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Abstract 

Characterizing the thermomechanical properties of thermoplastic resins and associated 

composites is of outmost importance to understand the development of process induced 

stresses. To that extent, the characterization of a low viscosity PA66 matrix is proposed 

thanks to a homemade volumetric dilatometer named PvT-XT and a Dynamic Mechanical 

Analyser (DMA) on a wide temperature range. The PvT-XT results, reported for the first 

time, permit to identify the evolution of the coefficients of thermal expansion (CTE), of 

crystallization shrinkage and of the bulk modulus with temperature. DMA experiments 

leads to the estimation of the Young’s modulus. The shear modulus as well as the Poisson’s 

ratio are then estimated thanks to analytical relations for isotropic and homogeneous 

materials. These properties are used to feed a new analytical model estimating the CTE of 

quasi-unidirectional composites. All the results are compared with values from the 

literature or from complementary experiments, showing a good agreement which permits 

to validate the developed methodology. 
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Introduction 

Since the early 2000s, the automotive industry faces drastic objectives in terms of CO2 

emission reduction. For example, the European Commission together with the European 

Road Transport Research Advisory Council aim at a reduction of 40% of the CO2 emission 

by 2021. In order to face these approaching goals, car manufacturers had to recently 

improve the lightness of their vehicles. This sector has therefore developed a recent interest 

in thermoplastic composites as a substitute to metallic alloys. Among them, continuous 

glass fiber reinforced polyamide 66 (PA66) composites seem of particular interest due to 

their numerous advantages, such as its ease of forming and favorable mechanical properties 

[1–3]. However, the polyamide 66 high viscosity makes it difficult to use this polymer in 

composite injection processes as Resin Transfer Molding (RTM), especially in presence of 

important fiber content (i.e. > 50%vol). Also, in order to face the high production rate met 

in the automotive sector, cooling of the thermoplastic parts must be performed as quickly 

as possible. This might alter the final part health, leading to heterogeneous properties 

through the thickness of the part and residual stresses [4,5]. 

In this context, the TAPAS project (ThermoplAstic Process for Automotive 

Structure, ANR-11-RMNP-0020) aimed at developing a low viscosity PA66 polymer and 

the associated RTM process in order to produce continuous glass fiber reinforced PA66 

composite plates. A PA66 matrix was developed at lab scale, permitting to attain a 15 Pa.s 

viscosity at 280°C at low shear rate. The impregnation of the fibers was also enhanced 

through the development of an improved reinforcement architecture. The quality of the 

impregnation and reduction of the filling time were controlled, which permitted to validate 

the RTM process parameters [6]. Even though the final part quality highly relies on the 

impregnation step of the process, heat transfer and thermomechanical behavior of the 

material during cooling also play a critical role to achieve a part with good properties. 

Through their different studies [7–9], Faraj et al. were able to precisely describe the heat 

transfer and crystallization kinetics of the freshly developed composite. The evaluation of 

the thermomechanical behavior of the developed material was still to investigate. 

During cooling, thermoplastic composites are inevitably submitted to the 

development of residual stresses [4], which are partly due to the mismatch of 

thermomechanical behavior between the fibers and the matrix. These stresses might have 

significant severe impact on the final part health, including microcracking, shape distortion 

and lower mechanical properties [5]. To understand the development of such stresses 

during manufacturing, it appears as essential to characterize the evolution of the matrix and 

composite thermomechanical properties. Once described, this behavior can feed predictive 

models to evaluate the development of residual stresses and strains during cooling [10]. 

This represents considerable cost and time saving compared to trial and error methods. 

Numerous models have been explored and are presented in [10]. In the following, focus 

will be made on linear elastic models, neglecting the viscoelastic behavior of the material. 

For semi-crystalline matrix composites, these stresses start to develop below the 

crystallization temperature [4]. Therefore, it is of primary importance to identify their 

properties from crystallization temperature to room temperature.  
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Among the different properties commonly used to predict the thermomechanical 

behavior of the thermoplastic matrix during cooling, one can find the elastic moduli such 

as the Young’s modulus Em, the shear modulus Gm or the bulk modulus Km, the Poisson’s 

coefficient νm, and the coefficients of volumetric thermal expansion αVm and of volumetric 

crystallization shrinkage βVm. Numerous methods can be found to determine these 

properties and their evolutions with temperature from the melt stage (i.e. around 260°C) to 

room temperature (25°C). The PA66 Young’s modulus has been characterized thanks to 

acoustic waves transducers [11,12], visco-elastometer [13], dynamic tensile tests [14,15] 

and DMA [16]. Fewer references can be found concerning its shear modulus evolution with 

temperature, and only the use of torsion pendulum is reported [14,17–20]. Only a couple 

of studies reference the evaluation of the PA66 bulk modulus as a function of temperature. 

They include the use of high pressure volumetric dilatometers [21,22] or the use of sound 

transducers [23]. These studies are however limited to a temperature range in the semi-

crystalline state of the matrix, from 0 to 200°C. The measurement of the Poisson’s ratio 

evolution with temperature has rarely been mentioned in previous studies, and this property 

is often calculated thanks to the aforementioned moduli. The coefficient of thermal 

expansion of PA66 have already been studied thanks to a mercury column dilatometer [24], 

a linear dilatometer [25,26] or Thermal Mechanical Analysis (TMA) [27]. The first method 

permits to follow the volume evolution of the sample from melting to room temperature. 

However as it contains mercury it is not allowed to be used in Europe anymore nowadays. 

The two other methods are on another hand not adapted to high temperatures (i.e. above 

the glass transition temperature of the matrix Tg ≈ 60°C), as the mechanical loading might 
lead the matrix to creep. The other way to obtain the evolution of the coefficient of thermal 

expansion as well as of crystallization shrinkage relies in the use of plunger type volumetric 

dilatometer [28,29] to measure the evolution of the specific volume of the matrix during 

cooling. During this phase, crystallization shrinkage happens together with thermal 

contraction of the matrix. Therefore, crystallization and thermal contributions to the global 

volume evolution have to be uncorrelated in order to determine the associated coefficients. 

Several limitations appear from the different studies related to the characterization of the 

PA66 thermomechanical properties evolution with temperature. First of all, it often 

requires the use of at least three different devices in order to obtain all the needed properties 

e.g. a DMA, a linear or volumetric dilatometer and a torsion pendulum. This leads to time 

consuming methodology and the investment in (or development of) specific devices. 

Secondly, the PA66 bulk modulus evolution over a wide range of temperature has never 

been reported in the literature. Finally, uncorrelating crystallization and thermal 

contribution to the overall volume evolution of the PA66 is necessary in order to identify 

its thermal expansion and crystallization shrinkage coefficients.  

Composite plates with important in-plane dimensions compared to their thickness 

were produced within the TAPAS project. The most important composite properties 

governing the thermomechanical of the part during cooling are therefore the in-plane ones, 

i.e. in plane Young’s moduli EL and ET, shear modulus GLT, Poisson’s coefficient νLT, and 

the in plane coefficients of thermal expansion αL and αT, and of crystallization shrinkage 

βL and βT. Several characterization have been adopted to measure these properties over a 

large range of temperatures, including tensile tests [30], DMA [28,31,32], TMA [33,34] or 

strain gages [30]. It has to be noted that these characterization techniques still represent a 

challenge in the study of the thermomechanical behavior of thermoplastic composites, as 
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the material highly softens at elevated temperatures. Some improvements of the 

measurement devices are still necessary to achieve this goal, but will not be discussed here. 

Another way of providing these properties relies in the use of homogenization estimation 

methods, based on the properties of the constituents (i.e. the fibers and the matrix) and on 

the microstructure of the material. Numerous models can be found in the literature to 

estimate these effective properties in the case of unidirectional (UD) or woven composites 

[35]. The ease of implementation of these methods highly depend on the accuracy of the 

description of the material architecture. Among them, one can find estimations via 

energetic bounds [36], use of the laminate theory [35] and finite element calculations [37]. 

However, no simple analytical model could be found to estimate the properties of quasi-

unidirectional (QUD) thermoplastic based composite materials.  

To face these limitations, the authors propose a complete characterization of the 

PA66 and its thermomechanical properties evolution with temperature with only two 

devices. A DMA is used to obtain the Young’s modulus of the matrix as a function of the 

temperature. Then, a plunger-type dilatometer called PvT-XT [29] permits the 

measurement of the specific volume of PA66 samples on a large range of temperature and 

for several pressure levels (from 20 to 40 MPa). From these results, the coefficient of 

thermal expansion and of crystallization shrinkage are estimated, as well as the bulk 

modulus of PA66. These properties then feed a simple estimation model of a quasi-

unidirectional long fiber glass reinforced composite, leading to the different properties 

needed to model the in-plane behavior of the material. These properties are finally 

compared with experimentally obtained ones, so as to validate the developed model. 

Materials and methods 

Materials 

The material studied in the present work comes from recent developments and research 

concerning low-viscosity thermoplastic matrix and is part of the TAPAS research program 

[6,7]. The composite material on which this study relies is thus composed of a specifically 

developed polyamide 66 matrix (Solvay) and quasi-unidirectional glass fiber 

reinforcement (Chomarat). The reinforcement architecture (Fig. 1) is composed of 

principal yarns in the warp direction, spacer yarns in the warp direction to create matrix 

flow channels between each principal yarns, and of secondary yarns in the weft direction. 

The warp yarns, spacers and weft yarns represent approximately 85, 10 and 5% of the total 

fiber volume, respectively.  

