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A High Resolution View of the Warm Absorber in the Quasar MR 2251-178

J.N. Reeves1,2, D. Porquet3, V. Braito4, J. Gofford1, E. Nardini1, T. J. Turner2, D. M. Crenshaw5, S. B.
Kraemer6

ABSTRACT

High resolution X-ray spectroscopy of the warm absorber in the nearby quasar, MR 2251-
178 (z = 0.06398) is presented. The observations were carried out in 2011 using the Chandra
High Energy Transmission Grating and the XMM-Newton Reflection Grating Spectrometer,
with net exposure times of approximately 400 ks each. A multitude of absorption lines from
C to Fe are detected, revealing at least 3 warm absorbing components ranging in ionization
parameter fromlog(ξ/erg cm s−1) = 1 − 3 and with outflow velocities∼< 500 km s−1. The
lowest ionization absorber appears to vary between the Chandra and XMM-Newton observa-
tions, which implies a radial distance of between9− 17 pc from the black hole. The soft X-ray
warm absorbers likely contribute a negligible< 0.01% of the bolometric output in terms of their
kinetic power. Several broad soft X-ray emission lines are strongly detected, most notably from
He-like Oxygen, with FWHM velocity widths of up to 10000 km s−1, consistent with an origin
from Broad Line Region (BLR) clouds. In addition to the warm absorber, gas partially covering
the line of sight to the quasar appears to be present, of typical column densityNH = 1023 cm−2.
We suggest that the partial covering absorber may arise fromthe same BLR clouds responsible
for the broad soft X-ray emission lines. Finally the presence of a highly ionised outflow in the
iron K band from both 2002 and 2011 Chandra HETG observationsappears to be confirmed,
which has an outflow velocity of−15600 ± 2400 km s−1. However a partial covering origin
of the iron K band absorption cannot be excluded, resulting from low ionization material with
little or no outflow velocity.
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1. Introduction

Photo-ionized or “warm” absorbers are commonly observed inat least 50% of the UV/X-ray spectra of
Seyfert 1s and type-1 QSO and are an important constituent ofAGN (e.g., Reynolds 1997; Crenshaw et al.
2003; Porquet et al. 2004; Blustin et al. 2005). The Seyfert warm absorbers that are frequently observed at
high spectral resolution withXMM-Newton andChandraare now known to give rise to numerous narrow
absorption lines, usually blue-shifted, implying outflowing winds of a few hundred km s−1 up to a few
thousand km s−1. These arise from various elements over a wide range of ionization parameters, especially
from carbon, nitrogen, oxygen, neon, silicon, sulfur, and iron (e.g., Kaastra et al. 2000; Kaspi et al. 2002;
Blustin et al. 2002; McKernan et al. 2003).

X-ray spectral signatures of the warm absorber range from the lowly ionized Unresolved Transition
Array (UTA) of M-shell iron (< FeXVII ) at∼ 16Å (Sako et al. 2001; Behar et al. 2001) to absorption from
highly ionized (H-like and He-like) iron which may originate from an accretion disk wind (e.g., Reeves et al.
2004; Risaliti et al. 2005; Braito et al. 2007; Turner et al. 2008; Tombesi et al. 2010a,b; Gofford et al. 2013).
These spectroscopic measurements can reveal crucial information on the outflow kinematics, physical con-
ditions and locations relative to the central continuum source – ranging from the inner nucleus (0.01 pc) to
the galactic disk or halo (10 kpc) – which can ultimately unveil the inner structure of quasars (Elvis 2000).

The warm absorption signatures observed in the soft X-ray band cover a wide range of column densities
and ionization parameters fromlog(NH/cm

−2) ∼ 20 − 23 and log(ξ/erg cm s−1) ∼ −1 − 31 These
warm absorbers are thought to be typically located on fairlylarge distances from the central black hole,
from their low ionization parameter and velocity values, their (relative) lack of variability, plus in some
cases from their inferred low densities (e.g., NGC 3783: Behar et al. 2003; Krongold et al. 2005; Mrk 279:
Scott et al. 2004; Ebrero et al. 2010; NGC 4051: Steenbrugge et al. 2009; Mrk 290: Zhang et al. 2011; and
Mkn 509: Kaastra et al. 2012). These soft X-ray warm absorbers can be associated with, for example, a wind
originating from the putative parsec scale torus (Blustin et al. 2005) or the latter stages of an accretion disc
wind which has propagated out to larger radii (Proga & Kallman 2004; Tombesi et al. 2013). By virtue of
their low outflow velocities the soft X-ray warm absorbers are thought to only have a weak feedback effect
in their host galaxy. Indeed, the mechanical power impartedby individual warm absorption components is
very low, typically. 0.01% of an AGN’s bolometric luminosity (Lbol) (e.g., Blustin et al. 2005), which
is significantly lower than the∼ 0.5% of Lbol thought necessary for feedback to affect the host galaxy
(Hopkins & Elvis 2010). However, Crenshaw & Kraemer (2012) have recently shown that this∼ 0.5%

threshold can be exceeded provided the mechanical power is integrated over all UV and X-ray absorption
components, at least in the case of a few moderate-luminosity local AGN.

Recent systematic archivalXMM-NewtonandSuzakustudies have shown that FeXXV-XXVI absorption
lines are present in the X-ray spectra of& 40% of radio-quiet AGN in the local universe withz < 0.1

(Tombesi et al. 2010a, 2011, 2012; Patrick et al. 2012; Gofford et al. 2013) and also in a sample of 30 local

1The ionization parameter is defined asξ = Lion/nR
2 (Tarter et al. 1969), whereLion is the1 − 1000 Rydberg ionizing

luminosity,n is the electron density andR is the distance of the ionising source from the absorbing clouds.
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Broad Line Radio Galaxies (Tombesi et al. 2013, in preparation) which thus suggests that they may represent
an important addition to the commonly held AGN unification model (e.g., Antonucci 1993; Urry & Padovani
1995). In comparison to the soft-band absorbers these hard X-ray absorbers generally have much more
extreme parameters, withlog(NH/cm

−2) ≈ 23 − 24 and log(ξ/erg cm s−1) ≈ 3 − 6, and their outflow
velocities relative to the host galaxy can reach mildly relativistic values. The large inferred velocities –
combined with the short time-scale variability sometimes exhibited by the absorption features – point to an
origin more likely associated with a wind which is launched from the surface of the accretion disc itself
(e.g., Pounds et al. 2003; Reeves et al. 2009; Gofford et al. 2011; Tombesi et al. 2012). In this scenario
the inferred mass outflow rates for disc-winds are often comparable to those of the matter which accretes
onto the central black hole and the consequent mechanical power can also be a sizeable fraction (i.e.,≥

few percent) of an AGN’s bolometric luminosity (e.g., Chartas et al. 2002; Pounds et al. 2003; Gibson et al.
2005; Reeves et al. 2009; Gofford et al. 2011; Tombesi et al. 2012).

MR 2251-178 (z = 0.06398; Bergeron et al. 1983; Canizares et al. 1978) is one of the X-ray brightest
AGN in the local universe (L2−10 keV ∼ 2 − 9 × 1044 erg s−1). It was the first quasar identified through
X-ray observations (Cooke et al. 1978; Ricker et al. 1978) and the first AGN known to host a warm absorber
(Halpern 1984). The quasar is located on the outskirts of a cluster of∼ 50 galaxies (Phillips 1980) and is
surrounded by an extended nebula of diffuse gas out to 10–20 kpc, which gives rise to [OII ], [O III ] and Hα
emission at optical wavelengths (Macchetto et al. 1990; Phillips 1980). The source has a central black hole
mass of∼ 2.4 × 108 M⊙ (Dunn et al. 2008), is observed to be a weak radio emitter (with a radio loudness
parameter,RL = F5GHz/F

4400Å
= −0.43; Reeves & Turner 2000), and has a Fanaroff-Riley type I (FR I)

radio morphology (Macchetto et al. 1990).

The first detailed study of MR 2251-178 in the X-ray regime wasconducted by Halpern (1984) who,
using spectra from the Einstein X-ray observatory, noticedsoft X-ray variability on time-scales of∼ 1 yr
caused by changes in both the column density of photoionizedmaterial along the line of sight and an asso-
ciated change in the materials ionization state. The ionization state of the absorbing material was also later
found to be strongly correlated with the source luminosity,with the absorber appearing to become more
ionized when the source was at a larger luminosity, which thus strongly suggested the presence of partially-
ionized ‘warm’ material along the line of sight (Mineo & Stewart 1993). Subsequent observations with
EXOSAT, GingaandBeppoSAXfound the broad-band X-ray spectrum could be well describedby a power-
law of photon-indexΓ ∼ 1.6 − 1.7 which is absorbed by a column density of around a few×1022 cm−2

(Pan et al. 1990; Mineo & Stewart 1993), and a high-energy roll-over at around100 keV (Orr et al. 2001).
In the UV, Monier et al. (2001) found absorption lines due to Lyα, N V and CIV with a systematic blueshift
of ∼ 300 km s−1; the CIV absorption in particular showed variability over a period of roughly 4 years which
constrained the absorption clouds to withinr .2.4 kpc of the continuum source (Ganguly et al. 2001).

Kaspi et al. (2004) performed a detailed spectral and temporal study of MR 2251-178 using a series
of ASCA, FUSE, BeppoSAXandXMM-Newtonobservations which spanned a period of∼ 8.5 yrs. In con-
firmation of previous studies Kaspi et al. (2004) also found the continuum to be described by an absorbed
power-law of photon indexΓ ∼ 1.6, but also found that the continuum required a supplementarysoft-
excess atE < 2 keV to achieve an acceptable fit to the soft X-ray data. The grating spectrum from the
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XMM-Newton/RGSrevealed the warm absorber in MR 2251-178 to be multi-phase,consisting of at least
two or three ionised absorption components with column densities in the range1020−22 cm−2, all of which
had physical properties which appeared to vary between observations in accord to what was reported by
Halpern (1984). This led Kaspi et al. (2004) to propose a scenario where absorption clouds were moving
across the line of sight over a time-scale of ‘several months’. In the FUSEspectrum further UV absorp-
tion lines from CIII , H I and OVI were detected with velocity shifts similar to those found byMonier et al.
(2001). A 2002 Chandra/HETG observation of MR 2251-178 was published by Gibson et al. (2005). There
the authors found evidence for a highly-ionised FeXXVI Lyα absorption line with a substantial blueshifted
velocity,vout = −12700±2400 km s−1. By considering the kinematics of the absorber Gibson et al.(2005)
inferred that unless the absorber is of a low global coveringfraction (in terms of the total fraction of4π sr
covered by the absorber) the mass-loss rate in MR 2251-178 isat least an order of magnitude larger than the
source accretion rate.

A recent analysis over the0.6−180.0 keV broad-band X-ray spectrum has been performed by Goffordet al.
(2011) combining aSuzakuobservation of MR 2251-178 performed in May 2009 andSwift/BAT data as part
of the 58-months all-sky-survey (Baumgartner et al. 2010).In accordance with previous observations, the
authors found that the general continuum can be well described by a power-law withΓ = 1.6, an apparent
soft-excess below 1 keV and considerable curvature above around∼ 10 keV. However, the authors found
that a good fit can also be found with a softerΓ ∼ 2.0 power-law absorbed by a column ofNH ∼ 1023 cm−2

which covers∼ 30% of the source flux. This softer photon index value is more consistent with that found
generally in radio-quiet quasars (e.g., Reeves & Turner 2000; Porquet et al. 2004; Piconcelli et al. 2005;
Scott et al. 2011). In addition, numerous significant warm absorption lines were detected (at the>99%
confidence level from Monte Carlo simulations) and associated to Fe UTA, Fe L shell (blend of 2s→3p tran-
sitions from FeXXIII -XXIV ), SXV , SXVI and FeXXV-XXVI lines. Gofford et al. (2011) found at least 5
ionised absorption components with1020 . NH . 1023 cm−2 and0 . log ξ/erg cm s−1 . 4 are required
to achieve an adequate spectral fit of all these absorption features.

