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ABSTRACT 17 
 18 

In bottom-up proteomics, data are acquired on peptides resulting from proteolysis. In XIC-19 

based quantification, the quality of the estimation of protein abundance depends on how 20 

peptide data are filtered and on which quantification method is used to express peptide 21 

intensity as protein abundance. So far, these two questions have been addressed 22 

independently. Here, we studied to what extent the relative performances of the quantification 23 

methods depend on the filters applied to peptide intensity data. To this end, we performed a 24 

spike-in experiment using Universal Protein Standard to evaluate the performances of five 25 

quantification methods in five datasets obtained after application of four peptide filters. 26 

Estimated protein abundances were not equally affected by filters depending on the 27 

computation mode and the type of data for quantification. Furthermore, we found that filters 28 

could have contrasting effects depending on the quantification objective. Intensity modeling 29 

proved to be the most robust method, providing the best results in the absence of any filter. 30 

However, the different quantification methods can achieve similar performances when 31 

appropriate peptide filters are used. Altogether, our findings provide insights into how best to 32 

handle intensity data according to the quantification objective and the experimental design. 33 

 34 

 35 

 36 

 37 

 38 

 39 
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INTRODUCTION 40 

In bottom-up proteomics, proteins are digested into peptides which are 41 

subsequently separated by liquid chromatography (LC), ionized by electrospray and analyzed 42 

by tandem mass spectrometry (MS/MS). Peptide ions, and consequently the proteins from 43 

which they originate, can be quantified by integrating the signal intensities obtained from 44 

extracted ion currents (XIC; ). This protein quantification approach, referred to as XIC-based 45 

quantification, is highly sensitive. It provides as many measurements as there are quantified 46 

peptide ions, so that in a given sample, each protein is measured as many times as it has 47 

peptide ions that have been assigned to it. These multiple measurements per protein allow 48 

robust quantification but they also represent a major difficulty. Not all the peptide intensities 49 

associated with a protein are equivalent for the following reasons: i) not all the peptides bear 50 

the same information (e.g. peptides shared by several proteins vs proteotypic peptides); ii) the 51 

ionization efficiency varies according to the peptide, so peptides belonging to a same protein 52 

will display different intensity levels ; iii) some peptide ions may be incorrectly identified; iv) 53 

some peptide ions may be incorrectly quantified due to mis-cleavages or other technical 54 

issues; and v) the abundances of some peptide ions do not reflect the abundance of their 55 

corresponding proteins because of post-translational modifications. Therefore, if not properly 56 

considered, peptide ions can introduce errors when computing protein abundances. 57 

 To reduce these errors, different approaches have been proposed. The statistical 58 

and probabilistic approaches rely on a modeling framework for computing protein abundances 59 

from quantified peptides. These approaches have been used to include shared peptides to 60 

improve protein quantitation (e.g. ) and to handle missing data and/or outlying measurements 61 

(e.g. ). Although they allow to fully exploit the information collected by the mass 62 

spectrometers, these approaches have not been widely used by the proteomics community so 63 

far, probably  because of their complexity and of their requirement in computing time to 64 

analyze large datasets. As an alternative, several authors filter the peptide data before 65 

computing protein abundances. There are four types of filter. First, there is the shared peptide 66 

filter. Although they constitute a valuable source of information , shared peptides are 67 

generally discarded because it is difficult to properly deconvolve the information they carry. 68 

Second, there is the retention time (RT) filter, which aims to remove peptide ions showing 69 

highly variable RT potentially arising from mis-identifications. Various methods have been 70 

used, based on the standard deviation of RT  or on RT clustering . Third, there is the 71 

occurrence filter, which aims to remove peptide ions exhibiting many missing values. These 72 
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peptide ions may be associated with dubious intensities if missing values are due to problems 73 

in RT alignment or in peak detection. However, they may also be associated with valuable 74 

intensities if missing values arise from biological mechanisms (for example if the protein is 75 

not expressed) or from technical limitations (if intensities are below the detection threshold). 76 

As for shared peptides, rarely observed peptide ions are difficult to handle so one way around 77 

this problem is to remove them. Generally, a threshold is chosen arbitrarily, e.g. a peptide ion 78 

should be observed in at least three injections . More refined approaches have also been 79 

proposed, taking experimental groups into account so that statistical tests can be performed 80 

properly  or based on a model filtering routine to select peptide ion sets that produce optimal 81 

information content [7]. Fourth, there is the outliers filter, which aims to exclude peptide ions 82 

showing inconsistent intensity profiles. Several approaches have been proposed based on 83 

Grubbs' test , the coefficient of variation , the peptide ion correlation  or covariation . 84 

 To obtain a final protein abundance value, the intensities of the peptide ions 85 

remaining after filtering must be summed. In the case of data-dependent analysis where 86 

intensity data are collected in MS1, several quantification methods have been proposed in the 87 

last fifteen years  (methods employed in acquisition approaches where intensity data are 88 

collected in MS2 such as data-independent analysis or targeted quantification are outside the 89 

scope of the present study). Six of them are commonly used: i) Average, which is the mean of 90 

intensities of all the peptide ions; ii) iBAQ, which is the sum of intensities of all peptide ions 91 

matching to a protein divided by the number of theoretically observable peptides ; iii) TOP3, 92 

which is the mean of intensities of the three most intense peptide ions ; iv) Average-Log, 93 

which is the mean of log-intensities of all the peptide ions [18]; v) Model, which is the 94 

adjusted mean of intensities of all the peptide ions computed using linear models  and vi) 95 

maxLFQ implemented in maxQuant , which computes protein abundances based on a system 96 

of equations built from pair-wise peptide intensity ratios. TOP3 and iBAQ were more 97 

specifically developed for absolute quantification while Average, Average-Log and maxLFQ 98 

are widely used for relative quantification. Model is recommended by some authors as the 99 

most adequate method to infer and quantitatively compare protein abundances . Although the 100 

