 G

) (
r/2rg

)3/2
s–

which leads to r > 4 rg with the flaring region outside the event
horizon. The evolution of these synchrotron cooling times with
the radial distance is shown in Fig. 11.

We conclude that 4 rg < r < 100+19
−29 rg in this subflare for

η = 1 and B1RS = 100 G. The corresponding radii of the flaring
region at these distances are 1.8 rg < R < 2.87 ± 0.01 rg. The
minimum distance of r > 1.9 rg is required to have the flaring
region well outside the event of horizon.

5.3.4. Comparison with previous works

The upper limit to the radial distance of the first subflare on 2011
March 30 is five times more than the one derived for the flare
detected by NuSTAR on 2012 July 21 (Barrière et al. 2014). The
latter was longer (1896 s) and about ∼ 3.5 times more luminous
(mean luminosity of 21×1034 erg s−1) than the former. Moreover,
the 2012 July 21 NuSTAR flare was characterized by a plateau
phase of ≈1700 s between the rise and decay phases of 100 s.

Barrière et al. (2014) assume that the radius of the emitting
region is constant after the rise phase. But for a radial position
lower than 20 rg and B1RS = 100 G, the synchrotron cooling
time of NIR photons is lower than 2500 s, which implies that the
heating process is still required after the rise phase to produce
the observed plateau phase. Therefore, the radius of the emit-
ting region of this NuSTAR flare is likely much larger than those
computed by Barrière et al. (2014) from only the rise phase. If
we remove the plateau phase of this NuSTAR flare, only the rise
and decay phases remain, so, we can use the same method as for
our first subflare.

We revise the upper limit to the radial distance of the 2012
July 21 NuSTAR flare to at least 64 rg. Including the likely in-
crease in the radius of the flaring region during the plateau phase
due to sustained heating leads to an even higher value for the
upper limit to the radial distance.

6. Summary

We have reported the data analysis of the XMM-Newton 2011
campaign observation of Sgr A* (five observations with a total
of exposure of ≈ 226 ks). We used the Bayesian-blocks algo-
rithm developed by Scargle (1998) and a density estimator with
an Epanechnikov kernel to constrain the duration, the position,
and the amplitude of the X-ray flares with better accuracy. The
Bayesian-blocks algorithm uses the unbinned event arrival time
on the EPIC cameras to identify the flaring and non-flaring pe-

riod and their corresponding count-rate levels. This analysis of
the event’s arrival time increases the accuracy on the time of the
beginning and the end of a flare in comparison with a detec-
tion above a given threshold of a binned light curve. The algo-
rithm uses a Bayesian statistic to find the time when the count-
rate level is statistically different under a given probability. We
worked with a false detection probability of exp(−3.5), which
implies that the detected flare is a real flare with a probability of
99.9%. We corrected the contribution of the flaring background
by applying twice this algorithm on the source and the back-
ground regions. We used a density estimator to improve the de-
termination of the characteristics of the flares. The density esti-
mator applies a convolution between the event list corrected from
the GTI and a kernel defined on a finite support in order to con-
trol any boundary effects. Thanks to the Bayesian-blocks algo-
rithm, we could also correct the resulting smoothed light curves
from the flaring background.

We observed two X-ray flares during these observations. The
former occurred on 2011 March 30 and the latter on 2011 April
03. For comparison, these flares have a peak detection level of
6.8 and 5.9 σ in the XMM-Newton/EPIC (pn+MOS1+MOS2)
light curve in the 2−10 keV energy range with a 300 s bin. The
first flare is composed of two subflares: a very short-duration
(∼ 458 s) one with a peak luminosity of Lunabs

2−10 keV ∼ 9.4 ×
1034 erg s−1 and a longer (∼ 1542 s) and less luminous one
(Lunabs

2−10 keV ∼ 6.8×1034 erg s−1 at the peak). The spectral analysis
of this flare allowed us to derive these parameters: NH = 6.7+8.2

−6.7×

1022 cm−2, Γ = 1.5+1.5
−1.3, Fabs

2−8 keV = 2.5 × 10−12 erg s−1 cm−2, and
Funabs

2−10 keV = 3.5+3.1
−1.0 × 10−12 erg s−1 cm−2. These spectral parame-

ters are consistent with those previously found by Porquet et al.
(2003, 2008) and Nowak et al. (2012) but are not really con-
strained.

A comparison of the physical characteristics of this flare with
those reported by Neilsen et al. (2013) from the 2012 Chandra
XVP campaign shows that it lies in the mean of the X-ray flares
detected by Chandra, but the first subflare is one of the shortest
and less luminous X-ray flares. The distribution of the minimum
waiting time between two successive flares in the Chandra XVP
campaign favors the hypothesis of a single flare.

We modeled its two subflares with a single physical phe-
nomenon using the gravitational lensing of a hotspot-like struc-
ture. However, the consistency of the flux level between the two
subflare peaks with the non-flaring one led us to conclude that
the light curve of this X-ray flare cannot satisfactorily be repro-
duced by a gravitational lensing event.

