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Résumé 

Dans cette étude, des catalyseurs binaires et ternaires (CuO-CeO2, ZnO-CeO2, CuO-ZnO-

CeO2 et CuO-ZnO-Al2O3) ont été utilisés pour l'hydrogénation CO2 en méthanol à pression 

atmosphérique. L'influence de la dispersion des métaux, de la formation de spinelles et des 

propriétés de surface sur les performances catalytiques ont été étudiées. 

Les catalyseurs, préparés par la méthode polyol en utilisant du polyéthylène glycol en tant que 

solvant, présentent des propriétés améliorées en termes de dispersion des oxydes métalliques, 

de morphologie (forme de type éponge pour les catalyseurs contenant CeO2) et de variétés 

d’espèces métalliques et d'oxydes métalliques à la surface. De plus, les catalyseurs CuO-ZnO-

CeO2 et Cu-ZnO-Al2O3 présentent une activité et une sélectivité supérieures à celles de 

catalyseurs préparés par des procédés plus conventionnels, pour la synthèse du méthanol par 

hydrogénation de CO2. 
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Abstract 

In this work the influence of the metal dispersion, the spinel formation, and the surface 

properties of binary and ternary catalysts (CuO-CeO2, ZnO-CeO2, CuO-ZnO-CeO2 and CuO-

ZnO-Al2O3) was evaluated. The catalysts, prepared by polyol method using polyethylene 

glycol as a solvent, have been tested in the CO2 hydrogenation to methanol performed at 

atmospheric pressure. 

The catalysts prepared by polyol method presented improved properties in terms of metal 

oxide dispersion, morphology (i.e. sponge like shape for the CeO2-containing catalysts), and a 

large variety of metal and metal oxide species on the surface. Moreover, the CuO-ZnO-CeO2 

and CuO-ZnO-Al2O3 catalysts exhibited a higher activity and selectivity in the methanol 

synthesis by CO2 hydrogenation than those displayed by catalysts prepared by more 

conventional methods. 

 

Keywords: CO2 valorization; polyol synthesis; methanol synthesis; oxide catalysts 

1. Introduction 

The concentration of carbon dioxide (a greenhouse gas) inexorably increases in the 

atmosphere. Various methods are  currently examined to decrease the CO2 concentration or to 

convert it into valuable chemical products. The utilization of CO2 as a feedstock for the 

synthesis of high added value chemicals is a promising alternative for CO2 abatement [1,2]. 

The simplest way to utilize carbon dioxide is the hydrogenation into valuable compounds, 

such as methanol (MeOH) and DME (dimethyl ether) [3-8]. Such conversion is often 

performed on copper-based catalysts. Industrial methanol synthesis is performed by catalytic 

hydrogenation of syngas (H2/CO/CO2) over Cu/ZnO/Al2O3-type catalyst. Unfortunately, the 

industrial Cu/ZnO/Al2O3 catalyst are not active nor selective in CO2 hydrogenation. Previous 
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published research works demonstrated that the use of industrial catalysts brings to very low 

hydrogenation conversions of CO2 to methanol [9]. 

This issue can be overcome by developing suitable catalysts, which can effectively convert 

carbon dioxide to methanol [10-13]. Even if copper based materials are promising catalysts 

for the hydrogenation of CO2 [14-19], further investigations are required for developing new 

catalytic materials  able to give high conversion of CO2 and improved selectivity to MeOH. 

In order to improve the catalytic performance for methanol synthesis from H2/CO2 

feeding gas, CuO/ZnO catalysts have been widely modified by adding various activators or 

other metals (Zr, Si, La, Ti, Cr, Ga, Ce, Fe, Nb, Pd...) [20-25]. The effect of the support was 

also extensively studied. The type of support affects both CO2 conversion and methanol 

selectivity, and, in general, basic oxides such as La2O3, Sm2O3, Nb2O5, In2O3 and ThO2 [26-

27], used as supports, favor the methanol formation. The preparation methods have also a 

considerable influence on the catalytic performance [28-30]. Several methods such as co-

precipitation [31-35], impregnation [36-38], and sol–gel [38-39] have been developed to 

prepare copper-based oxide catalysts. Moreover, the co-precipitation synthesis was improved 

by addition  of reducing agents, such as chitosane [14], and NaBH4 [15]. Surfactant-assisted 

co-precipitation [16], solvent-free routine combustion [40], and micro-fluidic co-precipitation 

[41] are novel synthesis methods that allow obtaining a good repeatability of the synthesis, 

and an improved homogeneity of the phases present in the catalyst. Other methods, such as 

impregnation and sol–gel, can also produce catalysts with large specific surface areas and 

high CuO dispersion [42]. Polyol synthesis represents a good alternative to the classical 

synthesis methods. In particular, it presents many advantages, such as the possibility to 

precisely modulate the stoichiometric ratio, the homogeneous mixing of the various 

components, the low cost and the short reaction time. Therefore, polyol synthesis reveals to be 

an attractive technique for the synthesis of nano-oxide powders. 
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CuO/ZnO/Al2O3-type catalysts obtained by polyol synthesis have been successfully 

applied in the Reverse Water Gas Shift Reaction RWGS [43], in the alcohol-assisted low 

temperature methanol synthesis from syngas [44], and in methanol reforming [45].  

