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Introduction

Multiscale modelling and computation is becoming one of the most active research areas in
materials science. This evolution is driven by the rapid growth in available computing power
and by the development of many innovative algorithms and techniques. In mineral physics, the
issue of mantle rheology, controlled by the deformation of high-pressure mineral assemblages,
can be addressed by this new approach. In contrast with thermodynamic properties like the
equation of state, which are fully determined at the atomic length scale, mechanical properties
are inherently multiscale: they depend on the interrelationship between processes operating at
the scale of the atom, the crystal, the rock and the whole planet. Moreover, these different scales
are often strongly coupled to each other, which makes the problem even more challenging. 

From the atoms to the Earth’s mantle
Mechanical properties of real materials are controlled by crystal defects such as point
defects, dislocations, stacking faults and grain boundaries. Taken individually, these defects
can be described at the fundamental level through their atomic and electronic structures,
which can be found by solving the Schrödinger equation. First-principles calculations and
molecular dynamics are used to address such problems. At the scale of a grain, the
mechanical properties are often the result of the collective behaviour of these defects in
response to the loading conditions. Newly developed three-dimensional dislocation dyna-
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mics simulation techniques are aimed to take these interactions between defects into account
to provide insights about single-crystal plasticity. Constitutive laws for single-crystal
plasticity can be ultimately transferred to the scale of the polycrystal. Polycrystal plasticity
models and finite-element methods based on continuum mechanics examine how an
aggregate (with possibly several phases) will deform in response to an applied stress. It is
here necessary to describe, for a given microstructure, how stress and strain are partitioned
between the various grains. The ultimate goal is to derive macroscopic constitutive relations
that can be used into large-scale mantle convection models (Fig. 1). It is to be noted that this
final step involves not only a large extrapolation in length scales, but also in time scales as
mantle convection takes place over very long times. The main purpose of the present chapter
is to illustrate some of the ongoing efforts for setting the basis of multiscale modelling of
plastic deformation of mantle minerals.

Atomic scale: From atoms to individual defects

Atomistic simulations of the microstructural evolution of defects are clearly central to the
understanding of mechanical properties. Several developments in the recent past have
made the atomistic approach increasingly attractive. The rapid increase in efficiency and
power of computers, coupled with methodological advances allow reasonably sized
systems to be studied using common PCs whereas supercomputers have allowed quantum
mechanics-based studies of larger systems. Currently, standard techniques using density
functional theory (DFT) are limited to hundreds of atoms but research in linear scaling
algorithms (recently reviewed by Craig et al., 2004) are beginning to open the way
towards DFT studies of millions of atoms. Larger systems can be studied by simplifying
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Fig. 1. Various length scales involved in the
multiscale modelling of the rheology of the
Earth’s mantle based on mineral physics.
(Cutaway model of the Earth courtesy of the
Département de sismologie, IPGP-CNRS.)



the model, at the expense of predictive accuracy. There are many atomic-scale methods
available to study point and planar defects in mantle minerals (for examples of studies of
defects in forsterite see Brodholt, 1997; Braithwaite et al., 2003; de Leeuw et al., 2000;
and Walker et al., 2003) but here we concentrate on the study of dislocations. Most
applications of these techniques for dislocation modelling have been concerned with simple
metallic systems and semiconductors. Minerals usually represent a more complicated
case because of their large unit cells, low symmetries and complex crystal chemistries.
This complexity makes the atomistic approach even more relevant, as such fundamental
issues as plastic shear anisotropy (which is responsible for crystal preferred orientations),
dislocation mobilities and Peierls stresses need to be addressed at this scale. 

Generalised stacking faults and plastic shear anisotropy
A generalised stacking fault (GSF) γ is produced when a crystal is sheared in a given
plane by a given displacement u (Vitek, 1968). In general a GSF is not stable and must
be balanced by a restoring force f(u) = –dγ/du. The elementary shears induced in forming
a GSF are also found in dislocation cores (Fig. 2). Suppose we consider a dislocation to
be spread out in the x–z plane with the dislocation line along the z axis, and the
displacement u oriented parallel to the Burgers vector b. The dislocation is represented
by a continuous distribution of shear across the glide plane given by the density of a
continuous distribution ρ(x) = du/dx. Normalised to the magnitude of the Burgers vector,

(1)

the solution arises from a balance between the stress induced by ρ(x) and the restoring force

(2)
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Fig. 2. (a) Schematic representation of an edge dislocation. (b) Distribution of shear along the slip plane in the
vicinity of the dislocation core. At a given distance (as the one highlighted in (a)) corresponds a given
elementary shear value. (c) The GSF corresponding to this elementary shear can be calculated by imposing it
homogeneously across the slip plane.



The GSF are thus intimately related to the dislocations although they are much easer to
study. They provide, through their derivative the restoring force, information about glide
plane corrugation at the atomic scale. This information tells us the ease or difficulty of
shearing a crystal structure in a particular direction in a given plane, providing an upper
bound for the shear strength, but also information about shear anisotropy.

