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ABSTRACT

The quantification of uncertainty sources in ensembles of climate projections obtained from combinations

of different scenarios and climate and impact models is a key issue in climate impact studies. The small size of

the ensembles of simulation chains and their incomplete sampling of scenario and climatemodel combinations

makes the analysis difficult. In the popular single-time ANOVA approach for instance, a precise estimate of

internal variability requires multiple members for each simulation chain (e.g., each emission scenario–climate

model combination), but multiple members are typically available for a few chains only. In most ensembles

also, a precise partition of model uncertainty components is not possible because the matrix of available

scenario/models combinations is incomplete (i.e., projections are missing for many scenario–model combi-

nations). Themethod we present here, based on data augmentation and Bayesian techniques, overcomes such

limitations and makes the statistical analysis possible for single-member and incomplete ensembles. It pro-

vides unbiased estimates of climate change responses of all simulation chains and of all uncertainty variables.

It additionally propagates uncertainty due to missing information in the estimates. This approach is illustrated

for projections of regional precipitation and temperature for four mountain massifs in France. It is applicable

for any kind of ensemble of climate projections, including those produced from ad hoc impact models.

1. Introduction

A critical issue in climate change impact studies is the

assessment of uncertainties associated with future pro-

jections. A comprehensive quantification of the differ-

ent sources of uncertainty is necessary in order to obtain

the range of possible future changes, their significance,

and their value for adaptation. The identification of the

most important uncertainty sources is also important for

the allocation of research and development resources

(Northrop and Chandler 2014).

Uncertainty sources include scenario uncertainty,

model uncertainty, and climate internal variability.

Scenario uncertainty corresponds to the uncertain fu-

ture of greenhouse gas emissions. It is now usually

evaluated with climate projections obtained for differ-

ent representative concentration pathways (RCPs), ob-

tained from various socioeconomic projections (van

Vuuren et al. 2011). Model uncertainty is related to the

imperfections of the models used to obtain the climate

projections (climate models and subsequent impact
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models when sectorial declinations such as ecology,

water resources, hydropower, and so on are considered).

Indeed, many different models can be used to represent

the Earth system, leading to different climate responses

for the same forcing configuration. For a given emission

scenario for instance, different climate responses are

generally obtained at the scale of the planet from dif-

ferent general circulation models (GCMs) and, for a

given scenario/GCM simulation, different climate re-

sponses are expected at a regional scale from different

regional climate models (RCMs). In addition, for a

given GCM/RCM simulation, an ensemble of impact

models can be used to represent the uncertainty re-

garding sectorial processes such as the hydrological re-

sponse at the catchment scale, snowpack evolution, etc.

Model uncertainty is typically estimated using different

simulation chains, combining for instance different cli-

mate, downscaling, and impact models (Stocker et al.

2013). Climate internal variability originates from the

chaotic and nonlinear nature of the climate system (Deser

et al. 2012). Unlike scenario andmodel uncertainty, which

could potentially be reduced if our estimates of future

emissions and our knowledge and representation of geo-

physical processes were improved, climate internal vari-

ability is purely stochastic and is irreducible (Hawkins and

Sutton 2009; Lafaysse et al. 2014; Fatichi et al. 2016).

These different uncertainty sources are typically esti-

mated frommultiscenariomultimodel ensembles (MMEs)

of transient climate projections produced for some con-

trol and future periods. Various methods have been pro-

posed for this, usually based on an analysis of variance

(ANOVA). An important limitation of most existing

ANOVAmodels applied to MMEs is due to the nature of

climate projection datasets available for the analysis.

Typically, given the high computational costs of GCMs

and RCMs, a large number of possible scenario/GCM/

RCM combinations may be missing from the MMEs. For

instance, in the EURO-CORDEX dataset (Jacob et al.

2014; Kotlarski et al. 2014), 7 RCMs have been used to

produce high-resolution projections over the European

domain, from 5 CMIP5 GCMs and for 3 RCP scenarios

(Taylor et al. 2012). From the 7 3 5 3 3 5 105 possible

scenario/GCM/RCM combinations, only 17 were actually

available for the analysis of Jacob et al. (2014). The

number is increasing progressively but thematrix ofGCM/

RCMcombinations will probably not fill up entirely by the

end of this generation of the EURO-CORDEX dataset.

As indicated above, different approaches based on

ANOVA analyses have been proposed to deal with

these MMEs. The single-time approach consists in ap-

plying the ANOVA on projections available for one

given projection lead time (Hingray et al. 2007; Yip et al.

2011; Paeth et al. 2017), independently from the

projections available for other lead times. Provided that

multiple members (i.e., replicates) are available for each

simulation chain, the climate response of the chain is

estimated from the multimember mean and its internal

variability is estimated from the intermember disper-

sion. Model uncertainty components are then estimated

from the dispersion between the climate responses of

the different simulation chains. In the single-time ap-

proach, multiple runs are required for each simulation

chain, for both the estimation of the chain’s climate re-

sponse and internal variability. However, in the great

majority of available MMEs, multiple GCM runs are

only available for a small number of simulation chains.

This multiple-run constraint often leads scientists to

discard single-run GCM projections from the analysis.

Only 6 GCMs out of 32 GCMs, for instance, are conside-

red for this reason in Bracegirdle et al. (2014). Another

approach to circumvent this constraint is to avoid sepa-

rating the variations of the climate variable in the climate

response from the fluctuations due to internal variability

(e.g., Giuntoli et al. 2015). In this case, however, the

contributions of model uncertainty and internal variabil-

ity to the total uncertainty cannot be evaluated anymore.

Another option that has been considered in the literature

is to increase the size of MMEs using weather generator

models (e.g., Lafaysse et al. 2014; Fatichi et al. 2016).

Alternatively, in the time series approach, the tem-

poral variation of the climate response of any given

chain is assumed to be gradual and smooth, the high-

frequency variations of the time series being due to in-

ternal variability alone (e.g., Hawkins and Sutton 2009;

Hingray and Saïd 2014; Reintges et al. 2017). For each

simulation chain, the climate response is estimated

with a trend model (e.g., polynomial functions) and the

internal variability of the chain, considered constant

throughout the time series, is estimated by the variance

of the deviations from the climate response. As for

the single-time approach, for any projection lead time,

model uncertainty components are estimated from the

dispersion between the climate responses. Thanks to the

discrimination of the raw projections between internal

variability and climate response, the time series ap-

proach can be applied when only a single member is

available for some (or even all) simulation chains. It is

thus not subject to the multiple-run constraint. In many

MMEs configurations, especially when MMEs are noisy

or when a small number of members is available, esti-

mates of uncertainty components obtained with a time

series approach are expected to be more precise than

with the single-time approach (Hingray et al. 2019).