The polyol method [46-47] permits to synthesize nano-sized metallic powders with 

uniform size distribution and shape [46-48]. In recent years, the polyol method has been 

studied by many researchers [49-52]. These investigations showed that the crystallites’ size 

and shape [46] can be controlled by varying the reduction temperature, the pH, and the 

nucleation-protective agent concentration [49-53]. Up to now, and at our knowledge, no 

attempts to prepare Cu/ZnO catalyst for methanol production using the polyol method have 

been done. In a typical polyol synthesis, polyols (ethylene glycol, diethylene, glycerol, and 

tetraethylene glycol) act at the main time as the reaction medium and as the reducing agent. 

The metal precursor is reduced through a redox reaction between the metal precursors and the 

polyolic species. Therefore, the reaction temperature is an important parameter, because the 

oxidation potential of polyol chemicals decreases with the increasing of the reaction 

temperature [49, 54-55]. Nucleation-protective chemicals such as polyvinylpyrrolidone (PVP) 

are occasionally employed to prevent sintering and agglomeration of metal particles [54-55]. 

The various published researches indicate that the choice of the preparation conditions 

strongly affects the activity of catalysts prepared by polyol method. 

In the present work, the so-called “polyol method” has been used to obtain improved catalytic 

materials for the hydrogenation reaction of CO2 to methanol. The influence of the metal 

dispersion, spinel formation and surface properties of binary and ternary catalysts (CuO-

CeO2, -ZnO-CeO2, CuO-ZnO-CeO2 and CuO-ZnO-Al2O3), prepared by polyol method using 

polyethylene glycol as solvent, is evaluated in the CO2 hydrogenation to methanol at 

atmospheric pressure, used as test reaction. 

 



5 

 

2. Experimental 

2.1. Preparation of binary and ternary polyol catalysts 

Two binary catalysts (labeled ZnO-CeO2, and CuO-CeO2, with molar ratio of Zn/Ce 

and Cu/Ce equal to 1) and two ternary catalysts (labeled CuO-ZnO-CeO2, and CuO-ZnO-

Al 2O3, with Cu/Zn/Ce and Cu/Zn/Al molar ratios of 1/1/2) were prepared by polyol method. 

The reaction temperature and the choice of the solvent were selected referring to the available 

investigations reported in the literature [44, 45]. These experimental conditions seem to favor 

the formation of nanocrystallites. Differently from the synthesis reported in these already 

published works, nitrate-base precursors were used in the present research instead of Me-

acetates. In fact, nitrates do not participate to secondary reactions like those operated by 

acetates that can react to form methyl acetate and ethyl acetate. Firstly, copper nitrate 

Cu(NO3)2.2.5H2O (Sigma-Aldrich 98%), and/or zinc nitrate Zn(NO3)2.6H2O (Sigma-Aldrich 

99%) were dissolved in polyethylene glycol (C2H6O2)n  (Sigma-Aldrich 99%, d=1.13g/ml). 

The solution at pH=2 was then heated up, step by step, and kept under stirring for 1 hour at 

70°C, 2h at 120°C, and 2h at 180°C.  Cerium and/or aluminum nitrates (Ce(NO3)3.6H2O 

and/or Al(NO3)2.1H2O from (Sigma-Aldrich 99%) were then added to the initial solution 

under vigorously stirring for 4 hours at the same temperature (180°C). The formation of a 

precipitate was observed. The suspension was cooled down at 100°C, and NH4OH was added 

dropwise to reach a pH of 7. The resulting suspensions were kept under vigorous stirring at 

100°C for 24 h. Finally, the formed gel was dried at 180°C for 72 h, and then calcined in air at 

450°C for 5h.  

 

2.2. Characterization techniques 
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Thermogravemetric analyses (TGA) were performed with a TGA/DSC 1 LF 1100 

STARS system from METTER TOLEDO. The samples were heated-up at 5°C/min under air 

flow (100 mL/min) from room temperature  to 500°C.  

