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–1–



manuscript submitted to JGR: Solid Earth

Abstract15

We present a new automated earthquake detection and location method based on beam-16

forming (or back projection) and template matching, and apply it to study the seismic-17

ity of the Southwestern Alps. We use beamforming with prior knowledge of the 3D vari-18

ations of seismic velocities as a first detection run to search for earthquakes that are used19

as templates in a subsequent matched-filter search. Template matching allows us to de-20

tect low signal to noise ratio events, and thus to obtain a high spatiotemporal resolu-21

tion of the seismicity in the Southwestern Alps. We describe how we address the prob-22

lem of false positives in energy-based earthquake detection with supervised machine learn-23

ing, and how to best leverage template matching to iteratively refine the templates and24

the detection. We detected 18,754 earthquakes over one year (our catalog is available25

online), and observed temporal clustering of the earthquake occurrence in several regions.26

This statistical study of the collective behavior of earthquakes provides insights into the27

mechanisms of earthquake occurrence. Based on our observations, we infer the mech-28

anisms responsible for the seismic activity in three regions of interest: the Ubaye valley,29

the Briançonnais and the Dora Maira massif. Our conclusions point to the importance30

of fault interactions to explain the earthquake occurrence in the Briançonnais and the31

Dora Maira massif, whereas fluids seem to be the major driving mechanism in the Ubaye32

valley.33

1 Introduction34

Earthquake catalogs are the cornerstone of many studies in seismology, such as char-35

acterizing the seismic source (e.g. Abercrombie, 1995; Ide et al., 2003), estimating the36

amount of stress released at plate margins and understanding the role of repeating seis-37

micity in this releasing process (e.g. Nadeau et al., 1995; Wech & Creager, 2011; Shelly38

et al., 2011; Frank et al., 2014), constructing reference earth models (e.g. Dziewonski &39

Anderson, 1981; B. Kennett & Engdahl, 1991; B. L. Kennett et al., 1995), seismic to-40

mography (e.g. Dziewonski & Woodhouse, 1987; Van der Hilst et al., 1997; Li et al., 2008),41

seismic hazard estimation (e.g. on California Earthquake Probabilities, 1995), or mod-42

eling of the earthquake cycle (model calibration, e.g. Richards-Dinger & Dieterich, 2012).43

The first generation of regional and global catalogs were based on phase arrival picks on44

analog records (e.g. Engdahl et al., 1998). With the advent of digital recording, energy-45

based detection methods such as the short-term/long-term average (STA/LTA, Allen,46

1982) method became popular.47

The transition to digital recording and storage, the implementation of protocols48

for data curation and sharing, the increasing availability of data from networks and ar-49

rays, and the recognition of different types of earthquake signals motivated the devel-50

opment of more sophisticated earthquake detection and location algorithms, based, for51

instance, on array processing (e.g. Meng & Ben-Zion, 2017), or learning methods, such52

as neural networks (e.g. Perol et al., 2018). Automated data processing is not only es-53

sential for extracting signal from large, and rapidly increasing, data volumes, it also leads54

to uniform catalog quality.55

Analysis of the seismic wavefield recorded at multiple sensors leverages the coherency56

of the signal across the station array to detect seismic phases which human eyes would57

have failed to identify. Network-based detection has led to the identification of phenom-58

ena such as low frequency earthquakes (e.g. Shelly et al., 2007; Brown et al., 2008; Frank59

et al., 2014) and non-volcanic tremor (e.g. Obara, 2002; Rogers & Dragert, 2003).60

We develop an earthquake detection method that combines array processing, or,61

more precisely, a beamformed network response (Frank & Shapiro, 2014) and template62

matching (Gibbons & Ringdal, 2006; Shelly et al., 2007; Frank & Shapiro, 2014; Ross63

et al., 2019). Template matching is known to be efficient at detecting low signal-to-noise64

ratio (SNR) signals (i.e. with SNR < 1), and the required prior knowledge of the tar-65

get seismicity is obtained from the beamformed network response.66
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We applied this new detection algorithm to one year of seismic data from 87 sta-67

tions located in the Southwestern Alps, between August 2012 and August 2013, includ-68

ing 55 stations from the temporary network CIFALPS (cf. Zhao et al., 2016, and see more69

information in Data and Resources). Although the Western Alps have been studied for70

a long time, the mechanisms driving the seismicity are still not well understood (cf. Noc-71

quet, 2012, and references therein), and a more complete earthquake catalog will make72

possible new studies to investigate the tectonic processes that cause them. The Alps were73

formed following the closure of the Alpine Tethys ocean, due to converging motion be-74

tween Europe and Africa. The mountain range is located at the border between the Eurasian75

plate and the Adriatic plate (cf. Figure 1). In the Western Alps, Chopin (1984) gave the76

first petrological evidence for continental subduction, which was later confirmed by sev-77

eral geophysical studies (e.g. Nicolas et al., 1990; Zhao et al., 2015). It is unclear, how-78

ever, whether subduction is still taking place. Even though geodetic data show that the79

Adriatic plate is rotating counterclockwise with respect to stable Europe (e.g. Serpel-80

loni et al., 2007), there is no observation of shortening in the Western Alps and part of81

the seismic activity is observed to occur under an extensional regime (c.f. analysis of earth-82

quake focal mechanisms, Delacou et al., 2004). Various studies (e.g. Delacou et al., 2004;83

Nocquet et al., 2016; Walpersdorf et al., 2018) show that the earthquake activity in the84

Southwestern Alps is likely to be due to a complex combination of plate tectonic forces85

and other forces such as buoyancy forces or post glacial rebound. A more detailed char-86

acterization of seismic activity, which is indicative of active deformation, will help ad-87

dress these issues.88

Figure 1. Interpretative cross-section of the Western Alps. Following the closure of the Alpine

Tethys ocean, the collision of the European and Adriatic margins formed the Alps and the sub-

duction complex illustrated here. A clear understanding of what is driving the deformation

and the seismic activity in these complex geological units is still lacking. Abbreviations: FPF –

Frontal Penninic Fault, Srp – serpentinized, RMF – Rivoli-Marene deep fault. We show the loca-

tions of the CIFALPS stations on the topographic profile of the cross-section. The onset shows

the location of the transect in the Western Alps, Europe. Figure modified from Zhao et al. (2015)

and Solarino et al. (2018).