In this paper the analysis of an unprecedented deep follow-up campaign of MR 2251-178 in 2011
with XMM-NewtonandChandra, is presented. TheXMM-Newtonand Chandraobservations were both
performed as a large observing program, with the observations within about a month of each other. The
exposure times of these observations, of∼ 400 ks, is significantly greater than obtained in the previous
2002 Chandra/HETG and XMM-Newton observations (net exposures of∼ 140 ks and 60 ks respectively).
The increased exposure times make it possible to study the warm absorber in this quasar in unprecedented
detail and resolution, with the RGS and HETG gratings on-board XMM-Newton and Chandra respectively.
Thus the overall goal of this campaign was to obtain high signal-to-noise and high resolution spectroscopy
of MR 2251-178 in order to measure the properties of the primary continuum emission and in particular the
ionized absorption and outflow along the line of sight.

This paper is organized as follows. In section 2, we describethe data reduction of both RGS and HETG
observations. Section 3 is devoted to the initial spectral fitting of the HETG data, to atomic line detections
and identifications as well to the initial kinematics of the absorption lines. Section 4 presents photoionization
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modeling of the X-ray absorption in the RGS and HETG spectra combining fully and partial covering
warm absorber components; in addition the variability of the X-ray absorption components and the possible
presence of a highly ionized absorber are examined. Section5 focuses on the modeling of the emission
line spectrum, especially the OVII line complex. In Section 6, we discuss about the origins and infer some
physical properties of the absorption and emissions media observed in MR 2251-178 and compare them to
those found in other AGN.

Values ofH0 = 70 km s−1 Mpc−1, andΩΛ0
= 0.73 are assumed throughout and errors are quoted

at 90% confidence (∆χ2 = 2.7), for 1 parameter of interest. All spectral parameters are quoted in the
rest-frame of the quasar, atz = 0.06398 (Bergeron et al. 1983), unless otherwise stated.

2. Observations and Data Reduction

2.1. XMM-Newton Observations of MR 2251-178

XMM-Newton observed MR 2251-178 three times from 11-17 November 2011, over 3 consecutive
satellite orbits. Each observation was approximately 130 ks in length, with the details of the 3 observations
listed in Table 1. First order dispersed spectra were obtained with the Reflection Grating Spectrometer
(den Herder et al. 2001) and were reduced using theRGSPROCscript as part of the XMM-Newton SAS
software v11.0. The spectra from each of the orbits were found to be consistent with each other, with the
only variation being due to a 10% change in the count rate of the source over the 3 observations. Therefore
spectra and response files for each RGS were combined to give asingle spectrum with a total net exposure
of 389.1 ks. There were no periods of strong background flaresduring the observations, the background rate
in each RGS being only 7-8% of the total source rate. Prior to spectra analysis, channels due to bad pixels
on the RGS CCDs were ignored as well as the two malfunctioningCCDs for RGS 1 and RGS 2 respectively.

The net background subtracted count rates were0.496 ± 0.001 s−1, 0.535 ± 0.001 s−1 for RGS 1 and
RGS 2 respectively, yielding a total of over4 × 105 counts for the two RGS spectra together. Spectra
were binned into∆λ = 0.02 Å bins, which over-samples the RGS spectral resolution by a factor of×4

compared to the FWHM resolution. Due to the high count rate statistics,χ2 minimization was employed
in the subsequent spectral fitting. An additional±3% systematic error was added in quadrature to each
combined RGS spectrum, in order to allow for systematic differences between the two grating spectra. A
constant multiplicative offset was subsequently allowed between the RGS 1 and RGS 2 in all the spectral fits,
which was found to be within±3%. Data were fitted over the 0.33-2.0 keV energy range in the observed
frame.

2.2. Chandra HETG Observations of MR 2251-178

The High Energy Transmission Grating (HETG) onboardChandra(Weisskopf et al. 2000; Canizares et al.
2005) also observed MR 2251-178 from 26 September to 2 October 2011, occurring approximately 40 days
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before theXMM-Newtonobservations. As per theXMM-Newtonobservations, theChandraobservations
occurred over 3 consecutive orbits, with the last sequence somewhat shorter than the first two - see Table 1
for details. Spectra were extracted with theCIAO package v4.3. Only the first order dispersed spectra were
considered for both the MEG (Medium Energy Grating) and HEG (High Energy Grating) and the±1 orders
for each grating were subsequently combined for each sequence. No significant spectral variability was
observed between the 3 sequences and the spectra were consistent, with only modest∼ 10% variations in
source flux. Therefore the spectra were combined from all three sequences to yield a single 1st order spec-
trum for each of the MEG and HEG, yielding respective net source count rates of0.485 ± 0.001 s−1 and
0.245±0.001 s−1 respectively for a total exposure time of 392.9 ks. Thus the total counts obtained exceeded
1.9 × 105 and9.5 × 104 counts for MEG and HEG respectively. Note that the background contribution to-
wards the count rate was negligible.

The resultant 2011 source spectra were subsequently binnedto ∆λ = 0.02 Å and∆λ = 0.01 Å bins
for MEG and HEG respectively, which samples their respective FWHM spectral resolutions. The MEG
and HEG spectra were analyzed over the energy ranges of 0.5–5.0 keV and 1.0–9.0 keV respectively. The
C-statistic was employed in the subsequent spectral fits to the HETG, as although the overall count rate is
high, towards the lower energy (longer wavelength) end of each grating spectrum the total source counts per
bin drops belowN < 20 in some bins. In the case ofχ2 minimization, this would lead to the continuum
level being somewhat underestimated at soft X-ray energies.

An archivedChandraHETG observation of MR 2251-178 also took place 11 September2002, with a
total net exposure of 146.3 ks. First order spectra for MEG and HEG were re-extracted as above, yielding
count rates of0.317±0.001 s−1 and0.164±0.001 s−1 respectively. Thus the 2011 observation was approx-
imately 50% higher in count rate or flux than the earlier 2002 observation and therefore the 2002 dataset
provides a lower flux comparison spectrum. The data were binned and analyzed over the same energy ranges
as per the 2011 observation and the C-statistic was employedin all subsequent spectral fits.

3. Initial Spectral Fitting

3.1. The Overall Spectral Form

Initially we concentrated on the 2011 RGS and HETG observations. All parameters are given in the rest
frame of the quasar atz = 0.06398, unless otherwise stated and spectral parameters are quoted in energy
units (thus 1 keV is equivalent to 12.3984Å). In all the fits, a Galactic absorption of hydrogen column density
of NH = 2.4 × 1020 cm−2 (Kalberla et al. 2005) was adopted, modeled with the “Tuebingen–Boulder” ab-
sorption model (TBABS in XSPEC) using the cross–sections and abundances of Wilms et al. (2000). Figure 1
shows the overall 2011 fluxed RGS spectrum of MR 2251-178, plotted against a powerlaw ofΓ = 2 in the
soft X-ray band and in the quasar rest frame atz = 0.06398. The spectrum shows several clear signatures of
a warm absorber and emitter. A deep absorption trough is present between0.7−0.8 keV which is most likely
identified with an unresolved transition array (UTA), due to2p → 3d transitions from lower ionization M-
shell iron (i.e. Fe less ionized than FeXVII ) (Behar et al. 2001). The iron M-shell UTA has been commonly
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observed in high resolution grating spectra of many AGN (McKernan et al. 2007), e.g., IRAS 13349+2438:
(Sako et al. 2001), NGC 3783: (Kaspi et al. 2000, 2001; Krongold et al. 2003), NGC 5548: (Kaastra et al.
2002; Andrade-Velázquez et al. 2010), Mrk 509: (Pounds et al. 2001; Yaqoob et al. 2003; Smith et al. 2007),
NGC 7469: (Blustin et al. 2007), Mrk 841: (Longinotti et al. 2010), IC 4239A: (Steenbrugge et al. 2005b),
NGC 3516: (Holczer & Behar 2012), Ark 564: (Papadakis et al. 2007), MCG-6-30-15: (Lee et al. 2001;
Turner et al. 2004), NGC 4051: (Pounds et al. 2004a), Mrk 279:(Costantini et al. 2007), I Zw1: (Gallo et al.
2004), 1H 0419-577: (Pounds et al. 2004b), PG 1114+445: (Ashton et al. 2004).

Several narrow absorption lines appear to be present between 0.85 − 1.0 keV, likely due to K-shell
1s → 2p lines of Neon as well as higher ionization L-shell (2p → 3d) lines of iron (i.e. FeXVII -XXII ).
A broad absorption trough appears to be present near 1.3 keV in the rest frame, close to the expected K-
shell lines of Mg, the origin of which is discussed in Section4. Strong and resolved line emission is also
especially prominent in the RGS 1 spectrum between0.56 − 0.58 keV, at the expected energy of the OVII

triplet.

For comparison, the fluxed 2011 HETG spectrum of MR 2251-178 is shown in Figure 2. The spectrum
plotted is against a power-law of photon indexΓ = 1.6 for comparison purposes only; as is discussed later in
Section 4.2, the likely intrinsic photon index of the sourceis perhaps much steeper (Γ ∼> 2) once all the layers
of absorption in MR 2251-178 are accounted for. Although thepower-law provides a good representation
of the HETG spectrum above 3 keV, the data/model ratio residuals show pronounced curvature due to the
presence of the known warm absorber in this AGN. Indeed fitting a single power-law (modified by Galactic
absorption only) provided a very poor representation of thewhole HETG spectrum fitted from 0.5–9.0 keV,
with a very hard photon index ofΓ = 1.33 ± 0.02 and an unacceptable fit statistic ofC = 3806.4 for
2360 degrees of freedom (dof). Note a multiplicative cross-normalization constant was included between
the MEG and HEG spectra, the HEG normalization was found to beslightly lower (0.97 ± 0.01) than the
MEG (which was normalized to 1.00).

In order to investigate and identify the atomic lines present in the HETG spectra, a more complex
continuum shape was adopted in order to better account for the clear spectral curvature. A power-law con-
tinuum was adopted, modified by a neutral partial covering absorber (thePCFABSmodel inXSPEC). While
this simple partial coverer is not meant to provide a physical description of the spectrum, its advantages are
that it provides a better parameterization of the spectral curvature, while not imparting any discrete atomic
lines on the spectrum, thus providing a reference continuumfrom which lines can be identified against. A
similar approach was also taken to provide an initial parameterization of the broad-band Suzaku spectrum
of MR 2251-178 (Gofford et al. 2011). In addition to the partial covering absorption, a phenomenologi-
cal absorption edge component was initially included to account for the pronounced spectral drop above
0.7 keV, due to a possible combination of the Fe M-shell UTA and OVII edge. Again this was not meant to
provide a physical fit to the spectrum. The edge energy wasE = 730.6 ± 2.1 eV with an optical depth of
τ = 0.36 ± 0.05. The partial coverer had a column densityNH = (2.9 ± 0.2) × 1022 cm−2 and a covering
fraction of0.35 ± 0.03, while the photon index wasΓ = 1.69 ± 0.03. The overall fit statistic was much
improved compared to the power-law only case, withC = 3047 for 2356 degrees of freedom.
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3.2. Atomic Lines in HETG Spectrum

Figure 3 (MEG) and Figure 4 (HEG) show the residuals against the neutral partial covering model in
the soft X-ray band below 2 keV. A wealth of absorption lines are clearly present in the HETG spectrum
against the continuum model over the 0.7–2.0 keV energy range (or 6–18̊A). In order to parameterize the
lines, successive narrow Gaussian absorption lines were included in the continuum model; an individual line
was deemed to be statistically significant if its addition tothe model resulted in an improvement of the fit
statistic of∆C > 9.2, corresponding to 99% significance for 2 interesting parameters. The width of the
absorption lines was initially assumed to be less than the instrumental resolution. The parameters of all 31 of
the statistically significant absorption lines detected inthe soft X-ray HETG spectrum are shown in Table 2.
A narrow structure is also clearly present in the UTA region around0.73−0.76 keV, these are parameterized
by 2 lines in Table 2, which by comparison with the blends of transitions noted in Behar et al. (2001) may
be due to iron in the ionization states FeVII -X.

