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mesures des hétérogénéités

A finite element 3D polycrystalline aggregate
made of 216 grains is subjected to a mean axial
deformation up to 1%. The heterogeneities inside
the polycrystal are due to the crystallographic
orientations of the grains —this appears at the
scale of the mean responses per grain— and to
the local interaction between neighboring grains
—this appears at the intragranular scale. The
intragranular heterogeneity is measured as a
function of the distance to the grain boundary,
inside a single grain and for all the points
of the microstructure. It is characterised by
dispersions of the local responses due to grain
boundaries. These measurements correspond
to dispersions —variances—; the statistical errors
have also been determined.

1 Introduction

Among all the methods developed to characterise the
local behavior in polycrystalline materials, the experimental
determination of the fields inside grains requires to cut-
off slices of the material to enable three-dimensional
measurements. That is why such measurements are often
made on multicrystals with one or two grains along the
shortest direction of the piece of material. Numerical
representation of the local behavior inside an aggregate
is possible, through homogenisation or finite elements
computations [Delaire et al., 2000, Raabe et al., 2001,
Lebensohn, 2001]. The heterogeneities displayed with
these approaches have been confirmed by comparison to
experimental measurements. From the numerous studies
concerning the intragranular description of the mechanisms
of deformation we know that the behavior inside a grain is
governed by dislocation arrangements that may cause greatly
varying responses from point to point. Dislocation cells
and walls form intragranular structures with sizes/spacing
depending upon the distance to a grain boundary, a so-called
geometrically necessary boundary [Ashby, 1970] or even a

free surface [Horstemeyer et al., 2001]. Such features have
been introduced in many non-local modelings with more or
less accordance to physics: strain gradient plasticity [Shu
and Fleck, 1999, Acharya and Beaudoin, 2000], Cosserat
plasticity [Forest et al., 2000], explicit construction of
dislocation structures [Ortiz et al., 2000]...As well as
experimental characterisations, these models, as long as
they intend to represent intragranular heterogeneities, are
restricted to structures containing few crystals.

With the use of FE parallel computations and with
a classical approach to crystalline plasticity under small
strains, it is possible to describe the intragranular
heterogeneity in a model of three-dimensional polycrystals
[Quilici and Cailletaud, 1999, Barbe et al., 2001a, Barbe
et al., 2001b]. The results thus deal with a huge amount
of points inside each grain —largely enough to observe
variations of gradients inside grains— where the interactions
/ slip patterns are three-dimensional. This is a fundamental
requirement to justify performing statistical considerations:
the number of individuals —points— is large enough.
Another requirement is that the medium be isotropic so
that the analysis be valid in any direction of space. This
condition is respected as it has been checked in previous
works with similar number of grains and the same material
[Barbe et al., 2001a, Barbe, 2000]. Consequently, all the
points can be regarded as equivalent in any direction of
space. In these works, we have also checked that the
loading boundary conditions of the structure had negligible
effect on the polycrystal effective response and on the mean
response per grain. Only a small layer of one-grain-depth is
affected by the boundary conditions (for a same tensile test,
homogeneous strain boundary conditions were used, as well
as mixed boundary conditions where the minimum necessary
displacements were imposed). There thus might not be
any distinction to make between points having different
positions toward the boundary of the structure —at least,
once all the points are mixed together through averaging
operations, the slight effect due to structure boundaries
vanishes—.  Furthermore, we can choose not to make
any distinction between points of different crystallographic
orientation and classify the points regarding their minimum
distance to a grain boundary. This distance thus becomes the
only parameter considered for the analysis of stress/strain



heterogeneities.

In the following, tools for the modeling of the behavior
of polycrystalline aggregates and an example of computation
(section 2) are briefly presented. Section 3 deals with the
measurements taken from a simulated 216-grain-polycrystal
subjected to mean tensile loading: first the definitions
of the measurements are given and then the resulting
measurements are provided for the case of our polycrystal.
They consist in (i) the mean response in sets/classes of
points being at a same distance to a grain boundary, (%)
the dispersion in these sets of points and (%i:) the estimated
error associated to the number of representative points in
each set. Results are then discussed in section 3.2.