relative performances of these quantification methods have been evaluated repeatedly, no 101 

clear consensus has emerged so far.   102 

 To explain this lack of consensus, we assume that the relative performances of 103 

quantification methods depend on the quality of the dataset considered and that similar 104 

performances can be achieved by using peptide filters appropriate to each method. As the 105 
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weight of a peptide ion in the computation of a protein abundance depends on the 106 

computation mode used and thus on the quantification method, one may expect peptide filters 107 

to have different effects depending on the method. To confirm these assumptions, we 108 

performed a spike-in experiment using UPS1 standard to evaluate the performances of five 109 

quantification methods in different datasets combining zero to four of the filter types 110 

previously mentioned. The five quantification methods included those mentioned above 111 

except maxLFQ, as it required the use of a non-open source program, which precluded the 112 

analysis of the effect of the different filters. 113 

 114 

MATERIAL AND METHODS 115 

 116 

Yeast growth 117 

 Saccharomyces cerevisiae strain S288C was inoculated in 5 ml YPD (Yeast 118 

extract Peptone Dextrose) medium containing yeast extract (10 g l-1; Difco Laboratories, 119 

Detroit, Michigan), bacteriological peptone (20 g l-1; Difco) and glucose (20 g l-1). After 24 h 120 

of growth at 30 °C under agitation, the culture medium was centrifuged (2 750 g, 10 °C, 3 121 

min) and the supernatant was discarded. The remaining yeast cells pellet was rinsed twice 122 

with 5 ml cold distilled water, frozen in liquid nitrogen and stored at -80 °C for subsequent 123 

protein extraction. 124 

 125 

Yeast protein extraction 126 

 Proteins were extracted by suspending the pellet of yeast cells in 500 µl of an 127 

ice-cold extraction/precipitation solution of acetone containing trichloroacetic acid (10%) and 128 

β2-mercaptoethanol (0.07%). To promote cell wall disruption, cells were ground for 5 min 129 

with 200 µl of glass beads. The protein extract was then shortly vortexed for homogenization 130 

and immediately transferred to new vials to remove glass beads. 750 µl of the 131 

extraction/precipitation solution were added to the protein extract before incubation (-20 °C 132 

for 90 min) and centrifugation (19 283 g, 0 °C, 15 min). The supernatant was removed, and 133 

the remaining protein extract was re-suspended in 1.8 ml cold washing acetone solution 134 

containing 0.07% β2-mercaptoethanol, incubated (1 h at -20 °C) and then centrifuged (19 283 135 

g, 0 °C, 10 min). This step was repeated twice. After the last washing, the protein pellet was 136 
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dried in a vacuum centrifuge, weighed and solubilized by adding 15 µl per mg of pellet of a 137 

solubilization buffer (6M urea, 2M thiourea, 10mM dithiothreitol (DTT), 30 mM Tris-HCl at 138 

pH 8.8, 0.1% zwitterionic acid labile surfactant (ZALS)). Remaining cellular debris was 139 

segregated from soluble proteins by centrifugation (15 000 g, 25 °C, 25 min). Protein 140 

concentration was determined using the PlusOne 2-D Quant Kit (GE Healthcare, Little 141 

Chalfont, UK) and adjusted with the solubilization buffer to 0.887 µg µl-1. 142 

 143 

Spike-in UPS1 preparation 144 

 Dried UPS1 proteins (Sigma-Aldrich) were solubilized in the buffer containing 145 

yeast proteins to a final concentration of 0.75 µg µl-1 (0.625 fmol µl-1 of each UPS1 protein) 146 

so that the total protein (yeast + UPS) concentration was 1.637 µg µl-1. Proteins were 147 

incubated for one hour at room temperature for reduction by the 10 mM DTT present in the 148 

buffer. Thereafter, proteins were alkylated for one hour in the presence of 50 mM 149 

iodoacetamide and diluted with 50 mM ammonium bicarbonate to decrease the total urea and 150 

thiourea concentration to 3.6 M before being twice digested. A first 4-hour digestion was 151 

performed with 1/32 (w/w) rLysC protease (Promega). After dilution with a solution of 50 152 

mM ammonium bicarbonate to decrease the total urea and thiourea concentration to 0.77 M, a 153 

second overnight digestion was performed with 1/32 (w/w) trypsin (Promega). Both rLysC 154 

and trypsin digestion were performed at 37 °C. Trypsin digestion was stopped by acidification 155 

(1% total volume trifluoroacetic acid). The resulting peptides were purified on solid-phase 156 

extraction using a polymeric C18 column (Phenomenex) with a washing solution containing 157 

0.06% acetic acid and 3% acetonitrile (ACN). After elution with 0.06% acetic acid and 40% 158 

ACN, peptides were speedvac-dried and suspended in a solution containing 2% ACN, 0.06% 159 

trifluoroacetic acid and 0.06% formic acid so that the concentration of each UPS1 peptide was 160 

141.1 fmol µl-1 and the total concentration of yeast peptides was 200 ng µl-1. A serial 2.25-161 

fold dilution was prepared by mixing 6.7 µl of UPS1-yeast peptide mix with 8.3 µl of 162 

solubilized yeast peptides at 200 ng µl-1 until a UPS1 peptide concentration of 0.04 fmol µl-1 163 

was reached. Eleven samples were thus obtained, containing 141.1, 62.8, 27.9, 12.4, 5.5, 2.2, 164 

1.1, 0.5, 0.2, 0.09 and 0.04 fmol µl-1 of each UPS1 peptide. This serial dilution was performed 165 

in three replicates from aliquots of the same yeast culture, thus producing 33 samples. 166 

 167 

LS-MS/MS analyses 168 
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 LC-MS/MS analyses were performed using a NanoLC-Ultra System 169 

(nano2DUltra, Eksigent, Les Ulis, France) connected to a Q-Exactive mass spectrometer 170 

