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Abstract Quantifying model uncertainty and internal variability components9

in climate projections has been paid a great attention in the recent years. For10

multiple synthetic ensembles of climate projections, we compare the precision11

of uncertainty component estimates obtained respectively with the two Analy-12

sis of Variance (ANOVA) approaches mostly used in recent works: the popular13

Single Time approach (STANOVA), based on the data available for the con-14

sidered projection lead time and a time series based approach (QEANOVA),15

which assumes quasi-ergodicity of climate outputs over the available simula-16

tion period.17

We show that the precision of all uncertainty estimates is higher when more18

members are used, when internal variability is smaller and/or the response-to-19

uncertainty ratio is higher. QEANOVA estimates are much more precise than20

STANOVA ones: QEANOVA simulated confidence intervals are roughly 3 to21

5 times smaller than STANOVA ones. Except for STANOVA when less than22

3 members is available, the precision is rather high for total uncertainty and23

moderate for internal variability estimates. For model uncertainty or response-24

to-uncertainty ratio estimates, the precision is low for QEANOVA to very low25

for STANOVA. In the most unfavorable configurations (small number of mem-26

bers, large internal variability), large over- or underestimation of uncertainty27

components is thus very likely. In a number of cases, the uncertainty analysis28

should thus be preferentially carried out with a time series approach or with a29
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local-time series approach, applied to all predictions available in the temporal30

neighborhood of the target prediction lead time.31

Keywords Uncertainty Sources · Climate Projections · ANOVA · Internal32

Variability ·Model Uncertainty · Scenario Uncertainty · Precision of Estimates33

1 Introduction34

A critical issue in climate change studies is the estimation of uncertainties in35

projections along with the contribution of the different uncertainty sources,36

including scenario uncertainty, the different components of model uncertainty,37

and internal variability (e.g. Hawkins and Sutton, 2009).38

Scenario uncertainty is related to the poorly known future of greenhouse39

gas emissions. Model uncertainty corresponds to the dispersion between the40

different climate responses obtained with different models for the same forcing41

configuration. Model uncertainty concerns Global Climate Models (GCMs) but42

also all subsequent models of the climate change impact modeling chain, such43

as Regional Downscaling Models (regional climate models and/or statistical44

downscaling methods) and impact models like Hydrological Models (HMs).45

Internal variability first originates from the chaotic variability of the climate46

at the global scale (e.g. Räisänen, 2001; Deser et al, 2012). At the local scale, it47

also results from the fact that very similar large scale atmospheric circulation48

configurations can lead to very different meteorological observations (Braun49

et al, 2012; Lafaysse et al, 2014).50

Estimating and partitioning uncertainty in future climate projections is51

first intended to help evaluating the significance of estimated changes for adap-52

tation purposes. Besides, this is intended to highlight the most important un-53

certainty sources. This thus allows estimating the fraction of total uncertainty54

that could be narrowed via scenario refinement and model improvement, and55

its irreducible fraction pertaining to natural variability (e.g. Hawkins and Sut-56

ton, 2011; Lafaysse et al, 2014).57

Over the recent years, uncertainty has been mostly explored and parti-58

tioned based on Multiscenarios Multimodel Multimember Ensembles (MMEs)59

of transient climate projections. Various methods have been proposed for this,60

most of them based on an Analysis of Variance (ANOVA) of projections avail-61

able for the specific projection lead time considered (Hingray et al, 2007; Yip62

et al, 2011; Bosshard et al, 2013; Giuntoli et al, 2015; van Pelt et al, 2015;63

Paeth et al, 2017). In this single time approach – called STANOVA in the64

following –, and provided multiple members are available for each modeling65

chain, the model uncertainty components are estimated from the dispersion66

between the climate responses of the different modeling chains, obtained for67

each chain from the multimember mean of the projections. Similarly, the in-68

ternal variability component for each modeling chain is estimated from the69

inter-member variance of the projections.70

The different uncertainty components can also be estimated from a time71

series approach, benefiting from the long time series now available for most72
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climate experiments (e.g. Johns et al, 2011; Jacob et al, 2014). A quasi-ergodic73

assumption for climate simulations in transient climate is often used in this74

context (Hingray and Säıd, 2014). It considers that the temporal variations75

of the climate response of a particular simulation chain are necessarily grad-76

ual and smooth, the higher frequency variations of the time series being due77

to internal variability alone. It considers next that the internal variability78

can be assumed to remain roughly constant over the considered period or to79

vary as a gradual and smooth function of the climate response of the chain.80

These assumptions were used for instance by Räisänen (2001); Hawkins and81

Sutton (2009, 2011); Charlton-Perez et al (2010); Lafaysse et al (2014); Brace-82

girdle et al (2014); Reintges et al (2017). In this time series approach called83

QEANOVA in the following, the climate change response of each simulation84

chain and its possible evolution with time is obtained from the long term trend85

estimated from the time series of the chain. The variance over time of the de-86

viation from the climate response defines the internal variability of each chain.87

The climate responses of the different chains can be used to estimate the com-88

ponents of model uncertainty for any projection lead time, thanks again to a89

usual ANOVA.90

In both approaches, a potentially critical step is the possibility to identify91

a precise estimate of the climate response of each modeling chain. A number of92

previous works advocated the use of multiple runs to improve this identification93

(e.g. Kendon et al, 2008; Deser et al, 2012; Kew et al, 2011). Unfortunately94

a limited number of members have until now been usually available for most95

modeling chains, logically deriving from the small number of GCM runs (e.g.96

Johns et al, 2011; Jacob et al, 2014; Paeth et al, 2017; Reintges et al, 2017). In97

a number of analyses, the discrimination between internal climate variability98

and the climate response of each modeling chain is thus expected to be quite99

inaccurate owing to the limited ensemble size especially when the internal100

variability is non-negligible compared to the chain’s climate responses (e.g.101

Deser et al, 2012; van Pelt et al, 2015).102

These inaccuracies translate to inaccuracies in estimates of uncertainty103

components and of derived characteristics (e.g. response to uncertainty ratio,104

significance of projected changes, time of emergence of climate change, etc.).105