Further low ionization gas appears to be present in the form of a multitude of inner K-shell lines of
Ne, Mg and Si. These are1s → 2p absorption lines whereby the L-shell is partially occupied, i.e. due
to charge states corresponding to Li, Be, B, C, N, O-like etc ions. We refer to Behar & Netzer (2002) for
a compilation of these inner shell lines, adopting the knownenergies (wavelengths) of these lines from
this paper in Table 2. Indeed such lines have been detected inother high signal to noise grating spectra
of Seyfert 1 AGN, such as in NGC 3783 (Kaspi et al. 2002; Blustin et al. 2002), NGC 4151 (Kraemer et al.
2005), Mrk 509 (Kaastra et al. 2011a), NGC 3516 (Holczer & Behar 2012), NGC 4051 (Lobban et al. 2011)
and NGC 5548 (Steenbrugge et al. 2005a). In the MR 2251-178 HETG spectrum, absorption lines due to
NeV-VIII (i.e. C-like through to Li-like ions) are detected from 0.87–0.91 keV (13.6–14.3̊A) in the rest
frame (Figure 3). Similarly1s → 2p inner shell lines from Mg are detected due to MgVI -IX (N-like
through to Be-like ions), from1.26 − 1.33 keV (9.3–9.8̊A). Likewise inner shell absorption is also detected
from Si, from SiVIII -XI (N-like to Be-like) around 1.8 keV (6.5–7.0Å). The inner shell absorption is also
independently detected in the HEG (Figure 4) as well as the MEG (Figure 3) spectra. Thus the detection of
the strong Fe M-shell UTA, plus the inner-shell absorption due to Ne, Mg and Si suggests the imprint of a
significant amount of absorption due to both low and high ionization gas in MR 2251-178.

Absorption lines due to more highly ionized gas are also significantly detected in the HETG spectrum.
He and H-like lines of O, Ne, Mg and Si are all detected (with the exception of the OVII 1s → 2p line due
to the lack of S/N below 0.6 keV in the MEG spectrum). In some cases, higher order1s → np lines are
detected, especially in the case of NeIX where the series of resonance lines up to1s → 6p are seen. Higher
ionization L-shell lines of iron are also present, e.g. fromFeXIX -XXII . The spectra over the S and Fe K
band are also shown Figure 4, although note that neither strong emission nor absorption features appear to
be present in these parts of the spectrum. In the S band, weak absorption may be present at the expected
energies of the He and Li-like lines of S, although they are below the formal detection threshold. The details
of the iron K band spectrum will be discussed further in Section 4.4.

It is also apparent from Table 2 that most of the measured restframe energies of the absorption lines are
close to the known atomic energies. This suggests that the outflow velocity of the soft X-ray absorbing gas
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is relatively small. We discuss below some of the velocity profiles of the strongest detected H and He-like
lines.

3.3. Atomic Lines in RGS Spectrum

The RGS provides an energy coverage of0.3 − 2.0 keV with high throughput and therefore provides
a high quality view of the soft X-ray warm absorber, with a lower energy bandpass than Chandra HETG.
The initial analysis of the absorption line spectrum suggests that multiple absorption components may be
required in order to model the wide range in the ionization state of the gas, e.g. covering for instance
FeVII -XXII , NeV-X or Mg VI -XII .

Indeed enlarged portions of the RGS spectrum of MR 2251-178 are shown in Figures 5 and 6. Note
these are plotted in the observed frame and not the rest frame. The warm absorber is clearly complex,
comprising a wealth of atomic features. Notably, inner-shell (Li-like and below) and higher-order (i.e., the
1s → np transitions, wheren ≥ 3) absorption lines are detected throughout the spectrum, due to C, N,
O, Ne and Mg. Figure 5 shows that the higher-order line seriesof CVI is particularly prominent, while
N VI , N VII , OVII and OVIII also have higher-order line series, with each ion reaching at least the1s → 4p

transition.

Complementing the array of absorption lines there is also some interesting interplay between emission
and absorption components; e.g. see the OVII line at517 − 539 eV (23–24̊A) observed frame in Figure 5.
The OVII (1s2p → 1s2) emission line complex is superimposed on by three narrow absorption lines corre-
sponding to inner-shell absorption due to OV (line 11, Figure 5) and the two lines which make up the OVI

(1s22s → 1s2s2p) doublet (lines 13, 14, Figure 5). Again, similar structures are present at other energies,
with N VII , OVIII and NeIX all showing emission superposed by absorption. The nature of the emission
line spectrum will be discussed further in Section 5.

From panels (a) and (b) of Figure 6, both Neon and Magnesium also show evidence for inner-shell
absorption from at least their Be-like ionisation states (Behar & Netzer 2002). Indeed, the inner-shell lines
for Mg in particular occur throughout the∼ 1.2 − 1.3 keV energy range, as per the HETG. This appears
to be the origin of the absorption trough visible in Figure 1 and first noted in the lower resolutionSuzaku
spectrum of MR 2251-178 published by Gofford et al. (2011). The complete list of atomic lines identified in
the RGS data – including details such as the responsible ion,the electron transition and the centroid energies
in the source rest-frame – is given in Table 3.

3.4. Velocity Profiles

We constructed velocity profiles of the strongest H and He-like absorption lines identified in the above
HETG and RGS spectra. In each case the profiles were constructed by taking the ratio of the data to the
best fit parameterization of the continuum model described above and transposing them into velocity space
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around the known lab frame energy (wavelength) of each line.For the H-like ions, the CVI , N VII , OVIII ,
NeX, Mg XII and SiXIV profiles have been produced, with the profiles plotted in Figure 7. Note that the
C VI line corresponds to the1s − 3p absorption line (as the1s − 2p line at the redshift of MR 2251-178 is
close to the edge of the RGS bandpass), while the other profiles correspond to the1s− 2p lines. Similarily,
profiles were also constructed for the He-like resonance lines of NVI , OVII , NeIX , Mg XI and SiXIII and
are shown in Figure 8 (note only the first 4 profiles are actually plotted here). In the case of the He-like ions,
the1s − 3p lines of OVII and NeIX , are used instead of the1s − 2p lines, due to contamination with other
lines present in the spectrum. Overall the profiles from the C, N and O lines were derived from the RGS data
in the soft X-ray part of the spectrum (taking the mean of RGS 1and 2 where both were available), while
the Ne, Mg and Si profiles were derived from the HEG data at higher energies. Note that negative velocities
indicate blue-shift throughout this paper2. The profiles are as measured from the data, without correcting
for the spectral resolution of the instrument.

The subsequent lines were fitted with Gaussian profiles and the results of the fits are shown in Table 4,
which gives both the overall velocity shift (vout) of the line profile (as determined from the centroid of the
Gaussian profile) as well as the observed1σ velocity width of the profile (σobs). Firstly it can be seen both
from the profiles themselves and the fits that the outflow velocities of the lines tend to decrease in magnitude
with increasing ionization state, e.g. from C through to Si.For instance for the H-like ions, CVI and NVII

profiles have a velocity shift ofvout ∼ −450 km s−1, with the MgXII profile having a formal upper limit
on the outflow velocity of onlyvout < 40 km s−1, while the velocity centroids for OVIII and NeX are
somewhat intermediate in value. We note that a similar possible trend was found in emission in the Seyfert
2 NGC 1068 (Kinkhabwala et al. 2002), whereby the higher energy (excitation) lines had somewhat lower
velocities.

The velocity profiles and fits also indicate that a second higher velocity component may be present in
the lower energy lines of CVI , N VI and NVII , with an outflow velocity ofvout ∼ −2000 km s−1. Such a
component is not present in the higher energy lines. The outflow velocities of the possible higher velocity
components are also given in Table 4, noting that the line width of this component was assumed to be the
same as for the respective lower outflow velocity lines. Thuswhile we note the possible presence of a higher
velocity component to some of the lines, we do not discuss this further here, as the improvement in fit
statistic upon adding this second velocity component (see Table 4) was generally less than the more robust
low velocity component which is always present.

The observed velocity widths of the Gaussian profiles (σobs) are also given in Table 4. These are not
corrected for instrument resolution, however for comparison theσ widths of the RGS (RGS 1+2 combined)
varies betweenσ = 300−380 km s−1 for C VI to OVIII and for the HEG betweenσ = 120−230 km s−1 for
NeX to SiXIV . The intrinsic line widths corrected for instrument resolution (σint) are also given in Table 4.
Thus some of the line profiles appear resolved, with typical widths ofσint = 300 − 400 km s−1, while the
higher energy lines (e.g. MgXII and SiXIII ) appear to be unresolved, similar to the possible above trend in
outflow velocity.

2Note that any upper limits on outflow velocities are expressed as absolute values for clarity.
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4. Photoionization Modeling of the X-ray Absorption Spectrum

Given the substantial presence of partially ionized gas in the X-ray spectrum of MR 2251-178, we
attempted to model the absorption spectrum with photoionized grids of models using theXSTAR code v2.2
(Kallman et al. 2004). Absorption grids were generated in the form of XSPEC multiplicative tables (or
mtables). The absorption spectra within each grid were computed between 0.1–20 keV withN = 10000

spectral bins. The photoionizing X-ray continuum between 1–1000 Rydberg was assumed to be a power-law
of a photon indexΓ = 2, except for the grid which covered the lowest range in ionization, which we discuss
further below. Given the narrow (or unresolved) widths of the absorption lines detected in theChandra
HETG, grid turbulence velocities of eitherσ = 100 km s−1 or σ = 300 km s−1 were generated; grids with
higher turbulences all gave substantially worse fits in the models considered below. An electron density of
ne = 1010 cm−3 was assumed for the absorption grids, although we note that the absorption spectra are
largely insensitive to the density over a wide range of values. Solar abundances were adopted for all the
abundant elements, using the values of Grevesse & Sauval (1998), except for Ni which is set to zero (the
default option withinXSTAR).

We generated one generic grid of models that covered a wide range in ionization and column density
parameter space, fromNH = 1 × 1018 cm−2 to NH = 3 × 1024 cm−2 and log(ξ/erg cm s−1) = 0 − 5

in logarithmic steps of∆(logNH) = 0.5 and∆(log ξ) = 0.5 respectively. A turbulence velocity ofσ =

100 km s−1 was used. This grid was used to fit the high ionization absorption components, as well as the
possible partial covering absorption which we discuss further below. A separate more finely tuned grid
(covering a narrower range of parameters) was generated with the specific purpose of modeling the low
ionization absorption in the MR 2251-178 spectrum, especially the Fe M-shell UTA and the inner-shell
lines. The column density of this low ionization grid covered the range fromNH = 0.5 − 5.0 × 1021 cm−2

in steps of∆NH = 1 × 1020 cm−2, with the ionization range extending fromlog(ξ/erg cm s−1) = 0 − 3

in 15 steps of∆(log ξ) = 0.2. A fine spectral resolution ofN = 105 points over an energy range of
0.1 − 20 keV was also employed. A turbulence velocity ofσ = 100 km s−1 was also adopted. The other
significant difference with this absorption grid was that a steeper photoionizing X-ray continuum ofΓ = 2.5

was employed, the requirement for this is discussed furtherin Section 4.2.

4.1. XMM-Newton RGS

We first considered the RGS spectrum. The initial analysis ofthe absorption line spectrum from the
HETG and RGS observations in Section 3 suggests that multiple absorption components may be required
in order to model the wide range in the ionization state of thegas, e.g. covering for instance FeVII -XXII ,
NeV-X or Mg VI -XII .