The XRD patterns were acquired with a PANalytical MPD X’Pert Pro diffractometer 

operating with Cu Kα radiation, λ = 0.15406 nm at 40 mA and 45 kV with a scan rate of 2° 

min−1. The data were collected in the 5-60° 2θ range. The diffraction patterns were analyzed 

using the Joint Committee on Powder Diffraction Standard (JCPDS). CuO, ZnO, and CeO2 

crystallite size were calculated by means of the Scherrer equation:  

                                                              d =
�.��	ƛ

	 
��

∗
���

�
                                        (1) 

where d is the diameter of the crystallite, ƛ the X-ray wave length, and � is the width at half 

height (FWHM) of the peak.  

N2-adsorption isotherms of the samples were acquired at -196°C in a Micromeritics 

ASAP2420 apparatus. 0.25 g of catalyst was pretreated at 300°C during 10 h under vacuum 

(~50 m Torr). The specific surface area was calculated applying the multi-Pont BET method 

[56], while the pore size distribution was obtained by applying the BJH method [57] to the 

desorption branch of the isotherm. 

Scanning electron microscopy coupled to energy dispersive X-ray spectroscopy (SEM-

EDX) was performed on a PHILIPS XL 30 instrument (electrons acceleration voltage of 15 

kV).  

X-ray photoelectron spectroscopy (XPS) measurements were performed on a Kratos 

Axis Ultra DLD spectrometer equipped with a monochromatic micro focused Al Kα (1486.6 

eV and Mg Kα=1253.6 eV) X-ray exciting source. The pass energy of the analyzer was set at 

40 eV. The adventitious C1s peak (284.6 eV) was used as internal reference with an accuracy 

of ±0.3 eV. XPS was used to evaluate the oxidation state of copper, zinc and cerium species. 

O 1s, Cu 2p, Zn 2p, Ce 3d and Al 2p species were quantified by analysis of the survey XPS 
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spectra. The binding energy of C 1s, O 1s, Cu 2p, Zn 2p Ce 3d, and Al 2p were analyzed in 

order to identify the associated surface species and the relative atomic concentration. 

 

2.3 Catalytic tests 

The catalytic hydrogenation of carbon dioxide to methanol was evaluated in a fixed-

bed continuous flow reactor. During each test, 0.3 g of catalyst was pretreated with hydrogen 

at 300°C for 3 hours. After the reduction step, the catalyst was exposed to a H2/CO2 (1/9 

volume ratio) flow at different reaction temperatures (190-240°C). The feeding mixture and 

the reaction products were analyzed online with a gas chromatograph (Shimadzu GC-2014) 

equipped with FID and TCD detectors. CO2 conversion (X) and products’ selectivity were 

calculated as follows, using the quantitative correction factor kf, and peaks area (S) for the 

different species: 

X	CO��%� =
����	��

�����	 !"

����	��

× 100 × kf()�                    (2) 

CH+OH	selectivity	�%� =
��45�4	 !"

6	()�	
× 100 × kf(75)7   (3) 

CH8	selectivity	�%� = 	
��49	 !"

6	()�	
× 100 × kf(79                  (4) 

 

3. Results and discussions  

3.1. Characterization of catalysts 

3.1.1. Thermal behavior 

The catalysts thermal behavior, before and after calcinations, is shown in Fig.1. The 

samples mass continuously decreased with the temperature. For the catalysts before 

calcination, the TGA curves showed three main events connected to the residual precursors 

decomposition (Fig.1a) (indeed, the most part of the precursors has been eliminated by the 

thermal treatment during the synthesis). 
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A first mass variation in the 0.5- 2.5% range was observed up to 250 °C, and was 

attributed to the loss of water (physi- and chemi-sorbed) as well as to the decomposition of 

residual nitrates from the precursors. The second and highest mass loss (0.5-3%), between 

250 and 350°C, was probably related to the elimination of polyethylene glycol. The third step, 

at temperature higher than 350°C, corresponded to the lowest mass loss (0.5%), and was 

attributed to the decomposition of hydroxyl groups, leading to metal oxide formation. After 

calcinations (Fig. 1b), the catalyst showed a low mass loss (below 2%), attributed to the 

release of physisorbed water (under 150 °C),  and the decomposition of carbonates formed by 

reaction with atmospheric CO2. The presence of carbonates was observed also by XPS (as 

described in section 3.1.3). 

 

3.1.2. Structure and morphology of the catalysts  

The X-ray diffractograms of the calcined bimetallic and trimetallic catalysts are 

displayed in Fig.2. For the three calcined catalysts, CuO-CeO2, ZnO-CeO2, and CuO-ZnO-

CeO2, only the diffraction peaks relative to the CuO, ZnO, and CeO2 phases could be clearly 

identified. The diffraction peaks centered at 28.6, 33.1, 47.5, 56.3, 59.1 and 69.0° 2θ, 

corresponding respectively to the (111), (200), (220), (311), (222) and (400) diffraction planes 

of cubic CeO2 [58-59], were observed for the ZnO-CeO2, CuO-CeO2, and CuO-ZnO-CeO2 

catalysts.  For the ZnO-CeO2 and CuO-ZnO-CeO2 samples, diffractions at 31.7, 34.5, 36.2, 

62.9 and 69.0° 2θ indicated the presence of hexagonal ZnO [31,58,60-61] and corresponded 

respectively to the (100), (002), (101), (103) and (201) planes. The cubic CuO phase 

[31,58,60], present in the CuO-CeO2 and CuO-ZnO-CeO2 samples, was characterized by 

broad diffraction lines at 35.5 and 38.7° 2θ corresponding to the (-111) and (111) planes. 

