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Abstract

Poincaré inequalities are ubiquitous in probability and analysis and have various applications
in statistics (concentration of measure, rate of convergence of Markov chains). The Poincaré
constant, for which the inequality is tight, is related to the typical convergence rate of diffusions
to their equilibrium measure. In this paper, we show both theoretically and experimentally
that, given sufficiently many samples of a measure, we can estimate its Poincaré constant.
As a by-product of the estimation of the Poincaré constant, we derive an algorithm that
captures a low dimensional representation of the data by finding directions which are difficult
to sample. These directions are of crucial importance for sampling or in fields like molecular
dynamics, where they are called reaction coordinates. Their knowledge can leverage, with a
simple conditioning step, computational bottlenecks by using importance sampling techniques.

1 Introduction

Sampling is a cornerstone of probabilistic modelling, in particular in the Bayesian framework where
statistical inference is rephrased as the estimation of the posterior distribution given the data [411 [34]:
the representation of this distribution through samples is both flexible, as most interesting quantities
can be computed from them (e.g., various moments or quantiles), and practical, as there are many
sampling algorithms available depending on the various structural assumptions made on the model.
Beyond one-dimensional distributions, a large class of these algorithms are iterative and update
samples with a Markov chain which eventually converges to the desired distribution, such as Gibbs
sampling or Metropolis-Hastings (or more general Markov chain Monte-Carlo algorithms [I3], [16] 9])
which are adapted to most situations, or Langevin’s algorithm [9, 37, (0L 30, 27, [I], which is
adapted to sampling from densities in R¢.

While these sampling algorithms are provably converging in general settings when the number
of iterations tends to infinity, obtaining good explicit convergence rates has been a central focus of
study, and is often related to the mixing time of the underlying Markov chain [32]. In particular,
for sampling from positive densities in R?, the Markov chain used in Langevin’s algorithm can
classically be related to a diffusion process, thus allowing links with other communities such
as molecular dynamics [27]. The main objective of molecular dynamics is to infer macroscopic
properties of matter from atomistic models via averages with respect to probability measures
dictated by the principles of statistical physics. Hence, it relies on high dimensional and highly
multimodal probabilistic models.

When the density is log-concave, sampling can be done in polynomial time with respect to the
dimension [29, 10, [9]. However, in general, sampling with generic algorithms does not scale well
with respect to the dimension. Furthermore, the multimodality of the objective measure can trap



the iterates of the algorithm in some regions for long durations: this phenomenon is known as
metastability. To accelerate the sampling procedure, a common technique in molecular dynamics
is to resort to importance sampling strategies where the target probability measure is biased using
the image law of the process for some low-dimensional function, known as “reaction coordinate”
or “collective variable”. Biasing by this low-dimensional probability measure can improve the
convergence rate of the algorithms by several orders of magnitude [24, [26]. Usually, in molecular
dynamics, the choice of a good reaction coordinate is based on physical intuition on the model but
this approach has limitations, particularly in the Bayesian context [5]. There have been efforts
to numerically find these reaction coordinates. Computations of spectral gaps by approximating
directly the diffusion operator work well in low-dimensional settings but scale poorly with the
dimension. One popular method is based on diffusion maps [7, [6, 42], for which reaction coordinates
are built by approximating the entire infinite-dimensional diffusion operator and selecting its first
eigenvectors.

In order to assess or find a reaction coordinate, it is necessary to understand the convergence
rate of diffusion processes. We first introduce in Section [2| Poincaré inequalities and Poincaré
constants that control the convergence rate of diffusions to their equilibrium. We then derive
in Section [3] a kernel method to estimate it and optimize over it to find good low dimensional
representation of the data for sampling in Section [l Finally we present in Section [5] synthetic
examples for which our procedure is able to find good reaction coordinates.

Contributions. In this paper, we make the following contributions:

e We show both theoretically and experimentally that, given sufficiently many samples of a
measure, we can estimate its Poincaré constant and thus quantify the rate of convergence of
Langevin dynamics.

e By finding projections whose marginal laws have the largest Poincaré constant, we derive
an algorithm that captures a low dimensional representation of the data. This knowledge of
“difficult to sample directions” can be then used to accelerate dynamics to their equilibrium
measure.

2 Poincaré Inequalities

2.1 Definition

We introduce in this part the main object of this paper which is the Poincaré inequality [1]. Let us
consider a probability measure di on R? which has a density with respect to the Lebesgue measure.
Consider H'(u) the space of functions in L?(u) (i.e., which are square integrable) that also have
all their first order derivatives in L?, that is, H' () = {f € L*(n), [pa f2dp+ [oa IV f|dp < oo}

Definition 1 (Poincaré inequality and Poincaré constant). The Poincaré constant of the probability
measure dp is the smallest constant P, such that for all f € H (1) the following Poincaré inequality
(PI) holds:

2
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In Definition |1 we took the largest possible and the most natural functional space H' () for
which all terms make sense, but Poincaré inequalities can be equivalently defined for subspaces of
test functions H which are dense in H*(p). This will be the case when we derive the estimator of
the Poincaré constant in Section Bl

Remark 1 (A probabilistic formulation of the Poincaré inequality.). Let X be a random variable
distributed according to the probability measure dy. (PI) can be reformulated as: for all f € H'(u),

Var, (f(X)) < P E, [V A(X)I] . (2)



Poincaré inequalities are hence a way to bound the variance from above by the so-called Dirichlet
energy E [ ||V f(X)[?] (see [T1).

2.2 Consequences of (PI): convergence rate of diffusions

Poincaré inequalities are ubiquitous in various domains such as probability, statistics or partial
differential equations (PDEs). For example, in PDEs they play a crucial role for showing the
existence of solutions of Poisson equations or Sobolev embeddings [I5], and they lead in statistics
to concentration of measure results [I7]. In this paper, the property that we are the most interested
in is the convergence rate of diffusions to their stationary measure du. In this section, we consider
a very general class of measures: du(z) = e~V (@) dzx (called Gibbs measures with potential V'),
which allows for a clearer explanation. Note that all measures admitting a positive density can be
written like this and are typical in Bayesian machine learning [41] or molecular dynamics [27]. Yet,
the formalism of this section can be extended to more general cases [I].

Let us consider the overdamped Langevin diffusion in R, that is the solution of the following
stochastic differential equation (SDE):

dX, = —VV(X,)dt + V2dB;, (3)

where (By);>0 is a d-dimensional Brownian motion. It is well-known [I] that the law of (X¢):>0
converges to the Gibbs measure dp and that the Poincaré constant controls the rate of convergence
to equilibrium in L?(u). Let us denote by P;(f) the Markovian semi-group associated with the
Langevin diffusion (X;)¢>0. It is defined in the following way: P;(f)(z) = E[f(X:)|Xo = z]. This
semi-group satisfies the dynamics

d

£Pt<f) = EPt(f)»

where L¢ = AL¢—VV -V is a differential operator called the infinitesimal generator of the Langevin
diffusion (B)) (A% denotes the standard Laplacian on R?). Note that by integration by parts, the semi-
group (P;);>0 is reversible with respect to dp, that is: — [ f(Lg)dp= [V f-Vgdu = — [(Lf)gdpu.
Let us now state a standard convergence theorem (see e.g. [I, Theorem 2.4.5] ), which proves that
P is the characteristic time of the exponential convergence of the diffusion to equilibrium in L2(u).

Theorem 1 (Poincaré and convergence to equilibrium). With the notation above, the following
statements are equivalent:

(1) p satisfies a Poincaré inequality with constant P,,;
(ii) For all f smooth and compactly supported, Var, (Pi(f)) < e=2/PuVar, (f) for all t > 0.

Proof. The proof is standard. Note that upon replacing f by f — [ fdu, one can assume that
Jfdu = 0. Then, for all ¢ > 0,

= %/(Pt(f))gdu = 2/Pt(f)(/3Pt(f)>du = —2/ IV P(f)|2dp

< —2/P,, Var,(P(f)).

d
%Var;t(Pt(f))

The proof is then completed by using Grénwall’s inequality for (7) = (#). For (i7) = (i), we write,
for t > 0,

—t~Y(Var, (Pi(f)) — Var,(f)) = —t~ (e 2/ Pu — 1)Var,(f).
By letting ¢ go to 0,

2P Var, (1) < =2 [ Preol0)(EPo(9)dn = 2 [ 1V11Pd.

which shows the converse implication. O



Remark 2. Let f be a centered eigenvector of —L with eigenvalue A # 0. By the Poincaré
inequality,

[ Pau<r, [1962au =, [ 1-Lnau=P [ Fu.

from which we deduce that every non-zero eigenvalue of —L is larger that 1/P,,. The best Poincaré
constant is thus the inverse of the smallest non zero eigenvalue of —L. The finiteness of the
Poincaré constant is therefore equivalent to a spectral gap property of —L. Similarly, a discrete
space Markov chain with transition matrix P converges at a rate determined by the spectral gap of
I—P.