We first describe the earthquake detection method, and then present the earthquake89

catalog we thus obtained in the Southwestern Alps. We gain new insights into the seis-90

micity of the study region by investigating the collective behavior of earthquakes, made91

possible by the large number of detected events. We then discuss the importance of earth-92

quake interaction in the observed behavior of clustered seismicity.93

2 Earthquake Detection Method94

Detecting low SNR seismic signals by means of template matching requires knowl-95

edge of the type of signal to search for in the data. This can be obtained from an ex-96

isting earthquake catalog or from a preliminary detection run. Since the former is not97

publicly available for our study area, we produced a preliminary catalog using the energy-98

based detection method from Frank and Shapiro (2014), which is described in the fol-99

lowing. The events thus found were then used as template events in a subsequent matched-100

filter search.101

2.1 Data Pre-processing102

We used seismic data recorded between August 2012 and August 2013 at 87 seis-103

mic stations in the Southwestern Alps. The network includes 55 broadband sensors from104
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the temporary CIFALPS array (China-Italy-France Alps survey, Zhao et al., 2016, sam-105

pling at 100 Hz), and 32 broadband sensors from French and Italian networks (sampling106

at 100 Hz or 125 Hz, see Data and Resources). The data are downsampled to 50 Hz and107

filtered in the band 1-12Hz, which we found was a good compromise between targeting108

the frequency band of interest for observing local earthquakes and removing undesired109

signal.110

2.2 Energy-based Detection (Composite Network Response)111

The beamformed network response method due to Frank and Shapiro (2014) seeks112

to determine the origin, in time and space, of the seismic energy recorded at an array.113

This approach leverages the coherency of seismic energy across a receiver array for au-114

tomatic event detection. Using wave speeds according to a 3-D reference model (Potin,115

2016), the apparent travel times measured in the seismograms are then associated with116

a source location.117

As a toy example, let us consider the earthquake whose location is indicated by a
yellow star in Figure 2, and whose waveforms are recorded at multiple stations at the
surface. Because spatial coherency of the seismic waveforms is not ensured (e.g. due to
crustal heterogeneities or focal mechanism), we prefer to work with the envelopes of the
waveforms. The envelope is the amplitude of the analytical representation of a time se-
ries, it is calculated after the preprocessing described in Section 2.1 and the processing
of the data is illustrated in Figure S1. We first discretize the volume beneath the study
region into a grid of points, each of which representing a possible location of the seis-
mic source (cf. Figure 2A). Each of these hypothetical sources is associated with a col-
lection of P- and S-wave travel times to each of the stations. For a sufficiently accurate
velocity model, the travel times from the potential source closest to the real source will
provide the best alignment with the envelopes of the seismic data (cf. Figure 2B). We
define the stack of the shifted envelopes as the network response:

NRk(t) =
∑
s,c

f
(
us,c(t+ τks,c)

)
. (1)

In Equation 1, k identifies a potential source and s, c are the station and the com-118

ponent indexes, respectively. We use the S-wave travel times on the horizontal compo-119

nents and the P-wave travel times on the vertical component; τks,c is the travel time from120

potential source k to station s on component c. u is the data and f is some transforma-121

tion of the seismic waveforms. In our case f relates to the function ”envelope” (see Sup-122

plementary Material Figure S1). The source k∗ that yields the largest network response123

is found by a grid search and represents a proxy of the real source location. Locating earth-124

quakes through such a grid search, that is, shifting and stacking seismic energy, is also125

known as back projection or migration (e.g. Ishii et al., 2005; Walker et al., 2005; Honda126

& Aoi, 2009), but the objective here is detection.127

For earthquake detection purposes, the quantity of interest is the largest network
response of the grid at each time step. We define the composite network response (CNR)
as:

CNR(t) = max
k
{NRk(t)} = NRk∗ . (2)

The process of searching for NRk∗ , continuously in time, is illustrated in Figure S3.128

Figure 2C shows an example of CNR from real data. We postprocess the CNR by
removing the baseline – a curve connecting the local minima – to set the noise level to
zero (which explains the negative values in CNR). The peaks of CNR that exceed a user-
defined threshold are detections of events, and the source locations are given by the cor-
responding k∗. We use the following time-dependent threshold:

threshold(t) = median (CNR) (t) + 10×MAD (CNR) (t), (3)
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Figure 2. Top left panel (A): Spatial discretization of the volume beneath the study re-

gion. Using a velocity model, each point of the grid is associated with a collection of source-

receiver travel times. The grid points are called potential seismic sources. As an example, let

us consider an earthquake with location shown by the yellow star, and recorded at multiple

stations. Right panel (B): The envelopes of the earthquake waveforms are shifted using the

travel times of a potential seismic source close to the real location (yellow star). The shifted

envelopes are then stacked to calculate the network response (green waveform, cf. Equation 1).

The resulting network response is intrinsically related to the potential seismic source from which

the travel times were calculated: different potential seismic sources give different network re-

sponses. Bottom panel (C): Composite network response (cf. Equation 2) calculated over

one day. We subtract a curve connecting the local minima of the CNR to set its baseline to

zero. To adapt to variations in the level of noise, we use a time-dependent threshold: the value

”median + 10×MAD” is evaluated every 30 minutes and a linear interpolation makes the thresh-

old varying continuously within each 30-minute bin. Using small bin sizes enables the threshold

to adapt to locally noisy episodes, but at the risk of discarding actual events: a 30-minute bin

size is a good compromise between the two. We perform the peak selection on a smoothed CNR

and impose a minimum peak distance, which explains why some of the values above threshold are

not selected.

where MAD stands for median absolute deviation. We evaluate median (CNR)+10×129

MAD (CNR) in 30-minute bins and make a continuously varying threshold by linearly130

interpolating the values obtained every 30 minutes.131

Each detection yields a so-called template event (located at k∗), and the template132

for that event is then built by extracting waveforms using the detection time, travel times133

from k∗ to each of the stations considered in the template (in our case, the 20 stations134

that are closest to k∗), and a window length (we choose 8 seconds). For our application135

in Section 3, we considered potential sources 1 km apart on a regular 3D cartesian grid136