Broad diffraction lines at 2θ = 35.5 38.7, 61.5 and 68.1° indicated the presence of CuO and 

corresponds respectively to the (-111), (111), (-202), (-113) and (-220) planes. In addition to 

CuO, CuAl2O4 and ZnAl2O4 spinel could be identified in the CuO-ZnO-Al2O3 sample. The 
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diffraction peak of CuAl2O4 and ZnAl2O4 were superposed and placed at 31.2, 36.8, 55.6, 

59.3, and 65.2° 2θ. No diffraction peaks relative to ZnO could be identified in CuO-ZnO-

Al 2O3; all zinc was present as spinel, CuZnAl2O4.  

The metal oxide crystallite dimensions were evaluated applying the Scherrer equation 

to the main diffraction peak of each phase, and the results are reported in Table 1. ZnO 

crystallites size of 20-30 nm was calculated in the binary ZnO-CeO2 catalyst. CuO 

crystallites, in the 10-20 nm dimension range, were detected for the CuO-CeO2 catalyst (Table 

2). The CuO (6 nm) and ZnO (12 nm) crystallites were much smaller for the ternary CuO-

ZnO-CeO2 sample, indicating that the presence of zinc and copper oxides together ameliorate 

the oxides distribution and dispersion during the synthesis procedure. 

The nitrogen adsorption-desorption isotherms of the various polyol samples (acquired 

at -196 °C) are shown in Fig.3a. The catalysts isotherm shows a continuous increase of 

adsorbed nitrogen over the whole P/P0 range, with a relatively steep increase at P/P0 ≥ 0.85. 

For the all catalysts, the N2 adsorption isotherms (Fig.3b) were of type (II) [62] with no 

plateau at high P/P0 values, which is usually observed for materials with macropores or inter-

particular mesoporosity [63]. H4-type hysteresis was observed for the CuO-ZnO-Al2O3 

sample, and H3-type for the ZnO-CeO2, CuO-CeO2, and CuO-ZnO-CeO2 samples [64]. These 

types of hysteresis are typical of lamellar compounds or slit-shaped pores [65].   

All materials presented relatively low porous volumes (Table 1, 3th column), as expected for 

this kind of preparation that produces bulk oxides. Fig. 3b represents the pore size distribution 

of the catalysts. All catalysts presented a certain mesoporosity centered in the 17-23 nm 

range. The presence of macropores (up to 150 nm) was observed for the three samples 

containing CeO2, while even larger pores were present in the CuO-ZnO-Al2O3 sample. 

The presence of copper oxide seems to improve the specific surface area of the catalysts (in 

the 30-38 m2.g-1 range), as reported in Table 1. The catalyst with the lower surface area (18 
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m2.g-1) was ZnO-CeO2. This behavior is probably connected to the improved pore volume that 

can be obtained in the presence of the copper precursor, that end up into a higher internal 

surface area. Indeed, ZnO-CeO2 presented the lowest pore volume, and the hysteresis between 

the adsorption and desorption isotherms was almost absent. 

 
Table 1: morphological and structural properties of the catalysts 

 
Sample 

S BET
 

(m2.g-1) 
Vpore

b 
(cm3.g-1) 

Dpore
 

(nm) 
Crystallite size with XRD analysis  (nm)b 
CuO ZnO CeO2 Cu,ZnAl2O4 

CuO-CeO2 32 0.07 17 10-20 - 5 - 

ZnO-CeO2 18 0.03 20 - 20-30 5 - 

CuO-ZnO-CeO2 38 0.12 22 6 12 5 NA 

CuO-ZnO-Al 2O3 30 0.04 23 20-30 - - 30-40 

a Determined from desorption branch of N2 adsorption isotherm by BJH model 
b Crystallite size calculated by Scherrer equation 
 

The morphology of the different calcined CuO-CeO2, ZnO-CeO2, CuO-ZnO-CeO2, 

CuO-ZnO-Al2O3 samples was investigated by scanning electron microscopy, and the acquired 

images are presented in Fig.4. The catalysts containing CeO2 showed a sponge-like 

morphology, as reported in Fig.4 for the CuO-CeO2 (a-c), ZnO-CeO2 (d-f), and CuO-ZnO-

CeO2 (g-i) samples. The three ceria-containing samples were characterized by the presence of 

round-shaped cavities and pores of various dimensions, well distributed in the sample catalyst 

structure. CuO-ZnO-Al2O3 presented a different morphology (Fig.4 j-l), with well-developed 

and thin plate-shaped bonded sheets in the 1 to 5 µm dimension interval. The presence of 

macropores was confirmed by these images and linked to the formation of gas bubbles during 

the preparation step, due to the decomposition of the metal oxide precursors. 