Five samples of neat matrix of dimensions 50x10x5 mm3 were manufactured by 

injection molding. In addition, different composite plates were studied with two lay-up 

sequences: [0]8 and [902 02]S. For each ply sequence, one plate of in-plane dimensions 

500x500 mm² and a targeted 50%vol of fibers was manufactured by thermoforming by 

Solvay. The [0]8 plate was then cut into samples of in-plane dimensions 50x10mm2, leading 

to 5 samples of [0]8 and 10 samples of [90]8 ply sequence. The [902 02]S plate was cut into 

3 samples of 200x30 mm2 along its 45° directions, thus leading to three samples of [+452 

-452]S ply sequences. For the different following characterization techniques, all the 
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samples were dried under a -0.09 MPa vacuum at 90°C during at least 10 hours prior testing 

to ensure the samples are dry. 

Neat matrix characterization 

The neat matrix was first tested thanks to a Mettler Toledo DMA testing machine 

configured in 3 points bending. The samples were loaded under a 6N preload to ensure a 

good contact of the sample with the device, and a 1Hz frequency and 5µm amplitude 

displacement. They were heated from -50°C to 150°C under a nitrogen flow at a rate of 

2°C/min to ensure thermal homogeneity of the samples. This led to the evolution of the 

matrix Young’s modulus Em with temperature.  

Neat matrix pellets were also characterized thanks to a PvT-XT volumetric 

dilatometer [7,29]. Approximately 10 grams of matrix pellets were put inside the 

dilatometer molding cavity and heated at 300°C under a prescribed pressure level for three 

minutes to ensure a total melting of the matrix. They were then cooled to 30°C at 2°C.min-

1 in order to limit the temperature and crystallization gradients in the samples. Three 

different pressure levels were investigated here, i.e. 20, 30 and 40 MPa. This led to the 

evolution of the specific volume of the matrix with temperature for several hydrostatic 

pressure levels. Treatment of these volume evolutions leads to the estimation of the 

coefficient of crystallization shrinkage, of the coefficient of thermal expansion and of the 

bulk modulus of the neat matrix. The methods and results are described in section 3.1. 

Composite characterization 

Tensile tests were performed on the [+452 -452]S samples at 25°C on a Zwick Roell Z050 

tensile machine. Tests were performed following the ASTM D3039 standard, by imposing 

a 2 mm/min displacement rate on the samples. These latter were instrumented with two 

strain gages along their longitudinal and transversal direction, and strains from 500µε to 
1500µε were considered to identify the material behavior. As described in section 3.2, a 

plane stress model was used to identify the mechanical behavior of the samples. This led 

to an estimation of the in-plane shear modulus GLT at room temperature.  

Then, ten composite samples extracted from the [0]8 plate were tested thanks to the 

DMA device mounted in 3 points bending configuration. The samples, five of each [0]8 

and [90]8 ply sequences, were loaded under a 7N preload, a 1Hz frequency and a 5µm 

amplitude displacement. They were heated from 25°C to 200°C and 120°C for the [0]8 and 

[90]8 ply sequences, respectively, at a heating rate of 2°C.min-1 to limit temperature 

gradients. The maximum temperature is lower in the case of the [90]8 ply sequence to 

ensure the samples do not creep during the tests. This permitted to estimate the longitudinal 

and transversal Young’s modulus of the composite, EL and ET, respectively, and their 

evolution with temperature. Finally, the five remaining samples of the [90]8 ply sequence 

were tested using a LINSEIS L75 PT linear dilatometer. The samples were submitted to a 

100 mN compressive load, and heated from room temperature to 150°C at a 2°C/min 

heating rate to evaluate the composite coefficient of thermal expansion along its transversal 

direction αT. 
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Experimental characterization 

Two characterization methods were considered to obtain the thermo-mechanical properties 

of the composite material. The first one consists in the direct characterization of the matrix 

properties. From these properties, and assuming the fiber properties are known, it is 

possible to predict the composite equivalent properties thanks to homogenization methods. 

The second method consists in a direct characterization of the composite properties. The 

two approaches are developed in the following sections, and results from both routes are 

compared. 

Neat matrix characterization 

DMA Characterization 
 

The three points bending tests from the DMA device led to an estimation of the storage 

modulus E’ of the matrix and its evolution with temperature. The mean value of this 

modulus for the five tested samples is represented in Fig. 2. The error bars correspond to 

the composed measurement uncertainty, as depicted in the Guide to the expression of 

Uncertainty in Measurement (GUM) [38]. All the measurement uncertainties are expressed 

following this method. The modulus highly decreases with temperature, and exhibits a neat 

transition from 30 to 100°C. This transition is accompanied with an increase in the loss 

tangent tanδ on the same temperature range, which translates a rise in the viscous behavior 

of the matrix compared to its purely elastic one. The peak value of the loss tangent is found 

around 63 ± 1 °C and is considered as the glass transition temperature Tg of the matrix. Tg 

values were obtained from Differential Scanning Calorimetry (DSC) measurements by 

Faraj [7] and were identified between 60 and 70°C. The storage modulus evolution is 

compared with several values coming from previous studies [14–16], showing an excellent 

agreement. The glass transition from these previous studies seems however to be reached 

at a slightly higher temperature range, which is explained by the difference in the 

polyamide 66 formulation. Due to the relatively small imposed displacement amplitude, 

the storage modulus will be considered as representative of the matrix Young’s modulus 

Em in the following of the study. 

The obtained evolution of the matrix Young’s modulus Em is fitted thanks to a 

mathematical function (Eq. 1), leading to less than 1% error between the experimental 

results and the proposed function.  

 

⎩⎪⎨
⎪⎧𝐸𝐸𝑚𝑚(𝑇𝑇) = 𝐸𝐸0 − ∆𝐸𝐸.𝑓𝑓𝑚𝑚(𝑇𝑇) − 𝐸𝐸1.𝑔𝑔𝑚𝑚(𝑇𝑇),𝑓𝑓𝑚𝑚(𝑇𝑇) = tanh�(𝑇𝑇 − 𝑇𝑇𝑚𝑚0) ∗ (𝑎𝑎𝑚𝑚 − 𝑏𝑏𝑚𝑚 ∗ 𝑡𝑡𝑎𝑎𝑡𝑡ℎ(0.5 ∗ 𝑇𝑇 − 𝑇𝑇𝑚𝑚0))�,𝑔𝑔𝑚𝑚(𝑇𝑇) =

𝑇𝑇𝑇𝑇𝑚𝑚1 + 𝑇𝑇 ∗ 𝑐𝑐𝑚𝑚 ,

 (Eq. 1) 

where the different characteristic values are depicted in table 1. These characteristic were 

chosen to best fit the experimental data and they do not represent specific values of the 

material properties. 
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Table 1: Characteristic values for the evolution of the matrix Young’s modulus. 

Characteristic Unit Value 

E0 (GPa) 2.09 

ΔE (GPa) 0.715 

E1 (GPa) 1 

am   0.7 

bm  0.02 

cm  0.35 

Tm0 (°C) 48 

Tm1 (°C) 120 

 

Specific volume characterization 
 

The evolution of the specific volume of the neat resin for several pressure levels as a 

function of temperature and obtained from the PvT-XT experiments is represented in 

Fig. 3. It consists in the ratio between its volume and its initial mass. The error bars are not 

represented in Fig. 3, as Pignon et al. [29] showed that PvT-XT measurements on 

polyetherteherketone (PEEK) and polypropylene (PP) matrixes led to less than 0.53% error 

on the measured specific volume from 5 different samples. Indeed, the obtained specific 

volume for both matrixes ranged from 8.9 10-4 to 7.6 10-4 m3.kg-1 for the PEEK matrix and 

from 12.4 10-4 to 10.9 10-4 m3.kg-1 for the PP one, while cooling from 400 to 25°C and 

from 250 to 25°C for the PEEK and the PP, respectively. As the order of magnitudes for 

the measured specific volume is identical over similar temperature variations, the 

uncertainty is considered as equivalent to the one obtained by Pignon et al..  

Regardless of the pressure, the specific volume decreases with the temperature on the 

whole temperature range. From 280 to 240°C (phase A), the polymer is in its amorphous 

melted phase. Around 240°C, crystallization initiates and happens down to approximately 

210°C (phase B). The crystallization occurs at a higher temperature for higher pressure 

level, which has already been explored in the literature [28]. Finally, the matrix cools in its 

semi-crystalline phase from 210°C to room temperature (phase C). It appears that the 

specific volume is lower for higher pressure levels, which is due to the compressibility of 

the matrix. 

 

Identification of the coefficient of thermal expansion 
 

For a given pressure level, the specific volume variations Vspe are only due to thermal (VTh) 

and crystallization (VCr) contributions (Eq. 2).  
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 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑉𝑉𝑇𝑇ℎ + 𝑉𝑉𝐶𝐶𝐶𝐶  (Eq. 2) 

When crystallization does not occur (in phases A and C), these variations therefore 

only depend on thermal contraction of the matrix. For a given temperature, the thermal 

contribution to the specific volume can be written as: 

 𝑉𝑉𝑇𝑇ℎ(𝑇𝑇) = 𝑉𝑉𝑠𝑠𝑠𝑠𝑠𝑠(𝑇𝑇0)�1 + � 𝛼𝛼𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇)𝑑𝑑𝑇𝑇𝑇𝑇
𝑇𝑇0 � (Eq. 3) 

where T0 is the initial temperature of the melted matrix (i.e. 280°C) and αVol is the 

volumetric coefficient of thermal expansion. From this relation and the evolution of the 

specific volume, it is possible to estimate the coefficient of thermal expansion of the matrix 

during phases A and C. They are represented in Fig. 4a, and compared with several values 

from the literature [24–27]. The same analysis protocol was applied to specific volume 

evolutions obtained by Zoller [28], leading to values also plotted in Fig. 4a. The evolution 

of αVol with temperature is not trivial. During phase A its value decreases during cooling, 

from values of approximately 800 10-6 K-1 at 280°C to 500 10-6 K-1 at 240°C. This decrease 

is easily explained by the diminution of the thermal agitation of the molecules during 

cooling, resulting in a lower coefficient of thermal expansion as the temperature decreases. 