Here we present some preliminary results obtained from a study of forsterite
(Mg2SiO4). The calculations of the GSF excess energies are done in the following way1.
First, a stacking plane is chosen, here we present results concerning (100), (010), (001),
(110) and (021) planes. The height of the fault plane is chosen to preserve the structural
SiO4 tetrahedron. For a given stacking plane, two lattice translations in the plane
perpendicular to each other are chosen as principal directions for the supercell used to
model the GSF. The third supercell direction is chosen perpendicular to the GSF plane.
Since forsterite does not have cubic symmetry, this third direction may not be a lattice
translation, which implies that when periodic lattice conditions are applied, the upper and
lower parts of the supercell are not necessarily commensurate. To avoid this difficulty, and
in order to calculate GSF excess energies for any fault vector u (see below), a 6 Å thick
vacuum buffer is added to the stacking of atomic planes perpendicular to the fault. Once
the supercell is built, the upper part of the supercell is moved with respect to the lower
part by u, the fault vector contained in the fault plane (see Fig. 3). Once the translation is
made, the atoms are allowed to relax and the energy of the system is calculated providing
the excess energy associated with the fault. The energy barrier associated with [001](110)
shear is presented Figure 3b, where the three sheared configurations shown on Figure 3a
are emphasised. Figure 4 summarises the results of calculations performed for several
potential slip systems in olivine. The various slip systems can be sorted, based on the GSF
excess energy, into the following categories:
– easy: [001] glide (Fig. 4a), especially on the (010) plane;
– intermediate: [100] glide (Fig. 4b) with (021) appearing as the easiest plane;
– difficult: [010] glide brings atoms in very unfavourable positions during shear leading

to very high (and physically meaningless) stacking fault energies (not presented).
This picture is consistent with the low-temperature plasticity of forsterite. First-prin-

ciples calculations of GSF provide a rational picture for the anisotropy of plastic shear of
forsterite in connection with the crystal chemistry. In spite of its simplicity, the GSF concept
is extremely relevant to decipher the influence of the crystal chemistry on plastic shear. 

A major advantage of ab initio calculations is that, being based on a strong physical
basis, they can be applied under various conditions including high pressures. The same GSF
have been calculated plastic shear in forsterite at 10 GPa. The results are presented Figures
4c and d for [001] and [100] slip on (010). It appears that [001](010) is only slightly affected
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1 The calculations have been performed using the ab initio total-energy calculation package VASP (Vienna
Abinitio Simulation Program) developed at the Institut für Materialphysik of the Universität Wien (Kresse &
Hafner, 1993; Kresse & Furthmüller, 1996a, 1996b). This code is based on the first-principles density
functional theory and solves the effective one-electron Hamiltonian involving a functional of the electron
density to describe the exchange–correlation interaction. (Strictly speaking the expression “atomic scale” is
not appropriate as calculations are performed at the electronic scale.) It gives access to the total energy of a
periodic system without any experimental input but the atomic numbers of the atoms.



by pressure. Only the shape of the barrier (which is not discussed here) is modified. In
contrast, the barrier for [100](010) is significantly increased under pressure. The analysis of
atomic relaxations shows that [100] glide involve dilations that inhibit glide at high pressure.
This calculation provides a theoretical frame to account for dominant [001] glide at high
pressure in forsterite deformed in the multi-anvil apparatus (Couvy et al., 2004). 

Dislocation modelling
The GSF approach attempts to determine the plastic properties of a mineral from just the
crystal structure and chemistry, which are specific properties of its unit cell; moving up in
scale one can model the core of an isolated dislocation at the atomic scale. Such models
require many more atoms to be simulated (depending on the crystal structure, perhaps a
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Fig. 3. Generalised stacking faults. (a) Supercell used to investigate plastic glide resistance in forsterite along [001]
on (110). The unsheared supercell is presented on the left whereas three shear stages (20%, 50 % and 75% of the
[001] lattice vector) are presented on the right side. (b) Energy barrier associated with [001](110) plastic shear.

a

b



few tens or hundreds are needed to study the GSF but tens to hundreds of thousands are
needed to study isolated dislocations), which requires a change in methodology from a
first-principles DFT approach to a method based on parameterised interatomic potentials.
This in turn implies some loss of predictive power as the correct treatment of the
electronic structure of the mineral is discarded in favour of a simpler and less com-
putationally intensive procedure. Even so, simulation of a hundred thousand atoms using
parameterised potentials is not a trivial calculation, it requires substantial CPU time and
special algorithms for the treatment of, for example, the Columbic interactions.

The approach described here is to model a single, straight dislocation in an otherwise
defect-free infinite crystal (e.g. Hoagland et al., 1976; Puls & Norgett, 1976; Watson et al.,
1999). This avoids potential difficulties with dislocation–dislocation interactions implicated
in supercell approaches common in studies of semi-conductors (e.g. Bigger et al., 1992; Cai
et al., 2001; Martsinovich et al., 2003; see Fig. 5). Away from the dislocation core the crystal
is described as an elastic continuum while the core and its immediate surroundings are
composed of discrete atoms. The interface between the continuum and atomistic regions
consists of model atoms fixed in locations predicted by linear elasticity. These atoms may
be fixed for the duration of the calculation (fixed boundary conditions: Hoagland et al.,
1976; Watson et al., 1999; Marian et al., 2004; Walker et al., 2004) or may move (flexible
boundary conditions: Gehlen et al., 1972; Sinclair et al., 1978; Rao et al., 1998). 
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Fig. 4. Generalised stacking faults in forsterite. (a) [100] slip systems at P = 0 GPa. (b) [001] slip systems at
P = 0 GPa. (c) Influence of pressure on the [100](010) slip system. (d) Influence of pressure on the [001](010)
slip system.
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In practice, the modelling is performed as follows. First, the potential model is used to
calculate the structure and elastic constants of the perfect infinite crystal. Second, a disk-shaped
model is created which is centred on the intended location of the dislocation line and is periodic
in the direction of the line. Third, using the calculated elastic constants the displacement field
associated with the dislocation is calculated at the location of each atom in the model and the
displacement is applied – this has the effect of introducing the dislocation. Fourth, energy mini-
misation is performed to the model with some of the atoms close to the edge of the cell held
fixed (or being periodically moved according to the forces on them and the rules of a flexible
boundary condition). This process yields the structure of the core of the dislocation; this can be
used to extract the energy of the dislocation core and its displacement, stress and strain fields.