In specific analysis configurations, the precision of uncertainty component es-106

timates is potentially low to very low, but to our knowledge this issue has107

never been considered.108

In the following, we characterize the precision of uncertainty components109

estimates when obtained either with the single time or the time series ap-110

proaches introduced previously. The precision is obviously expected to depend111

on the multimodel multimember ensemble of projections (MME) available for112

the analysis and on the climate variable considered for the analysis. In the113

following, both ANOVA approaches are applied to multiple synthetic MMEs114

obtained via Monte Carlo simulations. We consider a simplified configuration115

where MME account for two uncertainty sources: model uncertainty and in-116

ternal variability. The analysis framework we follow here is rather crude but it117

allows comparing both ANOVA approaches for a large number of MME config-118
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urations with different characteristics. We especially discuss how the precision119

depends on the number of members used in the analysis, and we characterize120

the gain in precision obtained with the time series based approach, owing to121

the larger size of the data set accounted for. We also discuss the results for122

different levels of internal climate variability contribution to total uncertainty123

variance. We first focus on the precision of estimates obtained for model un-124

certainty and internal variability. We next consider the precision of estimates125

obtained on the one hand for the mean climate response from the model en-126

semble and on the other hand for the response to uncertainty ratio frequently127

used to estimate the significance of estimated changes.128

All recent analyses of uncertainty sources in climate projections make use of129

the moment estimators of variance components. The present study also makes130

use of such estimators in order to put the precision of uncertainty estimates131

derived from these analyses into perspective.132

The statistical bases for the estimation of uncertainty components in a133

given MME are summarized in section 2 for both the single lead time ANOVA134

and the quasi-ergodic ANOVA approaches. The Monte Carlo experiment for135

the simulation of multiple synthetic MMEs is presented in section 3. The136

precision of uncertainty estimates is presented in section 4, and discussed in137

section 5. Section 6 concludes.138

2 ANOVA methods139

2.1 Transient ensembles of climate experiments140

Let us consider a hypothetical ensemble of climate experiments where M dif-141

ferent members are available for each of G different climate modeling chains.142

For the sake of simplicity, we assume that the same number of members is143

available for each chain. A chain refers for instance to a given GCM and the144

members to the different runs available for each GCM. A chain could also re-145

fer to a given GCM/RDM combination or to a given GCM/RDM/HM model146

combination. Members would respectively refer to the potentially multiple re-147

alizations obtained with the different runs for each GCM/RDM combination148

or for each GCM/RDM/HM combination (e.g. Lafaysse et al, 2014; Vidal et al,149

2016).150

Note Y (g,m, t) the climate projection obtained for the mth member of151

chain g for time t. Y (g,m, t) can be expressed as:152

Y (g,m, t) = λ(g, t) + ν(g,m, t), (1)

where λ(g, t) is the climate response of model g for year t and ν(g,m, t) is the153

deviation from the climate response obtained with the member m for this year154

as a result of internal variability (IV).155

As in most climate impact studies, the uncertainty analysis can be carried156

out for the change variable X. In the following, we consider absolute changes,157
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but a similar analysis could be obtained for relative changes. Absolute changes158

are expressed as:159

X(g,m, t) = Y (g,m, t)− Y (g,m, tC), (2)

where X(g,m, t) are the experiment outputs of the change variable for a given160

member m of each chain g, each year t and where tC refers to a given reference161

year (or n-yr reference period centered on year tC). These change outputs can162

be written as:163

X(g,m, t) = ϕ(g, t) + η(g,m, t), (3)

where ϕ(g, t) is the climate change response of chain g for t and where η(g,m, t)164

are the residuals obtained for the mth member of chain g as a result of IV.165

In the following, we assume that the climate change response can be further166

decomposed as:167

ϕ(g, t) = µ(t) + α(g, t), (4)

where µ(t) is the mean climate change response from all available chains at168

projection lead time t, α(g, t) is the deviation from µ(t) for the climate change169

response of chain g.170

By assumption, no correlation is expected between the change responses171

and the residuals η′s. If the residuals are additionally independent and iden-172

tically distributed (i.i.d.), the total uncertainty of the change variable at t is173

σ2
X(t) = s2α(t) + σ2

η(t) where s2α(t) is the sample variance of the α’s in equa-174

tion (4) and σ2
η(t) the variance of the η′s in equation (3). They respectively175

correspond to the model uncertainty and IV components of total uncertainty176

variance for X. Note that, for any given chain g, no correlation is expected177

between the values of the residuals ν(g,m, t) obtained from the raw variable178

Y in the reference and in a future climate. The IV of the change variable X179

is thus the sum of the IV estimates for Y obtained for the reference and the180

future periods respectively.181

In the following, we detail the two ANOVA approaches used to estimate (1)182

the mean climate change response µ(t), (2) the deviations α(g, t) for the differ-183

ent models, (3) the total uncertainty variance σ2
X(t), (4) its model uncertainty184

s2α(t), and (5) its IV component σ2
η(t). We will also consider the Response-to-185

Uncertainty ratio R2U(t) defined as R2U(t) = µ(t)/σX(t), the fraction Fα(t)186

of total variance explained by model uncertainty and the fraction Fη(t) of to-187

tal variance explained by internal variability. Moment estimators of variance188

components are used here for both ANOVA approaches.189

2.2 Single Time ANOVA method190

The Single Time ANOVA method (STANOVA in the following) is by far the191

most frequently used approach for the last years. It consists in estimating an192

ANOVA model on the projected changes X(g,m, t) for each time step t in193

turn. For any given t, climate projections data available for the time steps194

that precede and follow t are disregarded.195
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The STANOVA method uses an ANOVA model with fixed effects of the196

form of equations (3) and (4). The residuals are assumed to be i.i.d. In this197

configuration, an unbiased estimator of the residual’s variance σ2
η at time t is198

the multimodel mean of the inter-member variance at t, expressed as (Mont-199

gomery, 2012):200

σ̂2
η,ST (t) =

1

G(M − 1)

G∑
g=1

M∑
m=1

{X(g,m, t)− ϕ̂ST (g, t)}2 (5)

where ϕ̂ST (g, t) is an estimate of the mean climate change response for model201

g at t estimated over all M members as ϕ̂ST (g, t) = 1
M

∑M
m=1X(g,m, t).202

The model uncertainty variance is the inter-model sample variance of the203

deviations α(g, t) for all g, namely s2α(t) = 1
G−1

∑G
g=1{α(g, t)}2. An unbiased204

estimator of s2α(t) under constraint
∑G
g=1 α̂ST (g, t) = 0 is (Montgomery, 2012):205

206

ŝ2α,ST (t) =
1

G− 1

G∑
g=1

{α̂ST (g, t)}2 − 1

M
σ̂2
η,ST (t) (6)

where α̂ST (g, t) is an estimate of the deviation α(g, t) for model g, namely207

α̂ST (g, t) = ϕ̂ST (g, t) − µ̂ST (t) with µ̂ST (t) the overall mean climate change208

response estimate at t, namely µ̂ST (t) = 1
G

∑G
g=1 ϕ̂ST (g, t).209

An unbiased estimator of the total variance for X(g,m, t) finally reads:210

σ̂2
X,ST (t) = ŝ2α,ST (t) + σ̂2

η,ST (t).211

2.3 Quasi-Ergodic ANOVA method212

A time series ANOVA approach consists first in estimating for each chain g the213

climate response from the raw projections Y (g,m, t). This is typically achieved214

by fitting a trend model to one of the members available for each chain (e.g.215

Hawkins and Sutton, 2009; Reintges et al, 2017). In the Quasi-Ergodic ANOVA216

method (QEANOVA in the following) considered here, the trend model is217

not obtained from one given member but from all the M members Y (g,m, t)218

available for the chain (Hingray and Säıd, 2014). The trend model is assumed219

to give an unbiased estimator of the climate response function λ(g, t) of the220

chain (the limitations linked to the choice of the trend model are discussed in221

section 5.2). In this case, the trend model for Y gives an unbiased estimator222

of the climate change response function of the chain ϕ(g, t), as:223

ϕ̂QE(g, t) = λ̂QE(g, t)− λ̂QE(g, tC) (7)

where λ̂QE(g, t) and λ̂QE(g, tC) are the trend estimates of the raw projections224