For both single-time and time series approaches, classical

ANOVA methods cannot be applied with missing data

(i.e., when several scenario/GCM/RCM combinations are
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not available). A drastic solution would be to retain only

scenario/GCM/RCM runs for which all combinations are

available. However, this would lead to a dramatic waste of

information, reducing the dataset to very few combina-

tions (e.g., 2 RCMs3 4 GCMs for the EURO-CORDEX

dataset; see Verfaillie et al. 2018). Missing-data methods

have been developed to reduce biases and increase the

efficiency of the estimation in such cases. They use, for

instance, an ad hoc data reconstruction algorithm (Déqué
et al. 2007) or likelihood-based techniques (Little and

Rubin 2014). Under the assumption that missing combi-

nations follow the same decomposition of variance as the

data actually at hand, Bayesian inference and data aug-

mentation techniques (Tanner and Wong 1987) can be

applied and present the advantage to propagate missing-

data uncertainty. As an example, Tingley (2012) applies a

Bayesian ANOVAmethod to infer climate anomalies and

to handle missing spatial locations.

In the present study, we introduce a method allowing

for the characterization of multiple uncertainty sources,

namely scenario, GCM, and RCM uncertainties, as well

as internal variability, from an incomplete dataset of

climate projections. The impact of missing scenario/

GCM/RCM combinations is explicitly treated using a

Bayesian ANOVA framework and data augmentation.

We show how missing combinations influence the un-

certainty of the estimated ANOVA effects, and we com-

pare these estimates to those obtained with a simple

empirical estimation approach. This approach, named

Quasi-Ergodic Analysis of Climate Projections Using

Data Augmentation (QUALYPSO), is illustrated using

MMEs of precipitation and temperature projections in

four different French mountain massifs located in the

Pyrenees and the Alps mountain ranges, at an elevation

of 1500m (Verfaillie et al. 2017, 2018).

Section 2 presents the pretreatments applied to pro-

jections, and details the Bayesian framework used for the

estimation of the climate response and for the partition of

the different uncertainty components. An application of

the QUALYPSO method to MMEs of precipitation and

temperature projections is presented in section 3. Section 4

discusses the estimation uncertainty and presents a com-

parison of Bayesian and direct estimates. Section 5 sum-

marizes the results and provides some perspectives.

2. Methodology

We consider a given MME composed of different sim-

ulation chains where each chain corresponds to a given

GCM/RCM combination for a given emission scenario.

Let us note Yi,j,k(t), the raw climate projections of the

studied climate variable (e.g., temperature, precipitation)

obtainedwith a given chain for a given year t, where i is the

index related to the emission scenario, j is the index related

to the GCM, and k is the index related to the RCM.

a. Estimation of the climate response

For any chain, the time evolution of the climate re-

sponse to greenhouse gas emissions is assumed to be

gradual and smooth, the higher-frequency variations of

the time series being due to internal variability of the

studied variable alone (the so-called quasi-ergodicity

assumption; see Hingray and Saïd 2014). The climate

response of a particular simulation chain for a given

emission scenario is then estimated from the long-term

trend of the climate projections. The internal variability

corresponds to the variance of the deviations of pro-

jections from the estimated climate response.

For any chain and each year t, the raw outputs of the

studied climate variable can be expressed as

Y
i,j,k

(t)5f
i,j,k

(t)1h
i,j,k

(t) , (1)

where fi,j,k(t) is the climate response and hi,j,k(t) is the

deviation from the climate response as a result of in-

ternal variability.

The climate response fi,j,k(t) is often obtained by fit-

ting an analytical trend model to the raw data Yi,j,k(t). A

linear trend or second-order to fourth-order polynomial

trend models are for instance used by Hawkins and

Sutton (2009), Hingray and Saïd (2014), Bracegirdle

et al. (2014), and Vidal et al. (2016). In what follows, the

climate response of each chain is obtained using cubic

smoothing splines (see section 3b).

b. Estimation of the climate change response

As in most climate impact studies, uncertainty sources

are quantified from change variables, obtained as the

difference of climate projections between a future and a

reference period. The change variable can be defined in

terms of absolute changes (e.g., for temperature)

Y*
i,j,k(t)5Y

i,j,k
(t)2f

i,j,k
(c) , (2)

or in terms of relative changes (e.g., for precipitation)

Y*
i,j,k(t)5Y

i,j,k
(t)/f

i,j,k
(c)2 1, (3)

where fi,j,k(c) is the value of the climate response esti-

mated from the trend model for the control year c (e.g.,

c 5 1990 in what follows).

The change variable Y*
i,j,k

(t) can be split up into

Y*
i,j,k(t)5f*i,j,k(t)1h*i,j,k(t) , (4)

where f*
i,j,k

(t) is the climate change response of the

scenario/GCM/RCM combination and h*
i,j,k

(t) is the
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deviation from the climate change response for this

scenario/GCM/RCMcombination, as a result of internal

variability. When absolute changes are considered,

these components read

f*i,j,k(t)5f
i,j,k

(t)2f
i,j,k

(c) , (5)

h*i,j,k(t)5Y
i,j,k

(t)2f
i,j,k

(t) ,

and when relative changes are considered they read as

f*i,j,k(t)5f
i,j,k

(t)/f
i,j,k

(c)2 1, (6)

h*i,j,k(t)5 [Y
i,j,k

(t)2f
i,j,k

(t)]/f
i,j,k

(c).

c. Decomposition of the climate change response

For each time t, we assume that the climate change

response function f*
i,j,k

(t) of any scenario/GCM/RCM

combination can be expressed as

f*i,j,k(t)5m(t)1a
i
(t)1b

j
(t)1 g

k
(t)1 j

i,j,k
(t) , (7)

where

d m(t) is the ensemble mean climate change response,
d ai(t) is the main effect of emission scenario i [i.e., the

mean deviation of RCP scenario i from m(t)],
d bj(t) is the main effect of GCM j,
d gk(t) is the main effect of RCM k, and
d ji,j,k(t)5f*

i,j,k
(t)2m(t)2ai(t)2bj(t)2gk(t) corre-

spond to residual terms. For each year t, ji,j,k(t) are

assumed to be independent and identically distrib-

uted (i.i.d.) over all scenarios, GCMs, and RCMs,

and to follow normal distributions, with mean 0 and

variance s2(t).