We also constrained the radial position of the emitting region
of the first 2011 March 30 subflare by assuming that the heating
energy is provided by the magnetic field available in the spher-
ical emitting region whose radius is determined by the duration
of the rise phase of this first subflare. A comparison of the du-
ration of the decay phase of this subflare and the synchrotron
cooling timescale allowed us to determine a lower limit to the
radial distance. We conclude that the X-ray emitting region of
the first subflare is located at a radial position of 4 − 100+19

−29 and
has a corresponding radius of 1.8 − 2.87 ± 0.01 in rg unit for a
magnetic field of 100 G at 2 rg.
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Appendix A: Calibration of the ncp_prior relation

We cannot use the scaling relation given in Scargle et al. (2013b)
for our data set because it has different statistical properties
than the simulated data set used by Scargle et al. (2013b). First,
our events are affected by Poissonian noise and not by Gaus-
sian noise. Second, our event lists with about ∼ 4000 counts
is longer than the published simulation limited to 1024 counts.
To calibrate the relation between ncp_prior (the prior of the
number of block) and the false positive rate (p1), we simulate
100 constant light curves with Poisson noise around a level of
0.1 count s−1, which is the typical non-flaring level measured
by XMM-Newton/EPIC pn during our observations. For each
sequence of 100 simulations, we increase the ncp_prior value
from 2 to 9 by a step of 0.5 and we compute the number of
change points detected. The percentage of change points de-
tected in 100 simulations determines the p1. We repeat this op-
eration for different numbers of count N in the light curve (from
1000 counts to 6000 counts by step of 1000 counts). With the p1
values and the corresponding ncp_prior, we can create the graph
presented in Fig. A.1. Then, we can take different values of p1
and report the relation between the count number and ncp_prior
that satisfied p1. An example with p1 = 0.05 is given in the bot-
tom graph of Fig. A.1. The dashed line is the linear fit of the
curve. Thus, we have the same number of relations between N
and ncp_prior as the number of value of p1 that we choose. By

Fig. A.1. Simulations of point measurements (Poisson signal of aver-
age 0.1) to determine ncp_prior = −log(γ). Top: false positive frac-
tion p1 vs. value of ncp_prior with separate curves for the values
N = 1000, 2000, 3000, 4000, 5000, and 6000 (left to right). The points
at which the rate becomes unacceptable (here 0.05; dashed line) deter-
mine the recommended values of ncp_prior shown as a function of N
in the bottom panel. Bottom: Calibration of ncp_prior as a function of
the number of counts (N) for a value of p1 (here: 0.05). The dashed line
is the linear fit of the simulation points.

combining these relations, which relies p1, N, and ncp_prior,
we find our calibration:

ncp_prior = 3.356 + 0.143 ln (N) − 0.710 ln (p1)
−0.002 ln (N) ln (p1) (A.1)

with N the number of events in a range of [1000:6000] counts.
For N lower than 1000, the last term is lower than 0.01, which is
negligible. For a probability of false detection equals exp(−3.5)
and N = 4000, ncp_prior = 7.0099.

Appendix B: Detection rate vs. flare peak and
duration

To evaluate our detection level, we simulate light curves with
a Poisson signal of average 0.1 count s−1 for EPIC pn and
0.04 count s−1 for EPIC MOS corresponding to the non-flaring
level of these cameras. This difference in the non-flaring level
between the two cameras implies a difference in the Poisson
noise (the higher the non-flaring level, the higher the Pois-
son noise), hence in the detection rate. On these constant light
curves, we add a Gaussian with a FWHM equal to 1104 s,
318.49 s, and 56.62 s, which correspond to the maximum, the
median, and the minimum, respectively, of the FWHM of the
X-ray flares from Sgr A* detected by Chandra and reported by
Neilsen et al. (2013). We vary the amplitude of the Gaussian be-
tween 0 and 0.17 count s−1 above the non-flaring level. For each
amplitude, we perform 100 simulations and compute the number
of flare (two change points) found by the Bayesian-blocks algo-
rithm for a false positive rate equal to exp(−3.5). The results are
shown in Fig. B.1.

Fig. B.1. Detection level for different values of Gaussian amplitude and
p1 = exp(−3.5). The solid line corresponds to FWHM = 56.62 s, the
dotted line corresponds to FWHM = 318.49 s, and the dashed line
corresponds to FWHM = 1104 s.