(to 80 km depth) beneath a geographic area from 5.5o-9.0oE in longitude and 43.5o-46.0oN137

in latitude. This 1 km spacing is a good compromise between computation time, array138

sizes and detection performances.139

2.3 Classification of Seismic Signals140

Before using a template in a matched-filter search it is important to verify that the141

signal is due to an earthquake, because the CNR can be influenced by non-earthquake142

signals, such as proximal noise sources, electronic noise, and by issues in the preprocess-143

ing. For this purpose, we conduct a signal classification step prior to template match-144

ing.145

For automated analysis and signal classification we use supervised machine learn-146

ing: to discriminate earthquakes from non-earthquakes, an algorithm is trained on a rel-147

atively small set of examples classified by a human expert. Our algorithm computes a148

linear combination of the signal features to generate a scalar that is fed into the logis-149

tic function (bounds the output between 0 and 1), which gives the probability of being150

an earthquake. Therefore, our algorithm is a binary logistic classifier. More information151

on the structure of the classifier is provided in Figure 3. For each three-component record152

extracted from the 20 stations, we calculate five features:153

1. the amplitude maximum,154

2. the first three statistical moments of the distribution of the peaks of the waveform155

autocorrelation function: variance, skewness, and kurtosis,156
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Figure 3. Left panel (A): We randomly sample detections from the database of candidate

template events and identify each channel as earthquake or non-earthquake. We attribute the

label earthquake to the detections with more than nine channels identified as earthquakes (non-

earthquake otherwise). This arbitrary choice can be tuned in order to select more or less low

SNR earthquakes in the template database. Right panel (B): Structure of our binary logistic

classifier. The signal features are first preprocessed by standardizing them (i.e. removing the

mean and setting the standard deviation to one) and bounding them between -1 and 1 through

the use of hyperbolic tangent. A linear combination of the preprocessed signal features generates

a scalar, which is fed into the logistic function (also called sigmoid function). The resulting out-

put is bounded between 0 and 1, and is interpreted as the probability of being an earthquake.

An output greater than 0.5 means the detection is more likely to be an earthquake than a non-

earthquake. This algorithm was built using the Python library Keras (Chollet et al., 2015).

3. the maximum of the moving kurtosis along the extracted time series,157

for a total of 300 features per event detection. The amplitude maxima help identify strong158

signals, the maximum of the moving kurtosis is sensitive to seismic phase arrivals, and159

the statistical moments of the autocorrelation function discriminate spikes (with large160

kurtosis) from impulsive earthquake waveforms. These features are not dependent on161

the relative phase of the signals, which renders them insensitive to small source mislo-162

cation.163

For our application, Section 3.1, we manually labeled the waveforms of 500 detec-164

tions as earthquakes or noise (any non-earthquake signals). We note that labeling the165

waveforms currently prevents the full automation of the method, but it has to be done166

only once. In the training dataset, a 60 channel (20 stations × 3 components) template167

event is labeled as an earthquake if more than nine channels were individually identi-168

fied as earthquake waveforms by eyes. This somewhat arbitrary criterion is used to re-169

ject the low SNR earthquakes that would not be interesting for use as template events,170

or which are not identified as earthquakes with high confidence. For training the algo-171

rithm, we split the dataset into two independent sub datasets: the training dataset (75%172

of the detections) and the validation dataset (25% of the detections). Each of these datasets173

were then augmented by a factor 100 by shuffling the channels in the templates (the clas-174

sification output must not depend on the order in which the input features are given).175

While optimizing the classifier with gradient descent on the training dataset, we eval-176

uated the error on the validation dataset and stopped optimizing when this error began177

to increase. This method, which is known as early stopping (e.g. Yao et al., 2007), im-178

plicitly regularizes the classifier by providing a criterion for stopping the training when179

further updating the parameters would only overfit the data. On average, for several ran-180

domly selected training and validation datasets, we had a training accuracy of 0.92 and181

a validation accuracy of 0.90. Eventually, the classification process outputs a database182

of template events to be used in template matching.183

2.4 Template Matching184

In seismology, we often approximate the Earth as a linear filter and write an earth-185

quake seismogram as the convolution of a source term with a propagation term and an186

instrument term:187

u(r, t) = S(t)M(r; ξ)︸ ︷︷ ︸
source

∗ G(r, t; ξ)︸ ︷︷ ︸
propagation

∗ I(t)︸︷︷︸
instrument

. (4)
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In Equation 4, the source term is the product of the source time function S and188

the focal mechanism M that describes effects due to preferred directions in the rupture189

process (e.g. rupture on a fault plane). The propagation term G, the Green’s function,190

describes how the earth responds to an impulsive source for a given travel path. We in-191

clude site effects in the Green’s function. I represents how the recording device distorts192

actual ground motion. The receiver location is r and the source location is ξ. Equation 4193

shows that colocated earthquakes produce similar waveforms because of similar Green’s194

functions. Moreover, similarity is high when the source functions have the same shape195

(similar focal mechanisms and magnitudes). Template matching leverages this expected196

similarity to detect new events.197

Figure 4. Left panel (A): The waveforms of a template event (red waveforms), on 12 sta-

tions and each of the 3 components, match well the data (blue waveforms): a new earthquake

is detected. The correlation coefficient (CC) is given on each channel. Right panel (B): Com-

parison of the template waveform on one channel (red waveform) with the waveforms of a few

detected events (blue waveforms).