There have been efforts in the past to estimate spectral gaps of Markov chains [20] 28] [36], (52, [§]
but these have been done with samples from trajectories of the dynamics. The main difference
here is that the estimation will only rely on samples from the stationary measure.

Poincaré constant and sampling. In high dimensional settings (in Bayesian machine learn-
ing [41]) or molecular dynamics [27] where d can be large — from 100 to 107), one of the standard
techniques to sample du(z) = e~V (®)dz is to build a Markov chain by discretizing in time the
overdamped Langevin diffusion whose law converges to du. According to Theorem the typical
time to wait to reach equilibrium is P,. Hence, the larger the Poincaré constant of a probability
measure dy is, the more difficult the sampling of du is. Note also that V' need not be convex for
the Markov chain to converge.

2.3 Examples

Gaussian distribution. For the Gaussian measure on R? of mean 0 and variance 1: du(z) =

1
(2m)dr?

e*“$|‘2/2d;v, it holds for all f smooth and compactly supported,

Var, (1) < [ 197 Pd

and one can show that P, = 1 is the optimal Poincaré constant (see [4]). More generally, for a
Gaussian measure with covariance matrix ¥, the Poincaré constant is the spectral radius of X.

Other examples of analytically known Poincaré constant are 1/d for the uniform measure on
the unit sphere in dimension d [22] and 4 for the exponential measure on the real line [I]. There
also exist various criteria to ensure the existence of (PI). We will not give an exhaustive list as our
aim is rather to emphasize the link between sampling and (convex) optimization. Let us however
finish this part with particularly important results.

A measure of non-convexity. Let du(z) = eV ®)dz. It has been shown in the past decades
that the “more convex” V is, the smaller the Poincaré constant is. Indeed, if V' is p-strongly convex,
then the Bakry-Emery criterion [I] tells us that P, < 1/p. If V' is only convex, it has been shown
that du satisfies a (PI), yet with an arbitrarily large constant [39, [45]. Finally, the case where V is
non-convex is explored in detail in a one-dimensional setting and it is shown that for potentials V'
with an energy barrier of height h between two wells, the Poincaré constant explodes exponentially
with respect the height h [3I]. In that spirit, the Poincaré constant of du(z) = e~V (*)dz can be a
quantitative way to quantify how multimodal the distribution du is and hence how non-convex the
potential V is [21] [37].

3 Statistical Estimation of the Poincaré Constant

The aim of this section is to provide an estimator of the Poincaré constant of a measure p when we
only have access to n samples of it, and to study its convergence properties. More precisely, given



n independent and identically distributed (i.i.d.) samples (z1,...,z,) of the probability measure
du, our goal is to estimate P,. We will denote this estimator (function of (z1,...,2,)) by the

standard notation P,,.

3.1 Reformulation of the problem in a reproducing kernel Hilbert Space

Definition and first properties. Let us suppose here that the space of test functions of the
(PI), H, is a reproducing kernel Hilbert space (RKHS) associated with a kernel K on R? [44] 46].
This has two important consequences:

1. H is the linear function space H = span{K(-,z), € R?}, and in particular, for all z € R,
the function y — K(y, ) is an element of H that we will denote by K.

2. The reproducing property: Vf € H and Vo € R?, f(z) = (f, K(-,x)). In other words,
function evaluations are equal to dot products with canonical elements of the RKHS.

We make the following mild assumptions on the RKHS:
Ass. 1. The RKHS H is dense in H'(u).

Note that this is the case for most of the usual kernels: Gaussian, exponential [33]. As (PI)
involves derivatives of test functions, we will also need some regularity properties of the RKHS.
Indeed, to represent Vf in our RKHS we need a partial derivative reproducing property of the
kernel space.

Ass. 2. K is a Mercer kernel such that K € C?(R? x R?).

Let us denote by 0; = d,: the partial derivative operator with respect to the i-th component
of z. It has been shown [54] that under assumption (Ass. [2), Vi € [1,d], 9;K, € H and that a
partial derivative reproducing property holds true: Vf € H and Vaz € R?, 0;f(z) = (0: K., f)n-
Hence, thanks to assumption (Ass. , V f is easily represented in the RKHS. We also need some
boundedness properties of the kernel.

Ass. 3. K is a kernel such that Vo € R K(z,7) < K (m IVE,|? < Kq, where |[VE,|* :=

Zfﬂ(@iKl., 0, K,) = Z?:I %(mw) (see calculations below), x and y standing respectively for

the first and the second variables of (x,y) — K(x,y).

The equality mentioned in the expression of ||[VK,||? arises from the following computation:
0Ky (z) = (0;Ky,K,) = 0,:K(z,y) and we can write that for all z,y € R?, (0;K,,0,K,) =

A spectral point of view. Let us define the following operators from H to H:
Y=E[K,® K,], A=E[VK, ®; VK,],

and their empirical counterparts,

i\): ile@KmU ﬁiilVKﬂh ®dVKmi’

S|

where ® is the standard tensor product: Vf,g,h € H, (f ® g)(h) = (g, h),, f and ®q is defined as
follows: Vf,g € H% and h € H, (f ®4 9)(h) = X" (gi, h),. [

1The subscript d in Kq accounts for the fact that this quantity is expected to scale linearly with d (as is the case
for the Gaussian kernel).



Proposition 1 (Spectral characterization of the Poincaré constant). Suppose that assumptions
(Ass.[1), (Ass.[9), (Ass.[3) hold true. Then the Poincaré constant P, is the mazimum of the
following Rayleigh ratio:
C
7)#: sup <f7 f — HA 1/20A I/QH (4)
fer\Ker(a) (FsAF)n

with || - || the operator norm on H and C = ¥ —m @ m where m = [p, Kydu(x) € H is the

covariance operator, considering A~' as the inverse of A restricted to (Ker(A))J‘.

Note that C and A are symmetric positive semi-definite trace-class operators (see Appendix.
Note also that Ker(A) is the set of constant functions, which suggests introducing Ho :=
(Ker(A))* = H N L&(u), where L2(u) is the space of L?(u) functions with mean zero with
respect to p. Finally note that Ker(A) C Ker(C) (see Section [A| of the Appendix). With the
characterization provided by Proposition [} we can easily define an estimator of the Poincaré
constant P, following standard regularization techniques from kernel methods [44, [46] 12].

Definition 2. The estimator 733)‘ of the Poincaré constant is the following:

73n,,\ — sup (f, Cf )H _ HA—l/QcA—l/Q

u (5)
feEH\Ker(A) <f (A + )\I)

with C' =X —m @ m and where m = > " | K,,. C is the empirical covariance operator and

Ay = A+ M is a reqularized empirical version of the operator A restricted to (Ker(A)™" as in
Proposition [1].

Note that regularization is necessary as the nullspace of A is no longer included in the nullspace
of C' so that the Poincaré constant estimates blows up when A — 0. The problem in Equation
has a natural interpretation in terms of Poincaré inequality as it corresponds to a regularized (PI)

for the empirical measure ji,, = %Z?:l 05, associated with the i.i.d. samples z1,...,z, from du.

To alleviate the notation, we will simply denote the estimator by 73u until the end of the paper.

3.2 Statistical consistency of the estimator

We show that, under some assumptions and by choosing carefully A as a function of n, the
estimator P, is statistically consistent, i.e., almost surely:

n— oo

73“ — Pyu.

As we regularized our problem, we prove the convergence in two steps: first, the convergence of 73

to the regularized problem P;; = = SUP e {0} W =|Ay V2onT 1/2|| which corresponds to

controlling the statistical error associated with the estimator P (variance); second, the convergence
of Pﬁ‘ to P, as A goes to zero which corresponds to the bias associated with the estimator 73#. The
next result states the statistical consistency of the estimator when A is a sequence going to zero as
n goes to infinity (typically as an inverse power of n).