As a simple example we present results of modelling an a{100} screw dislocation
in MgO2. Introduction of the dislocation is relatively straightforward in this case as the
anisotropic displacement field reduces to the isotropic form (Steeds, 1973): 

ux = 0;

uy = 0;

As well as defining its form, an origin for the
displacement field must be selected. There are three
obvious possibilities for the location of the origin of
the displacement field termed the edge, ion and
centre sites, as shown in Figure 6 (Watson et al., 1999).
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2 The breathing shell model of Gale & Rohl (2003) is used as this gives a good representation of the elastic
properties of MgO. Convergence testing was carried out in order to select sizes for the relaxed (Region 1) and
fixed regions (Region 2) in the calculation; these showed Region 1 should have a radius of 50 Å and the radius
of Region 2 should have a thickness of 15 Å. All the cells were one unit cell thick. Energy minimisation was
performed using the conjugate gradients method and the Coulomb summation of Saunders et al. (1994)
implemented within the latest version of the GULP code (Gale & Rohl, 2003).

Fig. 5. Two ways to construct a model of a dislocation core at the atomic scale, looking along the dislocation
line. (a) Isolated dislocation methodology used here with the inner region relaxed and the outer region treated
as an elastic continuum with the interface region marked. (b) Setup for a supercell calculation; note that the
problem of cancelling the elastic interaction between images of the dislocation has been solved (Cai et al.,
2001) but Coulombic interactions between the atoms around the dislocations are harder to deal with when the
atoms have net charge.

a b

Fig. 6. Three locations used to centre the 1D simulation cell and the elastic
displacement field for models of the 〈100〉 screw dislocation in MgO.



The cells centred on these three sites contained 8994, 8943 and 9000 species (Mg cores,
O cores and O shells), respectively.

Figure 7 shows the final structure of the core of the [100] screw dislocation (all
three cells give essentially the same geometry). In analysing this structure, it is useful to
compare the final structure with the starting structure as derived by linear elastic theory;
Figure 8 shows this difference, which is termed the core displacement field. The core
relaxation can conveniently be separated into two parts with distinct causes. The first
effect is that the atoms tend to move in towards the core (Fig. 8a). This mode of
displacement is because a group of atoms, which originally formed a circle around the
incipient dislocation line, forms a helix after the introduction of the dislocation. As the
elastic displacement field does not contain components perpendicular to the dislocation
line, the radius of the helix and the original circle are the same, so that all the Mg–O bond
distances are increased by the process of introducing the dislocation. On relaxation,
these bond distances tend to reduce towards their natural values in the bulk, which is
achieved by the inwards relaxation. The second mode of displacement is motion parallel
to the dislocation line (Fig. 8b). This occurs because of the discontinuity at the origin of
the elastic displacement field (for example, an atom at a short distance along the positive x
axis has a θ value of 0, a short distance along the negative y axis gives a value of 180
degrees, the displacement along z for these two points are 0 and 0.5 times the Burgers
vector, respectively; crossing the origin leads to a step of 0.5b in the displacement field).
In MgO this discontinuity is equal to the Mg–O separation so that like atoms are brought
into contact across the discontinuity. This is clearly energetically unfavourable so the
atoms close to the core move along z to remove the discontinuity. It is notable that the
total displacement in z is equal to 2.4 ångströms, or half the Burgers vector.

From the model of the dislocation core, the dislocation formation energy (i.e. the
reversible work done on the introduction of the dislocation) can be found. This energy,
which is just the difference between the energy stored within a defined radius from the
dislocation in the model with a dislocation and the equivalent energy in the model
without a dislocation, can be separated into two parts, a core contribution and an elastic
contribution. The total energy is fitted to the elastic solution to the dislocation energy:

(3)
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Fig. 7. An atomic model of the [100] screw
dislocation in MgO. Mg ions are shown in
red and O ions are shown in green. In the
inner region, represented by large spheres,
the ions are explicitly moved to achieve
energy minimum while the ions in the outer
region are held fixed at positions predicted
by linear elastic theory. The inner region
must be large enough to accommodate the
relaxation of the core and non-linear
contributions to the relaxation.



where E(r) is the energy stored within a radius r, E(core) is the core energy and r0 is the
radius of the core. In isotropic elasticity, K is the shear modulus but in anisotropic
elasticity it is a more complex average of key components of the elastic compliance
tensor (Steeds, 1973); Figure 9 shows the critical importance of accounting for
anisotropy in the fitting procedure. Taking the core radius as 10 Å, using the anisotropic
solution for the elastic energy and only fitting to data from radii that exceed the core
radius yields core energies of 4.2213, 4.4408 and 4.1916 eV/Å for the edge, centre and
ion sites, respectively.

So far, there are very few published computational studies of dislocations in mantle
minerals using either the GSF or dislocation modelling approaches. Both methods are
under active development with the aim of allowing studies of systems with more complex
crystal structures in order to study dislocations in a wide range of minerals. An interesting
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Fig. 8. Relaxation from elastic to atomistic solution for the 〈100〉 screw dislocation in MgO (centre site). (a)
Displacements of magnesium ions (black) and oxygen cores (open circles) parallel to the dislocation line
smooth out the discontinuity at the origin. (b) Ionic displacements inwards towards the dislocation line shorten
the bond lengths.

a

b



case for dislocation modelling has been zeolite A, where the presence of screw
dislocations will radically change its channel system and hence its transport properties.
The helical nature of the dislocation core also has potential for enantioselective
applications (Walker et al., 2004). An initial attempt to study the structure of dislocations
in forsterite and MgSiO3 perovskite, both volumetrically important mantle minerals, has
been undertaken and these studies show promise. The GSF and dislocation modelling
approaches are complementary in providing information on the atomic scale that is
needed as input for calculations on the mesoscopic scale described below. Where the GSF
method can give information on plastic anisotropy and an estimate of the Peierls barrier
to (idealised) dislocation movement, direct calculation of the structure of the dislocation
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Fig. 9. Energy of MgO screw dislocation. Diamonds, circles and crosses are data taken from the atomistic
model for the centre, ion and edge choices of origin. Solid, dashed and dash-and-dot lines are fits to the data
for the edge site using the anisotropic, Voigt (133.8 GPa) and Reuss (128.0 GPa) definitions, respectively.
The gradient of the line on the log plot clearly shows that the isotropic elastic solution does not fit the results
of the atomistic solution but the anisotropic solution does fit the data.



core can be used to probe processes such as the formation and migration of kinks and jogs
on the dislocation line. All this information is needed as input for the mesoscopic scale
models described below, and can only be provided by the interpretation of experimental
data or studies on the atomic scale. It is in providing such data that the use of atomic scale
methods will be of most use in studies of mantle plasticity.