Section 2d describes how the different parameters

m(t), ai(t), bj(t), gk(t), and s
2(t) are estimated. To ensure

identifiability of the parameters, the vectors of RCP,

GCM, and RCM effects are subject to sum-to-zero

constraints for each time t:

�
I

i51

a
i
(t)5 0, �

J

j51

b
j
(t)5 0, and �

K

k51

g
k
(t)5 0: (8)

d. Bayesian inference

Let fi, j, kgo denote the ensemble of no available runs

for year t, andf*o(t) denote the corresponding vector of

climate change responses. Similarly, let fi, j, kgm denote

the ensemble of nm missing climate scenarios, which are

required in order to complete the set of all scenario/

GCM/RCM possible combinations, and f*m(t), the

vector of these nmmissing climate change responses. For

each year, the unknown quantities to infer include the

different effects of Eq. (7), m, a5 faig, i5 1, . . . , I,

b5 fbjg, j5 1, . . . , J, g5 fgkg, k5 1, . . . , K, the vari-

ance of residual terms s2, and the climate change re-

sponse of missing scenario/GCM/RCM combinations

f*m, where the year index t is removed in order to

lighten the equations.

In this study, statistical inference of all missing

quantities u5 ff*m, m, a, b, g, s2g is performed using

Bayesian methods [see, e.g., monographs by Robert

(1994) and Gelman et al. (2013)]. A Bayesian inference

combines available information (here the available runs

f*o), represented by the likelihood function, with prior

knowledge about the parameters of the likelihood. An

advantage of Bayesian methods is that missing quanti-

ties that are not part of the likelihood can also be in-

troduced if they can ease the inference. These so-called

latent variables are treated as additional parameters and

are also part of the inference procedure. When these

latent variables can be interpreted as missing data (here

the missing runs f*m), this procedure is called ‘‘data

augmentation’’ (Tanner and Wong 1987). With Bayes-

ian methods, the inference consists in obtaining the joint

posterior distribution of all missing quantities which is

computed using Bayes’ theorem:

P(ujf*o)}P(f*oju)3P(u) (9)

5P(f*oju)|fflfflfflfflfflffl{zfflfflfflfflfflffl}
likelihood

3 P(f*mjm,a,b,g,s2,f*o)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Missing data given param. and obs. data

3P(m,a,b,g,s2)|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
joint prior

, (10)

where the symbol } in expression (9) indicates that the

normalizing constant of the posterior is not known.

Concerning expression (10):

d The first term is the likelihood of available climate

change responses f*o given the unknowns. As we as-

sume that residual errors ji,j,k(t) are i.i.d. normal in

Eq. (7),f*o does not depend on the missing valuesf*m.

Its elements are independent and normally distributed

with mean m1ai 1bj 1 gk and variance s2, such that

P(f*oju)5P(f*ojf*m,m,a,b,g,s2)

5 P
fi,j,kgo

P(f*i,j,kjm,ai
,b

j
,g

k
,s2). (11)

d The second term is the distribution associated with the

missing climate change responses, given the ANOVA
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model parameters. As indicated in the introduction,

we assume that the additive model (7) is valid for

missing and nonmissing chains. Similarly to available

climate change responses f*o, the missing elements

f*m
i,j,k

are independent and normally distributed with

mean m1ai 1bj 1 gk and variance s2. This leads to

P(f*mjm,a,b,g,s2,f*o)5P(f*mjm,a,b,g,s2)

5 P
fi,j,kgm

P(f*i,j,kjm,ai
,b

j
,g

k
,s2).

(12)

d The third term is the joint prior distribution of

the ANOVA model parameters, for which we con-

sider independent priors, a classical nonrestrictive

assumption:

P(m,a,b,g,s2)5P(m)3P(a)3P(b)3P(g)3P(s2).

(13)

The posterior distribution P(ujf*o) cannot be ex-

pressed or sampled directly. In this case, a classical so-

lution is to generate a large number of draws from this

distribution using aMarkov chainMonte Carlo (MCMC)

algorithm (Gilks et al. 1995; Robert and Casella 2004).

Here, we obtain draws from the posterior distribution

using a Gibbs sampling strategy (Casella and George

1992), which consists in sampling iteratively the condi-

tional distributions of all unknown quantities given all

other quantities. These so-called full conditional distri-

butions are easily obtained in our case, which motivates

the use of the Gibbs algorithm, and are specified in the

appendix, along with the definition of the prior distribu-

tions and the choice of the hyperparameters. The pre-

scribed hyperparameters lead to vague conjugate priors

for the parameters. With regards to more generic ap-

proaches such as the Metropolis–Hastings algorithm

(Metropolis et al. 1953), Gibbs sampling ensures an op-

timal exploration of the posterior distribution, speeding

up convergence and, hence, limiting the number of re-

quired iterations.

In this study, the posterior distributions of all un-

known quantities (parameters and missing climate pro-

jections) are sampled sequentially using the Gibbs

algorithm. After a burn-in period of 2000 samples,

50 000 draws are retained. Several tests have been pro-

posed to test the convergence of multiple chains

(Gelman and Rubin 1992; Brooks and Gelman 1998). In

our case, a visual assessment of the chains (not pre-

sented here) shows that convergence is reached very

quickly, after 100 iterations.

e. Total uncertainty and uncertainty components

Following expression (4), if f*
i,j,k

(t) and h*
i,j,k

(t) are

assumed to be independent, the total variance of the

change variable Y*
i,j,k

(t) is

Var[Y*
i,j,k(t)]5Var[f*i,j,k(t)]1Var[h*i,j,k(t)], (14)

where Var[f*
i,j,k

(t)] is the total uncertainty in the climate

change response and Var[h*
i,j,k

(t)] is the uncertainty as-

sociated to internal variability of the change variable.