Y for the future and reference periods respectively.225

Under the quasi-ergodic assumption, the IV of chain g for the raw data Y is226

estimated as the variance over time of the residuals from the climate response227

estimated for the chain, namely {Y (g,m, t)−λ̂QE(g, t)}. Note that all residuals228
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from all members are used here. If the experiment period covers T time steps,229

the IV of chain g is thus estimated from a sample of size T ×M . Assuming230

no correlation between residuals obtained for the reference and future periods231

and assuming that the IV variance for Y is constant over the entire experiment232

period, the IV of chain g for the change variable X is twice that of the raw233

variable Y (Hingray and Säıd, 2014).234

An unbiased estimator of the IV component for X is derived from the235

multimodel mean of the IV estimates obtained for the G different chains re-236

spectively (Hingray and Blanchet, 2018, see also Appendix A, Eq.A.3 and237

Eq.A.6). When for each chain g, the trend model for Y can be expressed as a238

linear combination of L functions of time, it reads :239

σ̂2
η,QE =

2

G(TM − L)

G∑
g=1

M∑
m=1

T∑
k=1

{
Y (g,m, tk)− λ̂QE(g, tk)

}2

. (8)

When the trend model is a simple linear function of time, L = 2.240

An unbiased estimator of the sample model uncertainty variance s2α(t)241

under constraint
∑G
g=1 α̂QE(g, t) = 0 is (Hingray and Blanchet, 2018, see also242

Appendix A, Eq.A.5):243

ŝ2α,QE(t) =
1

G− 1

G∑
g=1

{α̂QE(g, t)}2 − A(t, C)
M

σ̂2
η,QE , (9)

where α̂QE(g, t) is as previously an estimate of the deviation α(g, t) for model g244

expressed as α̂QE(g, t) = ϕ̂QE(g, t)− µ̂QE(t) with µ̂QE(t) = 1
G

∑G
g=1 ϕ̂QE(g, t)245

the overall mean climate change response at t. A(t, C) depends on the projec-246

tion lead time and on the different functions of time used for the trend model247

of Y (Hingray and Blanchet, 2018). It is positive and smaller than 1. The248

expression of A(t, C) is given in Appendix A when the trend model is a simple249

linear function of time (Eq. A.7).250

An unbiased estimator of total variance for X(g,m, t) finally also reads:251

σ̂2
X,QE(t) = ŝ2α,QE(t) + σ̂2

η,QE .252

3 Simulations253

In the following, we mainly focus on the precision of uncertainty estimators254

obtained with STANOVA and QEANOVA methods for the change variable255

X(g,m, te) obtained between some future prediction lead time te and the ref-256

erence period tC .257

We construct via Monte Carlo simulations multiple synthetic MMEs where258

each MME is composed of M × G times series of raw projections Y (g,m, t),259

with M the number of members for each of the G chains (see Appendix C260

for details). For reasons of simplification, each MME is simulated based on261

the assumptions that the climate response function of each modeling chain g262



8 Benoit Hingray et al.

is a linear function of time and that the random deviations ν(g,m, t) due to263

internal variability come from independent and normally distributed random264

variables: ν(g,m, t) ∼ N (0, σ2
ν).265

Each MME simulated for Y (g,m, t) allows deriving the corresponding time266

series for X(g,m, t). In the present analysis, for graphical simplification pur-267

poses, each MME for Y is constructed so that it leads, for X at time t = te,268

to a prescribed value of the Response-to-Uncertainty ratio [R2U(te)] and to269

a prescribed value of the fractional variance Fη(te) due to internal variability270

(Appendix C).271

In the following, simulations were produced over the 1960-2100 period for272

a 10-yr average climate variable (see illustrative MMEs in figure 1). Decadal273

time series were next aggregated to 20-yr time series for all analyses presented274

in section 4, in order to match with the usually preferred 20-yr temporal275

resolution in climate analyses. Y (g,m, t) time series are thus constituted from276

7 values each (T = 140/20). The reference period is tC = 1990.277

For the sake of simplicity, a unique number of chains is considered in the278

following section (G = 5). The influence of the number of chains on the results279

is discussed in section 5.1. Most results are finally presented for prediction lead280

time te = 2050. te will be thus omitted in most following notations.281

[ FIGURE 1 HERE ]282

For each MME, both STANOVA and QEANOVA models are applied, al-283

lowing estimating the ratio R(θ) = θ̂/θth between the estimated value θ̂ and the284

theoretical (prescribed) value θth of different parameters θ: the grand ensem-285

ble mean response µ(tE), the uncertainty variances s2α(tE), σ2
η(tE), σ2

X(tE), the286

Response-to-Uncertainty ratio [R2U(tE)] and the contribution to total vari-287

ance of internal variability and model uncertainty, Fη(tE) and Fα(tE).288

We run the simulations for different combinations of prescribed R2U and289

Fη values and for different numbers of members M . For each combination, we290

simulate 1,000 MMEs. We subsequently estimate, for each parameter θ, the291

mean E[R(θ)] and the standard deviation SD[R(θ)] of the corresponding 1,000292

ratios R(θ).293

Application of a QEANOVA method requires fitting a trend model to the294

raw climate projections Y . A parametric model is usually used for convenience.295

For simplicity, we here also assume that the trend is a linear function of time296

for the whole transient period [t1, tT ] (the influence of the trend model on the297

results is discussed in section 5.2). The estimation is made using ordinary least298

squares.299

Equations (5) and (8) give unbiased estimators of σ2
η. Respectively, equa-300

tions (6) and (9) give unbiased estimators of s2α. E[R(θ)] obtained for σ2
η and s2α301

with both STANOVA and QEANOVA approaches are therefore expected to302

equal one whatever the (M,Fη, R2U) configuration. This actually also applies303

to all other STANOVA and QEANOVA estimators (not shown).304

We therefore focus on the precision of estimators from STANOVA and305

QEANOVA approaches, i.e. on results obtained for SD[R(θ)], denoted SD below306

for shortness. The smaller the standard deviation, the better the precision of307
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the estimator. We will additionally look at the ratio SDST /SDQE , denoting308

the gain in precision obtained with the QEANOVA approach with respect to309

the STANOVA approach. The larger this ratio, the larger the gain.310

The uncertainty analysis with the STANOVA method requires at least311

two members for each chain. This is not the case for the QEANOVA method312

which can be carried out with no more than one single member for each chain.313

In the following, we also present, for information, results obtained with the314

QEANOVA method in case of single member MMEs.315

4 Results316

In our case and whatever the (M,Fη, R2U) configuration, the distribution of317

the R(θ) ratios obtained respectively from the 1000 synthetic data sets was318

always found to be roughly normal (not shown). In a first approximation, the319

SD value of R(θ) thus determines the probability that the R(θ) ratio is outside320

of any [1 ± e] interval, that is the probability that the estimated value of321

the considered parameter is at least 100e% smaller or 100e% greater than the322

theoretical value. For instance, the probability that the ratio R(θ) is outside the323