Theorem 2 (Statistical consistency). Assume that (Ass. [1]), (Ass.[3), (Ass.[3) hold true and
that the operator A~Y2CA=Y/2 is compact on H. Let ()\n)neN be a sequence of positive numbers
such that A, = 0 and \p/n — +00. Then, almost surely,

n—oo

B, ",

As already mentioned, the proof is divided into two steps: the analysis of the statistical error for
which we have an explicit rate of convergence in probability (see Proposition I below) and which
requires n~/2/),, — 0, and the analysis of the bias for which we need \,, — 0 and the compactness



condition (see Proposition . Notice that the compactness assumption in Proposition |3| and
Theorem [2|is stronger than (PI). Indeed, it can be shown that satisfying (PI) is equivalent to
having the operator A~'/2CA~'/2 bounded whereas to have convergence of the bias we need
compactness. Note also that A, = n~'/* matches the two conditions stated in Theorem [2 and
is the optimal balance between the rate of convergence of the statistical error (of order )\%/ﬁ, see
Proposition [2)) and of the bias we obtain in some cases (of order A, see Section [B|of the Appendix).

For the statistical error term, it is possible to quantify the rate of convergence of the estimator
to the regularized Poincaré constant as shown below.

Proposition 2 (Analysis of the statistical error). Suppose that (Ass. |1)), (Ass. @) (Ass. @)
hold true. For any 0 € (0,1), and A > 0 such that A < ||A]| and any mteger n > 1554 “d Jog 4112
with probability at least 1 — 39,

‘73 73)" )\\/» log(2/d) + o ()\\1/5) . (6)

Note that in Proposition [2| we are only interested in the regime where \y/n is large. Lemmas
and [6] of the Appendix give explicit and sharper bounds under refined hypotheses on the spectra
of C and A. Recall also that under assumption (Ass. , C and A are trace-class operators (as
proved in the Appendix, Section so that ||A| and Tr(A) are indeed finite. Finally, remark
that @ implies the almost sure convergence of the statistical error by applying the Borel-Cantelli
lemma.

Proposition 3 (Analysis of the bias). Assume that (Ass. [1]), (Ass.[d), (Ass.[3) hold true,
and that the bounded operator A=Y/2CA~1/2 is compact on H. Then,

lim P = P.
A—0

As said above the compactness condition (similar to the one used for convergence proofs of
kernel Canonical Correlation Analysis [12]) is stronger than satisfying (PI). The compactness
condition adds conditions on the spectrum of A~/2CA~1/2: it is discrete and accumulates at 0.
We give more details on this condition in Section [B] of the Appendix and derive explicit rates
of convergence under general conditions. We derive also a rate of convergence for more specific
structures (Gaussian case or under an assumption on the support of p) in Sections [B| and |§| of the
Appendix.

4 Learning a Reaction Coordinate

If the measure p is multimodal, the Langevin dynamics (3)) is trapped for long times in certain regions
(modes) preventing it from efficient space exploration. This phenomenon is called metastability and
is responsible for the slow convergence of the diffusion to its equilibrium [26] 24]. Some efforts in
the past decade [23] have focused on understanding this multimodality by capturing the behavior
of the dynamics at a coarse-grained level, which often have a low-dimensional nature. The aim of
this section is to take advantage of the estimation of the Poincaré constant to give a procedure to
unravel these dynamically meaningful slow variables called reaction coordinate.

4.1 Good Reaction Coordinate

From a numerical viewpoint, a good reaction coordinate can be defined as a low dimensional
function £ : RY — RP (p < d) such that the family of conditional measures (p(-|{(2) = 7)), g, are
“less multimodal” than the measure du. This can be fully formalized in particular in the context
of free energy techniques such as the adaptive biasing force method, see for example [24]. For
more details on mathematical formalizations of metastability, we also refer to [26]. The point of
view we will follow in this work is to choose £ in order to maximize the Poincaré constant of the



pushforward distribution £ * u. The idea is to capture in £ % p the essential multimodality of the
original measure, in the spirit of the two scale decomposition of Poincaré or logarithmic Sobolev
constant inequalities |25, [3T], [35].

4.2 Learning a Reaction Coordinate

Optimization problem. Let us assume in this subsection that the reaction coordinate is an
orthogonal projection onto a linear subspace of dimension p. Hence £ can be represented by
Vo € RY, &(x) = Az with A € SP? where SP4 = {A € RP*4 5. t. AAT = I} is the Stiefel
manifold [I1]. As discussed in Section to find a good reaction coordinate we must look for £ for
which the Poincaré constant of the pushforward measure £  p is the largest. Given n samples, let

us define the matrix X = (z1,...,7,)" € R"*% We denote by Py the estimator of the Poincaré
constant using the samples (x1,...,x,). Hence P, x v defines an estimator of the Poincaré constant
of the pushforward measure £ * p. Our aim is to find argmax Pyx.

AeSp.d

Random features. One computational issue with the estimation of the Poincaré constant is that
building C' and A requires respectively constructing nxn and nd xnd matrices. Random features [3§]
avoid this problem by building explicitly features that approximate a translation invariant kernel
K(z,2') = K(x—2'). More precisely, let M be the number of random features, (wy, )1<m<a be ran-
dom variables independently and identically distributed according to P(dw) = [ emiw O (0)dd dw
and (by,)1<m<m be independently and identically distributed according to the uniform law on

0,27], then the feature vector oM (z) = /2 (cos(w{ x + by),...,cos(w,,z + bas T € RM satis-
M 1 M

fies K(x,2') = ¢M(2)T¢M(2'). Therefore, random features allow to approximate C and A by

M x M matrices CM and AM respectively. Finally, when these matrices are constructed using the
projected samples, i.e. (cos(w;';Aa?i + bm))1 oy’ Ve denote them by Cﬁ/f and AJIXI respectively.

<m<
1<i<n
Hence, the problem reads
Find argmax P —argmax max F(A,v 7
A%Sw Axt A%SM vERM\ {0} (4.0) ™)
R UTGI{XIU
where F(A,v) := TRV DY

Algorithm. To solve the non-concave optimization problem 7 our procedure is to do one step
of non-Euclidean gradient descent to update A (gradient descent in the Stiefel manifold) and one
step by solving the generalized eigenvalue problem to update v. More precisely, the algorithm reads:

Result: Best linear Reaction Coordinate: A, € S%P

Ay random matrix in S®P, 7, > 0 step-size;

fort=0,...,7—1do

e Solve generalized largest eigenvalue problem with matrices 6% and 3% to get v*(Ay):

TOM
v*(A;) = argmax ZC—AU.
verRM\{o} v (AN + \)v

e Do one gradient ascent step: A;11 = Ay +m: grad 4, F(A,v*(Ay)).

end
Algorithm 1: Algorithm to find best linear Reaction Coordinate.



5 Numerical experiments

We divide our experiments into two parts: the first one illustrates the convergence of the estimated
Poincaré constant as given by Theorem [2| (see Section [5.1]), and the second one demonstrates the
interest of the reaction coordinates learning procedure described in Section (see Section [5.2)).

5.1 Estimation of the Poincaré constant

In our experiments we choose the Gaussian Kernel K(x,2') = exp (—||z — 2’||?)? This induces
a RKHS satisfying (Ass. , (Ass. , (Ass. . Estimating P, from n samples (z;)i<n is
equivalent to finding the largest eigenvalue for an operator from H to H. Indeed, we have

~

1 o A .
]l]lT> Sp (Z2Zy + M) 2

- ’
n

Pu=|

(Z:Z, + NI)"2 8 (1 -
H

where Z,, = Zle Z' and Z! is the operator from H to R™: Vg € H, Zi(g) = ﬁ ({g, 82-sz>)1<j<n

and S, is the operator from H to R": Vg € H, §Z1(g) = ﬁ (g, K$j>)1gj<n' By the Woodbury

operator identity, (A + Z:Z,)"! = . (I —Zr (M + Z\HZZ)_lgn), and the fact that for any

operator ||T*T| = [|TT*|,

P.=(Z:Z, + AI)"2 5" (1 -

which is now the largest eigenvalue of a n x n matrix built as the product of matrices involving
the kernel K and its derivatives. Note for the above calculation that we used that (I - %]I]IT)2 =
(I—2L1117).

n

-0.8
e Diffusion Map
_1_0- w— Kernel method
a -1.24
| ]
@ -1.4
S —-1.61
3 -1.8;
—2.01
22— - , , , , , , , ,
10 10 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
n (number of samples) a

Figure 1: (Left) Comparison of the convergences of the kernel-based method described in this paper
and diffusion maps in the case of a Gaussian of variance 1 (for each n we took the mean over 50 runs).
The dotted lines correspond to standard deviations of the estimator. (Right) Exponential growth of the
Poincaré constant for a mixture of two Gaussians N (£5, o?) as a function of the distance a between the
two Gaussians (o = 0.1 and n = 500).