Template matching consists of scanning continuous recordings in search for matches
between data and the waveforms that constitute a template. This method has proven
to be efficient at detecting events with low SNR (SNR < 1, e.g. Gibbons & Ringdal, 2006;
Shelly et al., 2007; Frank et al., 2014; Ross et al., 2019). Formally, scanning the data means
calculating the correlation coefficient between the template waveforms and the data, con-
tinuously in time. We use the following definition of the average correlation coefficient:

CC(t) =
∑
s,c

ws,c

N∑
n=1

Ts,c(tn)us,c(t+ tn + τs,c)√∑N
n=1 T

2
s,c(tn)

∑N
n=1 u

2
s,c(t+ tn + τs,c)

. (5)

In Equation 5, N is the length of the template waveform, n is a temporal index, and ws,c198

is the weight attributed to station s and component c. If all weights are equal, with ws,c =199

1/NsNc (with Ns, Nc being the number of stations and components), then it is equiv-200

alent to calculating the arithmetic mean. For station s and component c, Ts,c is the wave-201

form template, us,c the continuous data, and τs,c the moveout (or time shift) in us,c. The202

time t is the detection time, meaning that the template window starts at time τs,c af-203

ter the detection time. The template windows start four seconds before the S wave on204

the horizontal components and one second before the P wave on the vertical component.205

We note that Equation 5 assumes the mean of Ts,c and us,c within each sliding window206

of length N is zero. We have shown in previous work that this assumption is correct when207

the data are filtered such that the lower non-zero period in the data is shorter than the208

window length (cf. Data and Resources and Beaucé et al., 2017). In the application pre-209

sented in Section 3, template matching was done with a detection threshold of eight times210

the daily root mean square (RMS) of the correlation coefficient time series. This detec-211

tion threshold is more conservative than the commonly used threshold of 8×MAD (e.g.212

Shelly et al., 2007; Brown et al., 2008; Baratin et al., 2018, 8× RMS ≈ 12×MAD).213

Evaluating the correlation coefficient over long periods of time, and for many tem-214

plates, requires high performance computing to do it within a reasonable amount of time.215

We use the software Fast Matched Filter (Beaucé et al., 2017), which is particularly quick216

when run on graphics processing units (GPUs). The scanning process is illustrated in217

Figure 4. In the application to data from the Southwestern Alps we use just over 1,400218

templates, a template duration of 8 s (with 50 samples per second), and one year of con-219

tinuous data from 87 3-component stations, and we evaluated CC(t) every sample. Eight220

seconds is a good compromise between extracting a representative chunk of the target221

waveform, and a reasonable computation time. Running our codes simultaneously on 12222

nodes equipped with one Tesla K20m GPU each took 12 h. As expected, reading oper-223

ations (I/O) of data and templates is the most time consuming task.224

–7–



manuscript submitted to JGR: Solid Earth

2.5 Second Generation Templates225

As illustrated in Figure 4, a matched-filter search provides us with many repeti-226

tions of the same target waveform. By stacking the waveforms of the detected events we227

can enhance the SNR in the template waveform, which decreases the unwanted corre-228

lation component of the CC between data and noise in the template, thus improving the229

quality of the detection, and allows the template events to be located better.230

Non-linear stacking, like the Nth-root stack or the phase-weighted stack, greatly231

improves the SNR with respect to the linear stack, but also distorts the target waveform232

because of their non-linear nature. Even if it does not enhance SNR as much as non-linear233

stacking, we prefer the Singular Value Decomposition-based Wiener Filter (SVDWF) be-234

cause it does not distort the waveform. SVDWF is based on the association of spectral235

filtering (keeping a limited number of singular vectors from the singular value decom-236

position) and Wiener filtering, and was initially developed for processing noise correla-237

tion functions (Moreau et al., 2017). For each station and each component, the matrix238

of detected events is first denoised using SVDWF, and a new template waveform is then239

obtained by stacking the denoised waveforms. Figure S4 illustrates the performance of240

these different stacking strategies.241

Detection and location involve finding the optimal network response for a given f242

in Equation 1. For detection purposes, we prefer using the envelope for f, but for loca-243

tion purposes, we choose f to be the kurtosis-based transform presented in Figure 5A244

(from Baillard et al., 2014). This transform makes the signal more sensitive to seismic245

phase arrivals and, thus, biases the CNR towards finding the travel times that align well246

the seismic phase arrivals. Performing this relocation process on the second generation247

template waveforms reduces the spatial spread of the potential sources that yield a large248

CNR (cf. Figure 5, more details in Appendix A).249

The second generation templates are used in a subsequent matched-filter search to250

detect more events. This process – new template generation and matched-filter search251

– can be iterated several times until the earthquake catalog does not show notable up-252

dates between two iterations. During successive iterations, we optimize the template database253

by regrouping template events with same location and similar waveforms (template events254

with locations closer than 20 km and with average waveform correlation coefficient greater255

than 0.8) to avoid redundant matched-filter searches.256

Figure 5. Relocation of the second generation templates. Top panel (A): The denoised

and stacked waveforms obtained from the SVDWF (blue waveforms) are transformed following

Baillard et al. (2014) to get a signal that is sensitive to phase arrivals (orange waveforms). The

arrival times predicted by the new location are shown by black and red bars for the P- and S-

wave, respectively. Bottom left panel (B): The composite network response (blue curve) is

calculated using the orange signal shown in A. The neighborhood of the maximum of the CNR

is analyzed to build a weighting function (red curve, cf. Appendix A for details). This weight-

ing function is used to calculate a weighted average of the distance to the best potential seismic

source (cf. Equation A3 in Appendix A), i.e. the potential source associated with the highest

CNR. We define this weighted average as the uncertainty on the location. Bottom right panel

(C): Each sample of the CNR shown in B is associated with a potential source in the grid; the

color codes for the value of the CNR and the transparent points are those for which the weight-

ing function is zero. In this example, the location uncertainty is 3.05 km.
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3 Seismicity of the Southwestern Alps257

We applied the earthquake detection method presented in Section 2 – that is, the258

combination of the Composite Network Response (CNR), signal classification, and tem-259

plate matching (with SVDWF) – to the preprocessed seismic data described in Section 2.1.260

3.1 Catalog261

Calculating the CNR as described in Section 2.2 yielded a total of 50,262 detec-262

tions (candidate template events). After applying the classifier described in Section 2.3,263

we were left with 1,725 template events. We further reduced this number to 1,406 by re-264

grouping redundant template events (cf. Section 2.5); Figure 6 shows their locations. The265

matched-filter search yielded 18,754 non-redundant detections, with redundancy defined266

as events with similar waveforms (average CC > 0.8), detected within a time interval of267

three seconds and from template earthquakes located within 20 km from each other. This268

arbitrary choice may remove actual earthquakes from the catalog and leave some dou-269

ble counted events but produces a reasonable number of detected events. Our earthquake270

catalog is available online (see Data and Resources).271

Figure 6. Locations of the 1,406 template events. Template events relocated with an uncer-

tainty ∆r < 15 km are shown with filled dots, and template events for which we did not find a

reliable location are shown with open diamonds; the color scale codes for the depth of the events.