Mesoscopic scale: Describing dislocation dynamics

The field of mesoscopic simulations, which appeared at the end of the 1980’s, is currently
evolving very rapidly. These simulations deal with a scale which is intermediate between
the atomic scale and the one used in continuum mechanics (which use approaches such
as finite-element methods described below). Hence, they are well adapted to describe the
plasticity of single crystals or individual grains. In this approach, dislocations are
described as individual objects within a continuous medium. The simulated volume must
contain enough dislocations to be a representative volume element from the point of view
of the mechanical properties. Several codes are available; however, they all share the three
main characteristics: discretisation of space, dislocation mobilities and boundary
conditions. Based on two different discretisation modes, two main types of 3D simulation
can be distinguished. In the first one (Zbib et al., 1998), dislocation lines are discretised
with a continuous set of segments with mixed directions, whereas in the second one
(Devincre et al., 2001) the dislocation segments are constrained to have a finite number
of characters. Results from this second method are described below.

Discretisation of space
A continuous dislocation line is discretised in the form of a succession of edge, screw
and mixed segments that are connected together to build up a dislocation line. Eight
elementary segments are needed to reproduce a general dislocation loop in a given plane
(Madec et al., 2001; see Fig. 10). When a segment moves, the lengths of the two segments
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Fig. 10. Dislocation line discretisation. (a) Example of a dislocation loop in forsterite. Case of the (100)[001]
slip system:. Dislocations are discretised as a set of predefined elementary segments (“s” for screw, “e” for
edge and “m” for mixed). On the top left are represented the elementary vectors used in the simulation of
forsterite and expressed in a cubic lattice of parameter a. (b) Case of a Frank–Read source in MgO (courtesy
of Ph. Carrez).



connected to it can be increased to maintain line continuity. These elementary segments
are placed on a 3D lattice of nanometric dimension a that exhibits the symmetry of the
crystal. This lattice is as small as possible, taking care that the line curvature of
dislocations is still well described.

Dislocation mobilities
Dislocations segments create long-range (i.e. ∝ 1/r) stress fields in the surrounding me-
dium. Hence, each point M will bear the stress contribution of every dislocation segment
present in the medium. This gives rises to what is called the internal stress σint. The actual
stress state at this point M will be the result of two contributions: the applied stress σapp

and the internal stress σint. The resulting force applied to a given unitary dislocation
segment dl with a Burgers vector b is given by the Peach–Koehler formula.

(4)

The effective force acting on a segment is the sum of the Peach–Kohler force and of a
local line tension due to the curvature of dislocation (Devincre & Condat, 1992).
Responding to this force, the dislocation segment will move perpendicular to its line
direction with a velocity v. Note that time has also to be discretised to numerically
integrate the Newton equation of motion of the segments. The velocity of the segments
is a critical parameter in the simulation. The simplest case is found with fcc metals for
which the dislocation mobility results mostly from a dragging force due to the interaction
with the phonons:

(5)

where τ is the resolved shear stress, b is the modulus of the Burgers vector and B is the
dragging force coefficient. The situation is different for bcc metals for which screw
dislocations are found to bear a large lattice friction. The mobility of the dislocations is
there due to the nucleation and spreading of kink pairs along the dislocation line. This
mechanism is thermally activated. The velocity v of a dislocation segment of length L is
given by an Arrhenius rate equation:

(6)

where b is the Burgers vector, νD is the Debye frequency, lc is the critical length for the
kink-pair nucleation, ∆H is the activation enthalpy which is a function of the effective
stress τ and kT is the Boltzmann factor. This mobility law depends linearly on the
dislocation length L and very strongly on temperature and effective stress through the
exponential term. This behaviour is also observed in silicon. Because the strong covalent
bonds are the origin of the thermally activated process in that case, every character (edge,
screw or mixed) will be affected. Minerals, which usually involve iono-covalent
bonding, are likely to follow the same behaviour. For a given time step δt, the dislocation
segment will move over a distance du = v δt. It will sweep an area dA = L du from which
one can calculate the induced shear strain increment dγ = b dA/V for the volume V con-
taining the dislocation segment. The total shear strain increment will be obtained by
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summing the contributions of every dislocation segments. However, it is necessary to check
that during its flight, du, the segment does not meet any obstacle. In the case of a collision,
the interaction with the obstacle will be treated by local rules (junction formation or
annihilation for instance).

Boundary conditions
Free-boundary conditions can be used. In that case, a dislocation vanishes when it reaches
the surface of the simulation volume. Interactions with the free surfaces might lead to
depleted dislocation densities in the vicinity of the free surfaces. Periodic boundary
conditions are often used in order to avoid this problem. The simulation volume is then
considered as a representative volume element in a much larger crystal. A portion of
dislocation loop leaving the simulation volume at a surface re-enters it at a different place
(Fig. 11). It is necessary to adjust the position where it re-enters the volume to avoid
undesirable effects due to self-interactions (annihilation or
dipolar interaction) of portions of dislocation loops with
their replicas over the extended simulation volume. The
dimensions of the simulation cell have to be adjusted in
order to control the self-interaction distance, d. A general
solution for this problem has been proposed by Madec
et al. (in press).