We illustrate in Figure [1| the rate of convergence of the estimated Poincaré constant to 1 for the
Gaussian N(0,1) as the number of samples n grows. Recall that in this case the Poincaré constant



is equal to 1 (see Subsection . We compare our prediction to the one given by diffusion maps
techniques [7]. For our method, in all the experiments we set A, = % (which is smaller than what
is given by Theorem [2|) and optimize the constant C) with a grid search. Following [18], to find
the correct bandwidth ¢,, of the kernel involved in diffusion maps, we performed a similar grid
search on the constant C. for the Diffusion maps with the scaling ¢,, = % Additionally to a
faster convergence when n become large, the kernel-based method is more robust with respect to
the choice of the hyperparameter, which is of crucial importance for the quality of diffusion maps.
Note also that we derive an explicit convergence rate for the bias in the Gaussian case in Section
of the Appendix. In Figure[I] we also show the growth of the Poincaré constant for a mixture of
Gaussians of variances 1 as a function of the distance between the two means of the Gaussians.
This is a situation for which the estimation provides an estimate when, up to our knowledge, no

precise Poincaré constant is known (even if lower and upper bounds are known [3]).

5.2 Learning a reaction coordinate

We next illustrate the algorithm described in Section [d] to learn a reaction coordinate which, we
recall, encodes directions which are difficult to sample. To perform the gradient step over the
Stiefel manifold we used Pymanopt [48], a Python library for manifold optimization derived from
Manopt [2] (Matlab). We show here a synthetic two-dimensional example example. We first
preprocessed the samples with “whitening”, i.e., making it of variance 1 in all directions to avoid
scaling artifacts. In both examples, we took M = 200 for the number of random features and
n = 200 for the number of samples.

25 - = —
--~ hardest direction to sample x ] hardest direction to sar_hple
2.0 X6
. XX “ X &X% N ///
: o o
131 x % " % e X x
%% -3
1.0 0 Rx X % &
x” Xx %
0.5+ -1 »,@; X x %
7 53 X %
0.0 o :
. X % x
_2 - X)E(
0.5 o x
'20.5 2.5 -2 -1 0 1 2

/2 3n/4 1'1

<)
S O —
N

Figure 2: (Top Left) Samples of mixture of three Gaussians. (Top right) Whiten samples of Gaussian
mixture on the left. (Bottom) Plot of the Poincaré constant of the projected samples on a line of angle 6.

We show (Figure [2)) one synthetic example for which our algorithm found a good reaction
coordinate. The samples are taken from a mixture of three Gaussians of means (0,0), (1,1) and

10



(2,2) and covariance ¥ = 2] where 0 = 0.1. The three means are aligned along a line which
makes an angle § = 7/4 with respect to the z-axis: one expects the algorithm to identify this
direction as the most difficult one to sample (see left and center plots of Figure . With a few
restarts, our algorithm indeed finds the largest Poincaré constant for a projection onto the line
parametrized by 6 = 7 /4.

6 Conclusion and Perspectives

In this paper, we have presented an efficient method to estimate the Poincaré constant of a
distribution from independent samples, paving the way to learn low-dimensional marginals that
are hard to sample (corresponding to the image measure of so-called reaction coordinates). While
we have focused on linear projections, learning non-linear projections is important in molecular
dynamics and it can readily be done with a well-defined parametrization of the non-linear function
and then applied to real data sets, where this would lead to accelerated sampling [23]. Finally, it
would be interesting to apply our framework to Bayesian inference [5] and leverage the knowledge
of reaction coordinates to accelerate sampling methods.
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Appendix

The Appendix is organized as follows. In Section [A] we prove Propositions [I] and 2] Section
is devoted to the analysis of the bias. We study spectral properties of the diffusion operator L
to give sufficient and general conditions for the compactness assumption from Theorem 2] and
Proposition [3] to hold. Section [C] provides concentration inequalities for the operators involved
in Proposition [2] We conclude by Section [D] that gives explicit rates of convergence for the bias
when p is a 1-D Gaussian (this result could be easily extended to higher dimensional Gaussians).

A Proofs of Proposition [I] and

Recall that L3 () is the subspace of L?(u) of zero mean functions: L2(u) := {f € L*(u), [ f(z
0} and that we similarly defined Ho := H N L3(x). Let us also denote by R1 the set of conbtant
functions.

Proof of Proposition[1, The proof is simply the following reformulation of Equation . Under
assumption (Ass. [I)):

Jpa F(@)2dp() — (fya f(@)dp(2))

P,=  sup
" emu\ra S IIVfIIIQdu(x)

2
~ sup Jua f(@)?dp(z) — (fga f(2)dp(z))
FEH\RI Jza HVf |I2du()

2
~ s Jpa F(@)*du(z (f]Rd (z)) _
FeHo\{0} Jra HVf |2dﬂ()

We then simply note that

f(a)du fi | Kedu(z 2:<f7m>3¢:<f,(m®m)f>y.
(L) = (s [, Keaor) )

/ f(@)%dp(z) = (f.Sf)n and / IV £ (@) Pduz) = (£, Af)
Rd Rd

Note here that Ker(A) C Ker(C). Indeed, if f € Ker(A), then (f, Af)y = 0. Hence, p-almost

everywhere, Vf = 0 so that f is constant and C'f = 0. Note also the previous reasoning shows

that Ker(A) is the subset of H made of constant functions, and (Ker(A))* = H N L3(u) = Ho.
Thus we can write,

Similarly,

(fL(E—mem)f)u —1/2 —1/2
P.= sup = |[|[AT2cAT2)
M e \Ker(a) (f, Af)n H H

where we consider A~ as the inverse of A restricted to (Ker(A))" and thus get Proposition O

Proof of Proposition[3 We refer to Lemmas [f] and [6] in Section [C] for the explicit bounds. We have
the following inequalities:

R N ey

N

"3;1/263;1/2)’ _ ‘)3;1/203;1/2"‘ i “‘3;1/203;1/2“ B HA;1/2CA;1/2H‘

/A

’3;1/2(@ - 0)3;1/2" + ‘Hcl/zﬁ;lcuzu _ HCI/2A;101/2H’

N

’3;1/2(5 _ 0)3;1/2“ n “01/2(3;1 _ A;l)cl/QH.
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Consider an event where the estimates of Lemmas [5] [f] and [7] hold for a given value of § > 0. A
simple computation shows that this event has a probability 1 — 30 at least. We study the two
terms above separately. First, provided that n > 157 () log #22 and X € (0, |A[] in order to
use Lemmas [6] and [7]

“3;1/2(6 _ 0)3;1/2“ _ Hﬁgl/QA;/gA;l/Q(a _ C)A;l/QA}\/zﬁ;l/QH

<[Ba arre - on|

Lemma 7 Lemma
< 2 (Lemma [j)).

For the second term,
“01/2(3;1 _ A;1>01/2H _ HCl/Qﬁ)_\l(A _ K)ATCWH
= [ 2as 2 Ay A AP A A - A)ag P agt e

—~ 2 2 —~
g HA;1/2A1\/2H Hcl/QA;1/2H HA;l/Z(A _ A)A;1/2H

Lemma [7] Pi\ Lemma,

<2- 77;‘ . (Lemma@.

1/2
The leading order term in the estimate of Lemma H is of order (w) whereas the

n
leading one in Lemma [5|is of order Smf#\/g/&)

estimation. O

. Hence, the latter is the dominant term in the final

B Analysis of the bias: convergence of the regularized Poincaré
constant to the true one

We begin this section by proving Proposition [3] We then investigate the compactness condition

required in the assumptions of Proposition [3] by studying the spectral properties of the diffusion

operator L. In Proposition [6, we derive, under some general assumption on the RKHS and usual
growth conditions on V', some convergence rate for the bias term.

B.1 General condition for consistency: proof of Proposition
To prove Proposition [3] we first need a general result on operator norm convergence.

Lemma 1. Let H be a Hilbert space and suppose that (A, )n>0 s a family of bounded operators

such that ¥Yn € N, ||[A,|| < 1 and Vf € H, A, f 2720, Af. Suppose also that B is a compact
operator. Then, in operator norm,

A,BA: "% ABA*.