2 Polycrystal modeling

2.1 Single Crystal

It is assumed that slip is the predominant deformation
mechanism and that Schmid’s law is valid. The resolved
shear stress can then be used as a critical variable to evaluate
the inelastic flow. A viscoplastic framework is chosen, in
order to avoid the problems related to the determination
of the active slip systems in plastic models. A threshold
is introduced both in positive and negative directions on
each slip system : twelve octahedral slip systems will be
used for FCC materials. Two variables are defined for each
slip system s, r° and z°, corresponding respectively
to isotropic hardening (expansion of the elastic domain),
and kinematic hardening (translation of the elastic domain
[Chaboche, 1989]). A system will be active provided its
resolved shear stress 7° is greater than z° + r° or less
than 2° — r® and the slip rate will be known as long
as stress and the hardening variables are known. The state
variables used to define the evolution of 7° and z° are the
accumulated slip v* for isotropic hardening and the variable
o® for kinematic hardening. Knowing the stress tensor g®
applied to the grain g, the resolved shear stress for system
s can be classically written according to (1), 7° and m°
being respectively, for the system s, the normal to the slip
plane and the slip direction in this plane. The hardening
variables z°® and r° can then be expressed as a function
of o® and ©° following (2), their current values allowing
us to compute the viscoplastic slip rate 4° , the viscoplastic
strain rate tensor £® (3), and the hardening rules ((2.1)

and (5)). The present formulation gives a saturation of
the hardening in both monotonic and cyclic loading, and
takes into account the interactions between the slip systems,
through matrix A, as in [Kocks and Brown, 1966]. Nine
material-dependent coefficients are involved in the model
(E,V,K,n,c,d,Ro,Q,b).
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Such a formulation [Cailletaud, 1987, Méric et al., 1991]
is an extension of the classical crystallographic approach
for single crystal modeling in plasticity or in viscoplasticity
(see for instance [Taylor, 1938, Mandel, 1965, Asaro, 1983]).
It has been extensively used for single crystal modeling
including Finite Element simulations [Méric and Cailletaud,
1991, Besson et al., 1998]. The material coefficients
correspond to INCO600:

- isotropic elastic behavior: E = 196000M Pa, v =0.3

- viscous effect in (2.1) and (5): K = 10MPa.s*", n =25

- kinematic hardening in (2): ¢ = 1600MPa, d =40
- isotropic hardening in (2) and (3): Ro = 111MPa, Q =
35MPa, b=7

2.2 Computation and as-given results

The constitutive laws for single crystals are applied to
each integration point of a FE structure representing a
polycrystal. Each grain is made of a set of Gauss points that
represents a Voronoi polyhedron (see fig.1a for illustration
and [Barbe et al., 2001a] for the details about Voronoi
polyedra generation —contribution due to Decker and
Jeulin, LMM-ENSMP—). The dependence of our results at
different scales on the mesh refinement has been determined
in [Barbe et al., 2001c]. At least 4 x 4 x 4 20-node-
full-integration-elements per grain must be used to expect
a correct result at the intragranular scale. The results
produced in the following analysis deal with a structure made
of 36 x 36 x 36 elements (1259712 integration points). For
such a big structure, we have resorted to parallel computing
on 32 processors of the Linux PC Cluster of Centre
des Matériaux (Ecole des Mines de Paris): the structure
was divided into 32 sub-domains computed separately and
balanced through the FETI method at each increment of
the load [Feyel, 1998, Quilici and Cailletaud, 1999]. As an
example of the results obtained from such computations, the
contour of the amount of plastic slip after 1.5% axial strain
on a 200-grain-polycrystal is shown on fig.1b. It displays the
large variation in the local values at the intragranular scale.
But our purpose here is to quantify those variations; it is
referred to [Barbe et al., 2001b, Barbe, 2000] for a detailed
analysis of as-given results. In the following, the analysis
focuses on results of an axial tensile test to 1% total strain
performed on a 216-grain-polycrystal.