(Thermo Electron, Waltham, MA, USA). For each sample, 4 µl of protein digest were loaded 171 

onto a Biosphere C18 precolumn (0.1 × 20 mm, 100 Å, 5 μm; Nanoseparation) at 7.5 μl min−1 172 

and desalted with 0.1% formic acid and 2% ACN. After 3 min, the pre-column was connected 173 

to a Biosphere C18 nanocolumn (0.075 × 300 mm, 100 Å, 3 μm; Nanoseparation). 174 

Electrospray ionization was performed at 1.3 kV with an uncoated capillary probe (10 μm tip 175 

inner diameter; New Objective, Woburn, MA, USA). Buffers were 0.1% formic acid in water 176 

(A) and 0.1% formic acid and 100% ACN (B). Peptides were separated using a linear gradient 177 

from 5 to 35% buffer B for 110 min at 300 nl min–1. One run took 120 min, including the 178 

regeneration step at 95% buffer B and the equilibration step at 100% buffer A. 179 

 Peptide ions were analyzed using Xcalibur 2.1 (Thermo Electron) with the 180 

following data-dependent acquisition steps: (1) MS scan (mass-to-charge ratio (m/z) 300 to 1 181 

400, 70 000 resolution, profile mode), (2) MS/MS (17 500 resolution, normalized collision 182 

energy of 30, profile mode). Step 2 was repeated for the eight major ions detected in step (1). 183 

Dynamic exclusion was set to 30 seconds. Xcalibur raw datafiles were transformed to 184 

mzXML open source format using msconvert software in the ProteoWizard 3.0.3706 package 185 

. During conversion, MS and MS/MS data were centroided. The raw MS output files and 186 

protein abundances were deposited on-line using PROTICdb database  at the following URL: 187 

http://moulon.inra.fr/protic/filtering_quanti_methods. They are currently available with the 188 

following username: filtering and password: review. The mass spectrometry proteomics data 189 

have also been deposited with the ProteomeXchange Consortium via the PRIDE  partner 190 

repository with the dataset identifier PXD009740. They are currently available with the 191 

following username: reviewer32109@ebi.ac.uk and password: JH5JcHXE. They will be made 192 

freely available after publication. 193 

 194 

Protein identification 195 

 Protein identification was performed using the protein sequence database of 196 

S. cerevisiae strain S288c downloaded from the Saccharomyces Genome Database (SGD 197 

project, http://www.yeastgenome.org/, version dated 13/01/2015) and the sequences of UPS1 198 

proteins available at http://www.sigmaaldrich.com/content/dam/sigma-aldrich/life-199 

science/proteomics-and-protein/ups1-ups2-sequences.fasta. A contaminant database 200 
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containing the sequences of standard contaminants was also interrogated. The decoy database 201 

comprised the reverse sequences of yeast and UPS1 proteins. Database search was performed 202 

with X!Tandem (version 2015.04.01.1; ) using the following settings. 203 

Carboxyamidomethylation of cysteine residues was set to static modification. Oxidation of 204 

methionine residues, N-terminal acetylation with or without excision of the N-terminal 205 

methionine, deamination of N-terminal glutamine and of carbamidomethylated cysteines and 206 

loss of H2O from N-terminal asparagins were set to possible modifications. In the refine 207 

mode, excision of signal peptides was searched on the 50 first N-terminal amino acids 208 

possibly acetylated. Precursor mass precision was set to 10 ppm. Fragment mass tolerance 209 

was 0.02 Thomson (Th, unit of m/z). Only peptides with an E-value smaller than 0.05 were 210 

reported. 211 

 Identified proteins were filtered and sorted by using X!TandemPipeline 212 

(version 3.4.0, ). Criteria used for protein identification were (i) at least two different peptides 213 

identified with an E-value smaller than 0.01 and (ii) a protein E-value (product of unique 214 

peptide E-values) smaller than 10−5. Using these criteria, peptide and protein false discovery 215 

rates were 0.034% and 0 %, respectively. 216 

 217 

Peptide ion quantification and intensity data filtering 218 

 Peptide ions were quantified according to extracted ion chromatograms (XIC) 219 

using MassChroQ software version 2.2  with the following parameters: "ms2_1" alignment 220 

method, tendency_halfwindow of 10, MS1 smoothing halfwindow of 0, MS2 smoothing 221 

halfwindow of 15, "quant1" quantification method, XIC extraction based on max, min and 222 

max ppm range of 10, anti-spike half of 5, background half median of 5, background half min 223 

max of 20, detection thresholds on min and max at 30 000 and 50 000, respectively, peak 224 

post-matching mode, ni min abundance of 0.1. The peptide intensities thus obtained 225 

constituted the initial dataset (Dataset 0), which was used to derive five datasets combining 226 

zero to four filters (Figure 1). 227 

 In the first dataset (Dataset 1), no filter was applied. Yeast peptide intensities 228 

were normalized to take possible global quantitative variations between LC-MS runs into 229 

account. For this, we used a local normalization method adapted from Lyutvinskiy et al. [30] 230 

and described in Millan-Oropeza et al.  . In the second dataset (Dataset 2) one filter was 231 

applied: after normalization of yeast peptide intensities as described above, shared peptides 232 
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were removed (shared peptide filter). The third dataset (Dataset 3) comprised two filters. 233 

Peptides with a standard deviation of retention time higher than 30 seconds were first 234 

removed (RT filter). Since these peptides were considered as dubious, this filter was applied 235 

before normalization of yeast peptide intensities. Then, shared peptides were removed. The 236 

fourth dataset (Dataset 4) comprised three filters. It was obtained by applying an occurrence 237 

filter to Dataset 3, which resulted in the selection of peptide ions quantified in at least 28 238 

samples, with no more than one missing value per UPS1 concentration. Thus, a maximum of 239 