[0.5,1.5] interval is 1%, 32% or 62% when SD is 0.2, 0.5 or 1 respectively. When324

the SD value is greater than 0.5, the probability for a large underestimation325

(let say R(θ) < 0.5) or for a large overestimation (let say R(θ) > 1.5) is thus non326

negligible (i.e. p > 0.32). When SD is greater than 1, a large underestimation327

or overestimation of the considered parameter is very likely (i.e. p > 0.62).328

4.1 Variance components, total and fractional variance329

SD results obtained for variance parameters (σ2
η, s

2
α, σ

2
X , Fη, Fα) are roughly330

independent on the R2U value prescribed for the simulation of the synthetic331

MMEs (not shown). They conversely depend on the value prescribed for Fη332

and on the number of members M . We here therefore only present results via333

the SD response functions in the (M,Fη) domain.334

For the different variance parameters and both ANOVA methods, SD val-335

ues are logically higher for small M numbers. Except for internal variability,336

they are also higher for large Fη values, highlighting the lower precision of the337

estimators in these configurations (figure 2). For all parameters, STANOVA338

SD values are also logically higher than QEANOVA SD values.339

[ FIGURE 2 HERE ]340

For internal variability estimates, σ2
η, SD values do only depend on M .341

For configurations with M ≤ 3, STANOVA SD values are greater than 0.4,342

highlighting the possibility for significant errors in σ2
η estimates. Whatever the343

(M ,Fη) configuration, QEANOVA SD values are at least 3 times smaller than344

STANOVA SD values. QEANOVA estimates are thus expected to be much345

closer to the theoretical value.346
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For model uncertainty estimates s2α, the precision gain obtained with QEANOVA347

is at least 2.5. It is up to 4 for high Fη values (e.g. > 90%) or even more when348

M is smaller than 5. Whatever the (M ,Fη) configuration, SD values are much349

larger than those obtained for internal variability. In the most unfavorable350

configurations (very low M and very high Fη values), STANOVA SD values351

are noticeably higher than 6! s2α estimates are very likely to be largely over352

or underestimated. In those cases, a misestimation can also be obtained with353

QEANOVA but it would be somehow less critical.354

Compared to s2α and σ2
η, the potential error for total variance estimates,355

σ2
X , is likely to be small for both methods. SD values are globally smaller than356

0.2 for QEANOVA. For STANOVA, they are smaller than 0.3 except in the low357

M and high Fη configurations. This suggests that for any given dataset, errors358

obtained for s2α and σ2
η partly compensate. The gain in precision obtained with359

QEANOVA is around 2.5, whatever the (M ,Fη) configuration.360

SD response functions obtained for fractional variances estimates, Fη and361

Fα, are very similar to those obtained for σ2
η and s2α estimates respectively (not362

shown). Whatever the method, errors in Fη estimates are thus not expected363

to be very large. For Fα, large errors are conversely expected with STANOVA364

in the most unfavorable (M ,Fη) configurations. The gain in precision obtained365

with QEANOVA is again at least 2.5.366

4.2 Mean response and Response-to-Uncertainty ratio367

We focus here on the estimates obtained for the mean change response µ and368

for the Response-to-Uncertainty ratio R2U. For both ANOVA methods and369

both parameters, SD values are again logically higher for smaller M and/or370

higher Fη values. SD values additionally depend on the theoretical value pre-371

scribed for the Response-to-Uncertainty ratio R2U. SD values decrease when372

the theoretical value for R2U increases.373

Results are presented in Figure 3 for µ estimates and three theoretical374

R2U values (0.2, 1, and 5). They illustrate typical configurations encountered375

in climate analyses. A R2U value as high as 5 can be for instance typically376

obtained in the 2050s for large scale temperature variables (e.g. global mean377

temperature as in Hawkins and Sutton (2011)). A R2U value as low as 0.2378

can be conversely obtained for noisy systems, e.g. regional climate variables379

with a high natural variability (e.g. 20-yr average regional precipitation as in380

Hingray and Säıd (2014)).381

For µ estimates, STANOVA SD values obtained when R2U = 0.2 are often382

greater than 0.5 and even exceed 2.5 for the most unfavorable (M , Fη) con-383

figurations. When R2U = 1, SD values are much smaller. They are lower than384

0.15 except for the low M and high Fη configurations. For larger prescribed385

R2U values, SD values tend to be negligible: they are always smaller than 0.03386

when R2U = 5. QEANOVA SD values present a similar dependence on M , Fη387

and R2U. They are however again much smaller than STANOVA SD values388

(roughly 2.5 times smaller whatever the M , Fη and R2U configuration).389
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[ FIGURE 3 HERE ]390

For R2U estimates, the structure of SD response functions are very similar391

to those obtained for µ estimates (not shown). SD values are however system-392

atically larger (from +20% for R2U=0.1 to more than +100% for R2U=5). For393

noisy systems and the most unfavorable (M ,Fη) configurations, large errors394

are therefore expected with STANOVA. Errors are conversely expected to be395

low to moderate with QEANOVA estimates, which are at least 2.5 times more396

precise.397

5 Discussion398

5.1 Dependence to the setup and size of the projection ensemble399

For the sake of simplicity, we considered that MMEs are composed of 5 mod-400

elling chains. This is much less than the number of chains currently available401

in recent CMIP MMEs. We also considered that the same number of members402

is available for all simulations chains. This is obviously never the case in real403