3 Measurements of hetero-

geneities

3.1 Definitions

Each point of the structure is an individual which has a
proper set of values, one for each mechanical variable (geq
and o¢q will be treated in the following). Collecting all
the points of a grain or of the whole structure at a same
distance to the grain boundary ensemble, we build classes
of individuals, one class per mechanical variable, that we
consider to be discrete random variables. Then we can



try to find an estimator for each variable, and the related
dispersion —square root of the variance— and error. The
most direct estimator suited to our case is the esperance,
i.e. the normal averaging over all the points at a same
distance to a grain boundary. With the assumption that
this estimator is correct, we compute the relative dispersion
(7) around the estimation and the relative error (8) that is
made by choosing the average as estimator.

Let us first call Xg;, the discrete random variable defined
by the set of responses, either ¢4 or 0.4, at a given distance
d; to the grain boundary ensemble: Xy, = {2t} =1,5(4;))
where N(d;) is the number of points at the distance d; +
(dq; — dq;_l)/z.

The absolute dispersion for this variable Xg; is the square
root of the variance:

N(di) _ )
Dps (dz) = \/Ek:l (mjtr(dj X, >) (6)
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The relative dispersion is the dispersion normalized by the

mean value < Xg, >:

z/N(d;) is the mean value of
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Relative error associated to the number of representatives:
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The measurements are made for all the points of a
single grain and then considering the points of the structure
alltogether, without any care on their grain belonging. In
the second case, there are points of a same class (same
distance to a grain boundary) that have different distances to
their respective grain centers. In other words, the maximum
distance to a grain boundary varies from grain to grain,
which is illustrated on fig.2a that gives the distribution
among grains of this maximum distance to a grain boundary.
But doing so, one makes estimations on larger sets of
individuals than if a single grain were treated. The total
number of points of the structure in each class of distance
to a grain boundary is given on fig.2b. As for other
graphs featuring the distance to a grain boundary, the
measurements are performed in intervals of distances to the
grain boundary having two different sizes: 0.01 (the set of
distances then corresponds nearly to the set of every possible
discrete distance) and 0.1 which is less than one tenth of
the minimum distance to a grain boundary. It is thus seen
that measurements for each possible discrete distance shall
be considered carefully if the distance to the grain boundary
exceeds 2.5 whereas measurements in intervals sized 0.1 do
not suffer from lack of representatives until the distance 3 is
attained.

The distance from an integration point to the grain
boundary is defined as the distance between the point
concerned and the closest integration point located along the
grain boundary nside the same grain. For this reason, for
any integration point of the structure, the minimum distance
to the grain boundary is necessarily 0.

3.2 Results and observations

In a single grain

First, von Mises equivalent stress and strain inside a single
grain are considered on fig.3 where all the local responses
are given as functions of the distance to the grain boundary,
together with the normal average response per interval of
distance to the grain boundary. Apart from the increasing
variation of the responses as a grain boundary is approached,
it is noticeable that the normal average made in intervals
of distance does not vary much from grain center to grain
boundary (about 10% of variation in strain and 5% in stress).
If the normal average over all the points of a class is taken
as the estimator, on fig.4, we see that there is an increasing
dispersion from the grain center to the grain boundary for
both stress and strain. But it is greater with strain (about
30%) than with stress (about 5%). The associated error
(on fig.5) shall be interpreted carefully: it does not vary
although an increase could be expected around the grain
center where number of representatives becomes very low;
the largest errors are even reached on points far from grain
center. So we actually just can deduce that the dispersions
measured have a statistical validity, at least for distances
less than 2.5 where stress and strain obviously appear to be
largely dispersed among a large number of representatives
(fig.3). For longer distances, the number of representatives
becomes very low and in the extreme limit, there is just a
single point per class.