In order to model the absorption spectrum we successively added individual components of absorbing
gas, fully covering the line of sight to the source, until thefit statistic was no longer improved at the 99.9%
confidence level. Three components of fully covering gas areformally required in the RGS model, which
are listed as components 1–3 in Table 5. The lowest ionization absorber (component 1) was modelled by the
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low ionizationXSTAR grid as described above and components 2-3 by the higher ionization grid. We note
that the continuum itself was assumed to be a power-law of variable photon index, absorbed by the Galactic
column, while we no longer retain either the ad-hoc absorption edge or the simple neutral partial coverer in
the models. However we do allow for at least one additional component of partially ionized absorbing gas
(as modeled by anXSTAR grid) to partially cover the X-ray source, in addition to thethree fully covering
components of gas described above, which appears to be required statistically to achieve a good fit. Soft
X-ray emission lines are also added to the model as Gaussianswhen statistically required by the data at
> 99% and will be discussed in detail later. Thus the phenomenological form of the spectral model fitted to
the RGS data is:-

F (E) = tbabs× comp1× comp2× comp3× [powuncov +Gauss + (pc1 × powcov)] (1)

where here comp 1-3 represent the 3 fully covering warm absorber components, Gauss represents the Gaus-
sian emission lines and tbabs the Galactic absorption. The partial covering absorber is represented bypc1
which covers a fractionfcov of the line-of-sight to the X-ray source, while1− fcov is subsequently unatten-
uated by the partial covering component. Thus the fraction of the continuum that is absorbed simply given
by the respective ratio of the power-law normalizations, i.e:- f = Ncov/(Ncov + Nuncov). The spectral
parameters of the RGS fit are listed in Table 5.

Overall the three warm absorber components that are required to model the RGS spectrum cover the
range in column fromNH = 1.5 − 3.6 × 1021 cm−2 and ionization parameter fromlog(ξ/erg cm s−1) =

1.27−2.80. Consistent outflow velocities are found for the low and medium ionization components 1 and 2,
with vout = −480± 40 km s−1 andvout = −460± 60 km s−1 respectively. However the highest ionization
component 3 does not require an outflow velocity (formally consistent with zero) and only a limit can be
placed withvout < 130 km s−1. We note that the lack of any outflow velocity of component 3 also appears
consistent with the velocity profile analysis in Section 3.4, where the velocities of the higher excitation
lines appear to be lower. The column density (6 × 1022 cm−2) and ionization (log(ξ/erg cm s−1) = 1)
of the partial covering component are not well constrained in the RGS fit, mainly because of the limited
higher energy bandpass of the RGS makes it difficult to constrain multiple continuum components, while
the partial coverer itself does not impart discrete detectable lines upon the soft X-ray spectrum (but it does
impart continuum curvature). Thus its column and ionization have been fixed in the model, while we note
that these values are consistent with those obtained with the HETG in Section 4.2.

Nonetheless the partial coverer is certainly required in the model, the fit statistic is increased by∆χ2 =

192.4 upon removing the partial coverer from the model and refitting; its exclusion leads to systematic
broad residuals in the data/model ratio suggesting the continuum is inadequately modeled. The covering
fraction of the partial coverer isfcov = 0.61 ± 0.05. Overall the fit statistic for the best-fit warm absorber
model isχ2/dof = 2991.7/2562, while the continuum photon index upon modeling all the three required
components of warm absorption is steeper, withΓ = 2.32 ± 0.08. The warm absorber model reproduces
well the absorption lines observed in the RGS spectrum, as shown by the solid line in Figures 5 and 6. We
also note that addition to the warm absorption, an additional neutral component of absorption is required in



– 13 –

the rest frame of MR 2251-178. However its column density is quite small,NH = (2.8± 0.3)× 1020 cm−2,
and it may plausibly be associated with absorption in the quasar host galaxy rather than the AGN.

The relatively low turbulence velocity (ofσ = 100 km s−1) of the warm absorber components aides
in the modeling of the higher order lines, as some of the1s → 2p lines may lie on the saturated part of
the curve of growth. This means the some of the higher order lines can be of comparable strength as the
1s → 2p lines, while some of the line series are detected up to1s → 6p. Indeed the warm absorber model
matches well the profiles of the higher order lines, as can be seen in Figures 5 and 6.

To correctly account for the intensity of the low ionisationlines the absorbing grid requires a much
softer (steeper) input continuum than the other higher ionization absorption components (which haveΓinput =

2.0), in order not to over-ionize the gas and reduce their depth in the model. The necessary power-law
continuum required by theXSTAR grid in order to model the low ionization lines isΓinput = 2.5. This
is much softer than what has typically been found for MR 2251-178 assuming a fully-covering absorp-
tion model, which is of the order ofΓ = 1.6 − 1.7 (Pan et al. 1990; Mineo & Stewart 1993; Kaspi et al.
2004; Gibson et al. 2005). However the underlying soft X-rayphoton index recovered in the RGS spectrum
(Γ = 2.32 ± 0.08), after the required absorbing layers of gas are accounted for, is in reasonable agree-
ment with the required photon index to reproduce the soft X-ray lines. This lends weight to the notion that
MR 2251-178 may, indeed, have an intrinsically soft continuum which is partially-covered by a complex
and stratified absorber. We discuss this further in Section 4.2.

4.2. Chandra HETG

The above best-fit model was then applied to the 2011 HETG spectrum, allowing the continuum and
warm absorber parameters to vary between the datasets. A second partial covering component of higher
column density of∼ 7 × 1023 cm−2 was added to the model, as the direct application of the RGS model
gave a slight excess at higher energies in the HETG spectrum.Otherwise the model construction applied to
the HETG data is identical to the RGS.

The absorber fit parameters applied to the 2011 HETG spectrumare also listed in Table 5. The pa-
rameters of the 3 warm absorber components are rather similar to those obtained from the RGS data, with
most of the values consistent within the errors between the observations. Similar to the RGS, the warm
absorber column densities cover the narrow rangeNH = 1.5− 2.1× 1021 cm−2, while the ionization spans
a range fromlog(ξ/erg cm s−1) = 1.15 − 2.9. There is evidence for a small change in the ionization of
the warm absorber of the low ionization component 1, increasing from log(ξ/erg cm s−1) = 1.15 ± 0.05

to log(ξ/erg cm s−1) = 1.27 ± 0.02 between the HETG and RGS, following the same direction as the
0.4–2.0 keV continuum flux which also increased from the HETGto the RGS, we discuss this further in
Section 4.3 below. The column density of component 1 is consistent between observations, withNH =

2 × 1021 cm−2, although the outflow velocity is slightly smaller3, with vout = −315 ± 40 km s−1. The

3The differences are likely within the absolute wavelength scales of the HETG and RGS.
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ionization and columns of components 2 and 3 are consistent within the errors, while as per the RGS, the
highest ionization component 3 does not require any outflow,as noted above.

Figure 9 shows the relative contributions of each of the 3 warm absorbers components against a power-
law continuum. The lowest ionization component 1 (top panel) contributes the lower ionization ions, i.e.
O V-VII , NeV-VIII , Mg VI -IX , SiVIII -XI as well as M-shell iron, as expected. The higher ionization compo-
nents produce most of the He and H-like ions, as well as the higher ionization (L-shell) iron ions (see lower
panels).

4.2.1. The Nature of the Photoionizing Continuum

The HETG has a wider bandpass and higher resolution than the RGS, which enables some additional
tests to be applied to the inner-shell lines in particular. Figure 10 shows a comparison between the fit to the
warm absorber when the low ionization component (component1) of XSTAR absorption has aΓinput = 2.5

input photoionizing continuum (blue line) orΓinput = 2.0 (red line). For the case of the harderΓ = 2 input
continuum, the model is clearly unable to account for the depth of the inner-shell (Li-like and below) charge
states of Ne or Mg, whereas theΓinput = 2.5 absorber is able to model the low ionization absorption lines.
This suggests that the softer input continuum is strongly required to model the absorption. The absorption
grid with the steeper continuum also provides a better fit to the Fe M-shell UTA and also the Silicon inner-
shell lines. These differences are reflected in the fit statistic, which for theΓ = 2 grid isC = 2665.9 for
2335 degrees of freedom, whereas for theΓ = 2.5 grid the fit statistic isC = 2542.4 for the same number
of degrees of freedom, corresponding to a difference of∆C = 123.5.

Overall the photon index of the continuum recovered after modeling all the layers of absorption is
Γ = 2.13 ± 0.10. Thus the index is somewhat flatter than in the RGS (Γ = 2.32), but this may reflect
the fact that the RGS is more sensitive at soft X-ray energiesthan the HETG, especially if the intrinsic
continuum has subtle curvature, becoming slightly steepertowards lower energies. Note that Figure 2 also
shows the level of the intrinsic continuum (the dashed blue line) after correcting for all the absorbing layers
of gas. Thus the observed continuum without modeling the absorption (which would otherwise appear to
have a very hard photon index ofΓ = 1.3) does not necessarily represent the intrinsic emission, where
Γ ∼> 2, more typical of radio-quiet quasars (e.g., Reeves & Turner2000; Porquet et al. 2004; Scott et al.
2011).

The partial covering components also appear to be required by the data. The moderate column partial
covering component (named pc 1, Table 5) appears well constrained, withNH = 5.5 ± 0.3 × 1022 cm−2

and log(ξ/erg cm s−1) = 1.04+0.08
−0.11, while its covering fraction isfcov = 0.4 ± 0.1. The highest column

component (pc2, Table 5) is less well constrained, but the fitis still worse by∆C = 31.6 if this component
is removed from the model and the continuum refitted. The removal of the pc2 absorber results in the fitted
photon index hardening fromΓ = 2.13 ± 0.10 to Γ = 1.77 ± 0.05. Furthermore if the more moderate
column partial coverer (pc1) is also removed then the fit is considerably worse∆C = 213.1 and the photon
index then becomes an unphysicalΓ = 1.49 ± 0.03.
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Such a hard continuum slope also poses a problem for the modeling of the warm absorber components,
as the low ionization (inner shell) absorption requires a soft input photoionizing continuum ofΓ ∼ 2.5

as above, which cannot be recovered in the model without applying the partial covering absorption. The
other possibility is that the intrinsic continuum shape andhigh energy SED are unusual, consisting of a
rather hard powerlaw componentΓ ∼ 1.5 (and much harder than usually observed in radio-quiet quasars),
then softening to an index ofΓ ∼> 2.5 at soft X-ray energies. The broad band continuum modeling will
be explored in more detail in a forthcoming paper (Nardini etal. 2013, in prep), where theXMM-Newton
EPIC and Optical Monitor data will be considered, as well as archival Suzaku and Swift/BAT observations,
thereby covering the optical/UV through to hard X-ray bandpass.

We note that although a softer continuum does provide a better fit to the inner shell lines and some
improvement to the Fe UTA, the model fits for these inner shellfeatures is dependent on the calculation of
the ionization balance for these elements. For example, in their analysis of the 900ksec HETG spectrum of
NGC 3783, Netzer et al. (2003) noted that their best warm absorber model did not accurately reproduce the
Fe UTA due to the predicted iron being too highly ionized. Netzer et al. (2003) suggested that the problem
was the lack of accurate low-temperature (∆n = 0) dielectronic recombination (DR) rates for the M-shell
sequence of iron (FeIX – FeXVI ). Following this, Netzer (2004) and Kraemer et al. (2004) incorporated
estimated∆n = 0 DR rates into the codes ION (Netzer 1996) and Cloudy (Ferlandet al. 1998), respectively,
and demonstrated that such rates would shift the overall ionization balance of M-shell iron downward, hence
solving the problem described by Netzer et al. (2003).

More recently, DR rates have been computed (Badnell 2006) for the M-shell states of iron, which are
included withinXSTAR. These are an order of magnitude greater than the radiative recombination rates
for these ions and several times greater than the estimated DR rates from Netzer (2004) and Kraemer et al.
(2004). Furthermore, these rates have been confirmed in storage-ring experiments (Schmidt et al. 2006).
However while for the same physical parameters as those usedin Netzer et al. (2003), Cloudy models using
the new DR rates predict similar C, N, and O column densities,the predicted Fe ionization is now too
low to fit the UTA. Although it may be possible to recover the fitby changing model parameters (e.g., the
continuum slope), these results may also indicate that someprocess which mitigates the effects of the new
DR rates is not being accurately treated. One possibility is(multi-electron) autoionization following inner-
shell ionization (D. Savin, private communication). In anyevent, given such sensitivity to the accuracy and
availability of atomic data, the exact parameterization ofthe low ionization absorber could differ, with the
ionization perhaps somewhat lower than currently inferredby XSTAR.