MMEs which are mostly unbalanced. In real MMEs, a large number of model404

combinations is also typically missing when the projections are produced with405

chains composed of different models (e.g. not all GCM/RCM combinations are406

available when projections are produced with different RCMs from different407

GCM outputs).408

Whatever the ANOVA method, estimates of the different uncertainty com-409

ponents are expected to be more precise when more members are available,410

when the number of chains is larger and/or when the number of missing model411

combinations is smaller. In most of the cases however, a time series approach412

is still expected to produce more precise estimates of uncertainty components413

than a single time approach. This obviously results from the larger sample size414

used for the estimation which allows for a more precise estimate of the climate415

response and of the internal variability of each simulation chain.416

As an illustration, the previous analysis was repeated with MMEs com-417

posed of 10 simulation chains instead of 5 (see Supplementary Material, Fig-418

ure A1). As expected, the precision of all uncertainty components estimates419

is better with 10 chains (for both approaches) and QEANOVA estimates are420

more precise than STANOVA ones. In the present case, the gains in precision421

are actually roughly the same than those presented previously with 5 chains.422

5.2 The trend estimation issue in the QEANOVA approach423

In the present case and for convenience, time series of the synthetic MMEs are424

simulated based on the assumption that the climate response of each chain is425

a linear function of time. The QEANOVA trend function used to estimate the426

climate response of each chain is also assumed to be a linear function of time.427
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In real datasets of projections, the climate response likely evolves in a428

more complex way, perhaps differently in different chains. In practice, the429

precise form of the climate response is not known, and for small ensembles and430

noisy systems it may be quite difficult to guess and/or fit. If the chosen trend431

model were incorrect for some chain, the response function estimate could be432

locally biased. Incorrect trend models could then lead to significant errors in433

the estimation of the local effects of the chains, and additional uncertainty434

would arise, particularly if internal variability is small. Because of this trend435

estimation issue, the results of a time series approach can thus be sub-optimal.436

The linear assumptions retained for practical reasons in Section 3, make the437

QEANOVA results likely too optimistic since the assumed trend model is the438

true one. Thus the precision gain with QEANOVA in Section 4 is likely to439

overestimate the gain to be obtained with this method for real MMEs.440

For real MMEs, non-linear models can be considered for the estimation of441

the trend (e.g. 4rd order polynomial used in Hawkins and Sutton (2009) and442

in Hingray and Said (2014) for temperature changes) and the risk of choosing443

non relevant trend models can be reduced with dedicated statistical tests and444

a visual check of the fit (if any expert knowledge can be used for instance to445

assess the climatic relevance of the estimated trend).446

The trend estimation issue in a time series ANOVA approach, which may447

be critical for some MME configurations, requires thus specific care. Notwith-448

standing, a time series approach is likely to present a significant advantage449

in many cases, even when the trend is not linear, especially when internal450

variability is large. For illustration, we considered the same set of MMEs as451

previously but, instead of fitting a linear trend for estimating the climate re-452

sponse of each simulation chain, we fitted a 3rd order polynomial function.453

Results are presented in Figure A2 of Supplementary Material. As expected,454

whatever the configuration in the (M,Fη) domain, the precision of QEANOVA455

estimates is lower with the polynomial trend model, especially for noisy MMEs456

and for small ensembles. Indeed, with a polynomial trend, the degrees of free-457

dom are larger and in case of noisy systems, the local trend is often dominated458

by internal variability which logically leads to a lower precision of the esti-459

mated climate response. Nevertheless, QEANOVA is still much more precise460

than STANOVA. Note that a more relevant experiment would have been to461

simulate synthetic MMEs with non linear trends for the true trends but such462

a simulation is unfortunately not convenient and would have required to make463

different arbitrary and non representative choices (e.g. shape and amplitude464

of non linearity to be retained for each chain). The experiment discussed here465

thus likely again underplays the trend estimation issue in real MMEs where466

the true trends are not linear. Fitting higher order polynomials when the true467

trend is linear is indeed expected to introduce little error especially when468

the sample is large (the fit essentially yields the linear trend), but, as men-469

tioned previously, the opposite does not hold: fitting a linear trend when the470

true trend is non linear (e.g. quadratic or cubic) will always yield local biases471

which may be large.472
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Finally, another possible limitation of a time series ANOVA approach is473

when internal variability is assumed to be constant over time. This assumption474

may be not really valid as suggested by the recent work of Olonscheck and475

Notz (2017). As presented by Hingray and Säıd (2014) or Bracegirdle et al476

(2014), this assumption is not necessarily required and can also be relaxed.477

The internal variability can for instance be assumed to vary gradually from478

one lead time to the other (Hingray and Säıd, 2014). It can also be estimated479

from the variance of the residuals within a moving temporal window centered480

on the targeted prediction lead time (Bracegirdle et al, 2014).481

5.3 Toward a local-QEANOVA approach482

The potential limitations discussed above could make the apparent higher483

attractiveness of a time series approach somehow reduced for some MMEs484

configurations (e.g. MMEs with complex trend shapes and low noise).485

However, if difficult to exploit over the whole available simulation period,486

the QEANOVA principles can be at least used locally, in the temporal neigh-487

borhood Ω(t) of each time point t. In such a local QEANOVA approach, the488

climate response of any given chain g can be obtained for instance from lo-489

cal linear regression, in which the trend is assumed to be smooth so that the490

climate response λ(g, t) of the chain can be approximated by a straight line491

in the neighborhood of t (Cleveland, 1979). The residuals estimated from all492

data in Ω(t) can next be used to assess the local internal variability of the493

projections. When the uncertainty analysis is produced for the climate change494

variable, the local linear regression and the estimation of the local internal495

variability is done for both the reference time tc and the future lead time te.496

In this configuration, note that the internal variability no longer has to be497

assumed constant between both periods.498

The theoretical developments of this local QEANOVA approach, given in499

Hingray and Blanchet (2018) are summarized in Appendix B. For illustration,500

the local QEANOVA approach was also applied to the different simulation501

ensembles considered in the previous sections. The neighborhood Ω(t) was here502

chosen to be composed from the 3 consecutive time steps centered around t. In503

this context, the risk that the linear trend is dominated by natural variability504

is likely important for noisy systems and small ensembles. This configuration505

would have led to a risk of underestimating the natural variability but this is506

not the case here thanks to the unbiased estimator derived for this variable507

(see Appendix B).508

Results of the local QEANOVA are presented for internal variability, model509

uncertainty and for the Response-to-Uncertainty ratio in figure 4. Results are510

not a surprise. For all uncertainty parameters, the precision obtained with the511

local QEANOVA is significantly higher than that obtained with STANOVA512

(confidence intervals are 2 to 3 times smaller for the local QEANOVA). The513

precision of the local QEANOVA is conversely smaller than that obtained with514
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QEANOVA. These results again logically derive from the different sizes of the515

samples used by the three methods.516

A local QEANOVA is thus a promising alternative to STANOVA. The risk517

for a large misestimation of uncertainty components is indeed much lower.518

Despite its smaller precision, a local QEANOVA can be also a good alternative519

to a time series approach. When the time series of the simulation chain presents520

a low to moderate noise but has a complex and nonlinear climate response521

for instance, a local QEANOVA actually reduces the risk of having a biased522

estimate of the climate response, which may occur in a time series approach523

because of the choice of an inappropriate trend function (see section 5.2).524

[ FIGURE 4 HERE ]525

5.4 Temporal variations of uncertainty component estimates526

Whatever the estimation method, the uncertainty estimates are typically de-527

rived for the different prediction lead times of a given climate simulation pe-528

riod. The temporal behavior of these estimates is worth considering as it may529

be a relevant indicator of their precision. In most cases, the climate response530