For each time t, the variance of the climate change re-

sponse f*
i,j,k

(t) is the sum of the variance of the different

uncertainty components in Eq. (7):

Var[f*i,j,k(t)]5Var[a
i
(t)]1Var[b

j
(t)]

1Var[g
k
(t)]1Var[j

i,j,k
(t)], (15)

where Var[ai(t)], Var[bj(t)], and Var[gk(t)] are related

to the dispersion between the RCP, GCM, and RCM

effects, respectively, and Var[ji,j,k(t)] is the residual

variability. From the retainedMCMC sample generated

with our Gibbs algorithm, we can obtain draws of the

first three components as

Var(d)[a
i
(t)]5

1

I
�
i

[a
(d)
i (t)]

2
, (16)

Var(d)[b
j
(t)]5

1

J
�
j

[b
(d)
j (t)]

2
, (17)

Var(d)[g
k
(t)]5

1

K
�
k

[g
(d)
k (t)]

2
, (18)

where a
(d)
i (t), b

(d)
j (t), and g

(d)
k (t) are the dth draws from

the posterior distribution of ai(t), bj(t), and gk(t), re-

spectively. Variance estimates dVar[ai(t)], dVar[bj(t)], anddVar[gk(t)] are then obtained as the mean of these draws.

The last component, Var[ji,j,k(t)], is the residual vari-

ability and corresponds directly to the quantity s2(t),

which is part of the Bayesian inference. The mean of the

draws from the posterior distribution of s2(t) is thus a

natural point estimate of this variance.

Internal variability of each simulation chain corresponds

to the variance of h*
i,j,k

(t), that is, the deviations of Y*
i,j,k

(t)

from the chain’s climate change response [see Eq. (4)].

Here, we assume that internal variability is constant over

the available period (see Fig. 3 for a visual assessment of

this assumption). The internal variability component of the

MME is then estimated as the multichain mean of the

variance over time, for each chain, of h*
i,j,k

(t):

dVar(h*i,j,k)5 1

n
o

�
fi,j,kgo

1

n
i,j,k

�
t

h*i,j,k(t)
2 , (19)
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where ni,j,k corresponds to the length of the time series

available for the chain fi, j, kg.

3. Illustration of the Bayesian ANOVA

a. Data

The QUALYPSO method is applied to transient cli-

mate simulations of annual precipitation and annual

mean temperature available for four French mountain

massifs located in the Pyrenees (Pays-Basque and

Cerdagne-Canigou) and in the Alps (Mont-Blanc and

Haut-VarHaut-Verdon) (see Fig. 1). Total precipitation

(rainfall and snow) refers to the mass of water per unit

area (kgm22), which can also be expressed as a water

flux [i.e. volume per area and per unit of time (mm)].

These four massifs are a subset of the geographical de-

lineation of French mountain regions for climatological

purposes (Durand et al. 2009) and were chosen to

maximize the contrast in meteorological and climato-

logical conditions. Mont-Blanc is typical of the internal

mountain ranges of the northern French Alps, near the

Swiss and Italian borders. Haut-Var Haut-Verdon is

typical of the southern French Alps. Pays-Basque is the

westernmost massif of the French Pyrenees, at a short

distance from theAtlanticOcean, whileCerdagne-Canigou

is the easternmost massif, close to the Mediterranean

Sea. These climate projections include 26 simulations

obtained with I 5 2 RCP emission scenarios (RCP4.5

and RCP8.5; see van Vuuren et al. 2011) and 13 different

combinations of J 5 5 GCMs and K 5 6 RCMs (see

Table 1). Simulation chains are composed of historical

runs for the periods 1950–2005 (for 12 chains), 1970–2005

(for 8 chains), or 1981–2005 (for 6 chains), and of fu-

ture runs for the period 2006–2100 (2006–99 for the

6 chains starting in 1981). They have been produced from

EUR-11-CORDEX projections (Jacob et al. 2014;

Kotlarski et al. 2014) for different elevation bands of

the French massifs, using the Adaptation of RCM Out-

puts to Mountain (ADAMONT) statistical adjustment

method (Verfaillie et al. 2017, 2018) and the Système

d’analyse fournissant des renseignements atmosphériques
à la neige (SAFRAN) meteorological reanalysis as an

observation dataset (Durand et al. 2009). In this paper,

we consider projections obtained at 1500m, a typical

elevation representative of the mountain environment,

allowing comparison between all the four massifs used

here, given that this elevation level is common to the

four massifs chosen.

b. Climate responses

The climate response function of each simulation

chain is estimated with cubic smoothing splines (de Boor

1978), using the entire time series (i.e., starting in 1950,

FIG. 1. Map of France with the locations of the four mountain

massifs.

TABLE 1. Combination of available GCM and RCM climate projections with scenarios RCP4.5 and RCP8.5. More information about

the climate models can be found in Verfaillie et al. (2018). (Expansions of acronyms are available online at http://www.ametsoc.org/

PubsAcronymList.)

GCM

RCM CNRM-CM5 EC-EARTH IPSL-CM5A-MR HadGEM2-ES MPI-ESM-LR

CCLM 4.8.17 X X X X

ALADIN 53 X

WRF 3.3.1.F X

RACMO 2.2E X

REMO 2009 X

RCA 4 X X X X X
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1970, and 1981 and ending in 2100). The fit is obtained

with the function smooth.spline in R software (https://

www.r-project.org/). Further details can be found in

Hastie and Tibshirani (1990, chapter 3.4). To obtain

smooth trends, a large smoothing parameter is chosen

(l 5 1). The corresponding number of degrees of free-

dom (knots) is 3.7 (79), 3.5 (72), and 3.35 (68) for runs

starting in 1950, 1970, and 1981 (and ending in 2100),

respectively. Figure 2 shows climate responses fi,j,k(t)

obtained for mean annual temperature (8C) and annual

precipitation (mm or kgm22) for the Haut-Var Haut-

Verdon massif. Mean annual temperature is obviously

expected to increase for all scenario/GCM/RCM con-

figurations. For annual precipitation, contrasted climate

responses are simulated. Similar conclusions hold for the

other massifs (results not shown).

Figure 3 shows the deviations h*
i,j,k

(t) from the climate

change response, as a result of internal variability, for

the Haut-Var Haut-Verdon massif. Here, internal vari-

ability corresponds to the combined effect of low-

frequency internal variability and higher-frequency

interannual variability, because annual scale data are

used. These signals are roughly homoscedastic (e.g.,

no trend in the mean deviation, roughly constant vari-

ability of the deviations in time), which supports the

assumption of a constant internal variability over the

simulation period. Similar results are obtained for

the other massifs (not shown).

c. Mean climate change response and posterior of the
main effects

For each scenario/GCM/RCM combination and each

year t, we obtain the climate change response in terms of

absolute changes for temperature [Eq. (5)] and relative

changes for precipitation [Eq. (6)], compared to the

control year c 5 1990. For each year t 5 1990, . . . , 2011,

we then obtain the posterior distributions of the mean

climate change response function for each RCP scenario

[m(t)1ai(t)], as well as the main effects of the different

GCMs and RCMs. These posterior distributions are

presented in Fig. 4 for theHaut-VarHaut-Verdonmassif.