Black inverted triangles are the seismic stations used in this study. We note that the uncertainty

estimation described in Section 2.5 does not always perform well for deep events, which do not

only feature simple P- and S-wave arrivals as assumed in the calculation of the network response.

Therefore, a few events with ∆r < 15 km still show odd locations (e.g. deep events located out

of the group of deep earthquakes around Torino). The purple star indicates the epicenter of a

ML3.9 earthquake that occurred in early October 2012, and which is important for the discussion

in Section 4. The onset shows the position of the Western Alps in Europe. The black dashed line

corresponds to the axis along which the stations from the CIFALPS network are deployed; this

axis is used to project the locations of the template events for 2D cross sections.

To evaluate how well our detection method performs, we compared our catalog to272

the SISmalp catalog of Potin (2016). The number of events detected and located by our273

algorithm is more than an order of magnitude larger than the approximately 1,200 in-274

cluded in the SISmalp catalog for our study region; more details on the comparison with275

this catalog are given in Figures S5 and S6. The events that we seem to have missed all276

have magnitude less than one and most less than 0.4 (cf. Figure S7), which might ex-277

plain inconsistencies in reported location or non-detection. We note here that other cat-278

alogs are also publicly available for this region, such as the Réseau National de Surveil-279

lance Sismique catalog with 383 events, and the Istituto Nazionale di Geofisica e Vul-280

canologia catalog with 743 events.281

The temporal distribution of the 18,754 events is shown in Figure 7A with the daily282

seismic rate. We also report the magnitude of the events for earthquakes with M > 1283

and located with high confidence (∆r < 5 km). These local magnitudes are based on284

waveform amplitude ratios, they were estimated following the procedure described in Ap-285

pendix B. Amplitude ratios of events with M < 1 are contaminated by noise and there-286

fore the resulting magnitude estimates are not meaningful. M = 1 is also where we ob-287

serve the Gutenberg-Richter relation to break down (see Figure S8). The daily seismic288

rate shows continuous seismic activity in the Southwestern Alps, and reveals the exis-289

tence of episodes of strong, burst-like seismicity (e.g. October 2012 and January 2013).290

Figure 7B shows the earthquake temporal distribution on recurrence time versus detec-291
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tion time graphs for three templates in distinct geographical regions: the Ubaye valley,292

the Briançonnais and the Dora Maira massif (cf. locations in Figure 1). The recurrence293

time is the time interval between two colocated earthquakes, and thus is defined template-294

wise. These three templates offer a representative view of the diversity of seismic behav-295

iors observed in our study region. The Ubaye valley hosts continuous seismic activity with-296

out clear sequences of foreshocks-mainshock-aftershocks, but the seismicity of the Briançonnais297

and the Dora Maira massif are dominated by burst-like episodes. These episodes are char-298

acterized by recurrence times spanning many orders of magnitudes, which is the signa-299

ture of temporal clustering. Seismicity in the Ubaye valley also differs from the burst-300

like seismicity observed in the Briançonnais and the Dora Maira massif by the smaller301

magnitude range it spans (cf. Figure 7B).302

Figure 7. Left panel (A): Daily seismic rate (left axis, blue continuous curve) and daily

magnitude distribution (right axis, red dots). Details on the local magnitude scale are given in

Appendix B. Right panels (B): Recurrence time vs detection time for three templates located

in three distinct geographic regions. The Briançonnais and the Dora Maira massif are dominated

by episodes of burst-like seismicity, and the Ubaye valley hosts continuous seismic activity that

does not feature clear foreshocks-mainshock-aftershocks sequences. Local magnitudes are coded

in color: we observe a smaller magnitude range in the Ubaye valley than for the earthquake

sequences in the Briançonnais and in the Dora Maira massif.

3.2 Temporal Clustering of the Seismicity303

Unlike Poisson seismicity, clustered earthquake sequences have earthquake occur-304

rence that is not random in time: instead, time clustered seismicity suggests that past305

events influence the occurrence of future ones. We emphasize that an earthquake sequence306

with high seismic rate does not have to be clustered in time, but can be Poissonian (e.g.307

Frank et al., 2018). Temporal clustering is often observed for sequences of foreshocks-308

mainshock-aftershocks (e.g. Utsu, 1961; Knopoff, 1964; Gardner & Knopoff, 1974; Za-309

liapin & Ben-Zion, 2013a) and is thought to be the signature of stress redistribution on310

neighboring faults taking place during the seismic rupture (e.g. Burridge & Knopoff, 1967;311

Dieterich, 1992; Stein, 1999). More generally, temporal clustering can be explained by312

various mechanisms implying interactions between earthquakes (e.g. Frank et al., 2016).313

The observation of temporal clustering thus provides a window into the mechanisms of314

earthquake occurrence.315

Quantifying the degree of temporal clustering requires characterization of the time316

series of earthquake occurrence. While accurate knowledge of the earthquake locations317

and magnitudes allows sophisticated characterization of clustering in the time-space-energy318

domain (e.g. Zaliapin et al., 2008; Zaliapin & Ben-Zion, 2013b), restricting the analy-319

sis to the time-space domain is an appropriate choice for the Southwestern Alps since320

earthquake magnitudes are small. To describe seismic activity, we introduce the event321

count e(t) (cf. Figure 8A), that is, the number of events in narrow time windows (bins).322