EDX analysis showed a very homogeneous distribution of the different oxides in all 

samples.  

 

3.1.3. Chemical composition and surface properties 
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Photoelectron spectroscopy was used to evaluate the oxidation state of copper, zinc 

and cerium species in the CuO-ZnO-CeO2 and CuO-ZnO-Al2O3 calcined catalysts, as well as 

to evaluate their surface chemical composition (Tables 2). All elements (Cu, Zn, Ce, Al, and 

O) were present at the samples’ surface (Table 2). The survey XPS acquisition permitted to 

quantify the various atoms (O 1s, Cu 2p, Zn 2p, Ce 3d and Al 2p) for the two trimetallic 

catalysts. Clear differences in the surface elements were observed for the two samples. Zn 

concentration was particularly low on the surface of the CuO-ZnO-CeO2 sample (0.53 %). At 

the contrary a big amount of carbon was detected on its surface (24.31 %). Because the most 

part of carbon on the surface of CuO-ZnO-CeO2 could be assigned to residual contamination 

or hydrocarbon chains, as described later in this section, these results can suggest that the 

carbon pollution presented a higher affinity for Zn, thus selectively covered at the extreme 

surface. Less dramatic differences were identified in the CuO-ZnO-Al2O3 sample that showed 

similar concentrations of copper and zinc on the surface.  

No N1s XPS peak (generally placed around 400.3 eV), related to nitrate (NO3
-) species (salt 

precursors) has been identified for the CuO-ZnO-Al2O3 and CuO-ZnO-CeO2 catalysts, as an 

indication of the complete decomposition of nitrated after calcination. 

The binding energy of C 1s, O 1s, Cu 2p, Zn 2p Ce 3d, and Al 2p of the two trimetallic 

catalysts are listed in Table 2, as well as the associated surface species and their atomic 

concentration.  

The Cu 2p spectrum of both CuO-ZnO-CeO2 and CuO-ZnO-Al2O3 (Fig.5) catalysts presented 

the characteristic spin-orbit split Cu 2p1/2 and Cu 2p3/2 peaks, with their shake-up satellites of 

Cu2+ [66]. Binding energies, in the 932.0-932.8 and 933.2-934.6 eV range, are characteristic 

of Cu+ and Cu2+, respectively [67-68]. These two contributions could be identified in the 

CuO-ZnO-CeO2 sample (upper spectrum in Fig.5). The large and strong peak centered at 

932.7 eV was then attributed to Cu2+ and/or Cu+ species, while the small and broad peak 
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centered at 934.9 eV was assigned to Cu2+ species [69]. For the CuO-ZnO-Al2O3 sample 

(Fig.5), the Cu 2p3/2 peak presented two contributions characteristic of Cu2+ species; the first 

one was observed at 933.61 eV and related to copper oxide, while a second contribution, at a 

higher binding energy (935.66 eV), was assigned to Cu2+ in the CuAl2O4-like environment 

(the presence of the spinel structure, CuAl2O4, was also observed by XRD analysis). Indeed, 

the shift to higher binding energy is indicative of a charge transfer from Cu2+ towards Al2O4
2- 

[70-71]. The intensity ratio of the satellite peak to the related main peak (Isat/Ipp) was of 0.17, 

for the CuO-ZnO-CeO2 catalyst, and of 0.44 for CuO-ZnO-Al2O3. The lower Isat/Ipp value is 

characteristic of well dispersed copper oxide species in an octahedral coordination 

environment, while the higher value is symptomatic of a coordination change, most probably 

due to the formation of the spinel [72]. In addition, the contribution at around 529 eV of the O 

1s spectra can also be assigned to the presence of Cu2+ and Cu+ (see Table 2). 