During phase C, its value first rises from approximately 600 10-6 K-1 at 210°C to 700 10-6 

K-1 at 150°C and then sharply decrease during cooling to approximately 350 10-6 K-1 at 

50°C. This rise observed around 150°C is also reported in Ecochard [24] and appears in 

the values exploited from Zoller [28]. It is attributed to the Brill transition of the PA66 

[39], which consists in a rearrangement of the crystalline structure of the PA66 occurring 

between the crystallization and the glass transition of the PA66. The decrease then softens 

from 50 to 0°C, according to values from the literature. This slower decrease is attributed 

to the glass transition of the material, leading to a more compact structure of the matrix.  

No clear impact of the pressure level on the coefficient of thermal expansion could 

be observed from the measurements performed on the PvT-XT on the specified pressure 

range (between 20 and 40 MPa). However, the values of αVol obtained from Zoller 

demonstrate that higher pressure levels lead to a lower coefficient of thermal expansion, 

which is due to the compressibility of the matrix and its lower possibility to expand when 

compressed. In the following, the impact of pressure on the coefficient of thermal 

expansion will be disregarded.  

It is possible to fit the values of α in the amorphous state with a linear regression. 
The obtained evolution of αVol A is given by (Eq. 4) and is plotted in Fig 4b together with 

the measured values obtained for the different pressure levels. 

 𝛼𝛼𝑉𝑉𝑉𝑉𝑉𝑉 𝐴𝐴(𝑇𝑇) = 𝑎𝑎𝐴𝐴𝑇𝑇 + 𝑏𝑏𝐴𝐴 , (Eq. 4) 

where T is the temperature expressed in °C and the coefficients aA and bA can be found in 

Table 2. 

The same methodology can be applied to the evolution of α in its semi-crystalline 

state. This evolution is however decomposed into four phases in order to reproduce the 
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measured evolution. The obtained evolution named αVol SC is given in Eq. 5 and is also 

plotted in Fig. 4b. 

 𝛼𝛼𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆𝐶𝐶(𝑇𝑇) = �𝑎𝑎𝑆𝑆𝐶𝐶 1𝑇𝑇 + 𝑏𝑏𝑆𝑆𝐶𝐶 1 , 𝑤𝑤ℎ𝑒𝑒𝑡𝑡 𝑇𝑇 < 70°𝐶𝐶𝑎𝑎𝑆𝑆𝐶𝐶 2𝑇𝑇 + 𝑏𝑏𝑆𝑆𝐶𝐶 2 , 𝑤𝑤ℎ𝑒𝑒𝑡𝑡 70°𝐶𝐶 ≤ 𝑇𝑇 < 100°𝐶𝐶𝑎𝑎𝑆𝑆𝐶𝐶 3𝑇𝑇 + 𝑏𝑏𝑆𝑆𝐶𝐶 3 , 𝑤𝑤ℎ𝑒𝑒𝑡𝑡 100°𝐶𝐶 ≤ 𝑇𝑇 < 140°𝐶𝐶𝑎𝑎𝑆𝑆𝐶𝐶 4𝑇𝑇 + 𝑏𝑏𝑆𝑆𝐶𝐶 4 , 𝑤𝑤ℎ𝑒𝑒𝑡𝑡 𝑇𝑇 ≥ 140°𝐶𝐶   (Eq. 5) 

These temperature ranges were chosen so as to reproduce the evolution of the coefficient 

of thermal expansion through the Tg and the Brill transition. The coefficients aSC i and bSC i 

can be found in Table 2. 

Values of α during crystallization are difficult to obtain. They are therefore 
extrapolated from its values in the amorphous and in the semi-crystalline states by 

considering a rule of mixture during crystallization (Eq. 6).  

 𝛼𝛼𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇) = 𝛼𝛼𝑉𝑉𝑉𝑉𝑉𝑉 𝑆𝑆𝐶𝐶(𝑇𝑇)�𝐶𝐶(𝑇𝑇)� + 𝛼𝛼𝑉𝑉𝑉𝑉𝑉𝑉 𝐴𝐴(𝑇𝑇)�1 − 𝐶𝐶(𝑇𝑇)� , (Eq. 6) 

where C(T) is the relative crystallinity. This latter has been obtained through DSC 

experiments under the same cooling conditions (i.e. 2K.min-1). More details on DSC 

experiments can be found in [7,8]. The evolution of αVol with the temperature is plotted in 

Fig. 4b. Its variations are the same as the amorphous and the semi-crystalline contributions 

when temperature is higher than 250°C and inferior to 200°C, respectively. During 

crystallization, it sharply rises at the beginning of crystallization (around 230°C) following 

the evolution of the relative crystallinity. 

Table 2: Characteristic values for the evolution of the matrix coefficient of thermal 

expansion. 

Characteristic Unit Value 

aA (K-2) 8.65 10-6 

bA (K-1) -1600 10-6 

aSC 1 (K-2) 2.23 10-6 

bSC 1 (K-1) 260 10-6 

aSC 2 (K-2) 2.75 10-6 

bSC 2 (K-1) 226 10-6 

aSC 3 (K-2) 5.68 10-6 

bSC 3 (K-1) -68 10-6 

aSC 4 (K-2) -1.29 10-6 
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bSC 4 (K-1) 920 10-6 

 

Identification of the coefficient of crystallization shrinkage 

From the specific volume evolution, it is possible to calculate the strains underwent by the 

matrix during cooling thanks to (Eq. 7). 

 𝜀𝜀𝑇𝑇𝑉𝑉𝑡𝑡 =
𝑉𝑉𝑆𝑆𝑠𝑠𝑠𝑠(𝑇𝑇) − 𝑉𝑉𝑆𝑆𝑠𝑠𝑠𝑠(𝑇𝑇0)𝑉𝑉𝑆𝑆𝑠𝑠𝑠𝑠(𝑇𝑇0)

= 𝜀𝜀𝑇𝑇ℎ + 𝜀𝜀𝐶𝐶𝐶𝐶  (Eq. 7) 

The evolution of this volumetric strain when the PA66 is submitted to a 20MPa 

pressure is represented in Fig. 5. Its variations are the same as the specific volume one 

described in Fig. 3, but it evolves from 0% at 280°C to -16.5% at 30°C.  

From (Eq. 3), it is possible to calculate the thermal contribution to this train εTh, which leads 

to  

 𝜀𝜀𝑇𝑇ℎ(𝑇𝑇) = � 𝛼𝛼𝑉𝑉𝑉𝑉𝑉𝑉(𝑇𝑇)𝑑𝑑𝑇𝑇𝑇𝑇
𝑇𝑇0  (Eq. 8) 

The evolution of this thermal contribution to the total strain is also reported in Fig. 

5. Except during crystallization, it perfectly fits the total strain evolution εTot.  

According to (Eq. 7), subtracting this thermal contribution εTh to the total strain εTot 

leads to the crystallization strain εCr. This strain is also represented in Fig. 5. No variations 

are observed outside crystallization, and the crystallization shrinkage is clearly identified 

between 230 and 210°C. By considering a constant value of the coefficient of 

crystallization shrinkage βVol, the value of εCr obtained at 30°C therefore directly 

corresponds to βVol. The identified values of βVol for the different pressure levels are 

summarized in table 3. Even though the shrinkage seems to increase with the pressure level, 

the uncertainty on these estimations do not permit to conclude on a possible impact of the 

pressure on the value of βVol. 

Table 3: Identified values of the coefficient of crystallization shrinkage. 

Pressure (MPa) 20 30 40 

βVol (%) -2.7 ± 0.3 -2.8 ± 0.3 -2.9 ± 0.3 

 

Bulk modulus estimation 

Then, as the matrix has been tested over the same temperature range under several pressure 

levels, the identification of its bulk modulus Km is possible through the investigation of its 

common expression:  
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 𝐾𝐾𝑚𝑚 = −𝑉𝑉𝑆𝑆𝑠𝑠𝑠𝑠 𝜕𝜕𝜕𝜕𝜕𝜕𝑉𝑉𝑆𝑆𝑠𝑠𝑠𝑠�𝑇𝑇,𝐶𝐶  (Eq. 9) 

where P is the pressure and the bar on the right means the temperature T and relative 

crystallinity C are constant over an infinitesimal pressure variation ∂P. From the 

measurements performed on the two extreme pressure levels, i.e. 20 and 40 MPa, and by 

considering the thermal contribution to the specific volume VTh it is possible to rewrite (Eq. 

9) in its incremental form: 

 𝐾𝐾𝑚𝑚(𝑇𝑇) = −𝑉𝑉𝑇𝑇ℎ(𝑇𝑇)
∆𝜕𝜕∆𝑉𝑉𝑇𝑇ℎ�𝑇𝑇

= −𝑉𝑉𝑇𝑇ℎ 20𝑀𝑀𝑀𝑀𝑀𝑀(𝑇𝑇)
∆𝜕𝜕𝑉𝑉𝑇𝑇ℎ 40 𝑀𝑀𝑀𝑀𝑀𝑀 − 𝑉𝑉𝑇𝑇ℎ 20 𝑀𝑀𝑀𝑀𝑀𝑀�𝑇𝑇 

(Eq. 10) 

where ΔP = 20 MPa, and VTh 40 MPa corresponds to the thermal contribution to the specific 

volume measured under a 40 MPa pressure level. The same protocol was applied for the 

two other pressure couples, i.e. 20 MPa and 30 MPa and 30 MPa and 40 MPa. The obtained 

values of Km are represented in Fig. 6, together with several values from the literature [21–

23]. It has to be pointed that during crystallization the relative crystallinity is not identical 

for the different pressure levels at a given temperature, as pressure directly impacts the 

crystallization temperature. Therefore, Eq. 9 cannot be applied and no value of Km can be 

obtained over crystallization. 