Roughly similar results are obtained for the other massifs

(see Figs. S1–S3 in the online supplemental material).

This figure also presents the 95% credible intervals rep-

resenting the uncertainty in the estimates, obtained from

the distribution of the 50000 draws. As a result of the

smooth climate change response f*
i,j,k

(t) extracted in-

dependently for each simulation chain, the mean climate

change response function of each RCP and the main ef-

fect of each climate model evolve slowly and smoothly

FIG. 2. Climate projectionsYi,j,k(t) (dotted lines) and climate responsesfi,j,k(t) (plain lines) for (left) mean annual

temperature (8C) and (right) annual precipitation (mm or kgm22) for the Haut-Var Haut-Verdon massif, for

scenarios (top) RCP4.5 and (bottom) RCP8.5, and for each available combination of climate models GCM/RCM.

The different colors correspond to the different GCMs (the different lines of a given color correspond to the

different RCMs driven by the same GCM). Vertical dotted lines indicate the start of future runs in 2006.
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with time. For the considered MME, temperature is ex-

pected to increase up to 38C (68C) at the end of the

century for scenario RCP4.5 (RCP8.5). Precipitation is

expected to decrease up to 10% between 1990 and 2100

for scenario RCP8.5. For scenario RCP4.5 the mean ex-

pected precipitation change is less than a few percent

regardless the projection lead time.

For both variables, the climate model effects (GCMs or

RCMs) logically start from zero for the control period and

tend to increase with the projection lead time (GCMs ef-

fects actually tend to stabilize during the second part of the

century). For the Haut-Var Haut-Verdon massif, for both

variables, the effects due to RCMs are of the same order

(of magnitude) as those due to GCMs.

For temperature, the main effects of the different

GCMs and/orRCMs in 2100 are less than618C.Themost

important GCM effects are obtained for HadGEM2-ES

and for CNRM-CM5, which produce slightly larger and

smaller warming than the other GCMs, respectively.

Similarly, RCA4 warms up to 0.88Cmore than the other

RCMs and WRF 3.3.1.F up to 0.88C less. Whatever the

simulation chain, these effects are much less than the

mean expected warming.

For precipitation, the main effects of GCMs and/or

RCMs are up to 610% in 2100. The most important

effects are obtained for GCMs CNRM-CM5 (110%)

and IPSL-CM5A-MR (210%) and for RCM WRF

3.3.1.F (110%). These effects are roughly the same as

the mean expected change. Similar results are obtained

for the other massifs (see Figs. S1–S3). An exception is

the Mont-Blanc massif, the alpine region with the

highest elevations and altitude gradients, for which the

dispersion between the RCM effects is larger than that

the dispersion between the GCM effects.

Figure 5 shows the standard deviation s(t) of the re-

sidual terms ji,j,k(t), as a function of time, for absolute

temperature changes (8C), and relative precipitation

changes (unitless), for the Haut-Var Haut-Verdon

massif. As indicated above, the standard deviation is

related to the magnitude of the errors ji,j,k(t), due to the

imperfect representation of the climate change response

as a sum of main effects. For both temperature and

precipitation, s(t) increases as a function of time. For

precipitation, as a result of the stabilization of the main

effects around midcentury, s(t) is almost constant dur-

ing the period 2030–70.

d. Total uncertainty and uncertainty components

As mentioned previously, different types of uncer-

tainty contribute to the total uncertainty of the climate

FIG. 3. Deviations from the climate change response h*
i,j,k

(t) as a result of internal variability for (left) mean

annual temperature (absolute changes; 8C) and (right) annual precipitation (relative changes; unitless) for the

Haut-Var Haut-Verdon massif, for each available combination of climate models and GCMs and RCMs, and for

scenarios (top)RCP4.5 and (bottom)RCP8.5. The different colors correspond to the differentGCMs (the different

lines of a given color correspond to the different RCMs driven by the same GCM).
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projections, namely uncertainties related to RCP sce-

narios, GCMs, RCMs, residual variability, and internal

variability. For each RCP scenario, the evolution of the

corresponding total variance is presented in Figs. 6 and

7. We also present the fraction of total variance ex-

plained by each source of uncertainty.

For temperature, the main source of uncertainty is

internal variability (in orange in Figs. 6 and 7) until

midcentury, which is then exceeded by the uncertainty

due to the RCP scenario. For all massifs, differences

between the results obtained with RCP4.5 and RCP 8.5

are clear at the end of the century and scenario un-

certainty grows up to 60% of the total uncertainty in

2100. Except for theMont-Blanc massif, the part of total

variance due to RCM and GCM uncertainty is no more

than 30% and decreases down to less than 20% at the

end of the century.

For precipitation, total uncertainty is large regardless

of the projection lead time and mainly due to internal

variability. Climate model uncertainty (GCMs and

RCMs) increases with lead time but always remains less

than 30% of total uncertainty (except for the Mont-

Blanc massif). Uncertainty related to RCP scenarios

remains small and even negligible compared to climate

models uncertainty, especially for the Mont-Blanc

massif. For this massif, the large fraction related to the

RCM uncertainty is mainly explained by the strong de-

parture of the RCM WRF 3.3.1.F, which is much

‘‘colder’’ and ‘‘wetter’’ than the other RCMs (see

Figs. S1–S3). The large dispersion between RCM effects

FIG. 4. Decomposition of the effects contributing to the variance of the climate projections for absolute tem-

perature changes (8C), and relative precipitation changes (unitless), compared to year 1990, for theHaut-VarHaut-

Verdonmassif. These results are available for the othermassifs in Figs. S1–S3. Posterior distribution of (a) themean

climate change response function for each RCP scenario m(t)1ai(t), (b) the GCM effects bj(t), and (c) RCM

effects gk(t), as a function of time. The uncertainty on the estimation of each individual effect is represented by the

colored bounds around the expected value (95% credible intervals).

15 APRIL 2019 EV I N ET AL . 2431

Unauthenticated | Downloaded 08/31/21 01:57 PM UTC



for both temperature and precipitation highlights the

contribution of the regional model, which is determinant

in mountainous regions.