15.15% of missing values per peptide ion was tolerated and the selected peptide ions were 240 

quantified in at least two replicates for each UPS1 concentration. To ensure the quality of 241 

normalization, which depends on the number of peptide ions quantified both in a sample 242 

chosen as reference and in a sample to be normalized, we decided to apply this filter after 243 

normalization. Several peptide ions removed by the occurrence filter are good quality 244 

peptides whose intensities may fall below the detection threshold because their ionization 245 

efficiency is low. The fifth dataset (Dataset 5) comprised four filters and was obtained by 246 

applying an outliers filter to Dataset 4. To this end, Pearson correlations between log10-247 

transformed intensities were computed for each pair of peptide ions belonging to the same 248 

protein. To avoid bias induced by outlier values due to individual technical variations, the 249 

correlations were computed on mean values of peptide ion intensities per concentration. The 250 

peptide ion with the highest number of coefficients of correlation greater than or equal to the 251 

mean of the positive coefficients of correlation was chosen as a reference for the protein. The 252 

peptide ions showing a non-significant correlation to the reference (p-value >= 0.01) or whose 253 

coefficients of correlation to the reference were lower than 0.8 were considered as outliers and 254 

were removed (outliers filter). Proteins quantified by fewer than two peptide ions were 255 

removed from all the datasets. Missing intensity values were not imputed. Consequently, the 256 

number of peptide ions used to compute protein abundances could vary from one sample to 257 

another. 258 

 259 

Protein quantification 260 

 For each protein, five methods were used to compute abundances: i) iBAQ : the 261 

sum of peptide ion intensities was divided by the theoretical number of tryptic peptides; ii) 262 

TOP3 : the three most intense peptide ions in median were selected and their mean intensity 263 

was computed. When one of the three most intense peptide ions was missing in a sample, 264 

TOP3 was computed from the two remaining ones; iii) Average: the mean of all peptide ion 265 
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intensities was computed, iv) Average-Log [18]: peptide ion intensities were log10-266 

transformed before their mean was computed; v) Model: log10-transformed intensities were 267 

modeled using a mixed effects model derived from Blein-Nicolas et al.: 268 

I ijk= µ+Ai +Rj +Pk+θij+εi jk  269 

 where  θijk ~ N (0, σ θ2) 270 

  εijk ~ N (0, σ ε2) 271 

where Iijk is the intensity measured for peptide ion k in serial dilution j (with j = 1, 2 or 3) at 272 

UPS1 concentration i; µ  is the overall mean; the terms Ai Rj and Pk represent the effect due to 273 

UPS1 concentration i; serial dilution j and ionization efficiency of peptide k (also called 274 

peptide effect) respectively; Ɵij represents the technical variation due to sample handling and 275 

injection in the mass spectrometer; �ijk is the residual error. Model was fitted with sum 276 

contrasts by maximizing the restricted log-likelihood. This allowed us to estimate the effects 277 

of Pk and Ɵij and to subtract them from log10-transformed intensities. By doing so, we could 278 

subsequently compute protein abundances as adjusted mean intensities whose undesirable 279 

effects (Pk, Ɵij,) were removed. Log-abundances obtained by Average-Log and Model were 280 

converted to abundances for further analyses. All data analyses and graphical representations 281 

were performed using R version 3.3.2 . R scripts as well as quantification data are available at 282 

http://moulon.inra.fr/protic/filtering_quanti_methods (temporary username: filtering and 283 

password: review). 284 

 285 

RESULTS AND DISCUSSION 286 

We evaluated the crossed effects of peptide filters and quantification methods on 287 

the performances of protein quantification using a spike-in experiment where different 288 

concentrations of UPS1 proteins were added to a constant yeast background. Four filters were 289 

used: the shared peptide filter, the RT filter, the occurrence filter and the outliers filter. When 290 

applied separately, the filters exhibited some overlap since a number of peptide ions were 291 

removed by both the shared peptide and the outliers filters, the RT and the occurrence filters 292 

or the occurrence and the outliers filters. However, each filter also allowed us to remove 293 

many peptides (Figure S1). To take advantage of their complementarity, we applied these 294 

filters in cascade as described in Figure 1 (see Material & Methods for details), thus obtaining 295 

five datasets combining zero to four filters.  296 
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As the shared peptide, the RT and the occurrence filters discard peptide ions on 297 

the basis of their own characteristics, which do not depend on other peptide ions, the order in 298 

which these three filters are applied does not change the composition of the final dataset. This 299 

is not the case for the outliers filter, whose criterion of exclusion is based on the correlation 300 

with the other peptides of the same protein: the result of this filter can thus be influenced by 301 

the application of prior filters. As it is not appropriate to define outliers on the basis of peptide 302 

ions that will finally be discarded by other filters, we applied the outliers filter at the end. For 303 

each of the five datasets, five quantification methods, referred to as iBAQ, TOP3, Average, 304 

Average-Log and Model, were used to compute protein abundances. 305 

 306 

1. The amplitude of peptide filtering affects protein data composition 307 

 Yeast and UPS1 datasets were differently affected by the filters. The proportion 308 

of shared peptides removed was much higher for yeast than for the UPS1 standard (-4.2% vs -309 

0.8%, respectively). Although the UPS1 standard was designed to contain few proteins with 310 

similar sequences, yeast is a living organism that contains many duplicated genes resulting 311 

from whole genome duplication and other small-scale duplications . 312 

 The occurrence and outliers filters were those that most drastically reduced the 313 

whole dataset (-38% and -64% peptide ions, respectively; -26.9% and -32.4% proteins, 314 

respectively). At the peptide level, the occurrence filter removed two-fold more UPS1 peptide 315 

ions than the yeast peptide ions (77.1% vs 35.9%, respectively). This is because UPS1 316 

proteins have a wide dynamic range while yeast proteins are in constant amounts. The 317 

detectability of a peptide at a given protein concentration depends on its ionization efficiency: 318 

a peptide with a high ionization efficiency can be detectable even at low protein 319 

concentration, while a peptide with a low ionization efficiency will be detectable only if the 320 

protein concentration is high enough. Consequently, when the protein dynamic range is wide, 321 