Table 2: Surface elements’ presence as determined by XPS analysis 
Orbital CuO-ZnO-CeO2 CuO-ZnO-Al2O3 

B.E. 
(eV) 

Species At 
(%) 

B.E. 
(eV) 

Species At 
(%) 

C 1s 
 

284.98 C-C 16.54 285.01 C-C 2.46 
286.53 C-OR 0.60 286.56 C-OR 0.28 
287.98 C=O 2.55 288.01 C=O 0.40 
289.48 O=C-O 4.62 289.47 O=C-O 0.89 

O 1s 
 

529.49 Cu-O 6.97 529.80 Cu-O 9.02 
529.43 Ce4+/Cu-O 29.07 531.71 Al-O 33.22 
530.90 Ce3+/Zn-O 4.17 530.80 Zn-O 8.51 
531.90 (CO3)

2- 7.04 531.40 (CO3)
2- 2.64 

Cu 2p 

932.75 Cu2+/Cu+ 5.87 933.61 Cu2+ 4.31 
934.91 Cu2+/Cu+ 0.97 935.66 Cu2+ 1.42 
940.92 Cu2+/Cu+ 0.99 940.87 Cu2+ 1.68 
943.54 Cu2+/Cu+ 0.78 943.43 Cu2+ 1.65 

Zn 2p 1021.56 ZnO 0.53 1021.87 ZnO 7.71 

Ce 3d 

881.00 (V0) 
899.39 (U0) Ce3+ 0.92 - - - 
882.44 (V) 
900.76 (U) 

Ce4+ 
4.42 - - - 

884.95 (VI) 
903.20 (UI) Ce3+ 3.80 - - - 
888.70 (VII) 
907.36 (UII) 

Ce4+ 
5.33 - - - 

898.16 (VIII) Ce4+ 4.82 - - - 
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916.34 (UIII) 
Al 2p - - - 74.47 Al3+ 24.86 
 

The Zn 2p3/2 XPS spectra for the two trimetallic catalysts was characterized by one defined 

peak around 1021-1022eV that could be assigned to Zn2+ species. The presence of ZnO have 

been also confirmed by the O 1s band centered at 530.8 eV [73-74]. The XPS signal of CuO-

ZnO-CeO2 was much less intense than that of CuO-ZnO-Al2O3, indicating the higher ZnO 

concentration on the CuO-ZnO-Al2O3 surface (8.68 %atom for CuO-ZnO-Al2O3 and 0.53 %atom 

for CuO-ZnO-CeO2 catalysts. 

The presence of carbon was detected on the surface of both samples. The C 1s spectra 

is reported in Fig.6, for the CuO-ZnO-CeO2 and CuO-ZnO-Al2O3 catalysts. In both cases the 

spectra were composed of two contributions; the first, centered at 289.5 eV was assigned to 

carbonate species, while the more intense band, at around 285 eV, to residual contamination 

or hydrocarbon chains, probably deriving from the polyethylene glycol used during the 

catalyst synthesis. Indeed, cerium oxide and reduced cerium are known to react with CO2 

(present in the atmosphere, for example), and give rise to carbonate species on the surface 

[75]. The carbonate band was much less intense for the CuO-ZnO-Al2O3 catalyst, and the 

corresponding atomic percentage was about 1.3% instead of 7.2 % for the CuO-ZnO-CeO2 

catalyst. The presence of carbonates was also confirmed by the O 1s XPS band centered at 

high binding energy (531.9 eV and 531.4 eV, respectively for CuO-ZnO-CeO2 (Fig. 7a) and 

CuO-ZnO-Al2O3 (Fig. 7b). 

The XPS spectrum of Ce 3d for the CuO-ZnO-CeO2 sample is depicted in Fig.8 and 

presents a complex behavior. The split of the band into numerous peak is due to the 

hybridization between the final state Ce 4f orbitals and the O 2p oxygen orbital [76]. In Fig.8 

the peaks are identified by V and U labels, indicating respectively the spin orbit coupling 3 

d3/2 and 3d5/2 [77], by applying the convention introduced by Burroughs et al. [78] in 1976. 
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Ce3d spectrum can be decomposed in 5 doublets, (U''', V'''), (U'', V''), (U’, V’), (U°, V°), and 

(U,V), corresponding to the emissions from the spin-orbit split 3d3/2 and 3d5/2
 core levels [77-

79]. The five doublets were assigned to different final states of tetravalent (Ce4+) or trivalent 

(Ce3+) in Ce compounds (see Table 3); U''' (916.6 eV) and V''' (898.2 eV) were due to a Ce 

3d94f0 O2p6 final state, U'' (907.4 eV) and V'' (888.8 eV) to a Ce 3d94f1 O2p5 final state, U' 

(903.2 eV) and V' (884.9 eV) to a Ce 3d94f1 O2p6 final state, U° (899.3 eV) and V° (881.0 

eV) to a Ce 3d94f2 O2p5 final state, and U (900.8 eV) and V (882.4 eV) to a Ce 3d94f2 O 2p4 

final state. Especially the well-defined U''' peak at 916.6 eV was characteristic of the presence 

of Ce4+ [77].   

3.2. Catalytic tests  

In order to verify the catalytic performances of the binary and ternary polyol catalysts 

in relation to the chemical composition, oxide structure and surface properties, CO2 

hydrogenation to methanol was used as test reaction. The tests were carried-out at 

atmospheric pressure by feeding the tubular reactor with a H2/CO2 =1/9 mixture. Methanol 

and methane were the main carbon containing products, while only traces of carbon monoxide 

were detected.  