We characterize clustering by means of the autocorrelation and spectrum of e(t) (Fig-323

ure 8B and C). By definition, temporal clustering implies temporal correlation of the earth-324

quake occurrence at non-zero correlation time in the autocorrelation function. We ob-325

serve that clustered earthquake sequences exhibit power-law dependence of e(t) on fre-326

quency (ẽ(f) ∝ f−β , similar to Frank et al., 2016). The strength of temporal cluster-327

ing is quantified by β, referred to as clustering coefficient, which can be estimated from328

the slope of the spectrum in log-log space (Figure 8C). A strongly clustered earthquake329

sequence has a large β whereas an earthquake sequence close to a Poisson sequence has330

a small β, and β = 0 indicates a purely random sequence (flat spectrum).331
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Processes exhibiting a power-law spectrum are scale-invariant processes, within a332

certain range of scales limited by natural bounds. For instance, we expect the power-333

law ẽ(f) ∝ f−β to hold between the period of activation of the fault/seismic source (small-334

est frequency) and the smallest time interval we can resolve between two earthquakes335

(highest frequency). A powerful analysis tool for scale-invariant time series comes from336

the theory of fractal clustering (e.g. Turcotte, 1997; Lowen & Teich, 2005). Fractal anal-337

ysis, which has been applied to earthquake occurrence in various studies (e.g. Smalley Jr338

et al., 1987; Lee & Schwarcz, 1995), consists of counting earthquakes in time intervals339

of variable width. In the case of fractal clustering, the fraction of occupied intervals x340

has a power-law dependence on the size of the intervals τ , i.e. x ∝ τ1−D. The fractal341

dimension D is zero for a Poisson distributed earthquake occurrence, and is typically larger342

than 0.2 for clustered seismicity (cf. Figure 8D). We used correlation time, clustering343

coefficient β and fractal dimension D to characterize the temporal clustering in our study344

region. We found that the clustering coefficient was well appropriate for studying clus-345

tering over short times, whereas the fractal dimension gave the most contrasted results346

for studying the long-term clustering (see Supplementary Material Figure S9 and Fig-347

ure S10). We present our observations of temporal clustering in Figure 9.348

Figure 8. Quantification of temporal clustering. Top left panel (A): Event count number

e(t) for earthquakes detected with two different templates. The event count number is calculated

by dividing the time axis into 5-minute bins, and counting the number of events within each

bin. Top right panel (B): Autocorrelation function of the event count number. We define the

correlation time τ as the time interval over which the autocorrelation function is greater than

the threshold plotted with the dashed black line (arbitrarily set to 0.12). Bottom left panel

(C): Power spectral density of the event count number. The spectrum of the event count number

has a power-law dependence on the frequency when temporal clustering occurs. We define the

power-law exponent β as the clustering coefficient. Bottom right panel (D): Fractal analysis

of the earthquake sequences. Within a limited range of size of time intervals, the fraction of oc-

cupied intervals follows a power-law, whose exponent is related to the fractal dimension of the

earthquake occurrence.

Comparison between Figure 9A and Figure 9B shows that there is no trivial cor-349

relation between the number of earthquakes per template (i.e. number of earthquakes350

in some volume around the template location) and temporal clustering. We distinguish351

three geographic regions of high seismic activity: from west to east, the Ubaye valley,352

the Briançonnais and the Dora Maira massif. The largest temporal clustering is observed353

beneath the western part of the Dora Maira massif (cf. the geological cross-section in354

Figure 1). The fractal dimension of the event count reveals large temporal clustering also355

in the southwestern part of the Briançonnais (fractal dimension D & 0.2). Although we356

detected a large number of earthquakes beneath the Ubaye valley, we do not observe sig-357

nificant temporal clustering. The seismic activity in the Ubaye valley features a mixture358

of continuous unclustered seismicity punctuated by episodes of strong, clustered seismic-359

ity (see Supplementary Material Figure S9). The Ubaye valley is known to host a seis-360

mic swarm (e.g. Jenatton et al., 2007; Daniel et al., 2011; Leclère et al., 2012, 2013) that361

was reactivated in February 2012 by a M3.9 earthquake (Thouvenot et al., 2016). In the362

following discussion, we refer to swarms as episodes of high seismic activity without sub-363

stantial temporal clustering (as in, for example, Zaliapin & Ben-Zion, 2013a).364

4 Discussion365

Frank et al. (2016) present a model where a group of stationary Poisson point pro-366

cesses can lead to a clustered event occurrence if there is interaction between the point367
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processes. They show that without interaction a coherent acceleration of the Poisson event368

rates cannot reproduce the clustered distribution as in Figure 8. Poisson point processes369

describe earthquake occurrences on faults experiencing constant tectonic loading. There-370

fore, temporal clustering is the signature of earthquake interaction rather than an increase371

of the external forcing of the faults (e.g. because of aseismic slip occurring in the vicin-372

ity). We note that elastic interactions are commonly invoked to explain time clustered373

events (e.g. Knopoff, 1964; Dieterich, 1994; Stein, 1999). Thus, assuming there exists374

a constant loading acting on the faults, we can expect systems with many interacting375

elements – dense fault networks or single faults with many asperities – to be able to pro-376

duce strong short-term clustering whereas clustering in sparser networks takes place on377

longer time scales. With our observations we cannot differentiate between multiple faults378

or single faults with multiple asperities at the sub-template scale (i.e. for events detected379

with the same template).380

Figure 9. Cross-section along the CIFALPS axis showing 976 templates that were well relo-

cated (∆r < 15 km). Top panel (A): Number of detected earthquakes per template. Bottom

panel (B): Sources with fractal dimension D > 0.2, i.e. sources exhibiting temporal clustering.

The fractal dimension was calculated by taking the event count e(t) of each template plus all

the templates within a 10-km radius, over the whole study period. Even though intense seismic

activity is located in the Ubaye valley, this seismicity is not associated with significant temporal

clustering, showing that there is no systematic relation between temporal clustering and number

of events per unit volume. The purple star indicates the location of the ML3.9 earthquake that

we mention in the discussion (Section 4). The red structures are reported from the geological

cross-section in Figure 1.