4.3. Variability of the X-ray Absorption

The best fit absorption model to the 2011 HETG spectrum was also applied to the earlier 2002 HETG
observation. The signal to noise of the 2002 observation is substantially lower, due to the overall lower
flux level (and count rate) and shorter exposure of this observation (see Table 1), which means that most of
the individual absorption lines were not detected (see Gibson et al. 2005 for a description of this dataset).
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However the same spectral model can still be applied to the 2002 data, allowing the continuum and warm
absorber parameters to vary between the observations. For ease of comparison the photon index of the 2002
observation was tied to that of the 2011 observation, i.e.Γ = 2.13. The column and ionization of the
partial covering components were also fixed to the 2011 values, as otherwise they are less well determined,
although the covering fractions were allowed to vary. The warm absorber parameters (column, ionization,
outflow velocity) were allowed to vary between the observations.

The absorber parameters of the 2002 observation are shown inTable 5. Again the absorption values
are largely consistent between the 2002 and 2011 HETG observations, as well as with the 2011 RGS ob-
servations, suggesting that the absorber components appear stable over time. The main parameter that does
appear to change is the ionization of the low ionization component 1 absorber. Indeed if the 2011 RGS ob-
servation is also considered, the ionization of component 1appears to increase fromξ = 8.1+3.5

−2.5 erg cm s−1

(Sept 2002/HETG) toξ = 14.1 ± 1.6 erg cm s−1 (Sept 2011/HETG) toξ = 18.6 ± 0.8 erg cm s−1 (Nov
2011/RGS). Indeed the changes inξ appear increase in direct proportion to the observed 0.5–2.0 keV band
flux, varying from0.75±0.01×10−11 erg cm−2 s−1 (Sept 2002/HETG) to1.33±0.01×10−11 erg cm−2 s−1

(Sept 2011/HETG) to1.80± 0.01× 10−11 erg cm−2 s−1 (Nov 2011/RGS). Thus from the lowest ionization
to highest,ξ increases by a factor×2.3, while the soft X-ray flux increase by the same factor. This would
appear to suggest that the low ionization absorber is in photoionization equilibrium with the continuum.
In contrast there appears to be no change in the higher ionization components 2 and 3, within the errors.
Note that this behavior is also consistent with a December 2002 (80 ks) Chandra LETG observation (not
analyzed here), which was at about a 35% lower flux than the 2002 HETG observation, but observed the low
ionization absorber to have an even lower ionization, oflog(ξ/erg cm s−1) = 0.63 ± 0.06 (Ramı́rez et al.
2008).

We also illustrate the apparent change in ionization further in Figure 11, which plots the change in the
xstar model from varying the ionization of warm absorber component 1, against the 2011 RGS data in the
Fe M-shell UTA band. The upper panel of Figure 11 plots the best fit model obtained, with an ionization
parameter oflog(ξ/erg cm s−1) = 1.27 for component 1, as reported in Table 5. Then the ionization pa-
rameter was lowered (and fixed) tolog(ξ/erg cm s−1) = 1.15, equal to the value found for component 1 in
the 2011 HETG spectrum. This results in a worse fit, as seen in panel (b) of Figure 11, indeed even allowing
the other warm absorber and continuum parameters in the fit tovary resulted in a worse fit by∆χ2 = 24.6.
Similarily if the ionization parameter is lowered still further, tolog(ξ/erg cm s−1) = 0.91 as obtained from
the 2002 Chandra HETG data, the fit is substantially worse by∆χ2 = 125.4, compared to the best fit case
shown in panel (a). Indeed this can be seen in panel (c) of Figure 11, whereby the drop in the Fe M-shell
UTA region observed at 17.5–18.5Å is too shallow compared to the data, while the spectrum is then too
absorbed red-wards of this feature. Thus overall the Fe M-shell UTA region appears to be quite sensitive to
the ionization state of the spectrum.

The other possible change in the spectra is in the partial covering absorption. Considering all three
grating observations, the uncovered fraction (or1 − f ) of the power-law (in other words the fraction that
is not obscured by the partial covering absorption) appearsto increase as the flux increases from the 2002
through to the 2011 observations, from(1− f) = 0.18± 0.02 to (1− f) = 0.39± 0.03. This may suggest
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that the AGN is more obscured when it is in a lower flux state, which has been claimed in several Seyferts to
date (e.g., NGC 3516: Turner et al. 2005, 2008; PG 1211+143: Bachev et al. 2009; Pounds & Reeves 2009;
H 0557-385: Longinotti et al. 2009; NGC 4051: Terashima et al. 2009; Lobban et al. 2011), and indeed vari-
able X-ray absorption was first suggested from soft X-ray band variations in MR 2251-178 itself (Halpern
1984). This variability behaviour will be investigated further in a subsequent paper (Porquet et al. 2013, in
preparation), considering a broad-band X-ray analysis of all the contemporary and archival observations of
MR 2251-178.

4.4. Is there a very highly ionized absorber?

Previous studies of MR 2251-178, with a 2009 Suzaku observation (Gofford et al. 2011) and the 2002
HETG observation (Gibson et al. 2005), have suggested the presence of a highly ionized and possibly
strongly outflowing, absorption component in the iron K band. Such absorption could be similar to the
very highly ionized outflows (or “ultra fast outflows”) detected in about 40% of local type I AGN with
XMM-Newton(Tombesi et al. 2011) andSuzaku(Gofford et al. 2013). Thus we have analyzed the higher
energy 2011 Chandra HETG observation above 2 keV, using the High Energy Grating (HEG) spectrum, to
assess whether such a component is present in the new data. The 2002 HETG spectrum was also re-analyzed
for comparison, while the results are also compared to the Suzaku analysis in Gofford et al. (2011).

Figure 12 shows the data/model residuals of the 2011 HEG spectrum to the best-fit absorption model
discussed above, plotted over the Fe K band in the quasar restframe further binning the spectrum to 20
counts per bin to increase the signal to noise. First we consider the iron K band emission. The lack of
any strong iron Kα emission is quite apparent in the residuals. Indeed the limit on the equivalent width of
a narrow 6.4 keV line is11 ± 6 eV and is only very marginally required at∼ 95% confidence in the fit,
with ∆C = 6.3. The limit on the width of the line isσ < 28 eV or σ < 1300 km s−1. No other iron K
emission component is required in the spectrum, either narrow or broad. The weakness of the iron Kα line
in MR 2251-178 has also been noticed previously (Gofford et al. 2011 and references therein), and is much
weaker that the typical narrow iron line equivalent width of∼ 50 − 100 eV observed in most Seyfert 1s
(e.g., Nandra et al. 1997; Patrick et al. 2012; Tatum et al. 2013). The weakness of the iron K line may be
accounted for by the X-ray Baldwin effect, whereby the equivalent width of the iron Kα line appears to de-
crease with AGN X-ray luminosity (e.g., Iwasawa & Taniguchi1993; Nandra et al. 1997; Reeves & Turner
2000; Page et al. 2004; Bianchi et al. 2007; Shu et al. 2010). The 2-10 keV X-ray luminosity of MR 2251-
178 in this observation is3.7 × 1044 erg s−1 (or absorption corrected,5.8 × 1044 erg s−1), higher than most
local Seyfert 1 s.

There does appear to be a broad but shallow absorption troughin the 2011 data at 7.3 keV. Fitting the
trough with a Gaussian absorption profile gives a rest frame centroid energy ofE = 7.34±0.08 keV with an
equivalent width ofEW = −58±24 eV and the fit statistic improves by∆C = 15.2. Note this appears to be
consistent with the high energy absorption line that was previously claimed in the 2002 HETG observation
by Gibson et al. (2005); there the line centroid was atE = 7.26 ± 0.04 keV. Furthermore Gofford et al.
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(2011) claimed an absorption trough in the Suzaku observation at an energy ofE = 7.57+0.19
−0.12 keV, which

is only marginally inconsistent at 90% confidence with the line energy measured by the 2011 Chandra data,
while the equivalent width of−26+18

−12 eV is consistent. In Figure 12 the 2002 HEG spectrum has been
overlayed on the 2011 data, with the normalization of the 2002 spectrum allowed to vary to account for the
overall lower flux level in the 2002 observation, it appears that the trough in the 2002 data has a consistent
profile in both energy and depth with the 2011 data. With the 2002 and 2011 fitted together with a single
Gaussian profile, then consistent parameters were obtained, with a line energy ofE = 7.32 ± 0.06 keV
and an equivalent width of−60 ± 18 eV. The fit statistic was improved by∆C = 26.2 with respect to a
model without the absorption line. The profile appears to be resolved compared to the HETG resolution,
with a width ofσ = 120+50

−40 eV orσ = 4900+2100
−1600 km s−1. Note if the absorption line is associated with the

FeXXVI (H-like) 1s → 2p doublet at 6.97 keV, then the velocity shift implied is−15000±2600 km s−1. We
also note that no significant iron Kα emission was required from refitting the 2002 HEG spectrum, although
the upper limit to its equivalent width is less well determined (< 40 eV) and is consistent with the 2011
measurement.

We attempted to model the Fe K band absorption with a highly ionized XSTAR grid. Unlike for the
warm absorber components, a high turbulence velocity grid was used, withσ = 5000 km s−1, consistent
with the observed line width and an illuminating hard X-ray continuum ofΓ = 2. The ionization parameter
is not so well constrained, withlog(ξ/erg cm s−1) = 4.8+1.0

−0.8, but suggests that either H-like or He-like
iron contributes to the absorption. The column was found to be largely degenerate upon the ionization
parameter (i.e. as the ionization increases the column increases to compensate) and only a lower-limit can
be placed ofNH > 1.5×1023 cm−2. The outflow velocity derived was consistent with the line analysis, with
vout = −15600 ± 2400 km s−1 and is consistent with the Gibson et al. (2005) value ofvout = −12700 ±

2400 km s−1. However we also note that at this velocity, the absorption is only marginally excluded at 90%
confidence from being associated from a localz = 0 absorber.

We also tested whether the iron K-shell region could insteadbe fitted with a photoelectric edge, from
neutral or mildly ionized iron, without any velocity shift as was implied from the highly ionized absorption
model. Indeed fitting the Chandra data with a simple edge model results in a equally good fit statistically,
with a best fit edge energy ofE = 7.15 ± 0.05 keV and optical depthτ = 0.15 ± 0.05. Such an edge
component could plausibly result from a partial covering absorber with column density typically exceeding
NH > 1023 cm−2 and as has been discussed, this may also be required from fitting the broader band HETG
spectrum. Thus it is not possible to distinguish here between the high velocity absorber and possible partial
covering cases in MR 2251-178 and higher resolution data in the Fe K bandpass, such as with the calorimeter
to be flown on Astro-H, would be required to differentiate between these cases.

Thus the detection of the Fe K band absorption trough appearsto be confirmed from the two Chandra
observations, with the parameters consistent in both and atthe same rest frame energy, although its exact ori-
gin remains uncertain. Gofford et al. (2011) also claimed further blueshifted absorption features at lower en-
ergies from the Suzaku data; in particular absorption linesatE = 2.52±0.02 keV andE = 2.79±0.03 keV
in the quasar rest frame, which were identified with blueshifted SXV and SXVI 1s → 2p respectively.
A 1.3 keV absorption trough was present in theSuzakudata near 1.3 keV and tentatively identified with
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blue-shifted iron L-shell transitions. In the latter case,the much higher resolution HETG and RGS spec-
tra resolve the 1.3 keV absorption into a series of lower ionization lines of inner shell Mg from MgVI -IX ,
with only a modest outflow velocity of∼ −400 km s−1. However the absorption line at 2.52 keV ap-
pears to be only marginally detected in the 2011 Chandra spectrum at∼ 99% confidence (∆C = 9.3) at
E = 2.521 ± 0.002 keV in the quasar rest frame (or 4.92Å) with an equivalent width of−2.0 ± 1.2 eV;
these parameters are entirely consistent with those measured bySuzaku. An absorption line is not detected
at 2.79 keV, however the limit on the equivalent width ofEW < 4 eV from Chandra is consistent with the
Suzaku measurement of−5 ± 2 eV. Thus the presence of this possible higher velocity component appears
uncertain based on the current data and such a component doesnot appear to be present in line profiles of C
through to Si.