of each simulation chain is indeed expected to evolve gradually with time. In531

most cases, the different uncertainty components of a given MME are thus532

also expected to evolve gradually with time.533

Similarly, uncertainty components for model uncertainty and scenario un-534

certainty should start from zero when the climate variable considered for the535

analysis is a climate change variable. The climate change response of any sim-536

ulation chain is indeed expected to start from zero when the prediction lead537

time corresponds to the control period.538

Large temporal fluctuations of uncertainty estimates and/or large values539

of model uncertainty for the control period should warn for the possible lack540

of robustness of the analysis. The possibility to consider the temporal varia-541

tions of uncertainty estimates to assess their precision is illustrated for three542

synthetic data sets in Figure 5 for s2α and σ2
η and in Figure 6 for Fη. The543

three MMEs have been simulated following the simulation process described544

in section 3. Confidence intervals (colored bounds) of uncertainty estimates545

(white lines), obtained from Monte Carlo simulations similar to those carried546

out in section 4, highlight the much lower precision of STANOVA, even when547

the fractional variance due to internal variability is low. This is also clear from548

the temporal variations of uncertainty estimates. When only 3 members are549

available, the variations of STANOVA estimates are erratic and non-negligible550

whatever the value of Fη. They are much smoother with a local QEANOVA551

and they completely vanish with QEANOVA. As expected also, the model552

uncertainty component estimated with QEANOVA starts from zero at the be-553

ginning of the century and then gradually increases. This is thus fully coherent554

with the expected behavior of this uncertainty component (limit to zero for555

the control period). This is not the case for the two other methods, especially556
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for STANOVA in the case of small ensembles and noisy systems (e.g. signifi-557

cant non zero values of model uncertainty can be achieved at time t = 2000558

in Figure 5, STANOVA, 2nd line).559

[ FIGURE 5 HERE ]560

[ FIGURE 6 HERE ]561

6 Conclusion562

6.1 Precision of different methods for partitioning uncertainty563

Two ANOVA approaches are currently used for partitioning model uncertainty564

and internal variability components in ensembles of climate projections: the565

popular Single Time approach (STANOVA), based on the data available for566

the considered projection lead time and time series approaches such as the567

QEANOVA approach considered here. For multiple synthetic ensembles, we568

compared the precision of uncertainty component estimates obtained with569

both approaches. The main findings are as follows:570

• In both cases, the precision is logically lower for noisy MMEs and/or small571

ensembles of members. The precision of the mean climate response and of572

the Response-to-Uncertainty ratio estimates are additionally lower when573

the theoretical (prescribed) Response-to-Uncertainty ratio is lower.574

• In many configurations, QEANOVA estimates are expected to be more575

precise than STANOVA ones. This does not depend on the setup and size576

of the MME considered (unbalanced MMEs, MMEs with missing chains,577

MMEs with more GCMs,...). The larger sample size used for the estimation578

is indeed expected to produce a better estimate of the climate response and579

of the internal variability of each simulation chain.580

• Whatever the estimation method, the temporal variations of the uncer-581

tainty estimates should be considered as a relevant indicator of the preci-582

sion of estimates. Large temporal fluctuations should call for caution and583

should warn for the likely low relevance of the uncertainty analysis.584

Under the specific setup and assumptions of our analysis framework (e.g.585

length of time series, number of simulations chains, linearity of trend, con-586

stancy of internal variability over time...), we find that:587

• Simulated confidence intervals obtained with QEANOVA are at least 2.5588

times smaller than those obtained with STANOVA.589

• The precision of estimates is rather high for total uncertainty variance590

and for the multichain mean response (except for STANOVA for noisy591

MMEs and/or for MMEs with small ensembles). The two main features592

of any given ensemble of projections are thus likely to be rather correctly593

estimated in most cases.594
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• This is obviously not the case for the individual uncertainty components.595

For model uncertainty variance for instance, the precision of estimates is596

low to very low for small ensembles and/or noisy MMEs. In the latter597

configurations, a large over- or underestimation of uncertainty components598

is thus very likely preventing any precise partition of uncertainty sources.599

This problem is particularly critical for STANOVA.600

• STANOVA actually appears to be inappropriate in a large number of con-601

figurations as a result of the limited number of members, e.g. GCM runs,602

usually available for most modeling chains up to now. In the case of small603

ensembles and noisy MMEs, improving the relevance of uncertainty esti-604

mates requires using more data. A time series analysis approach as the605

QEANOVA method offers such an opportunity.606

For a time series approach, the trend estimation can be an issue. For MMEs607

where internal variability is small for instance, there is some risk to misrep-608

resent the forced trend. In such a case, a local QEANOVA approach offers609

an interesting alternative as it is not subject to the same limitation as a full610

time series approach. The precision of a local QEANOVA is additionally al-611

ways better than that of STANOVA. Note also that, similarly to a time series612

approach, a local QEANOVA can be also applied when only a single member613

is available for the chains. It can therefore make use of all climate experiments614

produced in the recent years. This is another advantage over STANOVA which615

requires multiple members of each chain.616

6.2 Precision of uncertainty estimates for real ensembles of projections617

Most ensembles of projections have potentially more uncertainty sources than618

those considered in the present work. They may actually include scenario un-619

certainty, different components of model uncertainty (e.g. associated respec-620

tively to GCMs, Hydrological Models), of internal variability (with potentially621

its large or small scale components) and, eventually, uncertainty associated to622

interactions between models and/or scenarios (e.g. Hawkins and Sutton, 2011;623

Vidal et al, 2016; Paeth et al, 2017). In all cases, and whatever the ANOVA624

method used for the analysis, an idea of the precision of uncertainty compo-625

nents should be provided along with estimates of uncertainty components.626

Results presented in the present work give already some benchmark for627

simple ensembles of projections. They were obtained with moment estimators628

of variance components. Likelihood-based estimation methods such as max-629

imum likelihood, restricted maximum likelihood or Bayesian methods could630

(should) be used instead. They indeed allow for the estimation of confidence631

or credibility intervals associated to each uncertainty component. They also632

present next a number of interesting properties (e.g. Hartley and Rao, 1967;633

Gelman, 2005). Conversely to method-of-moment based ANOVA approaches,634

they can especially not produce negative estimates of variance components.635

For the two ANOVA methods considered here, negative estimates are indeed636

obtained for model uncertainty variance when the second terms in the right637
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hand sides of equations (6) or (9) are greater than the first terms. The prob-638

ability of having a negative estimate for s2α is actually directly related to the639

precision that can be achieved with the method for this component. For our640

work, this probability is roughly 2.5%, 16% or 31% when the SD value ob-641

tained for s2α is 0.5, 1 or 2 respectively. It can be up to 50% in the most642

critical (M,Fη, R2U) configurations.643

Likelihood-based estimation methods are also expected to use the data644

more efficiently than moment-based estimation methods. They are for instance645

easily applicable for unbalanced MMEs and/or MMEs with missing chains.646

The work of Northrop and Chandler (2014) and of Evin et al (2018) give some647

nice illustrations of their uses in a Bayesian context. The use of likelihood-648

based estimation methods is thus to be preferred to the use of moment-based649

estimation methods. Even with such methods however, our results strongly650

suggest that a full- or partial time series approach should be used instead of651

a standard single time approach.652

Author contributions. BH designed the analysis, developed the local-653

QEANOVA and the synthetic simulations. JB derived the theoretical expres-654

sions for unbiased estimators of uncertainty components and wrote the ap-655

pendixes. All authors contributed to write the manuscript and discuss results.656