Note that for both variables, the fraction of total vari-

ance due to the residual variability (in yellow in Figs. 6 and

7) is small. This confirms that first-order terms in the

ANOVAmodel (7) explain themain part of the variability

of the climate change responses, so that further interaction

terms are not necessarily needed in the ANOVA model.

e. Significance of changes

The colored intervals in Figs. 6a, 6b, 7a, and 7b repre-

sent the total uncertainty, and correspond to the confi-

dence interval of possible future changes at the 90%

confidence level. A significant climate change realization

is expected when zero (i.e., no change) lies outside this

confidence interval.

The time of emergence of a significant warming

(Giorgi and Bi 2009), defined here as the first future lead

time for which zero lies outside the confidence interval,

is found within the 2030–40 period for both emission

scenarios, with the exception of the Mont-Blanc massif

with the scenario RCP4.5. For precipitation, no signifi-

cant change is observed, even at the end of the century.

Precipitation that may be experienced for a given future

period could therefore be higher or lower than what has

been observed for the control period. This is mainly due

to the large internal variability for this variable.

4. Discussion

a. Internal variability

In our application, the contribution of internal vari-

ability to total variability of the ensemble is large, for

both variables and all regions. Indeed, in our case, in-

ternal variability includes a high-frequency (interannual)

variability at the annual scale and a variability corre-

sponding to lower frequencies (e.g., decadal scales),

which could possibly be separated (Solomon et al. 2011;

Seitola 2016). However, as shown by Vidal et al. (2016),

for instance, a smaller contribution would have been

obtained by applying QUALYPSO to time-slice aver-

ages instead of annual values (e.g., 20-yr mean pre-

cipitation instead of annual precipitation), as done in

many studies (see, e.g., Yip et al. 2011; Lafaysse et al.

2014). Furthermore, it is important to note that spatial

aggregation also removes an important part of the

variability, which explains that regional projections

lead to a larger internal variability than global means

(Kendon et al. 2008; Hawkins and Sutton 2009).

b. Uncertainty of the estimation

The main output of Bayesian methods is the posterior

distributions obtained for the different unknown quan-

tities to be estimated. The distribution obtained for each

quantity provides a direct assessment of the uncertainty

associated to the estimation. We focus on uncertainty

related to the estimation of ANOVAmodel parameters

(i.e., mean climate change response, scenarios, and cli-

mate model effects). Figure 8 represents the standard

deviation of the posterior distribution obtained for the

mean climate change response of eachRCP scenario, for

the GCM and RCM effects. These standard deviations

are related to the width of the credible intervals pro-

vided in Fig. 4 (the width of the 95% is about 4 times the

standard deviation when posterior distributions are

Gaussian). For all effects and for both temperature and

precipitation, the estimation uncertainty roughly in-

creases with time and directly follows, by construction,

FIG. 5. Standard deviations(t) of the residual terms ji,j,k(t) as a function of time for absolute temperature changes

(8C) and relative precipitation changes (unitless) for the Haut-Var Haut-Verdon massif. The posterior mean (plain

line) and 95% credible intervals (gray interval) are shown.
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FIG. 6. Total uncertainty and fraction of total variance explained by each source of uncertainty for mean annual temperature changes (8C)
compared to year 1990 as a function of time.Mean climate change response (white curve) for scenarios (a) RCP4.5 and (b) RCP8.5 [m(t)1ai(t)]

and corresponding 90%confidence interval. Thewidth of the overall colored interval representing the different sources of uncertainty corresponds

tom(t)1ai(t)6 1:645
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var[Y*

i,j,k(t)]
q

. This interval is subdivided into subintervals whose width is proportional to the fraction of total uncertainty

variance explained by the different sources of uncertainties. (c) Fraction of total variance explained by each source of uncertainty.
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FIG. 7. As in Fig. 6, but for relative changes of annual precipitation (unitless).

2434 JOURNAL OF CL IMATE VOLUME 32

Unauthenticated | Downloaded 08/31/21 01:57 PM UTC



the evolution of the standard deviation s(t) obtained for

the residual errors of the ANOVAmodel [see Fig. 5 and

Eqs. (A2), (A9), (A11), and (A13) in the appendix].

The magnitude of the estimation uncertainty depends

mostly on the size and setup of the dataset available for

the estimation. For climate model effects for instance, it

depends on the number of available RCM/GCM com-

binations. As an illustration, the estimation uncertainty

of the GCM effect is similar for all GCMs, except for

IPSL-CM5A-MR for which it is significantly larger.

Conversely to the other GCMs, IPSL-CM5A-MR was

not used to drive the RCM CCLM 4.8.17, for which the

effect is well estimated since it is available for four

GCMs. Similarly, the same estimation uncertainty is

obtained for the RCMs ALADIN 53, RACMO 2.2E,

and REMO 2009. These three RCMs share the same

configuration. They are driven by only one GCM, which

has also been used to run the RCMs CCLM 4.8.17 and

RCA 4. The estimation uncertainty is lower for RCMs

CCLM 4.8.17 and RCA 4 as they are driven by 4 and 5

GCMs, respectively. The largest estimation uncertainty

obtained for the RCM WRF 3.3.1.F is finally due to

the fact that it was driven by the GCM IPSL-CM5A-

MR only, which has the largest estimation uncertainty

among all GCM effects.

As illustrated above, missing scenario/RCM/GCM

combinations logically determine the estimation un-

certainty of the different parameters of the analysis

(climate model effects, mean climate change response,

etc.). The data augmentation approach accounts for this

FIG. 8. Uncertainty of the estimation (standard deviation of the posterior distribution) for (a) the mean climate

change response for each RCP scenario m(t)1ai(t), (b) the GCM effects bj(t), and (c) the RCM effects gk(t) as a

function of time for absolute temperature changes (8C) and relative precipitation changes (unitless) for the Haut-

Var Haut-Verdon massif. Note that different line widths are used to show overlapping curves and do not represent

different uncertainties.
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and propagates the uncertainty due to missing data in

the analysis.

c. Comparison of Bayesian and direct estimates

In numerous climate impact studies, the mean climate

change response is estimated by the empirical mean of

all available climate experiments. When many scenario/

RCM/GCM combinations are missing, this empirical

estimate might be significantly different from the mean

response that would be obtained with the complete

ensemble.