Both regions where we observe significant temporal clustering, the Briançonnais381

and the Dora Maira massif, seem to share a common mechanism for clustering. Solarino382

et al. (2018) observed high Vp/Vs ratios (low Vs) in the uppermost part of the Briançonnais,383

where we observe high temporal clustering. They suggested that low shear wave veloc-384

ities Vs could be explained by the widespread fault network observed in the Briançonnais385

(e.g. Tricart et al., 2004). In the Dora Maira massif, all the templates detecting seismic386

activity with fractal dimension D > 0.3 (see Figure 9B) are located around the ML3.9387

earthquake that occurred on October 3rd, 2012 (cf. location in Figures 6 and 9, cf. our388

catalog for the local magnitude). This highly clustered seismicity took place over about389

four days (see Figure 7A), and can be seen as a sequence of foreshocks-mainshock-aftershocks.390

The locations shown in Figure 9 are substantially spreaded, which suggests that seismic-391

ity is occurring on multiple faults. Given the limited temporal extent of the episode, we392

expect fault interactions to be a major contribution to temporal clustering in this area.393

Moreover, it is known that the Dora Maira massif is made of ultra-high pressure meta-394

morphic rocks, i.e. of European crust subducted to 90 km depth and later exhumed (Chopin,395

1984), it is very likely to be fractured. Thus, along with geological evidence, our obser-396

vations of temporal clustering support the idea of fault interactions in dense fault net-397

works as a driving mechanism for clustering in the Briançonnais and the Dora Maira mas-398

sif.399

Despite the high density of seismic sources beneath the Ubaye valley, temporal clus-400

tering is limited (only a few templates with D & 0.2), which is an expected feature for401

seismic swarms. Thus, our measurements of temporal clustering suggest that the driv-402

ing mechanism for seismicity in the Ubaye swarm differs from the one in the Briançonnais403

and the Dora Maira massif. Multiple studies (e.g. Daniel et al., 2011; Leclère et al., 2012;404

De Barros et al., 2019) emphasized the role of fluids in the stressing mechanism driving405

the seismicity of the Ubaye swarm. Furthermore, Ben-Zion and Lyakhovsky (2006) stud-406

ied numerically the influence of damage rheology on the production of earthquakes. Their407
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model shows that cold, brittle media produce burst-like seismicity (high temporal clus-408

tering) whereas regions with high fluid activity produce more diffuse, swarm-like seis-409

micity (low temporal clustering). Our observations of high seismic activity with low tem-410

poral clustering in the Ubaye swarm thus support the important role of fluid activity in411

this region. We realize, however, that such swarm-like behavior could also be the signa-412

ture of aseismic processes (e.g. Lohman & McGuire, 2007). Whether aseismic slip is an413

important factor (Leclère et al., 2013) or not (De Barros et al., 2019) is still an ongo-414

ing debate, and our observations are not enough to support one scenario over the other.415

The clustered seismicity we detected in the Ubaye valley is consistent with the obser-416

vations in De Barros et al. (2019) of coexisting aftershock sequences and swarm-like seis-417

micity in this area. Studying a longer period of time, including the 2003-2004 and 2012-418

2015 Ubaye seismicity, could provide information on the stationarity of temporal clus-419

tering in the Ubaye valley and the rest of the Southwestern Alps.420

5 Conclusion421

In this paper we present a new method for automated earthquake detection and422

location, based on template matching and beamforming (or back projection), and use423

it for high (spatiotemporal) resolution characterization of seismicity in the Southwest-424

ern Alps. We address the problem of false positives in energy-based detection with sig-425

nal classification based on supervised machine learning (Section 2.3), and we construct426

low noise templates by combining the singular value decomposition Wiener filter (SVDWF)427

with subsequent stacking (Section 2.5).428

In our application to data from CIFALPS (Zhao et al., 2016), a semi-linear seis-429

mic network, and other permanent seismic stations in the Southwestern Alps, we detected430

in one year over an order of magnitude more events (18,754 vs. approximately 1,200) than431

an existing catalog based on traditional phase picking. We analyzed the statistical prop-432

erties of the seismicity, and observed and characterized temporal earthquake clustering.433

We observed that regions of high seismic activity and high temporal clustering coincided434

with regions that are highly fractured (Briançonnais) or likely to be fractured (Dora Maira435

massif). Seismicity in the Dora Maira massif during the study period was dominated by436

the sequence of foreshocks and aftershocks associated with the 2012-10-03 ML3.9 earth-437

quake. We also identified one region of high seismic activity and low temporal cluster-438

ing coinciding with the Ubaye swarm. Our results support interpretations invoking an439

important role of fluids in swarm seiscimity (Daniel et al., 2011; Leclère et al., 2012, 2013;440

De Barros et al., 2019).441

The efficiency of this method increases when the database of templates gets more442

complete. Thus, processing longer times is likely to give better results as the opportu-443

nities of detecting new template events grow. The systematic application of this method444

to the Western Alps data, or even to the whole mountain range, will help gathering new445

observations of the seismicity and understanding the tectonic context of the region. We446

note that even though we presented an application to a semi-linear seismic network, our447

method can be applied to any network geometry. If 3D wave speed variations are suf-448

ficiently well known on the scale of study, it is possible to perform comprehensive stud-449

ies of 3D seismicity structures by applying this method with 2D seismic arrays.450

Data and Resources451

The timings and locations of the 18,754 earthquakes we detected are available at452

E. Beaucé’s personal website https://ebeauce.github.io/ in the Material section. The453

reported times are the origin times, so that users can retrieve the P- and S-wave data454

by adding the origin times and the travel times, also provided in the catalog. Our codes455

are available at https://github.com/ebeauce/earthquake detection EB et al 2019456

(last accessed 08/16/2019), and are provided with a real-data example.457
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We created the map in Figure 6 using the topographic data from the Shuttle Radar458

Topographic Mission (SRTM) 90m database (http://www.cgiar-csi.org/data/srtm459

-90m-digital-elevationdatabase-v4-1, last accessed May 2019). Our data come from460

the temporary experiment CIFALPS (Zhao et al. (2016), DOI: http://dx.doi.org/10461

.15778/RESIF.YP2012) and permanent French (FR and RD RESIF (1995)) and Ital-462

ian (GU University of Genova (1967), IV INGV Seismological Data Centre (2006), MN463

MedNet Project Partner Institutions (1990) and MT OGS (Istituto Nazionale di Oceanografia464

e di Geofisica Sperimentale) and University of Trieste (2002)) networks. The RENASS465

and INGV catalogs we mention in Section 3.1 can be obtained at https://renass.unistra466

.fr/recherche and http://cnt.rm.ingv.it/en, respectively.467

Our study showing that the simplified definition of the correlation coefficient we468

use in this work is valid is available at https://github.com/beridel/fast\ matched\469

filter/blob/master/consequences\ nonzero.pdf.470
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Appendix A Template Relocation484

The weighting function presented in Figure 5 is defined by:485

w(tn) =

A exp

(
− (CNR(tn)− CNRmax)2

4σ

)
if tn ∈ V(tmax),

0 otherwise.