Application to olivine
The dislocation dynamics simulation is illustrated here in the case of the [001] glide in
olivine. The most striking feature of the dislocation microstructures in olivine crystals
deformed by [001] glide is the pervasive occurrence of long straight screw segments
(Gaboriaud et al., 1981; Gaboriaud, 1986; Phakey et al., 1972; Evans & Goetze, 1979;
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Fig. 11. Anisotropic dislocation loop expanding in its slip plane. When
a portion of the loop leaves the simulation cell, it is re-injected inside
the cell through periodic boundary conditions.

Fig. 12. Critical resolved shear stress (CRSS) for slip systems with [001] Burgers vectors gliding in (010), (100)
and {110} planes. The CRSS was determined from deformation experiments performed on olivine single crystals.



Wang et al., 1988; Durham et al., 1977; Gueguen & Darot, 1982; Darot & Gueguen,
1981). This morphology suggests that (i) screw dislocations are facing a high lattice
friction, (ii) the mobility of edge segments is high compared to screw segments. As
suggested above, we use a thermally activated mobility law to describe the motion of
[001] screw segments. Based on a kink-pair mechanism, the mobility law is also dis-
location length-dependent. Following the method proposed by Kocks et al. (1975) and
applied to bcc crystals by Tang et al. (1998), the parameters which appear in this law
are fitted against experimental mechanical data (Fig. 12). Edge [001] segments move
much quickly than screw segments. Given the bonding characteristics of olivine, we
have assumed that all segments follow a thermally activated behaviour. The mobilities
of the faster segments will simply be chosen to be K times larger than the mobility of
the 10 µm long slower ones, at a given stress and temperature. Another important
parameter for the simulation is the mean free path λ of the fast segments. In practice,
this parameter is determined by the obstacles (subgrain boundaries, grain boundaries,
free surfaces etc.). These two parameters have been highlighted by Monnet et al.,
(2004), who showed that they strongly control the amount of pre-yield deformation.
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Fig. 13. Stress–strain curve obtained from a numerical experiment corresponding to a [011]c orientation at a
strain rate of 10–5 s–1 at 1200 K.

Fig. 14. Comparison between simulated
microstructures and their experimental
counterparts for forsterite. (a) DD simu-
lation of a 1 µm-thick thin foil parallel
to (010) containing [001] dislocation
loops. The temperature of the simulated
test is 1200 K. (b) TEM observation of a
forsterite sample deformed at 11 GPa,
1673 K (courtesy of H. Couvy).

a b



We have chosen a factor K of 8000 and a mean free path of 30 µm. These parameter sets
give satisfactory dislocation loop aspect ratio and a reasonable pre-yield deformation
achieved by the faster non-screw segments. Figures 13 and 14 show the results of
numerical deformation experiments (single slip [001](010), with a [011]c stress axis, at
1200 K and at a strain rate of 10–5 s–1) performed with this model. They show that the
dislocation microstructures are reproduced satisfactorily and that the stress–strain curve
is consistent with the critical resolved shear stress for [001](010) (Fig. 12). 

From single crystals to polycrystals

Polycrystal plasticity modelling and strain-induced crystal preferred orientations
Polycrystal plasticity models, also known as homogenisation techniques or micro-macro
approaches, have been largely used in the last 30 years to predict the evolution of crystal
preferred orientations (CPO) of mantle minerals during deformation. These models
relate the mechanical behaviour of a polycrystalline aggregate composed by a finite
number of crystals, like a mantle sample, to the individual behaviour of its grains. They
are composed of two basic equations sets: the first one describes the individual crystals
properties and orientations and the second adds the individual crystals mechanical
behaviours to define the polycrystal response (Lebensohn et al., 2003). 

Single crystal equations are the same for all polycrystal plasticity models. Defor-
mation is homogeneous at the grain scale. It is accommodated by dislocation glide only.
The shear rate in a slip system s is related to the local deviatoric stress tensor s by a
viscoplastic law: 

(7)

where γγ.0 is a reference strain rate, taken as 1 s–1, and ns, τγs and τ 0
s are respectively the

stress exponent, the resolved shear stress and the critical resolved shear stress for the
system s, whose orientation relative to the macroscopic reference frame is expressed by
its Schmid tensor rs. The total deformation rate is a linear combination of slip on all
active slip systems. Crystal reorientation, and hence development of crystal preferred
orientation, results from the discrepancy between the imposed macroscopic rotation rate
and the spin associated with intracrystalline slip.

Except for computationally expensive n-site approaches, in which first-neighbour
interactions are explicitly considered (Canova et al., 1992; Wenk et al., 1991), poly-
crystal plasticity models do not include a description of the microstructure. The
interactions between a grain and its surroundings are described in a statistical way, by
averaging the behaviour of individual grains using simple physically based assumptions.
Classical lower- or upper-bound approaches impose homogeneous stress (Sachs, 1928)
or strain (Taylor, 1938), respectively, within the aggregate. The Taylor assumption is
reasonable for materials composed of crystals of a large number of slip systems with
comparable strength. However, this is not the case for most mantle minerals like olivine,
which displays less than five independent slip systems with very different strengths,
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leading to significant variations in strain rate between differently oriented grains. The
homogeneous stress model better represents the mechanical behaviour of these
materials. However, in this model, deformation tends to be concentrated in a too small
number of grains, leading to an underestimation of the mechanical strength and less
accurate CPO predictions. 