Proof. Let € > 0. As B is compact, it can be approximated by a finite rank operator B, =
iy bi(fi, ) gi, where (f;); and (g;); are orthonormal bases, and (b;); is a sequence of nonnegative
numbers with limit zero (singular values of the operator). More precisely, n. is chosen so that

1S
B-B, | <=
IB-B,.I<5

Moreover, € being fixed, A, B, A% = > bi(Anfi, ) Angi — D15y bi(Afi,)Ags = AB,_A* in
operator norm, so that, for n > N, with N > n. sufficiently large, ||A,B,_ A, — AB, A*| < 5.
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Finally, as ||A]| < 1, it holds, for n > N,
[AnB, A, = ABA™|| < [[AnB, A}, — AB,_A*|| +[|A(B,, — B)A"||

<|

<||AnB, A, —AB, A" +|B,, - Bl <e.

This proves the convergence in operator norm of A, BA} to ABA* when n goes to infinity. O
We can now prove Proposition

Proof of Proposition[3 Let A > 0, we want to show that

Pp = 1A P0A | — |ATP0AT = P,

—0

Actually, with Lemmal[I] we will show a stronger result which is the norm convergence of the operator
ATVPOATH? to A=1/2CA7Y/2, Indeed, denoting by B = A~Y/2CA~Y/2 and by Ay = AY/2A-1/2
both defined on #,, we have A;l/QCA;Uz = A, BAj with B compact and ||A,|| < 1. Furthermore,
let (¢;)ien be an orthonormal family of eigenvectors of the compact operator A associated to
eigenvalues (v;);en. Then we can write, for any f € H,,

Anf=0)2A12f = Z \/ A —:Vi (fs di)u i o
i=0 ‘

Hence by applying Lemma |1} we have the convergence in operator norm of A;l/QC'A)_\l/2 to
A~1Y2CA=1/2 hence in particular the convergence of the norms of the operators.

O

B.2 Introduction of the operator L

In all this section we focus on a distribution dy of the form du(x) = e~V dz.
Let us give first a characterization of the function that allows to recover the Poincaré constant,

2
i.e., the function in H'(u) that minimizes — Jea ”Vf(m)u du(@) >. We call f, this function.
Jpd F(@)2dp(@)—(fpa f(2)dp(z))

We recall that we denote by A the standard Laplacian in R%: Vf € H'(u), AFf = Z?Zl g;{;
Let us define the operator Vf € H'(u), Lf = —ALf + (VV,Vf), which is the opposite of the
infinitesimal generator of the dynamics (3]). We can verify that it is symmetric in L?(). Indeed
by integrations by parts for any Vf,g € C°,

(Lf,9) 2 = /(Lf)(w)g(x)du(iv)
=- / AL f(a)g(x)e™V P dz + / (VV(2), Vf(z))g(x)e V@ dx
:/<Vf($)av(g(x)e_v(x)>>da:+/(VV(ac),Vf(x)>g(x)e—V(r)dx
- /(Vf(l‘),v‘g(g;»e*V(m)dx_/<vf(x)7vv(x»g(x)efv(z)dx
+ [V ey s
= / (Vf(z),Vg(x))du(z).

The last equality being totally symmetric in f and g, we have the symmetry of the operator L:
(Lf,g)r2u) = [(Vf.Vg)du = (f, Lg) 12y (for the self-adjointness we refer to [I]). Remark that
the same calculation shows that V* = —div + VV-, hence L = V* -V = —AL 4+ (VV, V"), where
V* is the adjoint of V in L?(p).
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Let us call 7 the orthogonal projector of L?(u) on constant functions: 7 f : z € R — [ fdp.
The problem then rewrites:

Lf,
Pl = inf LS Py - (8)
fe (L3 ()\(0} |(Ir2¢uy — ) fll

Until the end of this part, to alleviate the notation we omit to mention that the scalar product is

the canonical one on L?(y). In the same way, we also denote 1 = Ir2(,)-

B.2.1 Case where du has infinite support

Proposition 4 (Properties of the minimizer). Ifl l‘im 1 VV|* — 1ALV = 400, the problem
xr|— o0

admits a minimizer in H'(u) and every minimizer f is an eigenvector of L associated with the
eigenvalue P~1:

Lf=P7'f. (9)
To prove the existence of a minimizer in H' (), we need the following lemmas.

Lemma 2 (Criterion for compact embedding of H'(u) in L?(u)). The injection H' () < L*(p)
is compact if and only if the Schrédinger operator —AL + i |VV|2 — %ALV has compact resolvent.

Proof. See [14, Proposition 1.3] or [40, Lemma XIII.65]. O

Lemma 3 (A sufficient condition). If ® € C* and ®(z)— + 0o when |z| — oo, the Schridinger
operator —AY + & on R? has compact resolvent.

Proof. See [19, Section 3| or [40, Lemma XIII.67]. O
Now we can prove Proposition [

Proof of Proposition[] We first prove that admits a minimizer in H'(u). Indeed, we have,

<Lfa f>L2(/L) . ||fo2
in —_—— = inf J(f), where J(f):= .
reinrd\{o} (L —m)fl*  reinL3)\{o0} () ) 1£1I?

Pl =

Let (fn)n>0 be a sequence of functions in Hg () equipped with the natural H'-norm such that
(J(fn))n=0 converges to P~1. As the problem in invariant by rescaling of f, we can assume that
Vn = 0, ”f”H%?(u) = 1. Hence J(f,) = ||an||2Lz(#) converges (to P~1). In particular ||an||%2(#)

is bounded in L?(u), hence (f,)n>0 is bounded in H'(u). Since by Lemma [2] and |3 we have a
compact injection of H*(u) in L%(u), it holds, upon extracting a subsequence, that there exists
f € H*(p) such that

fn = f strongly in L?(p)
fo = f weakly in H'(p).

Thanks to the strong L?(p) convergence, || f|* = lim || f,.||> = 1. By the Cauchy-Schwarz inequality
noo
and then taking the limit n — +o0,

1912 = tim (V. 97) < lim [V IV A = [97]P"

Therefore, |V f|| < P~/2 which implies that J(f) < P~', and so J(f) = P~'. This shows that f
is a minimizer of J.

Let us next prove the PDE characterization of minimizers. A necessary condition on a minimizer
f« of the problem infpe g1 (0 {[V fllL2(w), IIfII* = 1} is to satisfy the following Euler-Lagrange
equation: there exists 8 € R such that:

Lf.+Bf=0.
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Plugging this into (8), we have: P~t = (Lf., fi) = —B(f«, fv) = —B||f<|3 = —B. Finally, the
equation satisfied by f is:

Lf =AM +(VV,VL) =P f.,

which concludes the proof. O

B.2.2 Case where dp has finite support

We suppose in this section that du has a compact support included in Q. Without loss of generality
we can take a set (2 with a C™° smooth boundary 0€2. In this case, without changing the result
of the variational problem, we can restrict ourselves to functions that vanish at the boundary,
namely the Sobolev space HE,(R?, dp) = {f € H*(p) s.t. flon = 0}. Note that, as V is smooth,
H'(u) D HY(R?, d)) the usual "flat" space equipped with d), the Lebesgue measure. Note also
that only in this section the domain of the operator L is H2 N H},.

Proposition 5 (Properties of the minimizer in the compact support case). The problem admits
a minimizer in HE, and every minimizer f satisfies the partial differential equation:

Lf=P'f. (10)

Proof. The proof is exactly the same than the one of Proposition |4 since H}, can be compactly
injected in L? without any additional assumption on V. O

Let us take in this section H = H%(R?, d)\), which is the RKHS associated to the kernel

k(z,2') = E_”m_m,H. As f, satisfies (10)), from regularity properties of elliptic PDEs, we infer that
fi 18 C°°(Q2). By the Whitney extension theorem [51], we can extend f, defined on € to a smooth
and compactly supported function in ' > Q of R?. Hence f, € C°(R?) C H.

Proposition 6. Consider a minimizer f. of . Then

(£l

PP SP 4 S
1l 720

(11)

Proof. First note that f, has mean zero with respect to du. Indeed, [ fdu =P~ [ Lfdu =0, by
the fact that du is the stationary distribution of the dynamics.

For A > 0,
P pot - e IVI@IPd) IS
FEHARL [ f(2)2dpu(x) — (fau f(z)dp())
o St IV L@ PA@) + MR _ oy I
h Jpa Fe(@)2dp(z) 1£l1Z )
which provides the result. O

C Technical inequalities

C.1 Concentration inequalities
We first begin by recalling some concentration inequalities for sums of random vectors and operators.