Acknowledgements We thank the three anonymous reviewers for their constructive sug-657

gestions which helped to significantly improve the content of our manuscript.658



18 Benoit Hingray et al.

Appendix A QEANOVA Estimates of uncertainty components659

We summarize the theoretical developments of the QEANOVA approach to660

achieve unbiased estimators of uncertainty components for a simplified con-661

figuration where the trend model is a simple linear function of time. The full662

developments are given in Hingray and Blanchet (2018) for the general config-663

uration where the trend model is a linear combination of L functions of time.664

Here, we first consider the case where the number of members differs from one665

chain to the other; the simplified equations obtained when all chains have the666

same number are then given. For the sake of conciseness, we omit the subscript667

”QE” related to the QEANOVA approach.668

Model. We first consider the raw projections Y (g,m, t) with Mg members for669

each of the G chains, assuming that, for all ts ≤ t ≤ tf :670

Y (g,m, t) = λ(g, t) + ν(g,m, t), (A.1)

where λ(g, t) is the trend model expressed as a linear function of time:671

λ(g, t) = Λg1 + Λg2(t − ts) and where the ν(g,m, t) are independent and672

homoscedastic random variables (with variance σ2
νg ). Second let consider the673

change variable at future prediction lead time t ∈ [tc, tf ]:674

X(g,m, t) = Y (g,m, t)− Y (g,m, tc) = α(g, t) + η(g,m, t), (A.2)

where tc is the reference period. We have thus α(g, t) = Λg2(t − tc) and675

η(g,m, t) = ν(g,m, t)− ν(g,m, tc).676

Unbiased estimation of the model parameters for the raw variable Y . We dis-
cretize [ts, tf ] into T time steps (from ts = t1 to tf = tT ) and write tc as the
Kth time step (i.e. tc = tK). We are interested in the future prediction lead
time tk ∈ [tK , tT ]. Let consider the regression model (A.1) for a particular g.
Unbiased estimators of the regression parameters (Λg1, Λg2) are given by the
least square estimates

(Λ̂g1, Λ̂g2)′ = V R′ (
1

Mg

Mg∑
m=1

Y (g,m, t1), . . . ,
1

Mg

Mg∑
m=1

Y (g,m, tT ))′

where ”’” denotes the transpose , R is the T × 2 matrix of covariates whose677

kth row is (1, tk − t1), for 1 ≤ k ≤ T , and V = (R′R)−1. Covariance matrix678

of the estimators (Λ̂g1, Λ̂g2) is given by σ̂2
νgM

−1
g V where σ̂2

νg is an unbiased679

estimator of σ2
νg given by680

σ̂2
νg =

1

TMg − L

Mg∑
m=1

T∑
k=1

{
Y (g,m, tk)− λ̂QE(g, tk)

}2

(A.3)

where L = 2 and λ̂QE(g, tk) = Λ̂g1 − Λ̂g2(tk − t1).681
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In particular, an unbiased estimator of Λ2
g2 is682

Λ̂2
g2 = Λ̂2

g2 − σ̂2
νgM

−1
g V22, (A.4)

where V22 is the element (2, 2) of V. Considering t1, . . . , tT regularly spaced683

on [ts; tf ], we have V22 = 12(T − 1)/{T (T + 1)(tT − t1)2}.684

Unbiased estimation of the sample variance of the α’s in the change vari-685

able. Given (A.2) and (A.4), an unbiased estimator of the sample variance of686

α(g, tk), i.e. of s2α(tk) = 1
G−1

∑G
g=1{α(g, tk)}2 , is687

ŝ2α(tk) = s2α̂(tk)− 12

T

T − 1

T + 1

(
tk − tK
tT − t1

)2
(

1

G

G∑
g=1

σ̂2
νg

Mg

)
,

where

s2α̂(tk) =
(tk − t1)2

G− 1

G∑
g=1

Λ̂2
g2.

When all GCMs have the same number of runs (M), this expression reduces688

to:689

ŝ2α(tk) = s2α̂(tk)− A(tk, C)
M

σ̂2
η, (A.5)

where σ̂2
η is an unbiased estimator of internal variability variance for X690

σ̂2
η =

2

G

G∑
g=1

σ̂2
νg (A.6)

and where691

A(tk, C) =
6(T − 1)

T (T + 1)

(
tk − tK
tT − t1

)2

(A.7)

692

Appendix B Estimates with a local QEANOVA approach693

We here summarize the expressions of the different uncertainty estimators694

obtained with a local-QEANOVA approach. The full developments, similar to695

those presented in appendix A for the QEANOVA approach, are detailed in696

Hingray and Blanchet (2018).697

Model. A regression model is still considered to estimate the response function698

λ(g, t) for Y in Eq.A.1 but λ(g, t) is assumed to be only locally linear in time,699

in the neighborhoods of tc and te respectively, i.e. on [tc − ω, tc + ω] and700

[te − ω, te + ω], where te ∈ [tc, tf ] is the future prediction lead time under701

consideration. λ(g, t) can thus be expressed as702

λ(g, t) =

{
λc(g, t) = Λg1,c + (t− tc)Λg2,c for tc − ω ≤ t ≤ tc + ω,
λe(g, t) = Λg1,e + (t− te)Λg2,e for te − ω ≤ t ≤ te + ω.

(B.1)
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The change variable X(g,m, t), for te − ω ≤ t ≤ te + ω, in Eq.A.2 is such703

that α(g, t) = (Λg1,e − Λg1,c) + (t− te)Λg2,e.704

Each interval [tc−ω, tc+ω] and [te−ω, te+ω] is discretized into T ? regular705

periods of length dt = 2ω/(T ∗ − 1), with T ? odd, giving respectively the706

sequences t1, . . . , tT∗ and tT∗+1, . . . , t2T∗ . The values of Y for these different707

times are further considered to estimate the regression coefficients of the linear708

trend models in Eq.B.1. For the illustration given in section 5.3, dt = ω =709

20yrs and T ∗ = 3.710

Unbiased estimators of model uncertainty and internal variability variance.711

Following Hingray and Blanchet (2018), an unbiased estimator of model un-712

certainty variance, i.e. of the sample variance of α(g, te), is713

ŝ2α(te) = s2α̂(te)−
4

T

(
1

G

G∑
g=1

σ̂2
νg

Mg

)
(B.2)

where T = 2T ∗ is the total number of time steps considered in the analysis714

and where σ̂2
νg is an unbiased estimator of σ2

νg given by715

σ̂2
νg =

1

TMg − 4

Mg∑
m=1

 T∗∑
j=1

{
Y (g,m, tj)− λ̂c(g, tj)