CPO in mantle minerals is better simulated by the viscoplastic self-consistent
(VPSC) approach, initially developed by Molinari et al. (1987) and later generalised to
anisotropic media by Lebensohn & Tomé (1993), which allows both the microscopic
stress and strain rate (σ,  ·ε) to differ from the corresponding macroscopic quantities (Σ̄,
D̄). Strain compatibility and stress equilibrium are ensured only at the aggregate scale.
The problem lies in the calculation of a microscopic stress–strain rate state (σ,  ·ε) for each
grain, whose volume average determines the mechanical response of the polycrystal. In
the “1-site” approximation used in the anisotropic VPSC formulation (Lebensohn &
Tomé, 1993), interactions between each grain and its surroundings are replaced by the
interaction between an inclusion with the same lattice orientation and an infinite
homogeneous equivalent medium (HEM), whose behaviour is the volume-weighted
average of the grains’ behaviour. This leads to:

(8)

where M
~

is the interaction tensor and α is a constant used to parameterize the interaction
between grains and the HEM. α = 0 corresponds to the upper-bound model
(homogeneous strain), α = 1 is the tangent self-consistent model (linear relationship
between volume-averaged stress and strain rate), and α = infinity corresponds to the
lower-bound model (stress equilibrium). Extensive testing on metallic alloys
(Lebensohn & Tomé, 1993; Logé et al., 2000), halite (Lebensohn et al., 2003), as well
as on highly anisotropic minerals such as calcite (Tomé et al., 1991), olivine (Tommasi
et al., 2000; Wenk et al., 1991) and clinopyroxene (Bascou et al., 2002), shows that the
VPSC model produces robust CPO predictions. The effect of dynamic recrystallisation
on CPO evolution may be integrated in polycrystal plasticity models through nucleation
and growth criteria, which relate the evolution of the volume of each crystallographic
orientation to the local strain rate, i.e., to its Taylor factor (Kaminski & Ribe, 2001; Wenk
et al., 1997; Wenk & Tomé, 1999).

CPO evolution in this model is essentially controlled by the imposed deformation
(or stress), the initial texture (crystal preferred and, to a lesser extent, shape preferred
orientation) and the active slip systems. The latter depend on the mineral structure, but
also on the temperature and pressure conditions, which control their relative strength or
critical resolved shear stress (CRSS). The effect of the imposed deformation geometry
on the CPO evolution may be illustrated by a series of simulations for olivine
polycrystals (Fig. 15). These simulations show that the CPO symmetry results from an
interplay of the crystal structure (symmetry and available slip systems) and the imposed
deformation.

Comparison of simulation of CPO development in olivine polycrystals deformed
under moderate and high-pressure conditions highlights the effect of a variation of the
critical resolved shear stresses on the CPO evolution. Olivine deforms essentially by
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slip on [100]{0kl} and [001]{hk0} systems, mainly [100](010), [100](001),
[001](010), [001](100), and [001]{110}. Experimental data as well as analysis of
CPO in naturally-deformed mantle peridotites suggest that under high tempera-
ture–moderate pressure conditions, like those prevailing in the upper 200–250 km of
the mantle, [100] slip is dominant. However, ab initio calculation presented above, in
agreement with recent high-pressure experimental data of Couvy et al. (2004) suggest
that [001] slip becomes predominant at high pressures. This transition has a drastic
effect on the CPO evolution (Fig. 16). Simulations of a simple shear flow using low-
pressure slip systems data show strong CPO characterised by progressive alignment of
[100] with the shear direction and of [010] normal to the shear plane. In contrast,
simulations using high-pressure data display very weak CPO in which [100] tends to
orient normal to the lineation. The low-pressure simulated CPOs are in good
agreement with those observed in high-temperature low-pressure simple shear
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Fig. 15. Modelled CPO for olivine aggregates submitted to dextral simple shear, axial compression, trans-
pression and transtension at an equivalent strain of 1. Equal area projections, lower hemisphere, 1000 grains,
contours at multiples of a uniform distribution (mud) intervals. The shear plane (ab plane) and the foliation
(XY plane) are represented by full and dashed lines, respectively. a is the shear direction and X the lineation
(maximum stretching direction).



experiments on olivine polycrystals (Bystricky et al., 2000; Zhang & Karato, 1995).
They also correspond to the most commonly observed olivine CPO in naturally-
deformed mantle xenoliths and peridotite massifs (Tommasi et al., 2000). High-
pressure simulations, on the other hand, reproduce the olivine CPO developed in
simple shear experiments at 11 GPa (Couvy et al., 2004).

Recent very high P–T deformation experiments designed to simulate transition zone
and lower-mantle conditions have provided deformed crystals for the characterisation of
the slip systems of the major mineral phases at these depths using conventional
transmission electron microscopy (CTEM) and large-angle convergent beam electron
diffraction (LACBED) (Cordier & Rubie, 2001; Couvy et al., 2004; Thurel et al., 2003a;
Thurel et al., 2003b). Based on these data, viscoplastic self-consistent models may now
be used to predict CPO evolution as a response to flow in the transition zone (Tommasi
et al., 2004) and the lower mantle. 

Modelling polycrystal plasticity by finite elements
Among the different multiscale approaches that exist for the determination of the
plasticity of heterogeneous materials, Finite Elements (FE) analysis has provided new
insights since the 1990s (see for example Becker, 1991; Kalidindi et al., 1992, Havlicek
et al., 1992; Beaudoin et al., 1993). This approach applies crystalline plasticity
constitutive laws at the scale of the crystals constituting the polycrystalline volume of
study. A grain may be modelled as a single cubic element in the simplest representations
of polycrystals. It may also be a set of elements, with the possibility to represent more
complex grain morphologies, as in the example presented in this chapter. FE modelling
allows prediction of effective properties of polycrystals and texture evolution. It shows
also that stress and strain fields within a given grain are greatly influenced by
interactions with its neighbours. This has enlightened the main breakthrough of FE:
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Fig. 16. Modelled CPO for olivine aggregates submitted to a dextral simple shear of 1 using critical resolved
shear stresses representative of deformation at moderate- and high-pressure conditions. Equal area projections,
lower hemisphere, 1000 grains, contours at multiples of an uniform distribution (mud) intervals. The shear
plane and the foliation are represented by full and dashed lines, respectively.



providing information on the mechanical response of grains to the interaction with a
heterogeneous medium rather than with a homogeneous one (as in the classical 1-site
self-consistent schemes of homogenisation).