In the whole structure

The same plots of (%) the mean response per class of points,
(i) the dispersion and (743) the error, determined from all the
points of the structure, are given in fig.6,7,8. Fig.6 confirms
the tendency featured by the single grain analysed: there
is no significant variation of the mean behavior with the
distance to the grain boundary. There is just a slight 6%
monotonous decrease in strain from the distance 0.5 to the
distance 2.5. About stress, one can observe a tendency to
increase in a monotonous manner in the interval [0.7,2.5]
but it is too low an increase to be a significant effect (about
1.5% increase in stress ...). Moreover, from the analysis
of another polycrystal of INCO600 containing 200 grains, it
has been found varying signs of the variations of stress/strain
from grain centers to grain boundaries [Barbe, 2000]. These
variations were also very low so there is no conclusion to
draw from the slight variations observed. Nevertheless, from
a detailed analysis of the mechanisms of slip (number of slip
systems having a slip [resp. resolved shear stress] superior to
a fixed value, number of systems having slip [resp. resolved
shear stress] superior to a certain proportion of the maximum
slip [resp. resolved shear stress] ...), it has been observed
qualitative variations with distance to a grain boundary
consistent with the results of the analysis of free surface
effect: a free surface, compared to the behavior in the bulk,
favors higher strains and lower stresses by allowing activated
slip systems to reach a great amount of slip; by contrast, a
grain boundary tends to activate more slip systems while
limiting the amount of slip on these systems. The analysis
can actually not be restricted to the simple consideration
of stress/strain and number of activated slip systems: there
could be no effect on the stress/strain while there is an effect
on the mechanisms of plasticity; the analysis requires to
clearly differentiate the ways a slip system can be defined to
be active. So, as a conclusion to the previous observations,



one just can say that there is no significant effect of the
grain boundaries on the mean response of points at a same
distance to the grain boundaries. Unlike the widespread
opinion that grain boundaries act as hardening layers that
reinforce the behavior of each grain and that are taken to be
responsible for the hardening of a polycrystal by comparison
to single crystals alone [Hirth, 1972, Mughrabi, 1983, Argon
and Haasen, 1993, Fu et al., 2001], there is no hardening
nor softening effect due to the grain boundaries in our
results. Some of these characteristics have been observed
in the experimental measurements of Raabe et al [Raabe
et al., 2001] on a quasi 2D polycrystalline layer of aluminium
strained at 8%: a spectrum of —87.5% to +87.5% deviation
from the average value has been measured; some regions near
grain boundaries correspond to strain localisation whereas
some others do not.

The quantitative dispersion and the qualitative variation
of the dispersion with the distance to a grain boundary
(fig.7) are also confirmed: 30% of dispersion in strain
along the grain boundaries and 17% in stress (i.e. about
half the dispersion in strain). From fig.2b we know that
there just remain about 60 grains (a quarter) having a
maximum distance to their boundary superior to 2.5. Those
60 grains occupy the volume fraction 90/216 ie. 42%
of the whole structure. Omne reasonably can suppose that
the behavior inside these grains might not be so particular
that their responses are not significant of a ’normal’
behavior, especially since they are the biggest grains, those
who offer the best conditions for statistical considerations.
Accordingly, one can bear on the measurements made
between the distance 0 to 2.5; the remaining part of distances
is representative of the behavior in the core of the biggest
grains. So a linear variation of the dispersion of strain from
30% at the grain boundary to 20% at distance 2.5 is observed.
In stress, this variation goes from 17% to 12.5%, nearly
linearly as well.