Proposition 7 (Bernstein’s inequality for sums of random vectors). Let z1,...,z2, be a sequence
of independent identically and distributed random elements of a separable Hilbert space H. Assume
that E||z1]] < +00 and note p = Ez. Let o, L > 0 such that,

1
Vp > 2, E|lz1 — pll%, < §p!02Lp_2.
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Then, for any ¢ € (0,1],

1 2L1og(2/6 202 log(2/6
Ly | < 2mesen | rmios0rs) )
n 4 n n
i=1 H
with probability at least 1 —§.
Proof. This is a restatement of Theorem 3.3.4 of [53]. O

Proposition 8 (Bernstein’s inequality for sums of random operators). Let H be a separable
Hilbert space and let X1, ..., X, be a sequence of independent and identically distributed self-adjoint
random operators on H. Assume that E(X;) = 0 and that there exist T > 0 and S a positive
trace-class operator such that | X;|| < T almost surely and EX? < S for any i € {1,...,n}. Then,
for any ¢ € (0,1], the following inequality holds:

n

1
X

i=1

205 [2IS18

3n n

(13)

with probability at least 1 — § and where 5 = log ﬁgﬂg

Proof. The theorem is a restatement of Theorem 7.3.1 of [49] generalized to the separable Hilbert
space case by means of the technique in Section 4 of [47]. O
C.2 Operator bounds

Lemma 4. Under assumptions (Ass. @) and (Ass. @, Y, C and A are trace-class operators.

Proof. We only prove the result for A, the proof for 3 and C' being similar. Consider an orthonormal
basis (¢;)ien of H. Then, as A is a positive self adjoint operator,

oo 0o d co d
Tr A= (Adi,¢i) =Y By |D (0iKw )| =By | > (0, Kz, ¢4)°
i=1 i=1 j=1 i=1 j=1
d
S0 K| < K.
Hence, A is a trace-class operator. O

The following quantities are useful for the estimates in this section:

No(A) = sup HA 2k K,

IEaupp

7_L,and Fo(A) = sup HA;UQ

zesupp(p)

Note that under assumption (Ass. , Noo(N) < & and Fo () < % Note also that under refined
assumptions on the spectrum of A, we could have a better dependence of the latter bounds with
respect to A. Let us now state three useful lemmas to bound the norms of the operators that
appear during the proof of Proposition [2}
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Lemma 5. For any A >0 and any 6 € (0, 1],

. 4N (M) log 282 2 P} Noo(\) log 212
HA;UQ(C _ C)A;1/2H < — PrXAS " Iz : PAXS
log(2 log(2

g(g) n Og((;)

n n

F8N(N)

2

2 2
+ 16N (N) 10g7§5)+ long‘s) ,

with probability at least 1 — 4.

Proof of Lemma[5 We apply some concentration inequality to the operator A;l/ QCA'A;U ? whose
mean is exactly A;l/ZCA;\l/Q. The calculation is the following:

HA;1/2(C _ C)A;1/2H _ A;1/2CA;1/2 _ A;1/20A;1/2H
A;l/ZiA;1/2 _ A;1/2ZA;1/2H

N

+[ax @ e m)ast? - A m e m)ag

1 — 1/2 ~1/2 —1/2e A —1/2
= |- (A PR @ (852K, - 87250
=1

+[|@xt ) @ (a5 2w - (a5 m) @ (85 m)|.

We estimate the two terms separately.
Bound on the first term: we use Proposition |8} To do this, we bound for i € [1,n] :

2
H(A;1/2Kxi) ® (Axl/szi) _ A;l/QEA;UQH < HA;1/2K“ y n HA;1/22A>_\1/2H

< 2N (N),

and, for the second order moment,

2
E (A7 Ke) @ (A1) - 87250

2
—E [HA;”%{M y (ATY?R,) ® (A;1/2Kxi)} — ATVPEATIRALY?

< Now(MAL2EA2

-1
We conclude this first part of the proof by some estimation of the constant 5 = log %.
A A

Using TrSAL! < A7ITrY, it holds 8 < log 25> Therefore,

1 & —1/2 —1/2 —1/2 —1/2
=3OV KL) @ (87K — AP ea
=1

1/2

AN () log 2352 2 Py Noo(A) log 3,?55
o+

3n n

<
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Bound on the second term. Denote by v = A;UQ

leads to

m and v = A;l/ 2m. A simple calculation

[Pev-veu| <llve@-v)|+[[@-v)@]+|@-v)@-v)
<

2[lv][[[o — vl + 17 - v]]*.

We bound [[# — v|| with Proposition[7] It holds: & —v = A2 (@ —m) = L0 ATV*(K,, -
m) = 3" Z;, with Z; = A;l/Q(Kmi — m). Obviously for any i € [1,n], E(Z;) = 0, and

1Zi|| < A2 Ky, || + 1A 2 m]| < 20/Nao(V). Furthermore,

BJIZi|? = E (A2 (K, = m), 8,20, - m) =B |87 K,,
< Noo(N).

2 2
—1/2
s

Thus, for p > 2,
D p—2 2 1 2 P2
E|IZilF <E(1Z1772)1Zi]2) < 50t (VD)) (VA=)
hence, by applying Proposition [7| with L = 24/N(A\) and 0 = /N (}),
44/ N (V) log(2/6) N \/ZNOO(/\)log(Q/(S)
n

n

[0 = vl <

W) <log(j/5) . 10g(2/5)>.

n

Finally, as |[v| < v/Noo(N),

1525 — v @] < SNa(A) <1°g(2/5) + 10g(2/5)>

n n

NPV <1og<2/5> . 1og<2/6>)2 |

n n

This concludes the proof of Lemma O
Lemma 6. For any A € (0, ||A]|] and any 6 € (0,1],

~Wlog 152 \/2 Foo (V) log 352

~ 4F
ATV2A A A—l/zH <
H A )25 3n n

i

with probability at least 1 — §.

Proof of Lemma[6 As in the proof of Lemma [5] we want to apply some concentration inequality
to the operator A;UQAA;UQ, whose mean is exactly A;UQAA;IM. The proof is almost the
same as Lemma [5] We start by writing

HA;UQ(K _ A)A;UQH _ HA;1/2£A;1/2 _ A;l/QAA;UZH

1 & _ _ _ _
=SS [ PVEL) @ (81 PV K,) - 828
1=1

In order to use Proposition [8} we bound for ¢ € [1,n],

H(A;UQVKM) ® (A;UzVKmi) _ A;l/ZAA;UQH < HA;1/2VKmi
< 2F 0 (N),

2 —1/2 —1/2
e
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and, for the second order moment,
2
E {((A;1/2VK%) ® (A;1/2VKxi) B A;WAA;I/?) }

= E |:HA)\1/2VK$'i (A;l/ZVsz) ® (A)\l/sz;E,i)] _ A;l/ZAAXIAA/:l/Z

2
H

< Fae(NAL2ANTT2,

—1
2THE2 ) - Since Tr(AAY) < A7'TrA and for
[asalls

A< AL [[AYTA| = 1/2, it follow that 8 < log 45%2. The conclusion then follows from (I3). O

We conclude by some estimation of 8 = log

: A
Lemma 7 (Bounding operators). For any A > 0, 6 € (0,1), and n > 15F () log 4?\\2 ,

~ 2
with probability at least 1 — §.

The proof of this result relies on the following lemma (see proof in [43, Proposition 8]).

Lemma 8. Let H be a separable Hilbert space, A and B two bounded self-adjoint positive linear
operators on H and X\ > 0. Then

H(A+>\I)71/2(B+M)1/2H <a_p

with B = Amax ((B + M)"Y2(B - A)(B + )\I)_l/Q) < 1, where Amax(O) is the largest eigenvalue
of the self-adjoint operator O.

We can now write the proof of Lemma [7]

Proof of Lemma[7 Thanks to Lemma [8] we see that
A-1/2 4 1/2]2 —1/2,R —172\\ ¢
1AL ZAY2] < (1= Amae (A2@ = 2)077))
and as HA;l/Q(ﬁ - A)A;lNH < 1, we have:

~_1/9 2 2 _1/2, -~ _1/9 —1
|8y < (1= ot @ - ayas])

4TrA
We can then apply the bound of Lemma IE| to obtain that, if A is such that % +

2 Foo(N) log 2128

~ 2
n < %, then HA;1/2A}\/2H < 2 with probability 1 — §. The condition on A is
satisfied when n > 15F () log 3248

O

D Calculation of the bias in the Gaussian case

We can derive a rate of convergence when y is a one-dimensional Gaussian. Hence, we consider the
one-dimensional distribution dy as the normal distribution with mean zero and variance 1/(4a).
2 2
Let b > 0, we consider also the following approximation P_* = inf Eulf7) + sl fllz where H
fer var,(f)
is the RKHS associated with the Gaussian kernel exp(—b(z — y)?). Our goal is to study how P,
tends to P when « tends to zero.
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Proposition 9 (Rate of convergence for the bias in the one-dimensional Gaussian case). If du
is a one-dimensional Gaussian of mean zero and variance 1/(4a) there exists A > 0 such that, if

A< A, it holds
PP <P+ BAIR®(1/))), (14)
where A and B depend only on the constant a.