The bulk modulus values slightly rise from 1.40 to 1.96 GPa between 280 and 

240°C, respectively. They are stable from 200 to 150°C and are close to 1.90 GPa. Then, 

it rises to 10 GPa between 150 and 30°C. This zone corresponds to the glass transition of 

the material (Tg = 63°C). The same methodology was applied to data from Wang et al. [40] 

in the molten amorphous state of the matrix, and from Zoller [28] over the whole 

temperature range. Values in the molten amorphous state are found in excellent agreement 

with results from the literature. According to the results from Zoller, the bulk modulus 

evolves almost linearly with the temperature from 280°C to 70°C and then rises to a value 

of 6 GPa at 30°C.  

The bulk modulus values obtained from PvT-XT at temperatures lower than Tg 

seem inconsistent with values from the literature, as these latter are comprised between 5.5 

and 7 GPa for temperature from 0 to 50°C. This is explained by a difficulty of the PvT-XT 

to apply a hydrostatic pressure for low pressure levels when the temperature is below the 

Tg of the polymer. The piston of the PvT-XT applies its load on the sample. As the 

temperature decreases below Tg, the polymer stiffness increases and it becomes harder to 

deform it in order to compress it against the inner cavity of the dilatometer. This leads to a 

higher value of Km, as the strain is mainly due to a unidirectional compressive load. As a 

consequence, the values of Km obtained from the PvT-XT measurement has to be 

disregarded when the temperature is lower than Tg. Experiments performed under higher 

pressure levels should be preferred in the future, as was already demonstrated on another 

plunger-type volumetric dilatometer developed by the same research team [41]. To 

counteract this limitation, an interpolation function is proposed (Eq. 11), which is based on 
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the results from PvT-XT measurements when the temperature is higher than Tg and on 

values from literature for lower temperatures. As the values before and after crystallization 

are close, it is considered that the crystallization does not affect the value of Km. The 

function detailed in (Eq. 11) is also plotted in Fig. 6. 

 �𝐾𝐾𝑚𝑚(𝑇𝑇) = 𝐾𝐾0 − ∆𝐾𝐾.ℎ𝑚𝑚(𝑇𝑇) − 𝐾𝐾1.𝑔𝑔𝑚𝑚(𝑇𝑇)ℎ𝑚𝑚(𝑇𝑇) = 𝑡𝑡𝑎𝑎𝑡𝑡ℎ�𝑑𝑑𝑚𝑚 ∗ (𝑇𝑇 − 𝑇𝑇𝑚𝑚2)�  (Eq. 11) 

This function and the associated characteristics were chosen to best fit the experimental 

values and do not represent specific values of the material properties. The associated 

characteristics values are depicted in table 4. 

Table 4: Characteristic values for the evolution of the matrix Young’s modulus. 

Characteristic Unit Value 

K0 (GPa) 4.7 

ΔK (GPa) 2.0 

K1 (GPa) 1 

dm   0.025 

Tm2 (°C) 70 

 

Elastic properties estimation 

By considering the matrix is an isotropic and homogeneous material, it is possible to 

estimate its shear modulus Gm and Poisson’s ratio νm from the Young’s and bulk moduli 

and thanks to relations (Eq. 12) and (Eq. 13). 

 𝐺𝐺𝑚𝑚 =
3𝐾𝐾𝑚𝑚𝐸𝐸𝑚𝑚

9𝐾𝐾𝑚𝑚 − 𝐸𝐸𝑚𝑚 (Eq. 12) 

 𝜈𝜈𝑚𝑚 =
3𝐾𝐾𝑚𝑚 − 𝐸𝐸𝑚𝑚

6𝐾𝐾𝑚𝑚  (Eq. 13) 

The shear modulus obtained from (Eq. 12) is represented in Fig. 7, together with 

several values from literature [14,17,18]. The evolution of the shear modulus is sensibly 

identical as the Young’s modulus one described earlier. The values obtained from the (Eq. 

12) are in excellent agreement with values from the literature, thus comforting the 

employed method.  

Finally, the estimation of the matrix Poisson’s ratio νm is performed according to 

relation (Eq. 13). Its evolution is plotted in Fig. 8, together with the different identified 

elastic moduli, i.e. Em, Km and Gm. 
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The Poisson’s ratio evolution is less trivial to describe than the other elastic moduli. 

It first decreases linearly between 200°C and 130°C, from a value of 0.47 to 0.455. A value 

close to 0.5 is commonly admitted for polymers in the molten state, as the shear and 

Young’s moduli tend to a negligible value compared to the bulk modulus [42]. During the 

glass transition, the ratio rises at a maximum value of 0.46 at 75°C and then decreases to 

0.43 at 35°C. This rise, which may be attributed to the glass transition, might only be due 

to the use of several methods to obtain the Young’s and bulk moduli and therefore might 

not represent an actual behavior of the material. Finally, νm slowly decreases to 0.42 at -

50°C. This value is correlated with results from the literature [43] where the Poisson’s ratio 

of PA66 at 25°C is found to be 0.40, even though it is often considered that Poisson’s ratio 

of polymers reaches 0.33 at room temperature [42]. 

Composite characterization 

The tensile tests performed on the composite material led to the stress-strain curves for the 

[+452 -452]S samples along their longitudinal and transversal direction, denoted by the 

subscripts x and y, respectively. The averaged results for the three samples are represented 

in Fig. 9. The strain level along the x direction is positive as it is submitted to a tensile load, 

whereas the strain along the y direction is negative due to Poisson effect. For both strain 

directions, the stress σxx first shows a transient behavior for small strains along both 

directions (from 0 to 500 µε) and then evolves linearly with the strain. The nonlinear part 

of the evolution will be disregarded in the material behavior identification, as it may be 

attributed to possible fiber re-alignment in the composite.  

According to the classical lamination theory applied to linear elastic composite 

materials [44], it is possible to set a system of equations relating the stress σxx and σyy to the 

strains along the two main directions εxx and εyy. These relations then depend on the 

mechanical properties of the elementary ply in its local base, i.e. EL, ET, GLT and νLT. This 

system of equations is given in (Eq. 14). 

 0.25(𝐸𝐸𝐿𝐿 + 𝐸𝐸𝑇𝑇 + 2𝜈𝜈𝐿𝐿𝑇𝑇𝐸𝐸𝑇𝑇)�𝜀𝜀𝑥𝑥𝑥𝑥 + 𝜀𝜀𝑦𝑦𝑦𝑦� + 𝐺𝐺𝐿𝐿𝑇𝑇�𝜀𝜀𝑥𝑥𝑥𝑥 − 𝜀𝜀𝑦𝑦𝑦𝑦�Δ = 𝜎𝜎𝑥𝑥𝑥𝑥Δ 

0.25(𝐸𝐸𝐿𝐿 + 𝐸𝐸𝑇𝑇 + 2𝜈𝜈𝐿𝐿𝑇𝑇𝐸𝐸𝑇𝑇)�𝜀𝜀𝑥𝑥𝑥𝑥 + 𝜀𝜀𝑦𝑦𝑦𝑦� + 𝐺𝐺𝐿𝐿𝑇𝑇�𝜀𝜀𝑦𝑦𝑦𝑦 − 𝜀𝜀𝑥𝑥𝑥𝑥�Δ = 𝜎𝜎𝑦𝑦𝑦𝑦∆, 

with Δ = �1 − 𝐸𝐸𝑇𝑇𝐸𝐸𝐿𝐿 𝜈𝜈𝐿𝐿𝑇𝑇2 �, 

(Eq. 14) 

As the samples are submitted to tensile load along the x direction, the stress σyy is 

considered as null. Analyzing these equations permits to determine the in-plane properties 

of the elementary ply. Subtracting the second line from the first line of (Eq. 14) leads to 

(Eq. 15). 

 2𝐺𝐺𝐿𝐿𝑇𝑇�𝜀𝜀𝑥𝑥𝑥𝑥 − 𝜀𝜀𝑦𝑦𝑦𝑦�Δ = 𝜎𝜎𝑥𝑥𝑥𝑥Δ (Eq. 15) 

Rearranging the terms in (Eq. 15) leads to  
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 𝐺𝐺𝐿𝐿𝑇𝑇 = 0.5
𝛿𝛿𝑥𝑥𝑥𝑥𝛿𝛿𝑥𝑥𝑦𝑦𝛿𝛿𝑥𝑥𝑦𝑦 − 𝛿𝛿𝑥𝑥𝑥𝑥, 

with 𝛿𝛿𝑥𝑥𝑥𝑥 =
𝜎𝜎𝑥𝑥𝑥𝑥𝜀𝜀𝑥𝑥𝑥𝑥  and 𝛿𝛿𝑥𝑥𝑦𝑦 =

𝜎𝜎𝑥𝑥𝑥𝑥𝜀𝜀𝑦𝑦𝑦𝑦  

(Eq. 16) 

In (Eq. 16), δxx and δxy correspond to the slope of the stress-strain curves, given in table 5.  

 

Table 5: Identified slopes of the stress-strain curves for the [+452 -452]S ply sequences. 

Slope δxx δxy 

Value (10-3 MPa/µε) 7.73 ± 0.73 -9.90 ± 0.72 

 

The value of the in-plane shear modulus obtained from (Eq. 14) is GLT = 2.17± 0.36 

GPa, which is more than two times the value of the matrix shear modulus Gm for the same 

temperature. 

To complete the characterization of the in-plane Young moduli EL and ET, DMA 

tests led to the evolution of these moduli with temperature. Results from the different 

samples are represented in Fig. 10 a and b, respectively.  