The activity of the four catalysts was compared at 240 °C (Fig.9). The binary catalysts, 

CuO-CeO2 and ZnO-CeO2, did not show any catalytic activity (CO2 conversion below 2%). 

The ternary CuO-ZnO-CeO2 and Cu-ZnO-Al2O3 catalysts showed similar conversion curves 

as a function of time, with stabilization of their activity after 4h reaction. The CuO-ZnO-CeO2 

catalyst showed the best result with a maximum conversion of about 20%, while Cu-ZnO-

Al 2O3 reached a conversion not exceeding 14%. The enhanced activity of the ternary catalysts 

is attributed to the synergistic effect between CuO and ZnO, as already known from the 

literature [80-82]. The higher activity of the CuO-ZnO-CeO2 catalyst can be attributed to both 

the basicity of CeO2 [83], which favors the adsorption of CO2 (that is an acid molecule), and 
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the enhanced reducibility of the system, leading to the increase of the number of active sites 

after the reducing pretreatment operated in-situ, before the reaction tests. Moreover, in the 

Cu-ZnO-Al2O3 catalyst, copper and zinc oxides were not fully available due to the formation 

of the CuAl2O4 and ZnAl2O4 spinels, as shown by XRD. Indeed, zinc and copper trapped into 

the spinel cannot enter in intimate contact and their synergistic catalytic effect [81-83] cannot 

be deployed.  

On the most active catalyst (CuO-ZnO-CeO2), further tests, at different reaction temperature, 

were performed.  The CO2 conversion as a function of time is plotted in Fig.10a for the tests 

performed in the 190-240 °C temperature range. At the beginning the curves presented an 

activation step, characterized by a steep section of the conversion curve; after 1 h reaction, the 

change of slop indicated that the stationary state is going to be reached up (maximum CO2 

conversion). A slightly different behavior was observed for the test performed at 240 °C in 

which the approach to the maximum conversion was slower and characterized by a change in 

slope. By increasing the temperature, the selectivity to CH4 increased, while the methanol 

selectivity decreased simultaneously (Fig. 10b). Methanol selectivity was favored at low 

temperature; MeOH is indeed unstable at high temperature and is transformed into CH4 and 

H2O (in presence of hydrogen) through the following successive reactions: 

CO2 + H2   → CH3OH  + H2    → CH4 + H2O 

This transformation explains also the change in slope of the CO2 conversion curve in Fig. 10a; 

at first the slope of the 240 °C curve followed that of the curves at lower temperature, while 

when the transformation to CH4 started, the slope decreased and the rate for reaching the 

stationary state slowed-down. 

 

4. Conclusions  
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The catalysts prepared by the polyol method, and reported in the present research, presented 

improved properties in terms of metal oxide dispersion, and morphology (i.e. sponge like 

shape for the CeO2-containing catalysts), and a variety of the metal and metal oxide species 

on the surface. Moreover, the CuO-ZnO-CeO2 and Cu-ZnO-Al2O3 catalysts exhibited a higher 

activity and selectivity in the methanol synthesis by CO2 hydrogenation than those displayed 

by catalysts prepared by more conventional methods, as summarized in Table 3. The results 

obtained for the catalysts prepared in the present work are also reported for comparison.    

 
Table 3: catalytic performances in the hydrogenation of CO2, obtained on the catalysts 
prepared  

Type of catalyst Preparation method 
T 

(°C) 
P  

(MPa) 
R 

(H2/CO2) 

CO2 
conversion 

(%) 

CH3OH 
Selectivity 

(%) 
Ref. 

CuO-ZnO-Al2O3 Polyol method 240 0.1 9.0 14 86 this 
work CuO-ZnO-CeO2 Polyol method 240 0.1 9.0 20 90 

CuO/ZnO/Al2O3 Solvent free routine 240 3.0 3.0 16 64 [40] 
CuO/ZnO/ZrO2 Surfactant co-precipitation method 240 3.0 3.0 12 33 [16] 
CuO-ZnO-ZrO2 (M) Co-precipitation microfluidic 240 

 
5.0 

 
3.0 

 
9 47 [41] 

 CuO-ZnO-ZrO2 (pH) Co-precipitation at controlled pH  14 50 
CZZ0 

Precipitation/reduction method  (NaBH4) 230 5.0 3.0 
17 67 

[15] CZZ3 15 62 
CZZ5 15 67 
Cu/ZnO Co-precipitation 240 3.0 3.0 17 78 [84] 
10Cu-/CeO2 

Coprecipitation + impregnation 230 3.0 3.0 
4 66 

 
[85] 