(A1)

In Equation A1, the neighborhood V(tmax) is defined by:486

V(t∗) =
{
t− ≤ tk ≤ t+ | [t−, t+] is a convex set, tmax ∈ [t−, t+],CNR(tk) > 0.75× CNRmax

}
,

(A2)

and tmax = argmax
tn

(CNR). A is a normalization factor such that
∑N
n=1 w(tn) =487

1, and σ is the standard deviation of the CNR within V(tmax).488

Using the locations of the potential sources from the composite network response,489

we calculate the average distance to the best test source:490

∆r =

N∑
n=1

w(tn)|rn − rbest|. (A3)

In Equation A3, N is the temporal length of the stacked waveforms, rn is the po-491

tential source location associated with the CNR at time tn and rbest is the location of492
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the potential source associated at time tmax, i.e. the location of the second generation493

template.494

Appendix B Magnitude Estimation495

Our local magnitude is calculated from the amplitude ratio of the peak velocities496

with a reference event. Thus, we first need to estimate the magnitude of at least one event497

per template to calibrate our local magnitude scale. For each family of earthquakes de-498

tected with the same template, we proceed as follows:499

1. calculate the S-wave spectrum on every station and component,500

2. calculate the noise spectrum in a window taken just before the P-wave arrival,501

3. average the spectra over all the stations and components, including only the sam-502

ples satisfying the SNR criterion (similarly to Uchide & Imanishi, 2016), accord-503

ing to:504

S̄(f) =
1∑

s,c 1SNR>5 [Ss,c(f)]

∑
s,c

αs,cSs,c(f)1SNR>5 [Ss,c(f)] . (B1)

In Equation B1, 1SNR>5 [S(f)] is the indicator function testing whether S(f) has505

SNR greater than 5 (equal to 1) or not (equal to 0). The SNR is calculated at ev-506

ery frequency by taking the ratio of the S-wave spectrum to the noise spectrum.507

αs,c is a corrective factor that we describe further.508

4. The average spectra are converted to displacement spectra by using the relation-509

ship510

|uvelocity(f)| = f × |udisplacement(f)|, (B2)

5. the average displacement spectra are fitted with the Boatwright model (Boatwright,511

1978):512

SBoatwright(f) =
Ω0(

1 +
(
f
fc

)4)1/2
, (B3)

where Ω0 is the low-frequency plateau, related to the seismic moment, and fc is513

the corner frequency.514

The corrective factors αs,c are defined such that the low-frequency plateau Ω0 can515

be identified to the seismic moment M0. Assuming a double-couple source, a dis-516

placement amplitude spectrum can be written as (following Boatwright, 1978):517

|uS(f)| = RS

2ρβ3r

M0(
1 +

(
f
fS
c

)4)1/2
exp

(
−πft

S

QS

)
,

=⇒M0 = Ω0
2ρβ3r

RS
exp

(
πftS

QS

)
,

=⇒ αs,c =
2ρβ3rs,c
RS

exp

(
πftSs,c
QSs,c

)
.

(B4)

In Equation B4, we use typical values for the S-wave velocity β (3000 km/s), the den-518

sity ρ (2700 kg/m3) and the average S-wave radiation pattern RS (
√

2/5 from Aki &519

Richards, 2002). The seismic moment M0 gives the magnitude moment Mw through:520

Mw =
2

3
(logM0 − 9.1) . (B5)
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The reference events are those for which fitting a Boatwright model to the aver-521

age spectrum results in a variance reduction greater than 0.95. Figure B1 shows an ex-522

ample of an average spectrum that was fitted correctly, and therefore kept as a reference523

event. The local magnitude of all the other events are determined by:524

Mi = Mref + Median
s,c

{
log

Ais,c
Aref
s,c

}
, (B6)

or more generally if there are several reference events:525

Mi = Median
k

{
Mref,k + Median

s,c

{
log

Ais,c

Aref,k
s,c

}}
. (B7)

./figures/catalog/template155_event544.png

Figure B1. Magnitude estimation of the reference event. For each template, we use the high-

est SNR detections to calculate the average S-wave spectrum (Equation B1) and fit it with the

Boatwright model (Equation B3). The low-frequency plateau gives us the seismic moment M0.

The average is calculated over all the stations and components that satisfy the SNR criterion.

Thus, for each frequency sample the number of channels included in the average may vary, as we

can see with the color scale. Since frequency samples with a higher number of channels are more

reliable, we give them larger weight in the inversion.
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Moreau, L., Stehly, L., Boué, P., Lu, Y., Larose, E., & Campillo, M. (2017). Improv-648

ing ambient noise correlation functions with an svd-based wiener filter. Geo-649

physical Journal International , 211 (1), 418–426.650

Nadeau, R. M., Foxall, W., & McEvilly, T. (1995). Clustering and periodic recur-651

rence of microearthquakes on the san andreas fault at parkfield, california. Sci-652

ence, 267 (5197), 503–507.653

Nicolas, A., Hirn, A., Nicolich, R., & Polino, R. (1990). Lithospheric wedging in the654

western alps inferred from the ecors-crop traverse. Geology , 18 (7), 587–590.655

Nocquet, J.-M. (2012). Present-day kinematics of the mediterranean: A comprehen-656

sive overview of gps results. Tectonophysics, 579 , 220–242.657

Nocquet, J.-M., Sue, C., Walpersdorf, A., Tran, T., Lenôtre, N., Vernant, P., . . .658
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