We will show it by considering a specific orthonormal basis of L?(u), where all operators may
be expressed simply in closed form.

D.1 An orthonormal basis of L?(y) and H
We begin by giving an explicit a basis of L?(x) which is also a basis of H.

Proposition 10 (Explicit basis). We consider

fla) = (£) @) e 1, (Vaar)

a
where H; is the i-th Hermite polynomial, and ¢ = /a2 + 2ab. Then,

e (fi)i>o0 is an orthonormal basis of L?(u);

- i
o fi= )\g/zfi forms an orthonormal basis of H, with \; = ,/ﬁ (ﬁ) .
Proof. We can check that this is indeed an orthonormal basis of L?(p):

(s Fmd 220 (€ V2 m2tema)s® gk gy V2 (9mint) V2 H (Ve Hy(VEe) da

/ \/27r/4a
2c/7r(2kk!)71/2(2mm!)71/2/e_2CI2Hk(\/%x)Hm(\/%x)da;
R

= 5mk7

using properties of Hermite polynomials Considering the integral operator T : L?(u) — L%(u),
defined as T f(y) = [pe "~ V)’ f(x)dp(z), we have:

c\1/4 —1/2 _ 2 _ .02
T _ (7> 2kk' / (c—a)z? H /9 2az b(xz—y) d
fk(y) a ( ) = k( I) \/We € €T
C 1/4 71/2 1.2
=(- 2F k! e / (atb+0)2® [, (\/2¢2)e2™Y/2eda
(a> (2% w/277/4a Vac Hi(v2e)
C 1/4 _1/2 u+b+c 2 _2b_
=(- 2F k! e’ 7—/ - " Hy(x)evae"Ydz.
(a) ( ) V27 /4a V2c Jr k(@)
= m, that is, 1 — afbcﬂ = Zig;g = (a+Zic)2 = 42, which implies
that u = a+b+c, and then T ug = %
Thus, using properties of Hermite polynomials (see Section , we get:
e\ 1/ —1/2 g2 1 uF
Tfe(y) = <7) (Zkk:!) e VTV 1 — u2Hy(V2cy) exp 2cy
a \/27r/4a V2e
c\1/4 —1/2 1 V2c
=(- 2F k! — —— \/T——— H},(V/2¢y) exp(buy? — by?)u*
c\1/4 -1/2  VZ2a 1
= (= 2k k! — H,.(V2 —by? 4+ 2e 14 —— k
(a) (2K — o ( cy)eXp( by? + 2cy + 1 )u
V2a b k
= ( ) fi(y)
Va+b+cl\a+b+c
= Mo fi ()
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This implies that (f;) is an orthonormal basis of . O
We can now rewrite our problem in this basis, which is the purpose of the following lemma:

Lemma 9 (Reformulation of the problem in the basis). Let (a;); € ¢2(N). For f =32, a;fi, we
have:

o |15 = ZQQA ' =a' Diag(\) oy

o var,(f(2)) = Y a? — (Y mai)? =T (I — 1" )
i=0 i=0

e E,f'(z ZZala] MTM —aTMTMa,
=0 j=0

where 1 is the vector of coefficients of 1 and M the matriz of coordinates of the derivative

L2(p)
operator in the (f;) basis. The problem can be rewritten under the following form:

a’ (MM + kDiag(\) ™ 1a

—1 — . f 1
P=n al(I—m')a (%)
where
e\V4 [ 2a b P/ 2K)!
> = (< _
* vk =011 (a) a+c (a+b+c) 2k ) and foi+1 = 0
e VieN,(MTM), = % (2i(a® + ) + (a — %) and (MTM), ., % ((a2 — A+ D+ 2)).

Proof. Covariance operator. Since (f;) is orthonormal for L?(u1), we only need to compute for
each i, n; = E,, fi(x), as follows (and using properties of Hermite polynomials):

ni = (1, fi)r2 () = (2)1/4(2%’!)_1/2Ae—(c—u)x2Hi(@x)e—2ax2\/mdm
()" @y s [

R
_ (2)1/4(2%!)_1/2m(21Z)“QHAO)N.

This is only non-zero for i even, and

‘H (z)dx

c\ /4 —-1/2 | 2a c
=(=) (2%(2k)! k(0)(=1)F
"2k (a) a+c c+a )( )
B (E)l/‘l 2 ~1/2 | 2a c—a
" \a a+c c+a

- (Z)lw; (ilZ)k ”2(35)'
1/4
:<§) \/E(a—&—l;—kc) Qkk!

Note that we must have Y n? = ||1H2LQ( = 1, which can indeed be checked —the shrewd reader
-1/2

will recognize the entire series development of (1 — 22)
Derivatives. We have, using the recurrence properties of Hermite polynomials:

c a+c r
Vit Lfir + —=Vifi1,

,_a
j; - \/E

e



for ¢ > 0, while for i =0, fj = “\;EC f1. Thus, if M is the matrix of coordinates of the derivative

operator in the basis (f;), we have M, ,; = “\;Ec Vi+1land M;_,,; = “\'/"EC V/i. This leads to

(i, Fi ey = (M T M),
We have

(M M)ii = (fl, [ r2
= (4 1)@= +ila+0?)

c
1
= (22’(a2 +c) + (a— 0)2) for i >0,
(MTM)i,i+2 = <le7 fz'/+2>L2(p)
1
= E((a2 A+ D)+ 2)) for i > 0.

Note that we have Mn = 0 as these are the coordinates of the derivative of the constant function
(this can be checked directly by computing (Mn)ax+1 = Makt1,26M2k + Mokt1 2k+2M2k+2)-
O

D.2 Unregularized solution

E / 2
Recall that we want to solve P~ = inf M,. The following lemma characterizes the optimal

f vary,(f(z))

solution completely.

Lemma 10 (Optimal solution for one dimensional Gaussian). We know that the solution of the
Poincaré problem is P~ = 4a which is attained for f.(x) = x. The decomposition of f. is the basis

o N\ /4 ¢ \3/2 k/(2k+1)!
(fi)i is given by f. = leifi, where Vk > 0, vo, = 0 and vo41 = (5) \2/76(a2+c) / (Q+Z+C) %
i>0

Proof. We thus need to compute:

vi = (fe fi) L2
_ (2)1/4<2ii!)—1/2/e—(c—a)szi(\/%x)e—szz\/majdx
R
1/4 . 2
= ()BT [ By
R
= (2)1/4@%‘!)*” QM%C / e Hy(v)ada
R
4 . p— C a
- (2)1/ (2%41) 1/2\/Mi/e_%x2[ﬂi+l($)+2in'71(fc)]dx
R
VA, —1/2 VT 2¢c C— a\(i+1)/2 i
=(3) " W@\/;(QM) T H (0

. C— Q. (i-1)/2 i
+2Z(c—~—7a) Hz‘_l(o)l 1),
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which is only non-zero for ¢ odd. We have:

Vakp1 = (2)1/ (2247 (2k + 1))~ /2a)m LT

a

+2(2k+1)(21

— (E)l/ (22k+1(2k+1 ) 1/2\/ﬁ\f

— (E)l/ (22541 2k 1 1)) UQ\/ﬁ

aicc( k+1H2k+2(0)(—1)k+1
+2(2k+1)( ) Ha (0)(— 1)’“)

2c c—a

a-+c c+a

<(c+

c+a

%) Har(0)(~1)%)

a-+c

_ (2)1/4(22’““(2k+1 1) "V22afx \f ai‘:c ()" (~1)2(2k + ) Han(0)

_ (2)1/4(22’““(%4— 1)!)‘”%&%(%)3”(01Z)"’(_nk(% + 1) Hog (0)
o 1/4 c k

= (5) " er ) VA (2 ek

_(e\Y4/a, 2c (32, c—a\ky/(2k+1)!