Results along the longitudinal direction are more scattered than in the transversal 

one. However, they remain around the mean value with up to a 10% difference, which is 

usual with DMA results. For both directions, the modulus decreases during heating, with a 

larger decrease during the glass transition. From glass transition to higher temperature 

levels, the moduli seem to evolve linearly with temperature. The glass transition 

temperature can be observed thanks to the peak value of tanδ. For both orientations, this 

temperature is close to 62°C.  

Finally, the CTE measured with the linear dilatometer on [90]8 samples from room 

temperature to 150°C is presented in Fig. 11. The transversal coefficient of thermal 

expansion αT first rises from 20 to 60°C, from value of 28 10-6 K-1 to 40 10-6 K-1. This is 

attributed to the rise in the matrix coefficient of thermal expansion over the same 

temperature range (see Fig. 4). It then decreases while the temperature rises, leading to a 

30 10-6 K-1 value at 150°C. As the matrix softens when temperature is higher than Tg, its 

elastic modulus decreases. This phenomenon coupled with the presence of a low amount 

of fibers in the weft direction might explain the decrease in the lateral coefficient of thermal 

expansion. 

The characterization of the matrix and the associated composite thermomechanical 

properties was performed thanks to three different devices (i.e. a DMA, a volumetric 

dilatometer and a linear dilatometer) from the room temperature up to a maximum 

temperature ranging from 150 to 300°C. Some difficulties were met to identify the different 
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properties, especially when the temperature is higher than the glass transition temperature. 

The matrix mechanical properties then soften, leading to possible creep of the matrix. This 

makes difficult the properties identification at higher temperatures. To overcome this 

limitation, a prediction method is proposed in the following section. 

Homogenization and prediction of the composite equivalent 

properties 

Numerous methods have been developed during the past forty years to estimate the 

equivalent mechanical properties of UD [44] and woven [35] composite materials. Simple 

rules of mixtures such as the Voigt and Reuss bounds have already proven their capacity 

to predict the effective properties of UD composites such as the longitudinal Young’s 

modulus EL and the in-plane Poisson’s ratio νLT for the first bound, and the transversal 

Young’s modulus ET for the second bound. Other simple analytical models can be found 

to predict the in-plane shear modulus GLT [44,45] and the longitudinal and transversal 

coefficients of thermal expansion αL and αT [46]. These different expressions are gathered 

from (Eq. 17) to (Eq. 22) and depend on the composite fiber volume ratio Vf, the fibers 

Young modulus Ef, Poisson’s ratio νf, shear modulus Gf and longitudinal coefficient of 

thermal expansion αL f, as well as the different properties of the matrix identified in the 

previous section. It has to be noted that the linear coefficient of thermal expansion of the 

matrix is considered to be one third of its volumetric coefficient of thermal expansion, i.e. 

αL m = 1/3 αVol m, as the glass fibers are considered to be composed of an isotropic material.  

 𝐸𝐸𝐿𝐿 𝑈𝑈𝑈𝑈 = 𝑉𝑉𝑓𝑓𝐸𝐸𝑓𝑓 + �1 − 𝑉𝑉𝑓𝑓�𝐸𝐸𝑚𝑚, (Eq. 17) 

 𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈 =
𝐸𝐸𝑚𝑚𝐸𝐸𝑓𝑓�1 − 𝑉𝑉𝑓𝑓�𝐸𝐸𝑓𝑓 + 𝑉𝑉𝑓𝑓𝐸𝐸𝑚𝑚, (Eq. 18) 

 𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈 = 𝑉𝑉𝑓𝑓𝜈𝜈𝑓𝑓 + �1 − 𝑉𝑉𝑓𝑓�𝜈𝜈𝑚𝑚, (Eq. 19) 

 𝐺𝐺𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈 = 𝐺𝐺𝑚𝑚 𝐺𝐺𝑓𝑓�1 + 𝑉𝑉𝑓𝑓� + 𝐺𝐺𝑚𝑚�1 − 𝑉𝑉𝑓𝑓�𝐺𝐺𝑓𝑓�1 − 𝑉𝑉𝑓𝑓� + 𝐺𝐺𝑚𝑚�1 + 𝑉𝑉𝑓𝑓� , (Eq. 20) 

 𝛼𝛼𝐿𝐿 𝑈𝑈𝑈𝑈 =
𝐸𝐸𝑓𝑓𝛼𝛼𝐿𝐿𝑓𝑓𝑉𝑉𝑓𝑓 + 𝐸𝐸𝑚𝑚𝛼𝛼𝐿𝐿𝑚𝑚�1 − 𝑉𝑉𝑓𝑓�𝐸𝐸𝑓𝑓𝑉𝑉𝑓𝑓 + 𝐸𝐸𝑚𝑚�1 − 𝑉𝑉𝑓𝑓� , (Eq. 21) 

 𝛼𝛼𝑇𝑇 𝑈𝑈𝑈𝑈 = (1 + 𝜈𝜈𝑚𝑚)𝛼𝛼𝐿𝐿𝑚𝑚�1 − 𝑉𝑉𝑓𝑓� + �1 + 𝜈𝜈𝑓𝑓�𝛼𝛼𝐿𝐿𝑓𝑓𝑉𝑉𝑓𝑓 − 𝛼𝛼𝐿𝐿𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈, (Eq. 22) 

The estimation of the same properties in the case of a quasi-UD composite is found 

rarer in the literature, and may be achieved by employing models adapted to woven 

composites. However, these latter are often more sophisticated than the analytical models 

exposed previously. A simple analytical model is therefore proposed to overcome this 

limitation. In the following, the warp and weft directions will be considered as composed 

of the same type of fibers and with identical linear weight. The quasi-UD reinforcement is 

defined according to its weight ratio k (which corresponds to the ratio between the warp 
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fibers weight and the total weight of the material), its area weight Aw and the fiber density 

ρf. From these parameters and knowing the fiber volume fraction Vf, it is possible to 

estimate the thickness of the composite ply eC. From the surface S, the fiber mass mf is: 

 𝑚𝑚𝑓𝑓 = 𝑆𝑆𝐴𝐴𝑤𝑤, (Eq. 23) 

And the fiber volume Volf is given by 

 𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓 =
𝑚𝑚𝑓𝑓𝜌𝜌𝑓𝑓 , (Eq. 24) 

The total volume VolTot is given by 

 𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑉𝑉𝑡𝑡 = 𝑆𝑆𝑒𝑒𝐶𝐶 , (Eq. 25) 

Therefore 

 𝑉𝑉𝑓𝑓 =
𝑉𝑉𝑉𝑉𝑉𝑉𝑓𝑓𝑉𝑉𝑉𝑉𝑉𝑉𝑇𝑇𝑉𝑉𝑡𝑡 =

𝐴𝐴𝑤𝑤𝜌𝜌𝑓𝑓𝑒𝑒𝐶𝐶 , (Eq. 26) 

Which leads to  

 𝑒𝑒𝐶𝐶 =
𝐴𝐴𝑤𝑤𝜌𝜌𝑓𝑓𝑉𝑉𝑓𝑓 , (Eq. 27) 

The main assumption of the quasi-UD properties estimation is based on a simple 

representation of the quasi-UD structure as two UD plies at 0° and 90°, thus representing 

the warp and weft directions, respectively (Fig. 9). These two plies have distinct 

thicknesses named hwa and hwe respectively which sum equals eC. From these thicknesses, 

it is possible to express the weight ratio k (Eq. 28).  

 𝑘𝑘 =
ℎ𝑤𝑤𝑀𝑀𝑒𝑒𝐶𝐶  (Eq. 28) 

The mechanical behavior of both plies can be expressed through their thermo-

mechanical properties: ELi, ETi, νLTi, GLTi, αLi, αTi, where the subscript i = wa or we. It will 

be considered in the following that both plies have the identical fiber volume fraction Vf. 

Therefore, their properties can be determined thanks to Eqs 17-22. As they are oriented 

along the 0° and 90° directions, some of their properties are identical, leading to ELwa = 

ETwe, ETwa = ELwe, GLTwa = GLTwe, νLTwa = νLTwe, αLwa = αTwe and αTwa = αLwe.  

According to the Classical Lamination Theory [44,45], the constitutive law of a 

composite ply can be expressed as: 

 𝜎𝜎𝑖𝑖 = 𝑄𝑄𝑖𝑖𝑖𝑖𝜀𝜀𝑖𝑖 (Eq. 29) 
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where σi, εj and Qij are the components of the in-plane stress tensor, in-plane strain tensor, 

and reduced stiffness tensor, respectively, expressed in the global coordinate system. 