5. Modeling the Emission Line Spectrum

As we have noted previously, the 2011 RGS and HETG observations contain several soft X-ray emis-
sion lines, which have been fitted with simple Gaussian emission line profiles. The parameters of these
emission lines are listed in Table 6. Most of the lines were detected in the RGS rather than the HETG, as the
RGS has a higher effective area below 1 keV. Many of the lines detected are substantially broadened, with
typical widths of several thousand km−1, from CVI Lyman-α, N VI , OVII , and NeIX . Two weaker narrow
components are also present from NVII Lyman-α, and NeIX , with velocity widths typically∼< 1000 km s−1

(FWHM). The latter line is detected at an energy of905 ± 1 eV in both the RGS and HETG and would
appear to be consistent with expected energy of the forbidden line of the NeIX triplet. As we discuss below,
a weak narrow component of the OVII forbidden line cannot be ruled out in the RGS spectrum. Thus it
may be plausible that the broad lines originate from BLR typegas, while the narrow (and forbidden) lines
originate from gas associated with the NLR.

The OVII line complex is by far the strongest and most statistically significant emission feature de-
tected (with∆χ2 = 345.1 upon its addition to the model), while it also appears be detected with consistent
parameters in the HETG spectrum (albeit less well constrained). We therefore concentrate on the analysis
of the OVII line complex, using the high signal to noise RGS spectrum. The line complex width is certainly
broadened, with a FWHM velocity width of10200+1200

−1400 km s−1. Note that the width of the CVI line com-
plex is poorly constrained, as it lies at the low energy end ofthe RGS bandpass, and so has been set equal to
the OVII line complex width, which is the best determined broad line.

An enlarged view of the OVII RGS line complex profile is plotted in Figure 13. Note that this portion
of the spectrum only contains data from RGS 1, due to the malfunctioning RGS 2 chip over this energy
range. The fit with a single broad line profile is good, with an overall fit statistic ofχ2/dof = 3007.7/2564.
It is also apparent that three narrow absorption lines are superimposed upon the emission line profile, which
have been identified with inner shell OV-VI , e.g. see Table 3. We tested whether a narrow (σ < 1 eV)
component due to the OVII forbidden line at 561.0 eV could also be added to the profile and indeed such
a component cannot be excluded, with an equivalent width ofEW = 0.9 ± 0.4 eV and an improvement in
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fit statistic of∆χ2 = 16.0. The equivalent width of the narrow component is much weakerthan that of the
broad line, which hasEW = 8.3+0.9

−1.1 eV and thus its overall contribution towards the profile is negligible.

Note the energy of the broad OVII emission line isE = 564.5±0.9 eV, which is somewhat blue-shifted
compared to the expected energy of the forbidden line at 561.0 eV. If the broad emission is purely associated
with the forbidden emission, this would suggest an overall blue-shift of−1900± 500 km s−1. Alternatively
it may be that the profile consists of a blend of forbidden (561.0 eV), intercombination (568.6 eV) and
resonance (573.9 eV) emission. A blend of narrow lines can beruled out at high confidence, as the fit
statistic is substantially worse (χ2/dof = 3135.5/2565) and the majority of the OVII flux is not accounted
for. However the profile can be fitted by a blend of velocity broadened lines. In order to test this, the
forbidden, intercombination and resonance lines were fitted with line energies fixed at their expected values,
with a common velocity width for all 3 line components allowed to vary. This provides an excellent fit to the
line profile, withχ2/dof = 2974.4/2563, while the FWHM width of the 3 lines is now7300+1000

−1500 km s−1.
The parameters of the three line components are listed in Table 6, while the line model is the one overlaid
on the OVII profile in Figure 13. From the line fluxes listed in Table 6, it is apparent that the flux of the
forbidden line component dominates over the intercombination emission, while only an upper-limit is placed
on the resonance line emission. The dominance of the forbidden line emission over the other components is
perhaps expected, as the centroid of the broad OVII profile is closest to the expected forbidden line energy.
In section 6.2.1 we attempt to place constraints on the density and location of the emitter given these OVII

parameters.

6. Discussion

6.1. Main observational results

The exposure time of both the HETG and RGS observations allowus to perform an unprecedented high
signal-to-noise and high resolution spectroscopy study ofthe properties of both the primary continuum and
the ionized absorption and emission features in the quasar MR 2251-178. The main observational results are
the following:

In the soft X-ray range, numerous absorption features are clearly detected:
− A deep absorption trough between0.7−0.8 keV most likely identified with an unresolved transition array
(UTA), due to2p → 3d transitions from low ionization M-shell iron, i.e. FeVII -X;
− A multitude of inner K-shell lines of O, Ne, Mg and Si, due to charge states corresponding to Li, Be, B,
C, N, O-like etc ions.
− Several higher ionization L-shell (2p → 3d) lines of iron (i.e. FeXVII -XXIV ).
− Resonance (1s → 2p) lines from He and H-like ions of C, N, O, Ne, Mg and Si, and in some cases, higher
order1s → np lines up ton=6.

In most cases the (strongest) absorption line profiles are narrow or not resolved, with velocity widths
typically σ ∼< 300 kms−1. Similarly the outflow velocities inferred from the measured rest frame energies
of the absorption lines are small or consistent with zero, ofthe ordervout ∼< 400 km s−1.
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The spectral fit using photo-ionisedXSTAR model grids shows that 3 fully-covering WA components
are required in order to model the wide range in the ionization state of the gas, withNH = 1.5 − 3.6 ×

1021 cm−2 and log(ξ/erg cm s−1) = 1.27 − 2.80. The small outflow velocities found for the low and
medium ionization components 1 and 2 are consistent with each other, withvout = −480 ± 40 km s−1 and
vout = −460±60 km s−1 respectively, while the highest ionization component 3 does not require an outflow
velocity with vout < 130 km s−1. Notably, the necessary power-law continuum required by the XSTAR grid
in order to model the low ionization lines (component 1) isΓinput = 2.5, which is softer than that required
for the higher ionized lines (i.e.,Γinput = 2.0). Moreover, one additional component of partially (covering
factor∼ 61%) ionized absorbing gas withNH ∼ 6 × 1022 cm−2 andlog(ξ/erg cm s−1) ∼ 1 is required to
achieve a good fit. Interestingly after the required absorbing layers of gas are accounted for, the soft X-ray
photon index found (Γ = 2.32 ± 0.08) is in good agreement with what is required to reproduce the soft
X-ray inner shell absorption lines (i.e.Γ ∼ 2.5). Therefore, MR 2251-178 may have an intrinsically soft
continuum, at least below 2 keV, which is partially-coveredby a complex and stratified absorber.

For the 2011 HETG spectrum the parameters of the three fully-covering WA are rather similar to those
obtained from the RGS spectra withNH = 1.5−2.1×1021 cm−2, andlog(ξ/erg cm s−1) = 1.15−2.9, but
a second partial covering component (covering factor∼ 40%) of higher column density∼ 7 × 1023 cm−2

seems to be required, from the spectral curvature above 2 keV. As for the RGS spectrum, a softer input
continuum is strongly required to model the low ionization warm absorber component 1. However, there
is evidence for a small, but significant change in its ionization parameter that appears to be correlated
with the soft X-ray flux. Applying this model to the 2002 HETG spectrum we confirm that the change of
the ionization parameter is in direct proportion to the softX-ray flux suggesting that this component is in
photoionization equilibrium with the continuum. The otherpossible change in the spectra is in the partial
covering absorption. Considering all three grating observations, the uncovered fraction of the power-law
appears to increase as the flux increases from the 2002 through to the 2011 observations, from0.18 ± 0.02

to 0.39 ± 0.03, suggesting that this AGN is more obscured at lower flux states.

The soft X-ray spectra also display several emission lines from a photoionized emitter from He- and
H-like ions of C, N, O, and Ne. Notably, a strong and broad emission line near 0.56 keV is clearly de-
tected in the RGS 1 spectrum at the expected energy of the OVII triplet, and is well represented by a
blend of the forbidden (dominant), intercombination and resonance emission lines with a common velocity
of ∼7300 km s−1 (FWHM). This broad OVII triplet profile is superimposed on by three narrow absorp-
tion lines corresponding to inner-shell absorption due to OV and the two lines which make up the OVI

(1s22s → 1s2s2p) doublet. Similar structures are present at other energies, with N VII , OVIII and NeIX all
showing emission superimposed by absorption.

In the hard X-ray energy band of the HETG spectrum, there is a lack of any strong iron Kα emission,
with EW=11±6 eV. This could be accounted for by the X-ray Baldwin effect,since MR2251-178 has a much
higher 2-10 keV luminosity than most local Seyfert 1s. However, we found the presence of a significant
absorption feature at 7.3 keV consistent with what was previously reported from the 2002 HETG observation
by Gibson et al. (2005), but only marginally inconsistent at90% confidence with the line energy measured
in the 2009 Suzaku observation by Gofford et al. (2011). ThisFe K band absorption is well modelled
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by a highly ionizedXSTAR grid with a high turbulence velocity of 5000 km s−1 and an outflow velocity
of ∼ -15600 km s−1. However an alternative origin from a low ionization partial covering absorber without
requiring any velocity shift cannot be excluded. The much higher spectral resolution of both HETG and RGS
data allows us to resolve the 1.3 keV absorption feature – first observed in the lower resolution 2009 Suzaku
XIS spectrum (Gofford et al. 2011) and tentatively identified with blue-shifted iron L-shell transitions – into
a series of lower ionization lines of inner shell Mg from MgVI -IX , with only a modest outflow velocity of
∼ −400 km s−1.

6.2. The Origins of the Warm Absorption and Emission in MR 2251-178

6.2.1. Constraints from the OVII line triplet

Given the constraints on the OVII line triplet, we can attempt to estimate the density and likely radial
location of the emitting gas. The line ratiosG = (x + y + z)/w andR = z/(x + y) give a measure of
the temperature and density of the gas, wherez corresponds to the forbidden line,(x+ y) to the intercom-
bination emission andw to the resonance line (Porquet & Dubau 2000). From the line ratios in Table 6,
this yieldsG > 3.9 andR = 2.9 ± 1.4. Thus from the calculations in Porquet & Dubau (2000), the
high G ratio corresponds to the gas being photoionized rather than collisionally ionized, with a tempera-
tureT < 106 K. However, photo-excitation of the resonance lines can be important in X-ray photoionized
sources as AGN (e.g., Kinkhabwala et al. 2002; Porquet et al.2010), thus other complementary temperature
diagnostics should be used such as those based on the width measurement of the recombination contin-
uum (RRC) features (Liedahl & Paerels 1996). Unfortunatelyin the spectrum of MR 2251-178, no RRC
emission is detected, so it is not possible to determine the temperature by this method.

TheR values suggests a density ofne ∼ 1010 cm−3, while the fact that the forbidden line is required
to be stronger than the intercombination emission (i.e the lower limit isR > 1.4) implies that the maximum
possible density is< 1011 cm−3. Thus a density ofne = 1010 − 1011 cm−3 would seem to imply an
origin of the broad line emission consistent with the optical Broad Line Region (Davidson & Netzer 1979).
The ionization of the emitter can also be constrained, giventhat a line flux ratio of OVII /O VIII ∼ 6, e.g.
Table 6. From running anXSTAR simulation with a density ofne = 1010 cm−3, the line ratio implies an
ionization parameter oflog(ξ/erg cm s−1) = 1.25. Thus an estimate of the radial distance can be obtained
via the definition of the ionization parameter, i.e.r = (Lion/ξnH)

1/2, whereLion is the1 − 1000Rydberg
luminosity andnH is the hydrogen number density. From extrapolating the best-fit spectrum from above,
the ionizing luminosity of MR 2251-178 isLion = 2 × 1045 erg s−1. Thus for a density in the rangene =

1010 − 1011 cm−3, then the radius isr = 0.3 − 1.0 × 1017 cm (or 0.01-0.03 pc), again consistent with
typical BLR radii (e.g., Kaspi et al. 2005). The radius of theemission can also be estimated from the OVII

width of σ = 3200 km s−1. Assuming a virial relation between the black hole mass and the radiusr, of
3σ2 = GM/R (Peterson et al. 2004) and adopting a black hole mass of2.4 × 108 M⊙ for MR 2251-178
(Dunn et al. 2008), gives a radius ofr ∼ 1017 cm, consistent with the above estimate.