}2

(B.3)

+

2T∗∑
j=T∗+1

{
Y (g,m, tj)− λ̂e(g, tj)

}2
]

(B.4)

with λ̂c(g, tj) = Λ̂g1,c + Λ̂g2,c(tj − tc) and λ̂e(g, tj) = Λ̂g1,e + Λ̂g2,e(tj − te)716

where Λ̂g1,c, Λ̂g2,c, Λ̂g1,e and Λ̂g2,e are the regression coefficients of the two717

linear models in Eq.B.1.718

When all GCMs have the same number of runs (M), the expression of719

model uncertainty in Eq.B.2 reduces to720

ŝ2α(te) = s2α̂(te)−
1

MT ∗
σ̂2
η (B.5)

where σ̂2
η is an unbiased estimator of internal variability variance for X721

σ̂2
η =

2

G

G∑
g=1

σ̂2
νg . (B.6)

Appendix C Simulation of MMEs722

Each MME is simulated for Y (g,m, t) assuming that, for all ts ≤ t ≤ tf :723

Y (g,m, t) = λ(g, t) + ν(g,m, t), (C.1)
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where the climate response function λ(g, t) is a linear function of time724

and where the ν(g,m, t) are independent and homoscedastic random variables725

(with variance σ2
νg ). For convenience we further assume that λ(g, t) can be726

decomposed as λ(g, t) = w(t) + d(g, t), for t = t1, . . . , T where the mean727

climate response w(t) of the G chains and the deviations d(g, t) of chain g are728

linear functions of time, expressed as: w(t) = B + P.(t − t1)/(te − tC) and729

d(g, t) = D(g).(t− t1)/(te − tC) with the constraint
∑G
g=1D(g) = 0.730

For graphical simplification purposes, each MME for Y is constructed so731

that the parameters (σ2
ν , P,D(g), g = 1, . . . , G) lead, for the change variable732

X at time t = te, to a prescribed value of the Response-to-Uncertainty ratio733

[R2U(te)] and to a prescribed value of the fractional variance Fη(te) due to734

internal variability.735

For X, we have by definition ϕ(g, t) = λ(g, t) − λ(g, tC) and η(g,m, t) =736

ν(g,m, t) − ν(g,m, tC). We have thus for the change variable µ(t) = w(t) −737

w(tC), α(g, t) = d(g, t)− d(g, tC) and in turn µ(t) = P.(t− tC)/(te − tC) and738

α(g, t) = D(g).(t− tC)/(te − tC).739

The theoretical values for µ(te) and s2α(te) are thus as follows : µ(te) = P740

and s2α(te) = Var(D(g)). Fixing P to 1, we thus simply require in turn741

σ2
X(te) =

1

[R2U(te)]2
; (C.2)

σ2
ν(te) =

1

2
σ2
η(te) =

1

2
Fη(te).σ

2
X(te); (C.3)

Var(D(g)) = s2α(te) = (1− Fη(te)).σ
2
X(te). (C.4)

For each MME simulation, the deviations of the different chains, D(g), g =742

1, . . . , G, are obtained from a sample of G realizations in a normal distribution.743

These realizations are scaled so that their mean is zero and their variance744

corresponds to the prescribed value s2α(te).745
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Fig. 1 Three synthetic multimodel multimember ensembles of time series pro-
jections (MMEs) obtained via simulation with different Fη ratios and M numbers
(left: Fη = 0.1, M = 3; middle Fη = 0.5, M = 3; right: Fη = 0.5, M = 9). Time series over
the 1960-2100 period for the raw projections Y (g,m, t) of a 10-yr average climate variable.
Cases on the left and in the middle are illustrative of typical configurations encountered in
climate analyses: ”small” number of members available for each GCM (M=3) with relatively
low (resp. high) contribution of IV to total variance (case 1: Fη = 0.1; case 2: Fη = 0.5).
The case on the right is similar as the middle case but in a configuration with a (unrealistic)
”large” number of members (M = 9).
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Fig. 2 Precision of QEANOVA (left) and STANOVA (middle) estimates for un-
certainty variance components, and gain in precision between STANOVA SD
values and QEANOVA SD values (right)(gain = ratio between STANOVA SD
values and QEANOVA SD values). Top: Internal Variability, middle: Model Uncer-
tainty, bottom: Total Uncertainty. SD values are given as a function of the fraction of total
variance explained by internal variability (Fη) for a few representative values of number of
members M : (1), 2, 3, 5, 10, 20. Results are presented for a theoretical ratio R2U = 1. For
the sake of clarity, the upper limit of the figures for s2α is truncated to 2. The highest values
are greater than 10. Figures of the ratios between SD values obtained with both approaches
are truncated to 5.
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Fig. 3 Precision of QEANOVA (left) and STANOVA (middle) estimates for
mean change response estimates (µ). Gain in precision between STANOVA and
QEANOVA in the right panels. Results are presented for different values of the theoretical
response-to-uncertainty ratio R2U (top: R2U = 0.2, middle: R2U = 1, bottom: R2U = 5).
For details see caption of Figure 2.
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Fig. 4 Precision of uncertainty estimates obtained with the local QEANOVA ap-
proach. Results for internal variability variance (σ2

η , top), model uncertainty variance (s2α,
middle), response-to-uncertainty ratio (R2U, bottom). Left: SD values, middle: gain in preci-
sion between local QEANOVA and QEANOVA approaches (ratio between local QEANOVA
SD values and QEANOVA SD values), right: gain in precision between STANOVA and lo-
cal QEANOVA approaches (ratio between STANOVA SD values and local QEANOVA SD
values). Results for a theoretical ratio R2U = 1. For details see caption of Figure 2.
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Fig. 5 Temporal variations and 90% confidence intervals of model uncertainty
and internal variability estimates for the three reference datasets presented in
Fig. 1 (top: Fη = 0.1, M = 3; middle Fη = 0.5, M = 3; bottom: Fη = 0.5, M = 9). Left:
with STANOVA; middle: with local QEANOVA where Ω(t) is composed of the 3 consecutive
time steps centered around t; right: with QEANOVA. s2α in red, σ2

η in blue. The blue and
red lines correspond to the theoretical variance components used for the generation of the
reference dataset. The variance component estimates (white curves) obtained with each
ANOVA approach are presented with their 90% confidence intervals.
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Fig. 6 Temporal variations and 90% confidence intervals of uncertainty esti-
mates for the fractional variance due to internal variability (Fη ratio) for the three
reference datasets presented in Fig. 1. Left: with STANOVA; middle: with local QEANOVA;
right: with QEANOVA. The blue lines correspond to the theoretical fractional variance used
for the generation of the reference dataset. See Fig. 5 for caption details.
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