Relations between the components of the reduced stiffness tensor and the engineer moduli 

EL, ET, νLT and GLT is proposed in Appendice A. Based on expression (29) it is possible to 

estimate the equivalent properties of this ensemble of two plies, denoted by the subscript 

QUD for Quasi Uni-Directional. The methodology was proposed in [45] and leads to the 

relations: 

 𝐸𝐸𝐿𝐿 𝑄𝑄𝑈𝑈𝑈𝑈 = �1 − 𝛾𝛾𝑄𝑄𝑈𝑈𝑈𝑈�𝛾𝛾𝑈𝑈𝑈𝑈(𝑘𝑘𝐸𝐸𝐿𝐿 𝑈𝑈𝑈𝑈 + (1 − 𝑘𝑘)𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈), (Eq. 30) 

 𝐸𝐸𝑇𝑇 𝑄𝑄𝑈𝑈𝑈𝑈 = �1 − 𝛾𝛾𝑄𝑄𝑈𝑈𝑈𝑈�𝛾𝛾𝑈𝑈𝑈𝑈(𝑘𝑘𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈 + (1 − 𝑘𝑘)𝐸𝐸𝐿𝐿 𝑈𝑈𝑈𝑈), (Eq. 31) 

 𝜈𝜈𝐿𝐿𝑇𝑇 𝑄𝑄𝑈𝑈𝑈𝑈 =
𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈𝑘𝑘 + (1 − 𝑘𝑘)

𝐸𝐸𝐿𝐿 𝑈𝑈𝑈𝑈𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈 
, 

(Eq. 32) 

 𝐺𝐺𝐿𝐿𝑇𝑇 𝑄𝑄𝑈𝑈𝑈𝑈 = 𝐺𝐺𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈 , (Eq. 33) 

with 

 𝛾𝛾𝑈𝑈𝑈𝑈 =
1

1 − 𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈𝐸𝐸𝐿𝐿 𝑈𝑈𝑈𝑈 𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈2  
(Eq. 34) 

 𝛾𝛾𝑄𝑄𝑈𝑈𝑈𝑈 =
𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈2�𝑘𝑘 𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈𝐸𝐸𝐿𝐿 𝑈𝑈𝑈𝑈 + 1 − 𝑘𝑘� �𝑘𝑘 + (1 − 𝑘𝑘)

𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈𝐸𝐸𝐿𝐿 𝑈𝑈𝑈𝑈� 
(Eq. 35) 

The model proposed in [45] is however limited to the previous mechanical 

properties EL QUD, ET QUD, νLT QUD and GLT QUD and do not estimates the thermal expansion 

of the material. The authors therefore followed the same methodology but considered a 

thermo-mechanical constitutive law describing the behavior of each ply: 

 𝜎𝜎𝑖𝑖 = 𝑄𝑄𝑖𝑖𝑖𝑖�𝜀𝜀𝑖𝑖 − 𝜀𝜀𝑖𝑖𝑡𝑡ℎ�, 
with 𝜀𝜀𝑖𝑖𝑡𝑡ℎ = 𝛼𝛼𝑖𝑖Δ𝑇𝑇 

(Eq. 36) 

The coefficients of thermal expansion were deduced from the classical lamination 

theory but lead to more complex formulations, as given in Eqs. 37-39. The detailed 

deduction of these equations is presented in Appendix B. 
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 𝛼𝛼𝐿𝐿 𝑄𝑄𝑈𝑈𝑈𝑈 = �𝐸𝐸𝐿𝐿 𝑈𝑈𝑈𝑈𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈ℎ𝑤𝑤𝑀𝑀2 𝛼𝛼𝐿𝐿 𝑈𝑈𝑈𝑈 − 𝐸𝐸𝐿𝐿 𝑈𝑈𝑈𝑈𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈ℎ𝑤𝑤𝑀𝑀ℎ𝑤𝑤𝑠𝑠𝛼𝛼𝐿𝐿 𝑈𝑈𝑈𝑈
+ 𝐸𝐸𝐿𝐿 𝑈𝑈𝑈𝑈𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈ℎ𝑤𝑤𝑠𝑠2 𝛼𝛼𝑇𝑇 𝑈𝑈𝑈𝑈
+ 𝐸𝐸𝐿𝐿 𝑈𝑈𝑈𝑈𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈ℎ𝑤𝑤𝑀𝑀ℎ𝑤𝑤𝑠𝑠𝛼𝛼𝑇𝑇 𝑈𝑈𝑈𝑈
+ 𝐸𝐸𝐿𝐿 𝑈𝑈𝑈𝑈2 ℎ𝑤𝑤𝑀𝑀ℎ𝑤𝑤𝑠𝑠𝛼𝛼𝐿𝐿 𝑈𝑈𝑈𝑈 + 𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈2 ℎ𝑤𝑤𝑀𝑀ℎ𝑤𝑤𝑠𝑠𝛼𝛼𝑇𝑇 𝑈𝑈𝑈𝑈− 𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈2 ℎ𝑤𝑤𝑀𝑀2 𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈2 𝛼𝛼𝐿𝐿 𝑈𝑈𝑈𝑈 − 𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈2 ℎ𝑤𝑤𝑠𝑠2 𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈2 𝛼𝛼𝑇𝑇 𝑈𝑈𝑈𝑈− 𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈2 ℎ𝑤𝑤𝑀𝑀ℎ𝑤𝑤𝑠𝑠𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈2 𝛼𝛼𝐿𝐿 𝑈𝑈𝑈𝑈− 𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈2 ℎ𝑤𝑤𝑀𝑀ℎ𝑤𝑤𝑠𝑠𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈2 𝛼𝛼𝑇𝑇 𝑈𝑈𝑈𝑈
+ 𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈2 ℎ𝑤𝑤𝑀𝑀ℎ𝑤𝑤𝑠𝑠𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈𝛼𝛼𝐿𝐿 𝑈𝑈𝑈𝑈− 𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈2 ℎ𝑤𝑤𝑀𝑀ℎ𝑤𝑤𝑠𝑠𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈𝛼𝛼𝑇𝑇 𝑈𝑈𝑈𝑈�/∆𝑄𝑄𝑈𝑈𝑈𝑈 

(Eq. 37) 

 𝛼𝛼𝑇𝑇 𝑄𝑄𝑈𝑈𝑈𝑈 = �𝐸𝐸𝐿𝐿 𝑈𝑈𝑈𝑈𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈ℎ𝑤𝑤𝑀𝑀2 𝛼𝛼𝑇𝑇 𝑈𝑈𝑈𝑈 − 𝐸𝐸𝐿𝐿 𝑈𝑈𝑈𝑈𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈ℎ𝑤𝑤𝑀𝑀ℎ𝑤𝑤𝑠𝑠𝛼𝛼𝐿𝐿 𝑈𝑈𝑈𝑈
+ 𝐸𝐸𝐿𝐿 𝑈𝑈𝑈𝑈𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈ℎ𝑤𝑤𝑠𝑠2 𝛼𝛼𝐿𝐿 𝑈𝑈𝑈𝑈
+ 𝐸𝐸𝐿𝐿 𝑈𝑈𝑈𝑈𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈ℎ𝑤𝑤𝑀𝑀ℎ𝑤𝑤𝑠𝑠𝛼𝛼𝑇𝑇 𝑈𝑈𝑈𝑈
+ 𝐸𝐸𝐿𝐿 𝑈𝑈𝑈𝑈2 ℎ𝑤𝑤𝑀𝑀ℎ𝑤𝑤𝑠𝑠𝛼𝛼𝐿𝐿 𝑈𝑈𝑈𝑈 + 𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈2 ℎ𝑤𝑤𝑀𝑀ℎ𝑤𝑤𝑠𝑠𝛼𝛼𝑇𝑇 𝑈𝑈𝑈𝑈− 𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈2 ℎ𝑤𝑤𝑀𝑀2 𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈2 𝛼𝛼𝑇𝑇 𝑈𝑈𝑈𝑈 − 𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈2 ℎ𝑤𝑤𝑠𝑠2 𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈2 𝛼𝛼𝐿𝐿 𝑈𝑈𝑈𝑈− 𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈2 ℎ𝑤𝑤𝑀𝑀ℎ𝑤𝑤𝑠𝑠𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈2 𝛼𝛼𝐿𝐿 𝑈𝑈𝑈𝑈− 𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈2 ℎ𝑤𝑤𝑀𝑀ℎ𝑤𝑤𝑠𝑠𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈2 𝛼𝛼𝑇𝑇 𝑈𝑈𝑈𝑈
+ 𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈2 ℎ𝑤𝑤𝑀𝑀ℎ𝑤𝑤𝑠𝑠𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈𝛼𝛼𝐿𝐿 𝑈𝑈𝑈𝑈− 𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈2 ℎ𝑤𝑤𝑀𝑀ℎ𝑤𝑤𝑠𝑠𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈𝛼𝛼𝑇𝑇 𝑈𝑈𝑈𝑈�/∆𝑄𝑄𝑈𝑈𝑈𝑈 

(Eq. 38) 

with 

 ∆𝑄𝑄𝑈𝑈𝑈𝑈= 𝐸𝐸𝐿𝐿 𝑈𝑈𝑈𝑈2 ℎ𝑤𝑤𝑀𝑀ℎ𝑤𝑤𝑠𝑠 + 𝐸𝐸𝐿𝐿 𝑈𝑈𝑈𝑈𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈ℎ𝑤𝑤𝑀𝑀2 + 𝐸𝐸𝐿𝐿 𝑈𝑈𝑈𝑈𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈ℎ𝑤𝑤𝑠𝑠2− 𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈2 ℎ𝑤𝑤𝑀𝑀2 𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈2 − 2𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈2 𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈2 ℎ𝑤𝑤𝑀𝑀ℎ𝑤𝑤𝑠𝑠
+ 𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈2 ℎ𝑤𝑤𝑀𝑀ℎ𝑤𝑤𝑠𝑠 − 𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈2 𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈2 ℎ𝑤𝑤𝑠𝑠2  

(Eq. 39) 

The composite properties measured in the previous section can therefore be 

estimated thanks to these equations and considering the fiber properties are known. These 

latter correspond to glass fibers properties and are gathered in Table 6. 
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Table 6: Thermomechanical properties of the glass fibers[44, 45]. 

Property Unit Value 

Ef (GPa) 75 

Gf (GPa) 30 

Kf (GPa) 50 

νf  0.25 

αL f (K-1) 5 10-6 

The evolution of the estimated thermomechanical properties with temperature are 

represented in Fig. 13 a and b, for the elastic moduli EL, ET, GLT, and νLT and the coefficients 

of thermal expansion αL and αT, respectively. The fiber volume fraction is first fixed to 

50%, and the properties are computed versus temperature in the cases of a pure UD 

composite and a quasi UD composite with a value of k = 0.95 (thus corresponding to 95% 

of fibers along the warp direction as mentioned by Chomarat). The results experimentally 

obtained at 25°C for GLT are also represented on Fig. 13 a, as well as results obtained by 

Cazaux and Ramezani Dana et al. [6,47] on unidirectional samples with the same materials, 

leading to EL = 42.9 ± 1.0 GPa and ET = 8.0 ± 0.4 GPa. The impact of the fiber volume 

fraction Vf is illustrated through the evolution of EL and ET as well as αL and αT as a function 

of temperature for three different values of Vf (30, 50 and 70%) in figure 13 c and d, 

respectively. 