Given the estimate of the ionization parameter of the soft X-ray emitter oflog ξ = 1.25, it can plausibly
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be associated with one of two absorption components, eitherthe low ionization warm absorber component 1
or the partial covering component (pc1), as summarised in Table 5. We have calculated the total (global) cov-
ering fraction as a fraction of4π sr (ftot) for either absorbing layer in order to produce the total luminosity
of the broad OVII emission, of3.1× 1042 erg s−1. TheXSTAR code is used to calculate the line luminosity
from a spherical shell of gas, covering a full4π sr around the AGN, illuminating by the above ionizing lu-
minosity. The component 1 absorber has a column density ofNH = 2 × 1021 cm−2 and produces an OVII

luminosity over4π sr of3.7× 1042 erg s−1, while the partial covering component hasNH = 5× 1022 cm−2

and produces an OVII luminosity of4.5×1043 erg s−1. Thus in order to reproduce the OVII luminosity, the
component 1 absorber would require a high covering fractionof ftot = 0.84 of 4π sr−1, while the partial
coverer only requires a fraction offtot = 0.07.

However some of the narrow absorption lines that are produced from the component 1 warm absorber
itself are superimposed upon the OVII broad emission profile. This would appear to require the component
1 absorber to be physically placed outside the line emittingregion, making it less likely to be the origin
of the broad soft X-ray lines. Furthermore the kinematics ofcomponent 1, with a low outflow velocity
(∼ −400 km s−1) and small or unresolved line widths/turbulences, would also suggest it is placed at larger
distances perhaps coincident with the NLR. Therefore one possibility is that the broad line region clouds
themselves not only produce the broad soft X-ray lines, but are also responsible for the partial covering of
the X-ray continuum itself. Such broad X-ray emission ionized lines have been detected in several other
AGN thanks to high-resolution X-ray data suggesting that such a BLR origin for the X-ray emission may
be common in AGN (e.g., Mrk 279: Costantini et al. 2007, Mrk 841: Longinotti et al. 2010, NGC 4051:
Ogle et al. 2004, Mrk 509: Detmers et al. 2011, 3C 445: Reeves et al. 2010).

Note that the estimate of the total covering fraction, of∼ 7% for the partial coverer/emitter, may be
substantially higher if some of the broad line emission is itself obscured, depending on the exact spatial
distribution of emitting and absorbing clouds. We note thatin the RGS data about 60% of the intrinsic
X-ray continuum is obscured by the∼ 5 × 1022 cm−2 partial coverer (40% remains unobscured). If this
obscuration is also applied to the broad OVII emission, that may imply a total covering fraction of the
emitting clouds closer toftot ∼ 0.2. Furthermore the X-ray BLR emission can be further obscuredby the
warm absorber which fully covers the line of sight to the AGN,which obscures the continuum level by
a factor of about 30-40% at the energy of the OVII emission line. Thus the total covering is likely to be
consistent with typical estimate of the overall covering fraction of optical BLR clouds, of the order5− 30%
(e.g., Netzer & Laor 1993). If the BLR clouds do partially cover the X-ray source, then this can give an
approximate estimate of a size of a cloud. Thus for X-ray absorption of the order∼ 1023 cm−2 and for a
density ofne ∼ 1010 cm−3, then that implies a size of∆r ∼ 1013 cm, likely smaller than the size of the
X-ray emission region (e.g.10Rg here would correspond to a few×1014 cm). Thus it seems plausible for
such clouds to only partially cover the line of sight to the continuum X-ray emission.

The low ionization component 1 warm absorber could instead plausibly reproduce some of the weak
narrow emission lines in the spectrum, e.g. the narrow forbidden components, which have line widths of
σ ∼< 500 km s−1 typically. This would correspond to radial distances of a few pc or greater. The distance to
the component 1 absorber is estimated below, via its response to the soft X-ray continuum.
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6.2.2. Constraints from the variability of the warm absorber components

The component 1 warm absorber appears to respond to the overall increase in the continuum between
the 2002 and 2011 observations, but also in the∼ 40 days timescale between the 2011XMM-Newtonand
Chandraobservations (Section 4.2) and thus would appear to be in photoionization equilibrium. We can
therefore attempt to place a lower limit on the density of this absorber via the recombination timescale. For
this we use the recombination time-scale formula from Bottorff et al. (2000) that does account simultane-
ously for the cascade into the population ofXi ions from the population ofXi+1 ions, and the cascade out
of the population ofXi ions into the population ofXi−1 ions:

t(Xi) =
1

α(Xi)ne[
f(Xi+1)
f(Xi)

−
α(Xi−1)
α(Xi)

]
. (2)

wheref(Xi) the ionic fraction of theXi ion,α(Xi, Te) is the recombination coefficient of theXi ion at the
electronic temperatureTe, andne is the electron density (∼ 1.2nH for cosmic abundance). We apply this
formula to OVII . At log ξ=1.27, the ratio OVII /O VIII is 6.0 andTe is 4×104 K. Using the recombination
coefficient from Nahar & Pradhan (2003) and a recombination time of t . 40 days between observations,
we find a lower limit for the hydrogen density of 3.8×104 cm−3. Hence, this implies an upper limit for the
radial distance (Rvar) of 5.3×1019 cm (i.e.. 17 pc) or a few pc. Moreover as discussed below in§6.2.3 the
minimum radius for component 1 is about2.8× 1019 cm (i.e.& 9 pc). Therefore the location of component
1 is well constrained between 9 pc and 17 pc. For comparison, the expected distances of the torus and of
the NLR that are about 7 pc and about 140 pc, using the following formula of Krolik & Kriss (2001) and
Mor et al. (2009) respectively:

Rtorus ∼ L
1/2
ion,44 (pc) (3)

RNLR = 295 × L0.47±0.13
46 (pc). (4)

For MR 2251-178 the ionizing (1-1000 Rydberg) luminosity was taken asLion,44 = 20 (in units of1044 erg s−1)
andL46 = 0.434 is assumed as the bolometric luminosity (Dunn et al. 2008), in units of1046 erg s−1.

Therefore component 1 appears to be located consistent withthe pc scale torus and/or inner NLR
radius-scales. We note thatRvar is much greater than the BLR distance that is of only about 75 light-days
(using the recent RBLR–λLλ(5100Å) relationship from Bentz et al. 2013 and the average 5100Å flux from
Lira et al. 2011), i.e. 0.06 pc. The lack of response from2002 − 2011 of the higher ionization (components
2,3) absorbers may place this gas at greater distances. However a more intense monitoring campaign (over
weeks to months) would be needed to place a firmer constraint on the density and therefore radial location
of the absorbers.

4This is is likely to be a somewhat conservative estimate of the bolometric luminosity. Applying a bolometric correctionof a
factor of 30 for the 2-10 keV X-ray luminosity (Vasudevan & Fabian 2009), would result inLbol = 10

46 erg s−1.
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6.2.3. Warm absorber properties: radii, outflows rates and energetics

We estimate the lower and upper limits of the distance, mass outflow rate and kinetic power of the WAs
following the assumptions and definitions outlined in Tombesi et al. (2013) for the fully covering warm
absorbers (components 1, 2, and 3) and for the highly ionizedabsorber discussed in§4.4. An upper limit
for the radial location of an absorber can be derived from thedefinition of the ionization parameter and the
requirement that the thickness of the absorber does not exceed its distance to the supermassive black hole,
i.e.,NH ≃ nH∆R < nHR, then:

rmax ≡ Lion/ξNH. (5)

Note the material can not be farther away than this given the observed ionization and column. An estimate
of the minimum distance can be derived from the radius at which the observed velocity corresponds to the
escape velocity:

rmin ≡ 2GMBH/v
2
out. (6)

Here the black hole mass estimate for MR 2251-178 is taken as2.4 × 108M⊙ (Dunn et al. 2008).

For the calculation of the mass outflow rate we use the expression derived by Krongold et al. (2007)
that is appropriate for a biconical wind-like geometry and that does not rely on the estimate of the covering
and filling factors (see Tombesi et al. 2013 for details):

Ṁout ≡ f(δ, φ)π
nH

ne
mpNHvoutr, (7)

wheref(δ, φ) is a function that depends on the angle between the line of sight to the central source and
the accretion disc plane,δ, and the angle formed by the wind with the accretion disc,φ (see Fig. 12 of
Krongold et al. 2007). As in Krongold et al. (2007) and Tombesi et al. (2013), we assumef(δ, φ)≃1.5 that
corresponds to a roughly vertical disc wind (φ≃π/2) and an average line of sight angle ofδ≃30◦ for a type-I
AGN, whilenH/ne is about 1/1.2 for Solar elemental abundances, so:

Ṁout ≃ 6.6× 10−24 NH vout r [g/s]. (8)

To determine theṀout interval range, we use the values ofrmax andrmin inferred from equations (5) and
(6), except for component 1 for which with use asrmax the value found above due to the recombination
time-scale of OVII , i.e. rvar (see values reported in Table 7).

Neglecting additional acceleration of the outflow, i.e. assuming that it has reached a constant terminal
velocity, the kinetic (or mechanical) power can consequently be derived as:

ĖK ≡
1

2
Ṁoutv

2
out. (9)

We also calculated the outflow momentum rate asṖout ≡ Ṁoutvout and subsequently compared it to the
momentum flux of the radiation field,̇Prad ≡ Lbol/c. All values are reported in Table 7.

The inner and outer radii of component 1 are the best determined, between9 − 17 pc, with the upper
bound being set by the 40 day timescale response of the absorber to the continuum. The higher ionization
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component 3 is constrained between between∼ 120 − 290 pc; this is consistent with being placed outside
component 1, noting that no response of this absorber was detected to continuum variations, consistent with
a lower density. Component 2 is the least well determined andis consistent with the radial estimates for
components 1 and 3 (Table 7). Thus the locations of components 1 and 3 are consistent with the torus
and NLR respectively, as estimated above. The possible highly ionized (iron K band) absorber (Table 7,
component high), with an outflow velocity of∼ 15000 km s−1, would appear to be located much closer to
the black hole (. 0.01 pc) with a location perhaps consistent with an accretion disk wind (Tombesi et al.
2013).

The kinetic power of the three warm absorbers (components 1–3) appear to be. 0.01% of the bolo-
metric luminosity; while for the highly ionized absorber wefound a minimum value of 1% of the bolometric
luminosity, hence its mechanical power can potentially affect the host galaxy via feedback (Hopkins & Elvis
2010). Nonetheless the mass outflow rates of all components 1–3 as well as the highly ionized absorber
are rather similar, the lower limits oṅMout vary between0.2 − 1.9M⊙ yr−1 for components 1–3, while
for the highly ionized absorber,Ṁout & 0.6M⊙ yr−1. In comparison for a bolometric luminosity of
4.3 × 1045 erg s−1 and assuming an accretion efficiency ofη = 0.06, the expected mass accretion rate
of MR 2251-178 isṀacc ∼ 1.3M⊙ yr−1; thus the combined mass outflow rate from MR 2251-178 is likely
to be at least equal to (or somewhat exceeding) the accretionrate onto the black hole. Finally the outward
momentum rate of the putative highly ionized absorber is estimated to be at least∼ 50% of Lbol/c, which
suggests efficient (τ ∼ 1) scattering between photons and electrons in a Thomson scattering driven outflow,
as may be expected in a highly ionized accretion disk wind (King & Pounds 2003).