Let mi(t)5m(t)1ai(t) denote the mean climate

change response for each RCP scenario. Figure 9 com-

pares the Bayesian estimates m
bay
i (t) of mi(t) (already

shown in Fig. 4a) to the empirical estimates m
emp
i (t)5

(1/ni,o)�fj,kgi,of
*
i,j,k

(t), where fj,kgi,o denotes the en-

semble of ni,o available runs for year t and scenario i. At

the end of the century, regardless of the scenario, direct

empirical estimates lead to a difference on the order of

0.18C for temperature and 1% for precipitation.

When themean response is estimated by the empirical

mean of available scenario/GCM/RCM combinations,

each available climate experiment has the same weight

in the estimation. However, some climate models are

more represented than other ones. For example, RCMs

CCLM 4.8.17 and RCA 4 concern 8 and 10 climate ex-

periments, respectively, among the no 5 26 climate ex-

periments. For temperature changes, this logically leads

to a slight overestimation of the mean climate change

response (the effect of CCLM 4.8.17 is roughly zero for

the whole century; RCA 4 presents the largest positive

effect, reaching up to 10.88C at the end of the century;

see Fig. 4).

To better illustrate the impact of overrepresented

climate models on the mean estimated trends, if direct

estimates are used, let us further consider a synthetic

MME composed of 5 GCMs and 5 RCMs. For each

GCM j and each RCM k, climate projections ~Yj,k(t) are

generated according to the following formula:

~f
j,k
(t)5 ~m(t)1 ~b

j
(t)1 ~g

k
(t)1 ~h(t) , (20)

where the mean climate change response is constant and

equal to 0 [~m(t)5 0] (i.e., there is no trend) and GCM

effects are proportional to time t and are equal to
~bj(t)5 aj 3 t, with t5 0:01, 0:02, . . . , 1 and a1 5
1, a2 5 0:5, a3 5 0, a4 520:5, and a5 521. RCM ef-

fects are also proportional to time t and are equal to

~gk(t)5 bk 3 t, with t5 0:01, 0:02, . . . , 1 and

b1 5 0:5, b2 5 0:25, b3 5 0, b4 520:25, and b5 520:5,

and ~h(t) is a random noise mimicking internal variability

and residual variability, which follows a Gaussian dis-

tribution with mean 0 and a standard deviation of 0.3.

This configuration corresponds more or less to the

MMEs presented previously for the temperature pro-

jections (see Fig. 4). In the present case, however, we

consider a different set of available experiments, as in-

dicated in Table 2. Clearly, this set is unbalanced in the

sense that GCM1 and RCM1 are overrepresented. This

situation is quite similar to real-world applications for

which one or two GCMs/RCMs are more used than

other existing climate models. Figure 10a shows the

generated climate projections ~fj,k(t) and the corre-

sponding smooth signals fj,k(t) extracted using cubic

splines.

Bayesian estimates of the mean climate change re-

sponse mbay(t), obtained with QUALYPSO and direct

empirical estimates memp(t)5 (1/no)�fj,kgof*j,k(t), ob-

tained for each time t as the mean of estimated climate

change responses, are presented in Fig. 10b. Bayesian

estimates are logically unbiased in contrast to empirical

ones, which significantly overestimate, in the present

FIG. 9.Mean climate change response for eachRCP scenariomi(t)5m(t)1ai(t) as a function of time for absolute

temperature changes (8C) and relative precipitation changes (unitless) for the Haut-Var Haut-Verdon massif.

Bayesian estimates m
bay
i (t) and direct empirical estimates m

emp
i (t) of mi(t) are shown. For the Bayesian estimates,

95% credible intervals are shown.
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configuration, the true mean climate change response

~m(t)5 0 (solid line). In contrast to our real application,

for which QUALYPSO and empirical approaches lead

to close results due to a more balanced projection set,

this synthetic example clearly shows the added value of

our approach.

5. Conclusions and outlooks

This work presents the development and application

of a Bayesian approach, named QUALYPSO, which

uses data augmentation to assess the different sources of

uncertainty in incomplete multiscenario multimodel

ensembles (MMEs) of climate experiments. In a first

step, the climate response of each available simulation

chain is estimated with a trend model (i.e., cubic splines

here) fitted to raw climate projections. Climate change

responses can then be obtained and residuals from

the climate change response are used to estimate the

internal variability of the chain. The other uncertainty

components of the projections (scenario uncertainty

and climate model uncertainty) are estimated with a

Bayesian ANOVAmodel applied to the climate change

responses of available simulation chains. The ANOVA

model provides an estimate of the mean climate change

response of theMME, as well as an estimate of the main

effects of the different emission scenarios and climate

models (GCMs and RCMs). The different parameters

of the ANOVA model and the missing quantities as-

sociated to the missing simulation chains are jointly

estimated using data augmentation techniques. For il-

lustration, we apply QUALYPSO to MMEs of climate

projections (mean annual temperature and total annual

precipitation) produced for four different French mas-

sifs at 1500-m elevation. Projections are available for 13

GCM/RCM combinations and two emission scenarios.

QUALYPSO presents many advantages over more

classical estimation approaches. Along with the esti-

mation of missing data, it provides an assessment of the

estimation uncertainty and adequately propagates the

uncertainty due to missing scenario/GCM/RCM com-

binations. With the explicit treatment of missing climate

experiments, it is then expected to produce unbiased

estimates of all parameters, in contrast to direct empir-

ical estimates, typically obtained as the average over all

available projections. The Bayesian approach also ex-

ploits all available climate experiments, avoiding a

dramatic loss of information when standard single-time

or time series approaches are applied (in this case, a

classical solution is to select a complete subset of climate

experiments). The QUALYPSO methodology can be

applied to any kind of climate variable and any kind of

MMEs of climate projections. Additional effects due to

some impactmodel (e.g., a hydrological model or a snow

model; see Vidal et al. 2016; Verfaillie et al. 2018) or to

some other explanatory factor (e.g., spatial effects; see

Geinitz et al. 2015; Tingley 2012) could also be easily

included in the analysis.

A key step of QUALYPSO is the estimation of

the climate response for each simulation chain. In the

present analysis, the climate responses are modeled by

TABLE 2. Combinations of available GCM and RCM climate

projections for the synthetic experiment.

GCM

RCM GCM1 GCM2 GCM3 GCM4 GCM5

RCM1 X X X X X

RCM2 X X

RCM3 X X

RCM4 X X

RCM5 X X

FIG. 10. (a) Synthetic climate change projections ~fi,j(t) (dotted

lines) and estimated trends fi,j(t) (plain lines) for a synthetic en-

semble of climate experiments. Each time series corresponds to

one GCM/RCM combination. All times series with a same color

correspond to GCM/RCM combinations with the same GCM.