As experimentally measured, the evolution of the elastic modulus EL, ET and GLT 

show a slight decrease with temperature in both the UD and the Quasi UD cases. The 

decrease is more important around 50°C as the temperature rises above the glass transition 

temperature of the material. Both the ET and GLT tend to a negligible value at high 

temperature due to the melting of the matrix. The values of EL remain in a higher value 

range as this property is mainly driven by the fiber properties in the developed model. 

Considering the quasi UD nature of the material, the in-plane shear modulus GLT does not 

changes, but the transversal modulus ET increases while the longitudinal modulus 

decreases. This is due to the difference in the distribution of the fibers: a lower amount of 

fibers is present in the longitudinal direction leading to a lower value of EL. This amount 

is located along the weft direction thus improving the value of ET. The values estimated at 

25°C for these three properties are in excellent agreement with the one obtained 

experimentally in the previous section, showing less than 15% difference.  

The longitudinal CTE is slightly evolving with temperature, as this direction is 

mainly driven by the fiber properties. It remains quite constant around a value close to the 

fiber linear CTE αLf. The influence of the reinforcement architecture on this property is 

negligible and will not be discussed. The transversal CTE is much more sensitive to both 

the temperature and the nature of the reinforcement. In the case of the pure UD the lateral 

expansion is driven by the matrix. As a consequence, the evolution of αT follows the ones 

Accepted Manuscript

19



of αm that were described in section 3.1. In the case of the quasi UD, this evolution is more 

altered. The CTE first rises from 30 10-6 K-1 at -100°C to 50 10-6 K-1 at 45°C. It then slightly 

decreases around Tg due to the softening of the matrix. The evolution is then similar to the 

UD case, leading to an increase in the value of αT until 140°C due to the Brill transition, 

followed by a decrease as the temperature approaches the melting temperature. The peak 

value of αT around the Brill transition is however much lower in the quasi UD case 

compared to the UD one, with values of 67 10-6 and 152 10-6 K-1, respectively. It seems 

that the presence of a little amount of fibers along the weft direction highly impacts the 

transversal coefficient of thermal expansion.  

The fiber volume fraction has a common impact on the material properties (Fig. 13 

c and d). A higher fiber volume fraction leads to higher moduli (EL and ET), and to lower 

coefficients of thermal expansion (αL and αT). It has to be noted that on the whole range of 

Vf, the longitudinal CTE remains lower than 13.1 10-6 K-1, which is close to the glass fiber 

CTE. Therefore, the thermal expansion of the composite mostly occurs in the transversal 

direction. 

For both the [0]8 and [90]8 samples tested on DMA, the measured longitudinal and 

transversal moduli are represented in Fig. 14 together with their estimated values. The fiber 

volume fraction was considered to be 35% and 44% for the longitudinal and transversal 

moduli, respectively, and the impact of the uncertainty on these values is also plotted in 

Fig. 14. The estimated value of EL and ET present a good correlation with the order of 

magnitude of the experimentally measured ones. For both moduli, the estimated properties 

overvalue the measured properties. Concerning the longitudinal modulus, the estimated 

value is closer to the experimental one around 25°C than at higher temperature. The 

estimated value decreases less with the temperature than the measured ones. This 

difference is explained by the analysis performed on the DMA values. During three point 

bending experiments, samples are submitted to tensile and compression together with 

possible shear. The analysis of DMA results is based on the Euler-Bernoulli approach, 

which does not consider shear [48]. Therefore, the measured modulus is in fact an apparent 

modulus which relies on both the evolution of EL and GLT. This latter modulus is mainly 

driven by the matrix stiffness, which highly decreases through the glass transition 

temperature (Fig. 13a). The measured modulus is therefore impacted by this evolution and 

decreases more than the estimated modulus. Thinner samples should be used to overcome 

this effect [48,49], but this may lead to higher uncertainties due to the thickness uncertainty. 

Further experiments should be performed but they remain an outlook of the presented 

work. The evolution of the measured transversal modulus is more accurately estimated 

thanks to the developed model, even though the estimated moduli is higher than the 

measured one by approximately 1 GPa.  

The measured and estimated CTEs are plotted in Fig. 15. Their evolutions were 

previously discussed. It appears that the UD model largely overestimates the measured 

CTE, its value at 25°C being two times the measured one, and this difference continuously 

increases with temperature until 150°C where the estimated value is six times higher than 

the measured one. The Quasi UD model also overestimates the coefficient value, but is 

closer to it as it never exceeds 2.5 times the experimental value. It has however to be noted 

that once the temperature is higher than Tg, the measurement of the CTE is more complex 
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leading to uncertain values of the CTE. Therefore, after 80°C, the measured values would 

preferably be disregarded. To overcome this limitation, contactless measurements [50] 

should be performed to avoid creep of the material.  

It appears that even in the case of a slightly quasi unidirectional composite, with 

only 5% of fibers along the weft direction, the UD estimation of the transversal coefficient 

of thermal expansion cannot be used to predict the material thermomechanical properties. 

This property is of primary importance in the study of residual stresses during 

manufacturing of composites, and mainly drives their development. The use of the 

developed QUD model would therefore improve the accuracy of such prediction when a 

characterization of the material properties over the whole temperature range is not possible. 

Conclusions 

This study proposes an investigation in the thermomechanical behavior of a low viscosity 

PA66 matrix and the associated continuous glass fiber reinforced composite over a large 

temperature range (from 20 to 280°C). The matrix was first characterized thanks to a DMA, 

leading to an estimation of its Young’s modulus Em and its evolution with temperature. 

Then, a PvT-XT volumetric dilatometer was employed to obtain the evolution of the matrix 

specific volume with temperature. From these values, the coefficient of thermal expansion 

of the matrix αm was identified over the whole temperature range, as well as the coefficient 

of crystallization shrinkage βm. The bulk modulus Km was also determined but its 

identification was limited to the temperature higher than Tg. Experiments performed at 

higher pressure level should prevent such a limitation. Finally, the shear modulus Gm was 

estimated from the values of Em and Km. These different properties and their evolution with 

temperature were compared with numerous values from the literature, showing an excellent 

agreement. This demonstrates the ability of the developed experimental method to provide 

accurate results through the use of only two devices (a DMA and the PvT-XT), when at 

least three were previously necessary (e.g. a DMA, a torsion pendulum and a volumetric 

dilatometer).  

A continuous glass fiber reinforced composite based on the same matrix was also 

investigated. Tensile tests at room temperature led to its in-plane elastic moduli, i.e. its 

longitudinal and transversal Young’s moduli EL and ET, as well as its shear modulus GLT. 

This was completed with DMA tests, which led to the evolution of the Young’s moduli EL 

and ET with temperature. Finally, a dilatometer permitted to monitor the evolution of the 

transversal coefficient of thermal expansion αT. Facing the difficulty to correctly measure 

the composite properties at temperatures higher than Tg, an estimation model is extended. 

It is based on the classical lamination theory and considers quasi-unidirectional 

reinforcement as two independent layer of 0° and 90° orientations, representing the warp 

and weft fibers, respectively. The estimated values are of the same order of magnitude as 

the measured ones. The elastic moduli obtained by DMA are overestimated by the model 

when the ones obtained by tensile tests are underestimated. The measured transversal 

coefficient of thermal expansion αT is also overestimated by the developed model. 

However, this latter leads to values closer to the experimental ones compared to standard 

estimation model developed for unidirectional materials. This demonstrates the better 
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ability of the developed model to reproduce the thermomechanical behavior of the quasi-

unidirectional material. 
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Appendix A 

For a unidirectional ply, the reduced stiffness tensor components Qij can be expressed as a 

function of the engineering moduli EL, ET, νLT and GLT: 

 𝑄𝑄11 =
𝐸𝐸𝐿𝐿

1 − 𝐸𝐸𝑇𝑇𝐸𝐸𝐿𝐿 𝜈𝜈𝐿𝐿𝑇𝑇2  
(Eq. A1) 

 𝑄𝑄22 =
𝐸𝐸𝑇𝑇

1 − 𝐸𝐸𝑇𝑇𝐸𝐸𝐿𝐿 𝜈𝜈𝐿𝐿𝑇𝑇2  
(Eq. A2) 

 𝑄𝑄12 = 𝑄𝑄21 =
𝐸𝐸𝑇𝑇𝜈𝜈𝐿𝐿𝑇𝑇

1 − 𝐸𝐸𝑇𝑇𝐸𝐸𝐿𝐿 𝜈𝜈𝐿𝐿𝑇𝑇2  
(Eq. A3) 

 𝑄𝑄66 = 𝐺𝐺𝐿𝐿𝑇𝑇 (Eq. 

A440) 
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Appendix B 

For a unidirectional ply, the constitutive law is given by Eq. 36. The studied material is 

considered to be composed of two layers, one corresponding to the warp and one to the 

weft direction. The behavior of each layer is also described thanks to Eq. 36, but their 

properties differ. If we consider they are composed of the same material with identical fiber 

volume fraction, we can write that ELwa = ETwe = EL UD, ETwa = ELwe = ET UD, GLTwa = GLTwe 

= GLT UD, νLTwa = νLTwe = νLT UD, αLwa = αTwe = αL UD and αTwa = αLwe = αT UD. According to 

Appendix A and Eq. 34, one gets for the warp direction: 

 𝑄𝑄11 𝑤𝑤𝑀𝑀 = 𝛾𝛾𝑈𝑈𝑈𝑈𝐸𝐸𝐿𝐿 𝑈𝑈𝑈𝑈 (Eq. B1) 

 𝑄𝑄22 𝑤𝑤𝑀𝑀 = 𝛾𝛾𝑈𝑈𝑈𝑈𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈 (Eq. B2) 

 𝑄𝑄66 𝑤𝑤𝑀𝑀 = 𝐺𝐺𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈 (Eq. B3) 

 𝑄𝑄12 𝑤𝑤𝑀𝑀 = 𝛾𝛾𝑈𝑈𝑈𝑈𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈 (Eq. 

B441) 

 𝑄𝑄16 𝑤𝑤𝑀𝑀 = 𝑄𝑄26 𝑤𝑤𝑀𝑀 = 0 (Eq. 

B542) 

And for the weft direction: 

 𝑄𝑄11 𝑤𝑤𝑠𝑠 = 𝛾𝛾𝑈𝑈𝑈𝑈𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈 (Eq. B6) 

 𝑄𝑄22 𝑤𝑤𝑠𝑠 = 𝛾𝛾𝑈𝑈𝑈𝑈𝐸𝐸𝐿𝐿 𝑈𝑈𝑈𝑈 (Eq. B7) 

 𝑄𝑄66 𝑤𝑤𝑠𝑠 = 𝐺𝐺𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈 (Eq. B8) 

 𝑄𝑄12 𝑤𝑤𝑠𝑠 = 𝛾𝛾𝑈𝑈𝑈𝑈𝜈𝜈𝐿𝐿𝑇𝑇 𝑈𝑈𝑈𝑈𝐸𝐸𝑇𝑇 𝑈𝑈𝑈𝑈 (Eq. 

B943) 

 𝑄𝑄16 𝑤𝑤𝑠𝑠 = 𝑄𝑄26 𝑤𝑤𝑠𝑠 = 0 (Eq. 

B1044) 

The thermal expansion strains for both directions are given by: 

 𝜀𝜀1 𝑤𝑤𝑀𝑀𝑡𝑡ℎ = 𝛼𝛼𝐿𝐿∆𝑇𝑇 (Eq. B11) 

 𝜀𝜀2 𝑤𝑤𝑀𝑀𝑡𝑡ℎ = 𝛼𝛼𝑇𝑇∆𝑇𝑇 (Eq. B12) 

 𝜀𝜀1 𝑤𝑤𝑠𝑠𝑡𝑡ℎ = 𝛼𝛼𝑇𝑇∆𝑇𝑇 (Eq. B13) 

 𝜀𝜀2 𝑤𝑤𝑠𝑠𝑡𝑡ℎ = 𝛼𝛼𝐿𝐿∆𝑇𝑇 (Eq. 

B1445) 

According to [45], the equivalent constitutive law is obtained as the mean expression over 

the whole laminate thickness: 
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 𝜎𝜎𝑖𝑖 𝑠𝑠𝑒𝑒 = 𝑄𝑄𝑖𝑖𝑖𝑖 𝑠𝑠𝑒𝑒�𝜀𝜀 − 𝜀𝜀𝑖𝑖 𝑠𝑠𝑒𝑒𝑡𝑡ℎ � =
1𝑒𝑒𝑐𝑐 � 𝜎𝜎𝑖𝑖(𝑧𝑧)𝑑𝑑𝑧𝑧+𝑠𝑠𝑐𝑐/2
−𝑠𝑠𝑐𝑐/2  (Eq. B15) 

Where σi(z) correspond to the component i of the stress tensor at the depth z. This leads to 

the equivalent reduced stiffness tensor Qij eq: 

 𝑄𝑄𝑖𝑖𝑖𝑖 𝑠𝑠𝑒𝑒 =
1𝑒𝑒𝑐𝑐 �ℎ𝑤𝑤𝑀𝑀𝑄𝑄𝑖𝑖𝑖𝑖 𝑤𝑤𝑀𝑀 + ℎ𝑤𝑤𝑠𝑠𝑄𝑄𝑖𝑖𝑖𝑖 𝑤𝑤𝑠𝑠� (Eq. B16) 

And to the equivalent thermal stress component σth
i eq: 

 𝜎𝜎𝑖𝑖 𝑠𝑠𝑒𝑒𝑡𝑡ℎ = 𝑄𝑄𝑖𝑖𝑖𝑖 𝑠𝑠𝑒𝑒𝜀𝜀𝑖𝑖 𝑠𝑠𝑒𝑒𝑡𝑡ℎ =
1𝑒𝑒𝑐𝑐 �ℎ𝑤𝑤𝑀𝑀𝑄𝑄𝑖𝑖𝑖𝑖 𝑤𝑤𝑀𝑀𝜀𝜀𝑖𝑖 𝑤𝑤𝑀𝑀𝑡𝑡ℎ + ℎ𝑤𝑤𝑠𝑠𝑄𝑄𝑖𝑖𝑖𝑖 𝑤𝑤𝑠𝑠𝜀𝜀𝑖𝑖 𝑤𝑤𝑠𝑠𝑡𝑡ℎ � (Eq. B17) 

Substituting Eq. 28 in Eqs. B16 and B17 leads to: 

 𝑄𝑄𝑖𝑖𝑖𝑖 𝑠𝑠𝑒𝑒 = �𝑘𝑘𝑄𝑄𝑖𝑖𝑖𝑖 𝑤𝑤𝑀𝑀 + (1 − 𝑘𝑘)𝑄𝑄𝑖𝑖𝑖𝑖 𝑤𝑤𝑠𝑠� (Eq. B18) 

 𝑄𝑄𝑖𝑖𝑖𝑖 𝑠𝑠𝑒𝑒𝜀𝜀𝑖𝑖 𝑠𝑠𝑒𝑒𝑡𝑡ℎ = �𝑘𝑘𝑄𝑄𝑖𝑖𝑖𝑖 𝑤𝑤𝑀𝑀𝜀𝜀𝑖𝑖 𝑤𝑤𝑀𝑀𝑡𝑡ℎ + (1 − 𝑘𝑘)𝑄𝑄𝑖𝑖𝑖𝑖 𝑤𝑤𝑠𝑠𝜀𝜀𝑖𝑖 𝑤𝑤𝑠𝑠𝑡𝑡ℎ � (Eq. B19) 

The equivalent thermal strain can therefore be written as: 

 𝜀𝜀𝑖𝑖 𝑠𝑠𝑒𝑒𝑡𝑡ℎ = 𝛼𝛼𝑖𝑖 𝑠𝑠𝑒𝑒∆𝑇𝑇 = 𝑄𝑄𝑖𝑖𝑖𝑖 𝑠𝑠𝑒𝑒−1 �𝑘𝑘𝑄𝑄𝑖𝑖𝑖𝑖 𝑤𝑤𝑀𝑀𝜀𝜀𝑖𝑖 𝑤𝑤𝑀𝑀𝑡𝑡ℎ + (1 − 𝑘𝑘)𝑄𝑄𝑖𝑖𝑖𝑖 𝑤𝑤𝑠𝑠𝜀𝜀𝑖𝑖 𝑤𝑤𝑠𝑠𝑡𝑡ℎ � (Eq. B20) 

Then, from Appendix A and Eq. B18, it is possible to obtain the expressions of EL QUD, ET 

QUD, GLT QUD and νLT QUD given in Eqs. 30-35. Finally, from Eq. B20, one can get to the 

expressions of αL QUD and αT QUD given in Eqs. 37-39. This was performed thanks to 

the Symbolic Toolbox in Matlab R2016a. 

 

Figures 

 

Figure 1. Reinforcement architecture. Light grey zones correspond to fibres and dark grey 

zones to the matrix. 
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Figure 2. Evolution of the storage modulus E’ and loss tangent tanδ with temperature from 

DMA measurements, compared with several values from the literature [14–16]. 

 

 

Figure 3. Evolution of the neat matrix specific volume from PvT-XT for different pressure 

level as a function of the temperature. 
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Figure 4. Evolution of the coefficient of thermal expansion of the PA66 from the PvT-XT 

experiments. (a) Compared with several values from the literature [24–28] (b) Compared 

with the proposed evolutions. 

 

 

Figure 5. Evolution of the total volumetric strain εTot of the PA66 submitted to a 20MPa 

pressure, together with the calculated thermal and crystallization strains, εTh and εCr,, 

respectively. 
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Figure 6. Evolution of the bulk modulus of the PA66 obtained with the PvT-XT and 

compared with several values from the literature [21–23,28,40] 

 

Figure 7. Evolution of the shear modulus of the PA66 matrix Gm as a function of the 

temperature and compared with several values from the literature [14,17,18]. 
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Figure 8. Evolution of the estimated PA66 Poisson’s ratio νm as a function of temperature, 

together with its elastic moduli Em, Km and Gm. 

 

Figure 9. Evolution of the mean longitudinal and transversal strains for the [+452 -452]S ply 

sequence during tensile test. 
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Figure 10. DMA results as a function of temperature for (a) the [0°]8 samples and (b) the 

[90°]8 samples. 

 

Figure 11. CTE measured in the transversal direction from the [90]8 samples. 

 

Figure 12. Simplification of the quasi-UD structure.  
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Figure 13. Evolution of the estimated composite properties with temperature. The UD 

properties are represented with dashed lines and the quasi-UD ones with continuous lines. 

(a) In-plane moduli for Vf=50%. (b) In-plane CTE for Vf=50%. (c) In-plane moduli for 

various Vf. (d) In-plane CTE for various Vf. 
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Figure 14. Evolution of the measured longitudinal and transversal Young’s modulus 

together with the estimated ones. The filled area around the estimated properties 

correspond to the impact of the uncertainty of the fibre volume fraction. 

 

Figure 15. Comparison between the measured CTE and the estimated one through a UD 

and the QUD model. 

Accepted Manuscript

34