peptides with low ionization efficiency are more subject to qualitative variations than those 322 

with high ionization efficiency. At the protein level, the occurrence filter also had a high 323 

impact on the number of quantified UPS1 proteins (-12.2%), mainly excluding small proteins 324 

quantified with few peptide ions (Figure S2). These proteins were probably represented 325 

mostly by peptides with a low ionization efficiency. Although these proteins were removed 326 

from the quantitative analysis, the information they carry was not completely lost as their 327 
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abundance variations can still be analyzed semi-quantitatively by using a spectral counting 328 

approach. 329 

 The outliers filter reduced yeast data more drastically than UPS1 data, both at 330 

the peptide level (-65% yeast peptide ions vs -12.6% UPS1 peptide ions, respectively) and at 331 

the protein level (-33.1% yeast proteins vs -2.8% UPS1 proteins, respectively). This was 332 

expected because the outliers filter is based on the correlation between peptide ions. Since the 333 

amount of yeast peptide ions was constant across the samples, they necessarily exhibited poor 334 

correlations. This is why the outliers filter not only has the advantage of removing peptide 335 

ions with dubious intensity profiles; it also allows proteins showing abundance variations in 336 

response to a treatment of interest (here the UPS1 concentration) to be selected. However, this 337 

characteristic can become a disadvantage if the objective is to obtain abundance values for all 338 

the proteins, including those in constant amounts, as is the case when protein abundances are 339 

used to feed metabolic models. Since the outliers filter implicitly makes it possible to select 340 

proteins showing abundance variations across UPS1 concentrations, we could have expected 341 

all yeast proteins to be removed. This was not the case, however, because the relative 342 

proportion of yeast proteins in the total protein pool actually decreased with increasing UPS1 343 

concentration. This variation in the total abundance of yeast proteins was subtle and barely 344 

detectable until the highest concentration of UPS1 (Figure S3). 345 

 Altogether, these results show that the effects of the occurrence and outliers 346 

filters on the amount of data depend greatly on the dynamics of protein abundance in the 347 

experiment. If these dynamics are large, the occurrence filter will not only remove dubious 348 

peptide ions associated with alignment or peak detection problems, but also many peptides 349 

with low ionization efficiencies that could be valuable for protein quantification. To further 350 

test the extent to which the severity of the occurrence filter can affect the performance of 351 

quantification, we also decided to use a restrained setup with a smaller UPS1 concentration 352 

range (0.5 to 27.9 fmol µl-1), which was more representative of a natural dynamic range as the 353 

distribution of UPS1 intensities fitted that of yeast better  (Figure S4). In this restrained setup, 354 

the UPS1 peptides with low ionization efficiencies had much fewer missing values, with the 355 

result that the occurrence filter affected the amount of data less severely (-12.2% and -7.3% of 356 

UPS1 proteins in the whole and restrained setup, respectively; Supplemental Table S1). In 357 

addition, 91.4% of the yeast peptide ions and 71.6% of the yeast proteins were removed by 358 

the outliers filter, confirming the efficiency of this filter for removing proteins showing no 359 

abundance variations. 360 
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 361 

2. Quantification methods do not respond equally to peptide filters 362 

 For each quantification method, the effects of peptide filters were evaluated in 363 

terms of precision, accuracy and linearity of response to increasing UPS1 concentrations. To 364 

determine to what extent these quality criteria can be affected by the severity of the 365 

occurrence filter (see above), we computed them for both the whole and restrained 366 

experimental setup. Precision, accuracy and linearity were evaluated on the UPS1 proteins 367 

detected in the five datasets (i.e. 35 and 37 UPS1 proteins in the whole and restrained 368 

experimental setups, respectively).  369 

 For each UPS1 protein, precision was computed as the median of the 370 

coefficients of variation (CV) determined between replicates of each UPS1 concentration. 371 

Results are presented in Figure 2 as boxplots showing the dispersion of CVs in each dataset. 372 

They show that none of the filters had a clear global effect on the precision of quantification 373 

for UPS1 proteins either in the whole experimental setup or in the restrained setup (Figure 2). 374 

Since the serial dilutions included only a few technical variations, we assumed that the 375 

number of UPS1 proteins was not high enough to observe a global effect of the filters on 376 

precision. Precision was slightly improved on yeast proteins by the occurrence filter when the 377 

Average or Average-Log method was employed, while the outliers filter decreased the 378 

precision with all methods except TOP3 (Figure S5). Note that precision was similar 379 

regardless of the quantification method used (Figure 2). 380 

 Then, to estimate accuracy in the absence of a reference indicating the 381 

theoretical protein abundances expected at each UPS1 concentration, we used the 382 

equimolarity of the UPS1 proteins. If accuracy is high, the estimated abundances within the 383 

set of UPS1 proteins should present little dispersion. We therefore used the inverse of the CVs 384 

of protein abundances across UPS1 proteins as a proxy for accuracy, with protein abundances 385 

averaged across serial dilutions. Accuracy measurements thus obtained at each UPS1 386 

concentration in each dataset are summarized as boxplots in Figure 3, showing that protein 387 

quantifications by iBAQ and Average were particularly improved by the shared peptide filter, 388 

which was not the case for the other quantification methods (Figure 3). This result, observed 389 

in the two experimental setups, is explained by the fact that both iBAQ and Average are based 390 

on untransformed intensities: in the computation of their sum or average, peptides of high 391 

intensity weigh more than peptides of low intensity. As their intensities correspond to the sum 392 
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of abundances of the proteins they belong to , shared peptides are globally more intense than 393 

proteotypic peptides. When taken into account, they can therefore lead to strongly 394 

overestimating protein abundances, especially when computed by iBAQ and Average (Figure 395 

4A). These results indicate that in the case of these two quantification methods, it is important 396 

to filter not only shared peptides but also all types of dubious peptide ions of high intensity 397 