Since these pioneering works, an important progress has been made in the FE
discretisation of crystals: first computations calling upon a discretisation of the grain
interior were concerned with single or bicrystals (see for example Meric et al., 1991), then
with multicrystals (Teodosiu et al., 1991; Raabe et al., 2001), and finally, with realistic
three-dimensional polycrystals (Quilici & Cailletaud 1999; Barbe et al., 2001a, 2001b, 2003;
Diard et al., 2005). By realistic we mean that (i) the grains have realistic morphologies
(see Fig. 17a) that differ from one to the other (this is achieved through the construction
of Voronoi polyhedra3), (ii) a large enough number of elements is featured inside grains
so that the local (intragranular) fields are independent on the choice of the discretisation,
and (iii) a large enough number of grains is considered which ensures that one has a poly-
crystal “in hand”, or eventually a Representative Volume Element of a polycrystal.

Amajor difficulty for computing realistic 3D polycrystals comes from the huge amount
of degrees of freedom in the mesh. The computation then requires large computer resources
such as parallel computers. The computations presented here have been performed with the
FE code ZeBuLoN (Ecole des Mines de Paris, ONERA; for characteristics, see for example
Besson & Foerch, 1998, and Feyel, 1998), on 16 CPUs of a Linux cluster.

For the modelling detailed here, the constitutive laws for single crystals assume that
plastic deformation results from intragranular slip: slip rate is deduced with a viscoplastic
law (as in Eqn. 7) from the resolved shear stress and the hardening contributions
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Fig. 17. (a) Polycrystalline aggregate made of 200 grains with morphologies of Voronoi polyhedra represented
by 323 20-node brick elements. (b) Amount of plastic slip and (c) von Mises equivalent stress on the contour
of the INCO600 polycrystal loaded at 1.5% axial strain with homogeneous strain boundary conditions (the
mesh has been cut a posteriori in order to have a view on a part of the outer contour and inside the polycrystal).

3 Given a set of points – the nuclei – randomly distributed in a three-dimensional space. With the Voronoi
tesselation, the medium is divided into convex polyhedra, each one being defined as the set of points closest
to the nucleus – the center – of the polyhedron than to any other nucleus. A polyhedron is thus the zone of
influence of its nucleus, as crystals having grown simultaneously and at a same rate from randomly
distributed nuclei.



(isotropic and kinematic hardening); then stress and strain tensors are determined
according to the crystallographic orientation through the Schmid tensor. These
constitutive laws are applied to each integration point of the FE mesh representing the
polycrystal, such that each grain is made of a set of integration points. It is also possible
to use Cosserat single-crystal plasticity, which takes into account non-local interactions
at a given distance, such that grain size effects in polycrystals can be studied, as in Forest
et al. (2000). As a first illustration of the results, Figures 17b and c present the contours
of the amount of plastic slip and of von Mises equivalent stress after 1.5% axial strain
prescribed to the 200-grain polycrystal with an isotropic texture of Figure 17a. The mesh
is made of 32×32×32 20-node bricks and has been cut a posteriori in order to have a
view on a part of the outer contour and inside the polycrystal. The material used for this
illustration is INCO600, a nickel-based alloy with fcc structure. One may notice that
even though von Mises stress seems strongly related to crystallographic orientations (it
looks nearly homogeneous inside grains, with stress accommodation often taking place
near grain boundaries), it is not the case for the amount of slip (and subsequently strains)
which localises in regions crossing over few grains. This indicates that the range of strain
interaction in polycrystals can be 2 or 3 times the mean size of grain. 

Effective properties at the macroscopic scale
A first check of the validity of FE computations can be made by comparison with the
prediction of a 1-site homogenisation model. Here, the self-consistent modelling of
Berveiller & Zaoui (1979) has been used; it is characterised by the non-linear evolution
of the interaction coefficient α of Equation 8 with the equivalent plastic strain and the
overall equivalent stress.

Two extreme types of boundary conditions may be applied to the outer contour of
the mesh; they lead respectively to the upper and lower bounds of the apparent properties
of the polycrystal: 
– homogeneous strain boundary conditions corresponding to a prescribed mean defor-
mation tensor E of the aggregate. All components of the displacement vector u at each
node (position x) of the outer boundary of the cube are prescribed according to: u = Ex.
The mean stress is deduced afterwards by volume averaging over the aggregate. 
– homogeneous stress boundary conditions corresponding to a prescribed mean stress of
the aggregate. The mean strain is deduced afterwards by volume averaging over the
aggregate.