0.5Pd-10Cu/CeO2 6 49 
2Pd-10Cu/CeO2 15 29 
CuO-ZnO-TiO2-ZrO2 Co-precipitation (oxalate) 240 3.0 3.0 17 44 [61] 

Cu/ZnO Impregnation 240 0.1 9.0 5 12 [42] 

Cu-Zn/SiO2 Impregnation 250 2.0 3.0 2 66 [1] 
5%CuZn/rGo 

 
Incipient wetness impregnation 

250 1.5 3.0 
14 3 

[19] 10%CuZn/rGo 26 5 
20%CuZn/rGo 19 9 
CuO/ZnO/Al2O3 (Cp) With Internal cooling water 

240 3.0 3.0 
52 69 

[86] 
CuO/ZnO/Al2O3 (Cp) Without  Internal cooling water 

  
Cu/ZrO2+CaO Wetness impregnation 250 0.1 3.0 3 1 [87] 
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The most part of the catalysts listed in Table 3 presented CO2 conversion lower than 

20 % and selectivity to methanol lower than 65%, even when the reaction was performed at 

relatively high pressure (1.5-5.0 MPa), a more favorable condition than that used in the 

present research. It is worth to notice that on catalysts prepared by impregnation [42], the 

reaction performed at atmospheric pressure, and with a H2/CO2 ratio of 9, allowed to obtain 

only 12% conversion and 70% selectivity to methanol at 240°C, confirming that polyol 

method is promising for the preparation of active catalysts for CO2 hydrogenation (20% CO2 

conversion and 90% selectivity to MeOH).  
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FIGURES 

 

 

 

Fig.1. TGA profiles of catalyst: (a) before calcination, (b) after calcination at 500 °C 

Courbes ATG des catalyseurs : a) avant calcination b) après calcination à 500 °C 
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Fig.2. XRD patterns of calcined catalysts: (a) CuO-CeO2, (b) ZnO-CeO2, (c) CuO-ZnO-CeO2, and (d) 
CuO-ZnO-Al2O3. 
 
DRX des catalyseurs calcinés/ (a) CuO-CeO2, (b) ZnO-CeO2, (c) CuO-ZnO-CeO2, et (d) CuO-ZnO-
Al2O3. 
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Fig.3. (a) N2-adsorption–desorption isotherms and (b) Pore size distribution, of all samples 
 

(a) Isothermes d’adsorption et désorption d’azote et (b) distribution poreuse des échantillons 
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Fig.4. SEM images at different magnification of all catalysts (a-c) CuO-CeO2, (d-f) ZnO-CeO2 (g-i) 
CuO-ZnO-CeO2 and (j-l) CuO-ZnO-Al2O3 

 

Images MEB des catalyseurs (a-c) CuO-CeO2, (d-f) ZnO-CeO2 (g-i) CuO-ZnO-CeO2 et (j-l) CuO-ZnO-
Al2O3 
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Fig.5. Cu 2p XPS spectra of CuO-ZnO-CeO2 and CuO-ZnO-Al2O3 samples 

Spectres XPS Cu 2p des échantillons CuO-ZnO-CeO2 et CuO-ZnO-Al2O3 
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Fig.6. C 1s XPS spectra of CuO-ZnO-CeO2 and CuO-ZnO-Al2O3 samples 

 
Spectres XPS C 1s des échantillons CuO-ZnO-CeO2 et CuO-ZnO-Al2O3 
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Fig.7. O 1s XPS spectra of (a) CuO-ZnO-CeO2 and (b) CuO-ZnO-Al2O3 samples 

 
Spectres XPS O 1s des échantillons (a) CuO-ZnO-CeO2 et (b) CuO-ZnO-Al2O3 
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Fig.8. Ce 3d XPS spectra of the CuO-ZnO-CeO2 sample 

Spectres XPS Ce 3d de l’échantillon CuO-ZnO-CeO2  
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Fig.9. CO2 conversion as function of the time of reaction. Reaction conditions: CO2/H2 = 1/9, 
T=240°C, flow=1L.h-1 and P = 1 atm. 
 
Conversion de CO2 en fonction du temps de réaction. Conditions de réaction : CO2/H2 = 1/9, 
T=240°C, débit=1L.h-1 et P = 1 atm. 
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Fig.10.  a) CO2 conversion as function of the time and temperature of reaction b)-MeOH and CH4 

selectivity as function of the temperature of reaction, over the CuO-ZnO-CeO2 catalyst: flow=1L.h-1 
and P = 1 atm 
 
a) Conversion de CO2 en fonction du temps et de la température de réaction b) Sélectivités envers 
méthanol et méthane en fonction de la température de réaction pour le catalyseur CuO-ZnO-CeO2 : 
débit=1L.h-1 et P = 1 atm 
 