B (5) TC(G—FC) (c—l—a) 2k

_(cC Yiy/a, 2¢ \3/2 b (2k 4+ 1)!

N (g) ?c(a—l—c) (a+b+c) 2k k!

Note that we have:

MTV = <]-7f*>L2(,u) =0

1 = fllZ2 () = 1a
MT My = 4dav.

1

2 (9 Hapa0) (1)

)2(2k -+ 1) Hou (0) + 2(2k + 1) Hox (0) )

2c
c+a

The first equality if obvious from the odd/even sparsity patterns. The third one can be checked
directly. The second one can probably be checked by another shrewd entire series development.
If we had v Diag(\)~!v finite, then we would have

PPl <P

'(1+4 kv Diag(\)"'v),

which would very nice and simple. Unfortunately, this is not true (see below).

D.2.1 Some further properties for v

We have: <2 = —b _and the following equivalent

ct+a a+b+c?
constants). Thus

2c

b

25k (k/e)k N~ TTRRTI/Z

5 . e\1/2 g 3 2k—2k—-1 ja+b+c
Ml < (5) 75 g Vk=0
|V2k+1 2k+1‘ a Cz(aJrc) (a+b+c> 2, vk
hence,
2m—+1
Z v~ o(m?/?).
k=0
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Consequently, v Diag(\)lv = +oc.

Note that we have the extra recursion

1
v = —— [Vk + U1 + VEne_1].
k \/ZE[ Nk+1 Nk 1]

D.3 Truncation

We are going to consider a truncated version «, of v, with only the first 2m + 1 elements. That is
ap = v for k < 2m + 1 and 0 otherwise.

Lemma 11 (Convergence of the truncation) Consider g™ = > 3" o arfr = kaH Vi fr, recall
that v = a+b+c For m > maz{— 1, GC} we have the following:
(i) |lall? = 45| < Lmu?™

(i1) a’n=0
(iii) laTMTMa — 1| < Lm?u®™
(iv) o Diag(\)~ta < Lm?/?,
where L depends only on a,b,c.

Proof. We show successively the four estimations.

(i) Let us calculate [|af[?>. We have: [|af|* — & = [lof|> = [[V]|> = Yp0,.41 V3541~ Recall that
1/4 ¢ \3
“:a+2+c 1, by noting A = ( ) ‘C(a+c)/,wehave
— (2k+1)!
ol 5 =4 3

Now by Stirling inequality:
(2k + D! o _ e (2k+ 1)L/ o= (2h+1)
(2FED2 © T (V2m2kkkt1/2-k)2
2k+1 1/2
2 1 1
:f(l+) (k:—l—) ut.

s 2k 2
< %\/Eu%.

™

u

1
And for m 2 T Ilnu’

Z VEu?* < /00 Vzu*®dx

m—+1 m

3

zu*®dx
m

(1 -2mlnu)
(2Inu)?

mu2m

S Wn(i/a)

2m

Hence finally:
< 4A%
mln(1l/u)

1
2 [ —
‘nan N

muQm
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(ii) is straightforward because of the odd/even sparsity of v and 7.
(iii) Let us calculate |[Mal||?. We have:

IMa* =1 = [|Malf* — | Mv||?

_ . T
- Z Vors1vaj1 (M M)%H,Qj+1

k,j=>m+1
2 T T
= Z Vokt1 (M M)2k+1,2k+1 +2 Z Vak+1V2k+3 (M M)2k+1,2k+3
k=m+1 k=m+1
A2 X (2k+1)!
= Z NCTEER (2(2k + 1)(a® + ) + (a — ¢)?) u?*
k=m+1

C24%b N V/E+ D! /(2% +3)! o
kz @R @R D (2k + 2)(2k + 3)ur+1,
m—+1

Let us call the two terms w,, and v, respectively. For the first term, when m > max{— 41nu, é

a calculation as in (i) leads to:

24A2 u —|—c o 2
= (o

| < ———— [ aVaudo+ = [vI?)
m

24142 > 4A2
u Al tc) ¢ 22 dr — mu™

m mlnu
24A2 ( + ) u?m(2mInu2mIn(u) —2) +2) 4A% .
e 81n®(u) Tl
12A%e(a® + ?) 4 o, 4A%
 weln(u) " Crhnu

4A2 2, 2
B e (3((1 +c )m+1) 2™
c

mu2m

mlnu
24 A%ce 9

< 2m
wln(l/u)m “

and for the second term, applying another time Stirling inequality, we get:

VEEA D! VEREEI oy _ 2 @k DT e (02 o2 0k 4 3)M T e (52
2k 2k+1(k F 1)! X [0k k+1/20—k A /271.2k+1(k + 1)k+3/2e—(k+1)
2k + DM k43T
T V2m2kER+1/2 \ 22kt (K 4 1)k+3/2

\/Q (1 + L)k+3/4 (1 + )k‘+7/4
I 2k 7)k+3/§k \/Eu2k+l
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2m+1 30A2 b 3
Hence, as Z \/Eu%—&-l < —u7 we have |Um| < W((i/i)mu

Inu
k>m+1
(iv) Let us calculate o' Diag(A)~'a. We have:

2m

o' Diag(\) ta = Z V§k+1>\2_k1+1
k=0
_ 42 bu Zm: (2k + 1)!u2ku—(2k+1)

_ 2,0 f:(%—i—l)!

442 48 A? A%abe® 8A?
(Final constant.) By taking L = max{ - 8A%cc G0A7abe” 8 6\/5}, we have

mln(1/u)’ 7In(1/u)’ meln(1/uw)’ 7v/2au
proven the lemma. O

We can now state the principal result of this section:

Proposition 11 (Rate of convergence for the bias). If x < min{a?,1/5,u"/®} and such that

In(1/k)K < an(iéu)} then

-1 -1 -1 L 2
PP, <P (1+21r12(1/u)ﬁln (1/5)) (16)

Proof. The first inequality P~1 < P_! is obvious. On the other side,

BT (MT M + kDiag(\)~1)3 < a(MTM + kDiag(\) ™o

'Pﬁ_l = 1nf X ’
[ BT —mm™)B al (I —m"a
With the estimates of Lemma we have for mu?™ < ﬁ:
2, 2m 3/2
P;1<1+Lmu + rLm

& — Lmu?m
a

<P+ Lm%u®™ + kLm®/?).

Let us take m = 21?15(11//’2) .Then

In?(1/k) L In%/2(1/k)
41n?(1/u) 23/21n%/2(1 /u)

_ In?(1/k)
<P (1 FRL g o ln2(1/u)) ,

Pl<P1+kL

)

as soon as k < a?. Note also that the condition mu?™ < 4(%]: can be rewritten in terms of m as

kIn(l/k) < lnéi/L“). The other conditions of Lemma are k < e 3/2 ~ 0.22 and k < ul/Go

O
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D.4 Facts about Hermite polynomials
Orthogonality. We have:

/ ™ Hy(2)Hm (z) = 28K/ T8 km.
R
Recurrence relations. We have:

and
Hi+1(ﬂj‘) = QI‘HZ(%) - 2ZHZ_1($)

Mehler’s formula. We have:

o~ Hi(@)e " PHy)e "2 o 1 1 (s u? ) _ 2 y2)
= — X —_— J— — — — .
P 2k kT i P Y 22
1

This implies that the functions = — T\/i exp (H—u Ty — %(m —y)? — L; — %) has

Hy(y)e ¥ Hy(x)e™ a?/2
coefficients 7\/% u* in the orthonormal basis (z + VoV ) of Lao(dzx).
Thus
/ 1 1 ( 2 ’LL2 ( )2 1,2 )Hk( ) —x2/2d Hk( )e y2/2 k
e VAV @ T T NG NN
that is

[ ((2hay = e = 0 o) Huw)de = VAV 2 ()

R 1 +u
This implies:

2

2u x? u Nk
exp ( T ) r)dr = /71 — u2H(y) exp( T2V Ju
R — u u

12T

[~

Another consequence is that

For y = 0, we get

2
I ) x)dr = /71— u2H(0
—u?

i Hk(x)Hk(y)uk _ 1 1
P 2kk!ﬁ T+/1 — u?

_ ex( 2u Ty — u (1’2+ 2)+L(1‘2+ 2))
TV P\ i T g Tyt T

1 1 U 9 U 9 9
= R P *1_u2(m*y))exp(1+u(x +y))
1V u 5\ 1 u o, g 2)
Vi G A y))\/anp<1+u(x )

Thus, when u tends to 1, as a function of x, this tends to a Dirac at y times v’
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