(b) Mean response: true mean response function ~m(t), equal to 0

(plain horizontal line), Bayesian estimates mbay(t) of ~m(t) (gray

interval), and direct empirical estimates memp(t) (dotted line). For

the Bayesian estimates, 95% credible intervals are shown.
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cubic splines. Many alternatives are possible and have

been considered in previous works. For example, Hawkins

and Sutton (2009) and Hingray and Saïd (2014) apply

fourth-order polynomial functions to temperature changes.

Cubic splines are expected to provide a flexible and ro-

bust fit of the climate response. This estimation can also

be improved using multiple runs of each chain, if avail-

able (e.g., Kendon et al. 2008; Deser et al. 2012; Hingray

et al. 2019). In all cases, an improvement of the method

would be to consider the estimated climate response of

each chain as uncertain, and to account for this uncer-

tainty in the Bayesian ANOVA approach.
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APPENDIX

Full Conditional Distributions for the
Decomposition of Climate Change Response

As indicated in section 2, QUALYPSO applies a

Bayesian approach in order to infer the different un-

known quantities (parameters of the ANOVA model

and missing scenario/RCM/GCM combinations). The

joint posterior distribution of all unknown quantities is

sampled using the Gibbs algorithm, which necessitates

to sample iteratively the full conditional posterior dis-

tributions of all unknown quantities. In this section, we

specify conjugate priors for the parameters, we provide

the full conditional posteriors, and we propose values

for the hyperparameters, following Tingley (2012). In

the remainder of this section, Aj. denotes the unknown

quantity A conditionally on all other variables. The

Bayesian ANOVA approach is applied independently

for each time step t. However, in the following equa-

tions, the year index t is removed in order to lighten the

equations.

a. Mean climate change response function m

As indicated above, we assume that the climate

change response f*
i,j,k

is the sum of fixed effects m, ai, bj,

gk, and residual terms ji,j,k ;N(0, s2). As a conse-

quence, the normal distribution is a conjugate prior for

the mean response function m:

m;N(m
0
,s2

m). (A1)

The conditional posterior is likewise normal:

mj . ;N(V
m
c

m
,V

m
), (A2)

where cm 5 (1/s2)�fi,j,kgfi,j,k
* 1 (m0/s

2
m), and Vm 5

f[(I 3 J 3 K)/s2] 1 (1/s2
m)g21.

Note that the expression for cm considers all climate

change responses f*
i,j,k

, including climate change re-

sponses that are not directly available and are estimated.

b. Variance of the residual terms s2

For the variance parameter s2, a natural conjugate

prior is the inverse-gamma distribution:

s2 ; IGa(k, n), and (A3)

p(s2)} (s2)2(k11)exp(2n/s2) . (A4)

It follows that the conditional posterior distribution

remains inverse-gamma distributed:

s2 ; IGa

"
I3 J3K

2

1 k,
1

2
�

fi,j,kg
(f*i,j,k 2m2a

i
2b

j
2 g

k
)
2
1 n

#
. (A5)

c. Effect of the GCM b

We first present the treatment of GMC effects in or-

der to illustrate the use of Helmert contrasts with more

than I 5 2 effects. The sum-to-zero constraint implies

that there are only J2 1 free parameters in the vector b.

Following Tingley (2012), a J by J 2 1 matrix QJ can be

used to make the correspondence between the con-

strained b vector and an unconstrained b* vector of J2
1 i.i.d. normal variables, such that the linear transform

b5QJb
* has the correct covariance matrix. A possible

choice for QJ is
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Q
J
5Q*

J (Q
*T
J Q*

J )
21/2

, (A6)

whereQ*
J is composed of columns of Helmert contrasts:

Q*
J 5

0BBBBB@
0 0 0 24

0 0 23 1

0 22 1 1

21 1 1 1

1 1 1 1

1CCCCCA, for J5 5: (A7)

We first specify the prior and the conditional posterior

for the vector b* of J 2 1 parameters. The prior for b*

given s2
b is normal:

b*js2
b ;N(0

J21
,s2

bIJ21
), (A8)

where IJ21 represent a J2 1 by J2 1 identity matrix and

0J21 is a J2 1 null vector. The full conditional posterior

for b* is likewise normal:

b*j . ;N(V
b*cb*,Vb*IJ21

), (A9)

where c
b* 5 (1/s2)QT

J�fi,kg(f*
i,.,k

2m1J) and V
b* 5

f[(I3K)/s2]1 (1/s2
b)g21

. The expression for V
b* in-

dicates that the estimation uncertainty of the GCM ef-

fects decreases as a function of the number of RCP

scenarios and RCMs.

d. Effect of the RCM g

Similar expressions are obtained for g. The prior for

g* given s2
g is normal:

g*js2
g ;N(0

K21
,s2

gIK21
), (A10)

which leads to a normal conditional distribution for g*:

g*j . ;N(V
g*cg*,Vg*IK21

), (A11)

where c
g* 5 (1/s2)QT

K�fi,jg(f*
i,j,.

2m1K) and V
g* 5

f[(I3J)/s2]1(1/s2
g)g21

.

e. Effect of the RCP a

We specify a normal prior for a* given s2
a:

a*js2
a ;N(0

I21
,s2

aII21
), (A12)

which leads to a normal conditional distribution for a*:

a*j . ;N(V
a*ca*,Va*II21

), (A13)

where c
a* 5 1/s2QT

I�fj,kg(f*
.,j,k

2 m1I) and V
a* 5

f[(J 3 K)/s2] 1 1/s2
ag21.

f. The missing values f*m

Following Eq. (7), the full conditional posterior for

each missing climate change response f*
i,j,k

is normal:

f*i,j,kj . ;N(m1a
i
1b

j
1g

k
,s2). (A14)

The mean of the posterior distribution is the sum of the

fixed effect and its variance corresponds to the variance

of the residual terms ji,j,k, namely s2.

g. Hyperparameters

The standard choices for the hyperparameters are the

following:

d m0: mean of all available climate change responses,
d s2

m: 16 times the variance of all available climate

change responses,
d k5 0:5 and n is equal to half the variance of a direct

estimate of residual terms (called ‘‘estimated residual

variance’’ in Tingley (2012)], and
d sa, sb, and sg are set to 16 times the variance of all

available climate change responses.
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