The error arising from the number of discretisation points
confirms that one can lay on our measurements for the major
part of intragranular regions, at least for distances from 0
to 2.5: it reaches about 2% in strain and 1% in stress for a
distance 2.5. Above this distance, the phenomenon expected
in the single grain is present: the error remarkably increases,
especially when it is measured in intervals sized 0.01. Indeed,
the individuals of a class made from all the points of the
structure have a priori a more pronounced random character
than the points of a class inside a single grain: the behavior in
a grain may be significantly different from the one of another
grain (for 1% total axial strain on this polycrystal, the mean
response per grain varies from 250 to 500 MPa in stress and
from 0.06 to 0.14 in strain) whereas two points of a same
grain located near the center have no reason to vary greatly
around the response at the center.

4 Conclusion

It has been shown that, in a purely local mechanical
modeling of the behavior of polycrystal, where no variation
of the constitutive behavior with position towards a grain
boundary or any type of interacting region is accounted
for and where only the geometrical arrangement of crystals
generates intragranular heterogeneities, the major effect of
the grain boundaries is the large dispersion that they cause;
only the anisotropy of plasticity combined to structural

heterogeneity is responsible for this in our case. Grain
boundaries may favor localisation in some places but no
localisation appears by average: grain boundaries do not
harden nor soften the behavior in their surroundings.
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Figure 1: (Left) Polycrystalline aggregate made of 200 grains represented by 32° full integration elements.
(Right) Amount of plastic slip on the contour of the polycrystal -INCO600- loaded at 1.5% axial strain with

homogeneous boundary conditions.
(Gauche) Agrégat polycristallin & 200 grains représenté par 32 éléments briques 3 intégration complete. (Droite) Quantité
de glissement plastique sur le contour du polycristal -INCO600- sous chargement en déformation axiale & 1,5%, avec des

conditions homogenes sur le contour.
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Figure 2: (Left) Distribution of the mazimum distance to the grain boundary of each grain and the corresponding
volume fraction: for example, 61% of the grains have a maximum distance equal to 2.0 and they represent
a volume fraction of about 76%. (Right) Number of points in each interval of distance to a grain boundary
sized 0.01 (0.3% of the maximum distance) or 0.1 (3% of the maximum distance), for the whole structure

(Gauche) Distribution de la distance mazimum au joint de grain de chaque grain et fraction volumique correspondante :
par exemple, 61% des grains ont une distance maximum égale & 2,0 et ils représentent une fraction volumique de 76%.
(Droite) Nombre de points dans chaque intervalle de distance au joint de grain de taille 0,01 (0.3% de la distance maximum)
ou 0,1 (3% de la distance maximum), pour la structure totale
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boundary in a single grain

Dispersion relative de €¢q (Gauche) et O¢q (Droite) en fonction de la distance au joint de grain dans un seul
grain
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Figure 5: Relative error for £, (Left) and 0.y (Right) as a function of the distance to the grain boundary
in a single grain

Erreur relative sur €4 (Gauche) et 0¢q (Droite) en fonction de la distance au joint de grain dans un seul grain
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Figure 6: (Left) £.4 and (Right) 0.y (MPa) as a function of the distance to the grain boundaries, determined
from the responses at every point of the structure

(Gauche) €¢q et (Droite) 0eq (MPa) en fonction de la distance aux joints de grains, déterminés & partir des réponses en
tout point de la structure
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Figure 7: Relative dispersion of €. (Left) and 0, (Right) as a function of the distance to the grain
boundaries, determined from the responses at every point of the structure

Dispersion relative de €¢q (Gauche) et de O¢q (Droite) en fonction de la distance aux joints de grains, déterminées
a partir des réponses en tout point de la structure
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Figure 8: Relative error for €4 (Left) and 0, (Right) as a function of the distance to the grain boundaries,
determined from the responses at every point of the structure

Erreur relative pour €4 (Gauche) et Ogq (Droite) en fonction de la distance aux joints de grains, déterminées a
partir des réponses en tout point de la structure
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