Other types of boundary conditions are mixed cases, with stress imposed on one
part, strains or displacements on another part. It is of course possible to superimpose a
hydrostatic pressure component at this stage. On Figure 18a, the mean stress–strain
curves obtained by homogenisation and by FE with two extreme types of boundary
conditions are compared. Whatever the boundary conditions, homogenisation and FE
make very similar predictions. It is also shown that the mean properties are not
significantly affected by the type of boundary conditions. These are two of the necessary
conditions showing that the polycrystal is large enough and disordered enough to be
considered as a Representative Volume Element, a volume whose mean (apparent)
properties are representative of the macroscopic (effective) medium.
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Scale of the mean behaviour of the grains
Homogenisation has in common with FE modelling the fact that it takes into account the
heterogeneities at the scale directly smaller to the macroscopic scale, the scale of the
grains. In 1-site homogeni-
sation models, a grain is dis-
tinguished from another by
its crystallographic orientation
and by its volume only. In
order to estimate the hetero-
geneity at this scale, the curves
of the mean responses of all
the grains of the polycrystal are
presented on Figure 18b–c.
Homogenisation results (Fig.
18b) are remarkable because
of their location along a straight
line at a given imposed strain.
This is a direct consequence
of the assumption that a grain
interacts with a homogeneous
medium. As seen with stress–
strain curves of the FE com-
putation and with the distri-
butions of stress presented in
the insets, the real neighbouring
of a grain plays a major role
in the behaviour of most of the
grains, and tends to promote
dispersion (Fig. 18c).
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Fig. 18. (a) Effective response of the
polycrystal subjected to a tensile test,
from homogenisation and FE compu-
tations with two different boundary
conditions; the inset shows the
evolution of one of the principal
stresses in a direction perpendicular
to tension. (b) Mean response per
grain according to homogenisation.
(c) Mean response per grain accor-
ding to FE with homogeneous strain
boundary conditions; the insets show
the distribution of the final axial stress
in terms of estimation probability
density function (pdf).

a

b

c



Intragranular scale
FE modelling also highlights the heterogeneities that develop inside the grains. This has
been displayed qualitatively on Figure 17b and c and is confirmed here quantitatively on
Figure 19a and b. Figure 19a presents the local responses of every integration point
inside a given grain at three instants of the loading, while Figure 19b presents the local
responses of all the integration points of the polycrystal at the end of loading. In both
cases, the responses appear to be at least as dispersed as the mean responses per grain,
as seen with the distributions in the insets. Another remark concerns the von Mises
equivalent stress: contrary to any other variable (e.g. axial stress, strains), it has a non-
symmetric distribution (this has been confirmed with computations on other polycrystals
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Fig. 19. (a) Mean stress–strain curve in a grain and local responses of every integration point of the grain at
three instants of the loading. (b) Mean stress–strain curve in the polycrystal and local response of every
integration point of the polycrystal at the end of the loading. Insets show the distribution of von Mises
equivalent stress in terms of estimations of probability density functions.
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of the same material), a peculiarity that is of importance for the validity of statistical
approaches based on Gaussian distributions of equivalent stress. Only FE computations
on polycrystals with realistic microstructures and fine enough discretisation of grains
could allow this observation. 

Case of a two-phase aggregate
Another potential application of FE modelling is the case of multi-phase materials,
taking the actual morphology into account. As an illustration, Figure 20a presents the

Plastic deformation: Multiscale numerical modelling 411

Fig. 20. FE modelling of a “70% hard/30% weak” two-phase aggregate (courtesy of K. Madi). (a) Contour of
von Mises equivalent stress during steady-state creep under an applied shear stress of 10 MPa. (b) Macroscopic
shear and average shear in the phases versus time.
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case of a two-phase aggregate. This model experiment (Madi et al., in press) is aimed
at addressing the mechanical behaviour of a hypothetical lower-mantle assemblage
containing 70% (volume fraction) of a hard phase (Mg,Fe perovskite) and 30% of a
weak phase (magnesiowustite). In this simple experiment, an isotropic random
polycrystal has been built from a Voronoi mosaic. Then each grain has been attributed
a “hard” or “weak” behaviour. More complicated situations with the two phases
having different mean grain sizes of spatial distribution within the volume could be
considered. The creep law introduced for both phases is a simple Norton law without
hardening. A contrast of 35 is chosen between the strain rates of both phases under a
shear stress of 10 MPa. A representative volume element of 470 grains has been shown
to provide a satisfactory description of the mechanical response of the aggregate (with
3% accuracy). Numerical creep experiments conducted under constant macroscopic
shear stress of 10 MPa suggest that the creep rate of such a lower-mantle assemblage
would be dominated by the mechanical behaviour of the perovskite phase. The finite
element model allows to extract the individual behaviour of the two phases within the
aggregate. It is shown that during creep the perovskite (hard) phase carries most of the
stress whereas the magnesiowustite phase is responsible for most of the accumulated
strain (Figure 20b).

FE modelling of polycrystals thus provides a powerful tool to predict material
properties at different scales, from the intragranular scale (where the stress and strain fields
inside the grain and the interactions with neighbouring grains are taken into account), to the
macroscopic (or effective) scale of a polycrystal. It has been extensively used on different
polycrystals of different crystalline viscoplastic materials and has always featured strong
heterogeneities between grains as well as between points inside a same grain or inside the
whole polycrystal. However, this approach requires the use of large-scale computing
facilities and is therefore not recommended if one is only interested in investigations at the
macroscopic scale: in this case, homogenisation would be more appropriate. An important
improvement of these two types of modelling of polycrystals –homogenisation and FE – can
be made by introducing more physically based constitutive laws and/or by resorting to the
mechanics of generalised continua (Forest & Sedlacek, 2003).

Concluding remarks

Although we are just at the beginning of the development of multiscale modelling of the
deformation of polycrystalline materials, we see that a wide range of powerful techniques
is now becoming available. This brief overview also shows that multiscale modelling is
also “multiphysics” as its background spans from quantum mechanics to continuum
mechanics. This is what makes multiscale modelling unique for predicting the behaviour
of materials under extreme pressure. As illustrated in the case of olivine, pressure can
affect deformation mechanisms at the microscopic scale. It is only by taking these effects
into account on a physical basis that one can imagine extrapolating their implications on
the rheology of the deep Earth’s materials. One of the major issue is thus to bridge length
scales. This can be done by transferring features all the way up to the scale of realistic
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materials. Another approach is to develop hybrid methods, for instance linking atomistic
and continuum. Despite some promising attempts, the idea of describing macroscopic
complex materials directly from first principles is still a vision of the future.
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