(see for example Figure 4B). By contrast, Average-Log and Model were only slightly 398 

improved by the shared peptide filter: both methods are based on log-transformed intensities, 399 

where the difference between peptide ions of high and low intensity is reduced. In addition, 400 

the Model discards the peptide ion effect, which results in a similar weight of all peptides in 401 

the computation of protein abundance. 402 

 Note that Figure 3 indicates that accuracy for TOP3 was not as improved by 403 

the shared peptide filter as for iBAQ and Average. Nonetheless, Figures 4A and 4B, 404 

illustrating the effects of the shared peptide filter and the RT filter on peptide data and on 405 

estimated protein abundances for two proteins, show that as for iBAQ and Average, TOP3 406 

may be strongly biased by peptide ions of high intensity. Therefore, it is difficult to globally 407 

compare the effects of filters on quantification performances between TOP3 and the other 408 

quantification methods because in the case of TOP3, the effects of the filters are highly 409 

dependent on the proteins used. If the peptide ions that are filtered are not among the three 410 

most intense ones, the filter will have no effect on TOP3 (for instance, see Figure 4D). By 411 

contrast, if the peptide ions that are filtered are among the three most intense ones, the filter 412 

will necessarily have a large effect because the bias introduced by the irrelevant peptide ion 413 

before filtering is poorly buffered by the other two peptide ions. TOP3 is therefore an "all-or-414 

nothing" method in the sense that depending on their ionization potential, irrelevant peptide 415 

ions can either have no effect or introduce a strong bias in protein quantification. 416 

 Regarding the occurrence filter, we observed that for Average, Average-Log 417 

and Model, it had contrasting effects on accuracy depending on the experimental setup 418 

(Figure 3). Accuracy was clearly improved in the restrained setup, especially for Model and 419 

Average-Log, while it was slightly degraded in the whole setup (Figure 3). This result was 420 

unexpected since in the whole setup, the occurrence filter allowed us to select peptide ions 421 

with high ionization efficiencies (Figure 4C). These peptides are indeed commonly admitted 422 

as being the most representative of the protein abundances (e.g. ) based on the observation 423 

that the average intensity of the three most intense peptides per mole of protein was constant 424 

within a CV less than 10% . This observation has led to the development of TOP3 for absolute 425 
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quantification . As previously mentioned, many peptide ions removed by the occurrence filter 426 

in the whole experimental setup were valuable peptide ions with low ionization efficiency but 427 

with nice linear responses to increasing UPS1 concentrations (Figure 4C). By contrast, the 428 

proportion of valuable peptide ions removed by the occurrence filter in the restrained setup 429 

was lower than in the whole setup. These results therefore indicate that decreasing the number 430 

of valuable peptide ions to compute protein abundance negatively affects the accuracy of 431 

Average, Average-Log and Model. This may seem contradictory with the principle of TOP3, 432 

but it can be easily explained since peptides have unequal ionization efficiencies. To reach 433 

high accuracy, proteins must be quantified with peptide ion sets representing, on average, 434 

equivalent ionization efficiencies. This is what TOP3 does when selecting the three most 435 

intense peptide ions: it levels the average ionization efficiencies associated with the proteins 436 

upwards. In the case of Average, Average-Log and Model, the set of peptide ions used to 437 

compute a protein abundance can be viewed as a sampling of the diversity of the peptide 438 

ionization efficiencies. This sampling must be large enough to be representative. To confirm 439 

this hypothesis, we separated the UPS1 proteins into two groups depending on their number 440 

of quantified peptides, thus showing that accuracy was much higher for proteins quantified by 441 

many peptide ions, particularly in the case Average-Log and Model (Figure S6). Therefore, we 442 

conclude that by removing too many valuable peptide ions in the whole experimental setup, 443 

the occurrence filter affected the representativeness of the peptide ion sets associated with 444 

proteins, which consequently led to a lower accuracy for Average, Average-Log and Model.  445 

 Unlike Average, Average-Log and Model, the effect of the occurrence filter on 446 

the accuracy of iBAQ was the same in the two experimental setups and led to a loss of 447 

accuracy (Figure 3). This is because the number of peptide ions associated with a protein in 448 

iBAQ is per se an indication of abundance.  To compute iBAQ, peptide data should ideally be 449 

filtered to remove peptide ions with missing values due to problems in RT alignment or in 450 

peak detection, but not peptide ions with missing values due to low ionization efficiency. 451 

However, in real experiments, the proportion of these two types of peptide ions is not known. 452 

We therefore recommend not applying the occurrence filter in the case of iBAQ if high 453 

accuracy is the objective.  454 

Linearity was evaluated by using the coefficients of determination (R2) of linear 455 

regressions calculated between the log-transformed abundances obtained experimentally for 456 

UPS1 proteins and their spiked log-transformed concentrations. Abundance and 457 

concentrations were log-transformed for the sake of clarity. The R2 values obtained for each 458 
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UPS1 protein in each dataset are summarized as boxplots in Figure 5. Filters improved the 459 

linearity by removing peptide ions displaying non-linear responses to increasing UPS1 460 

concentrations (Figure 4). In the case of iBAQ and Model, a good linearity was obtained 461 

without using any filter in both experimental setups. By contrast, TOP3 linearity was clearly 462 

improved by the RT filter. The effect of the occurrence filter was globally the same in the two 463 

experimental setups in which it greatly improved linearity for Average and Average-Log 464 

(Figure 5) Therefore, using the two latter methods, linearity was strongly affected by missing 465 

data because it led to high between-sample variability. Of note, linearity of Average was less 466 

affected than Average-Log by the occurrence filter because peptides with low ionization 467 

efficiency had less weight in the former (Figure 5). 468 

Interestingly, when no filter was used iBAQ and Model, the slope of the regression 469 

between the log-transformed abundances obtained experimentally for UPS1 proteins and their 470 

spiked log-transformed concentrations was close to their optimal value and the theoretically 471 

expected value of 1. For Average and Average-Log, slopes similar to those of iBAQ and Model 472 