We can see that the higher the amplitude and the FWHM
of the flare, the higher the detection rate. We can also see that
the main difference between the detection rate in the XMM-
Newton/EPIC MOS and pn camera (the former has a non-flaring
level that is two times lower than in pn) is that the small flares
with large FWHM are more detected in MOS than in pn.
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Fig. B.2. Light curves of Sgr A* in the 2–10 keV energy range ob-
tained during the flare on 2011 March 30 binned on 100s. Top: The
total XMM-Newton/EPIC light curve. The horizontal dashed line repre-
sents the non-flaring level calculated as the sum of the non-flaring level
in each instrument found by the Bayesian blocks. The vertical dashed
lines represent the beginning and the end of the flare calculated by the
Bayesian-blocks algorithm on pn camera. The solid line is the smoothed
light curve that is the sum of the smoothed light curve for each instru-
ment (calculated on the same time range). The gray curve shows the
errors associated with the smoothed light curve. In all panels, the time
period during which the camera did not observe is shown by a light gray
box. Second panel: The XMM-Newton/EPIC pn light curve of Sgr A*.
Third panel: The XMM-Newton/EPIC MOS1 light curve of Sgr A*.
The vertical dashed lines represent the beginning and the end of the
flare calculated by the Bayesian-blocks algorithm on MOS1 camera.
Bottom panel: The XMM-Newton/EPIC MOS2 light curve of Sgr A*.
The vertical dashed lines represent the beginning and the end of the flare
calculated by the Bayesian-blocks algorithm on MOS2 camera.

Figures B.2 and B.3 show the flare light curves obtained with
of XMM-Newton/EPIC observed on 2011 March 30 and April
3. We can see that the first and second subflares on 2011 March
30 are distinguishable on XMM-Newton/EPIC pn and MOS1

Fig. B.3. Light curves of Sgr A* in the 2–10 keV energy range ob-
tained during the flare on 2011 April 3 binned on 100s. Top: The to-
tal XMM-Newton/EPIC light curve. The horizontal dashed line repre-
sents the non-flaring level calculated as the sum of the non-flaring level
in each instrument found by the Bayesian blocks. The vertical dashed
lines represent the beginning and the end of the flare calculated by the
Bayesian-blocks algorithm on pn camera. The solid line is the smoothed
light curve that is the sum of the smoothed light curve for each instru-
ment (calculated on the same time range). The gray curve shows the
errors associated with the smoothed light curve. In all panels, the time
period during which the camera did not observe is shown by a light
gray box delimited by vertical solid lines. Second panel: The XMM-
Newton/EPIC pn light curve of Sgr A*. The dark gray box is the time
during which pn did not observe. Third panel: The XMM-Newton/EPIC
MOS1 light curve of Sgr A*. The light gray vertical line shows the time
during which MOS1 did not observe. The vertical dashed lines represent
the beginning and the end of the flare calculated by the Bayesian-blocks
algorithm on MOS1 camera. Bottom panel: The XMM-Newton/EPIC
MOS2 light curve of Sgr A*. The vertical dashed lines represent the
beginning and the end of the flare calculated by the Bayesian-blocks
algorithm on MOS2 camera.

but not in MOS2 even if a flare is detected by the Bayesian-
blocks algorithm. The flare on 2011 April 3 is not detected by
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the Bayesian-blocks algorithm in XMM-Newton/EPIC MOS1.
This is because the algorithm allows us to find a flare whose
FWHM ≈ 900 s in EPIC MOS camera with a probability of
95% if its amplitude above the non-flaring level is higher than
0.07 count s−1 with a probability of false detection equal to
exp(−3.5), but in XMM-Newton/EPIC MOS1, the flare ampli-
tude is about 0.06 count s−1. Since XMM-Newton/EPIC MOS1
and MOS2 have lower number counts than XMM-Newton/EPIC
pn because of the RGS, it is on XMM-Newton/EPIC pn that the
flare will have higher amplitude and thus higher accuracy on the
determination of the beginning and end of the flare.

Appendix C: Time dilatation around a Kerr black
hole

We use the Kerr metric in Boyer-Lindquist coordinates:

ds2 = −dτ2 = −
(
1 − 2r

Σ

)
dt2 − 4ar sin2θ

Σ
dt dφ + Σ

∆
dr2

+Σ dθ2 +
(
r2 + a2 + 2a2r sin2θ

Σ

)
sin2θ dφ2 (C.1)

with τ the proper time, t the observed time, r the radial distance
in gravitational radius, a the dimensionless spin parameter, Σ =
r2 + a2 cos2θ, ∆ = r2 − r + a2, and θ = 0 defining the spin axis
(Bardeen et al. 1972). For a direct circular orbit in the equatorial
plane, we have dr

dt = 0, θ = π
2 , and dφ

dt = 1
r3/2+a (Bardeen et al.

1972). Thus, the relation between the proper time and the

Fig. C.1. Ratio between the proper time and the observed time close to
a Kerr black hole with a dimensionless spin parameter of 1.

observed time is

dτ
dt

=

√
1 −

2
r
−

r3 − 4ar3/2 + a2r − 2a2

r
(
r3/2 + a

)2 (B.2)

Figure C.1 shows the time dilatation as a function of the radial
distance plotted from the innermost boundary of the circular or-
bit, i.e., rg for a = 1.
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