(close to expected value of 1) were obtained with the occurrence filter (Figure S7). This 473 

indicates, that filters not only improved the linearity of the response but also made it possible 474 

to obtain abundance-concentration relationships close to that theoretically expected. This was 475 

especially the case for Average and Average-Log. 476 

 477 

3. The performances of one quantification method over another depend on how the data 478 

were filtered 479 

 To summarize the absolute and relative quantification performances of the 480 

quantification methods tested in this study, we plotted accuracy versus linearity obtained for 481 

each method in the two experimental setups. When the objective is absolute quantification, 482 

high accuracy is essential for reliably estimating intracellular protein concentrations. 483 

However, if the objective is relative quantification, accuracy can be neglected as long as the 484 

errors between the observed and theoretical values are similar in all samples. If this is not the 485 

case, the linearity of the response to increasing UPS1 concentrations would be affected. 486 

 Figure 6 clearly shows that the absolute and relative quantification 487 

performances of the methods depend on the quality of the dataset, and that filtering made it 488 

possible to reduce their differences in performance for all the experimental setups. 489 

Interestingly, Model gave the best performance in terms of linearity and accuracy in the two 490 
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experimental setups in absence of any filter, indicating that it is the most robust method. This 491 

result is in agreement with a previous study showing that statistical modeling of protein 492 

abundances is the most adequate method to infer and quantitatively compare protein 493 

abundances . Figure 6 also shows that the filtering procedure should be chosen according to 494 

the quantification objective, since filters increasing performance in relative quantification may 495 

degrade performance in absolute quantification. For example, with Average, the occurrence 496 

and outlier filters improved linearity at the expense of accuracy in the whole experimental 497 

setup. 498 

 499 

CONCLUSION 500 

 Owing to their different properties related to the computation modes used to 501 

estimate protein abundances, quantification methods do not respond similarly to peptide 502 

filters. Therefore, filters should be chosen carefully according to a) the quantification method, 503 

b) the quantification objective (absolute or relative), and c) the experimental design. We make 504 

the following recommendations: data should be filtered to remove shared peptides, especially 505 

when using iBAQ or Average because they are susceptible to high intensity peptide ions. First,  506 

missing data should be handled carefully when using Average and Average-Log because they 507 

are a potential source of between-sample variability that affects relative quantification. 508 

Second, the occurrence filter can be used to manage missing data but it is to be used with 509 

caution: depending on the experimental design, it may remove many valuable peptide ions 510 

that present qualitative variations due to the large dynamics of protein expression. In addition, 511 

if the filter is too stringent, it may degrade accuracy in the case of Average, Average-Log and 512 

Model. Carefully combining the occurrence filter with missing data imputation would 513 

probably be a good alternative. In the case of iBAQ, the occurrence filter degraded accuracy, 514 

so if absolute quantification is the objective, we recommend not applying it when using iBAQ, 515 

even if it means keeping some dubious peptides. For the same reason, the outliers filter should 516 

be used with caution. However, these two filters improved iBAQ linearity, so they are relevant 517 

if relative quantification is the objective. Finally, we confirmed our hypothesis that by 518 

appropriately using peptide filters, good performances could be reached in both relative and 519 

absolute quantification, regardless of the quantification method. Model proved to be the most 520 

efficient method and may be used for absolute quantification when proteins are quantified by 521 

a sufficient number of peptides. 522 
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FIGURE LEGENDS 531 

Figure 1 Schema of peptide ion filtering workflow. Dataset 1 derived from normalization 532 

of raw dataset (Dataset 0), Dataset 2 derived from normalized Dataset 0 without shared 533 

peptides (shared peptide filter). To produce Dataset 3, peptides with a standard deviation of 534 

retention time higher than 30 seconds were removed (RT filter) before normalizing and 535 

filtering shared peptides. To produce Dataset 4, peptide ions presenting more than 15.15% of 536 

missing values were filtered out from Dataset 3 (occurrence filter). To produce Dataset 5, 537 

uncorrelated peptide ions belonging to same protein (Pearson, R² > 0.8, p-value < 0.01) were 538 

filtered out (outliers filter). 539 

Figure 2 Effect of peptide filters on precision of UPS1 protein abundance estimation by 540 

five methods of quantification (iBAQ, TOP3, Average, Average-Log and Model). For each 541 

UPS1 protein, precision was calculated as median CV (%) of protein abundance between 542 

three technical replicates determined at each UPS1 protein concentration. Only UPS1 proteins 543 

detected in the five datasets were used (i.e. 35 UPS1 proteins in whole experimental setup 544 

(red boxplots) and 37 in restrained setup (blue boxplots)). Only medians were plotted to 545 

compare all methods (bottom right). 546 

Figure 3 Effect of peptide filters on accuracy of UPS1 protein abundance estimation by 547 

five methods of quantification (iBAQ, TOP3, Average, Average-Log and Model). Accuracy 548 

was computed at each UPS1 concentration as the inverse of the coefficient of variation (CV) 549 

between the average abundances of UPS1 proteins (n = 3 replicates). Only UPS1 proteins 550 

detected in the five datasets were used (i.e. 35 UPS1 proteins in whole experimental setup 551 

(red boxplots) and 37 in restrained setup (blue boxplots)). Only medians were plotted to 552 

compare all methods (bottom right). 553 

Figure 4 Effect of filters on peptide ion selection (left panel) and estimation of protein 554 

abundance (right panel) illustrated on four UPS1 proteins in whole experimental setup. 555 

Effect of shared peptide filter on P62988 protein (A), effect of RT filter on P63165 protein 556 

(B), effect of occurrence filter on P02144 protein (C) and effect of outliers filter on P02787 557 

protein (D). Estimated protein abundances were averaged across technical replicates (n=3). In 558 

Figure 4D, protein abundance estimated before and after outliers filter by TOP3 are confused. 559 

Protein abundances estimated after outliers filter by Model and Averaged-Log are 560 

superimposed. 561 
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Figure 5 Effect of peptide filters on linearity between spiked UPS1 proteins 562 

concentrations and their abundances based on the five methods of quantification (iBAQ, 563 

TOP3, Average, Average-Log and Model). Linearity was evaluated by the coefficients of 564 

determination (R²) of linear regressions between the log-transformed  abundances obtained 565 

experimentally for UPS1 proteins and their spiked log-transformed concentrations. Protein 566 

abundances obtained experimentally were averaged across replicates (n=3). Only UPS1 567 

proteins detected in the five datasets were used (i.e. 35 UPS1 proteins in whole experimental 568 

setup (red boxplots) and 37 in restrained setup (blue boxplots)). Only medians were plotted to 569 

compare all methods (bottom right). 570 

Figure 6 Overall effect of peptide filters on performances (accuracy versus linearity) of 571 

five methods of quantification in whole experimental (A) and restrained (B) setup. For 572 

each quantification method, the third quartile (75% of UPS1 proteins) was used to sum up 573 

accuracy and linearity values displayed in Figure 3 and 5. 574 

 575 

Figure S1 A four-set Venn diagram showing number of peptide ions removed by each filter 576 

applied separately for UPS1 (A) and yeast (B) proteins. 577 

Figure S2 Relationship between number of quantified peptide ions and sequence length (in 578 

amino acids) for each UPS1 protein in the different datasets.  579 

Figure S3 Distribution of log-transformed intensities of yeast peptide ions at each UPS1 580 

concentration in dataset 0 (raw data). Number of yeast proteins quantified at each UPS1 581 

concentration is shown above boxplots. 582 

Figure S4 Distribution of log-transformed intensities of yeast (blue) and UPS1 (red) peptide 583 

ions in dataset 1 in whole experimental (A) and restrained setup (B). 2039 and 2033 yeast 584 

proteins were detected in whole experimental and restrained setup, respectively, and 41 UPS 585 

proteins were detected in both experimental setups (Table 1, Table S1). 586 

Figure S5 Effect of four filters on precision of yeast protein quantification based on iBAQ, 587 

TOP3, Average, Average-Log and Model methods. For each yeast protein and at each UPS1 588 

protein concentration, CV (%) of protein abundance between replicates (n= 3) was 589 

determined. Then, precision for each protein was calculated as median across serial dilutions 590 

of CVs (%). Only yeast proteins detected in the five datasets were used (i.e. 973 yeast proteins 591 

in whole experimental setup (red boxplots) and 518 in restrained setup (blue boxplots)). 592 
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Figure S6 Accuracy of UPS1 protein abundance according to number of peptides. For the 593 

whole experimental setup and the five methods of quantification, 35 UPS1 proteins (detected 594 

in the five datasets) were split into two groups -lower (orange boxplots) and higher (green 595 

boxplots)- according to median of peptide number determined in each dataset (Dataset 1 and 596 

2: 18 peptides, Dataset 3: 17 peptides, Dataset 4 and 5: 6 peptides). Accuracy was computed 597 

at each UPS1 concentration as inverse of coefficient of variation (CV) between average 598 

abundances of UPS1 proteins (n = 3 replicates).   599 

 600 

Figure S7 Effect of four filters on slope of linear regression calculated between spiked UPS1 601 

protein concentrations and their abundances based on the five methods of quantification 602 

(iBAQ, TOP3, Average, Average-Log, Model). Linear regressions were performed between 603 

log10-transformed concentrations and averaged protein abundances (n= 3 replicates) log10-604 

transformed. Only UPS1 proteins detected in the five datasets were used (i.e. 35 UPS1 605 

proteins in whole experimental setup (red boxplots) and 37 in the restrained setup (blue 606 

boxplots)).    607 

 608 
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 727 

Table 1 Effect of filters on number of peptide ions and proteins. Numbers in parenthesis 728 

indicate percentage of data removed by filter from previous dataset.  729 

 No filter Shared peptide filter RT filter Occurrence filter Outliers filter 

Peptide ions Total 22 950 22 044 (-3.9%) 21 857 (-0.8%) 13 561 (-38.0%) 4 882 (-64.0%) 

Yeast 21 820 20 915 (-4.2%) 20 778 (-0.7%) 13 314 (-35.9%) 4 666 (-65.0%) 

UPS1 1 138 1 129 (-0.8%) 1 079 (-4.4%) 247 (-77.1%) 216 (-12.6%) 

Proteins Total 2 080 2 046 (-1.6%) 2 041 (-0.2%) 1 491 (-26.9%) 1 008 (-32.4%) 

Yeast 2 039 2 005 (-1.7%) 2 000 (-0.3%) 1 455 (-21.3 %) 973 (-33.1%) 

UPS1 41 41 (-0%) 41 (-0%) 36 (-12.2%) 35 (-2.8%) 
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Table 1 Effect of filters on the number of peptides ions and proteins. Numbers in parenthesis 

indicate the percentage of data removed by the filter from the previous dataset.  

 No filter Shared peptide filter RT filter Occurrence filter Outliers filter 

Peptide ions Total 22 950 22 044 (-3.9%) 21 857 (-0.8%) 13 561 (-38.0%) 4 882 (-64.0%) 

Yeast 21 820 20 915 (-4.2%) 20 778 (-0.7%) 13 314 (-35.9%) 4 666 (-65.0%) 

UPS1 1 138 1 129 (-0.8%) 1 079 (-4.4%) 247 (-77.1%) 216 (-12.6%) 

Proteins Total 2 080 2 046 (-1.6%) 2 041 (-0.2%) 1 491 (-26.9%) 1 008 (-32.4%) 

Yeast 2 039 2 005 (-1.7%) 2 000 (-0.3%) 1 455 (-21.3 %) 973 (-33.1%) 

UPS1 41 41 (-0%) 41 (-0%) 36 (-12.2%) 35 (-2.8%) 

 