6.3. Comparisons with UV observations

Ultra-violet absorption has also been found previously in the spectrum of MR 2251-178. Using HST/FOS
data obtained in 1996, Monier et al. (2001) found absorptionlines due to Lyα, N V and CIV with a system-
atic blueshift of∼ 300 km s−1 with a total hydrogen column density of about 5×1021 cm−2. From the
comparison between HST data taken with FOS in 1996 and STIS in2000, the CIV absorption in particular
showed variability – both in terms of the velocity and columndensity – over a period of roughly 4 years.
This relatively short timescale variability showed that this UV absorption is truly intrinsic and constrained
the absorption clouds to withinr .2.4 kpc of the continuum source (Ganguly et al. 2001) consistent with
the estimate of Monier et al. (2001). Kaspi et al. (2004) reported for the first time the entire FUSE spectrum
of MR 2251-178 and detected at least four blueshifted absorption systems of CIII , H I, and OVI ; one at
−580 km s−1, and at least three others blended components with centroidvelocities at about−150,−300,
and−430 km s−1.

We note that the velocity profiles obtained here from the X-ray data, e.g. from CVI and OVIII , appear
to be consistent with these UV profiles, with the X-ray absorption line profiles having typical velocity shifts
of the order∼ −300 − −400 km s−1, as shown in Figure 7. The only exception may be from the highest
ionization lines, such as MgXII and SiXIV , which do not require any net blue-shift, but this very highly
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ionized gas may be more apparent in the X-ray spectrum than inthe UV. The total depth of the FUV and UV
absorption lines appeared larger than the underlying continuum, which indicates that the broad UV emission
lines are absorbed by the UV absorber and therefore the UV absorber lies outside the BLR. This is similar to
what is found in the X-ray spectrum presented here, whereby the broad soft X-ray lines (BLR) are absorbed
by the narrow lines from the X-ray warm absorber.

The above UV absorber properties are similar to that found here for the fully-covered soft X-ray warm
absorber components (namely components 1, 2, and 3), indeedboth the column densities and the outflow
velocities appear consistent. Moreover, the relatively tight constraint for the location of component 1 shows
that it lies outside the BLR region too, with the components 2and 3 consistent with being further out
due to their lack of variability. In conclusion the UV and soft X-ray warm absorption components cover
a similar range of column densities and appear to be kinematically consistent with each over in terms of
their outflow velocities, although the X-ray absorption likely originates from more highly ionized gas. A
more detailed comparison with the 2011 Chandra and XMM-Newton observations and a contemporaneous
2011 HST/COS observation will be deferred until future work. We note however that from a preliminary
analysis of the HST/COS spectrum as well as optical spectroscopy (M. Crenshaw, private communication),
the FWHM widths of the CIV and Hβ emission lines appear in the range3200 − 3600 km s−1. This is
similar to, if somewhat smaller than the widths of the X-ray emission lines such as OVII , with FWHM
∼ 7300 km s−1. This could suggest that the broad X-ray lines originate from the innermost part of the BLR,
which would likely be more highly ionized.

6.4. Comparison with the recent observations of Markarian 509

The Seyfert 1 galaxy Mrk 509 (z=0.03450) – which has a similarblack hole mass (1-3× 108 M⊙) and a
bolometric luminosity of only a factor of about 2-3 smaller than that of MR 2251-178 (Raimundo et al. 2012)
– has also been recently monitored (in 2009) from UV to hard X-rays (HST/COS, XMM-Newton, Chan-
dra, Swift and Integral) to constrain the location of the outflow components (Kaastra et al. 2011b). Thus a
comparison between MR 2251-178 and Mrk 509 may be informative, given their similar properties at the
higher luminosity end of the Seyfert population, while bothAGN have long XMM-Newton or Chandra expo-
sures. The deep (600 ks) XMM-Newton/RGS spectrum of Mrk 509 revealed the presence of a multitude of
blueshifted absorption lines from three slow velocity absorber components (∼−13 km s−1, ∼−320 km s−1,
and−770 km s−1), with two strong and discrete ionization parameter peaks in thelog(ξ/erg cm s−1) = 1−3

range at aboutlog(ξ/erg cm s−1) = 2.0 andlog(ξ/erg cm s−1) = 2.8 (Detmers et al. 2011). The ionization
parameters of the UV components with similar outflow velocities are much lower than those found in X-
rays, which could indicate that the UV and X-ray absorbers are co-spatial but have different densities, as also
inferred from the LETG spectrum (Ebrero et al. 2011). The presence of a possible fast outflow withvout ≃ -
14000 km s−1 was claimed using the summed spectrum of previous XMM-Newton observations (Ponti et al.
2009), and was only marginally detected in the LETG 2009 observation and the XMM-Newton/pn spectrum
(Ponti et al. 2013).
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The location of the outflowing components in Mrk 509 are claimed to be consistent with a torus wind or
NLR origin (Kaastra et al. 2012). While the kinetic luminosity of the outflow is small in Mrk 509, the mass
carried away is larger than the likely0.5M⊙ yr−1 accreting onto the black hole. These properties appear to
be similar to those presented here for MR 2251-178. Observationally the X-ray column densities, outflow
velocities and ionization parameters cover a very similar range, while in terms of radial location, the warm
absorbers of both AGN appear commensurate with a pc scale wind consistent with the outermost torus or
inner NLR.

7. Conclusions

This paper has presented deep (400 ks) Chandra HETG and XMM-Newton RGS observations of the
nearby quasar, MR 2251-178. The high resolution spectra have revealed the presence of a three ionization
component warm absorber, with the ionization parameter covering the range fromlog(ξ/erg cm s−1) =

1 − 3. The lowest ionization component is responsible for the absorption seem from the Fe M-shell UTA
as well as the inner-shell lines of O, Ne, Mg and Si, while the higher ionization components produces
the He and H-like lines as well as L-shell Fe ions. The lowest ionization gas tentatively appears to be in
photoionization equilibrium with the continuum flux. From this and from the lower and upper-limits to the
radial location of the gas, the low ionization absorber appears consistent with a pc scale location, coincident
with either the torus or innermost NLR, while the highest ionization component may arise from more distant
gas. The outflow velocities of the warm absorbing gas all appear within∼< 500 km s−1, also consistent with
the outflow velocities of the known UV absorber in this AGN (Ganguly et al. 2001; Monier et al. 2001;
Kaspi et al. 2004).

Several broad emission lines also appeared to be present in the soft X-ray spectrum, most notably from
O VII . The width derived for the broad OVII line complex, of FWHM7300+1000

−1500 km s−1, is consistent with
an origin on sub-pc scales from the optical BLR. In addition,we have suggested that the BLR clouds them-
selves, which are presumably responsible for the broad softX-ray emission lines, may indeed partially cover
the X-ray continuum, with a typical column density ofNH = 1023 cm−2. The presence of such a partial
coverer has also been recently invoked to account for the hard X-ray excesses observed towards several type
I AGN (Tatum et al. 2013) and may be required here to explain the unusually hard X-ray continuum (with
Γ = 1.5) that is observed in MR 2251-178. Overall the X-ray observations of MR 2251-178 have revealed a
complex and stratified absorption and emission region, which modify the overall X-ray spectrum. These ap-
pear to exist on several spatial scales; from a putative accretion disc wind responsible for the highly ionized
Fe K band absorption; to the BLR clouds responsible for the broad soft X-ray emission lines and potentially
the partial covering absorption; and to the more extended outflowing gas on parsec and NLR scales. The
latter is the likely origin of the historical soft X-ray warmabsorber observed towards this AGN.
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Güdel, M., Guttridge, P., Hailey, C. J., Janabi, K. A., Kaastra, J. S., de Korte, P. A. J., van Leeuwen,
B. J., Mauche, C., McCalden, A. J., Mewe, R., Naber, A., Paerels, F. B., Peterson, J. R., Rasmussen,
A. P., Rees, K., Sakelliou, I., Sako, M., Spodek, J., Stern, M., Tamura, T., Tandy, J., de Vries, C. P.,
Welch, S., & Zehnder, A. 2001, A&A, 365, L7

Detmers, R. G., Kaastra, J. S., Steenbrugge, K. C., Ebrero, J., Kriss, G. A., Arav, N., Behar, E., Costantini,
E., Branduardi-Raymont, G., Mehdipour, M., Bianchi, S., Cappi, M., Petrucci, P., Ponti, G., Pinto,
C., Ratti, E. M., & Holczer, T. 2011, A&A, 534, A38

Dunn, J. P., Crenshaw, D. M., Kraemer, S. B., & Trippe, M. L. 2008, AJ, 136, 1201

Ebrero, J., Costantini, E., Kaastra, J. S., Detmers, R. G., Arav, N., Kriss, G. A., Korista, K. T., & Steen-
brugge, K. C. 2010, A&A, 520, A36



– 31 –

Ebrero, J., Kriss, G. A., Kaastra, J. S., Detmers, R. G., Steenbrugge, K. C., Costantini, E., Arav, N., Bianchi,
S., Cappi, M., Branduardi-Raymont, G., Mehdipour, M., Petrucci, P. O., Pinto, C., & Ponti, G. 2011,
A&A, 534, A40

Elvis, M. 2000, ApJ, 545, 63

Ferland, G. J., Korista, K. T., Verner, D. A., Ferguson, J. W., Kingdon, J. B., & Verner, E. M. 1998, PASP,
110, 761

Gallo, L. C., Boller, T., Brandt, W. N., Fabian, A. C., & Vaughan, S. 2004, A&A, 417, 29

Ganguly, R., Charlton, J. C., & Eracleous, M. 2001, ApJ, 556,L7

Gibson, R. R., Marshall, H. L., Canizares, C. R., & Lee, J. C. 2005, ApJ, 627, 83

Gofford, J., Reeves, J. N., Tombesi, F., Braito, V., Turner,T. J., Miller, L., & Cappi, M. 2013, MNRAS, 430,
60

Gofford, J., Reeves, J. N., Turner, T. J., Tombesi, F., Braito, V., Porquet, D., Miller, L., Kraemer, S. B., &
Fukazawa, Y. 2011, MNRAS, 414, 3307

Grevesse, N. & Sauval, A. J. 1998, ssr, 85, 161

Halpern, J. P. 1984, ApJ, 281, 90

Holczer, T. & Behar, E. 2012, ApJ, 747, 71

Hopkins, P. F. & Elvis, M. 2010, MNRAS, 401, 7

Iwasawa, K. & Taniguchi, Y. 1993, ApJ, 413, L15

Kaastra, J. S., de Vries, C. P., Steenbrugge, K. C., Detmers,R. G., Ebrero, J., Behar, E., Bianchi, S.,
Costantini, E., Kriss, G. A., Mehdipour, M., Paltani, S., Petrucci, P.-O., Pinto, C., & Ponti, G. 2011a,
A&A, 534, A37

Kaastra, J. S., Detmers, R. G., Mehdipour, M., Arav, N., Behar, E., Bianchi, S., Branduardi-Raymont, G.,
Cappi, M., Costantini, E., Ebrero, J., Kriss, G. A., Paltani, S., Petrucci, P.-O., Pinto, C., Ponti, G.,
Steenbrugge, K. C., & de Vries, C. P. 2012, A&A, 539, A117

Kaastra, J. S., Mewe, R., Liedahl, D. A., Komossa, S., & Brinkman, A. C. 2000, A&A, 354, L83

Kaastra, J. S., Petrucci, P.-O., Cappi, M., Arav, N., Behar,E., Bianchi, S., Bloom, J., Blustin, A. J.,
Branduardi-Raymont, G., Costantini, E., Dadina, M., Detmers, R. G., Ebrero, J., Jonker, P. G.,
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Fig. 1.— Fluxed 2011 XMM-Newton RGS spectra of MR 2251-178 between 0.4–1.5 keV. RGS 1 is shown
in black, RGS 2 in red. The spectrum shows a clear imprint of a warm absorber, with the main features in
the spectrum labelled. The absorption due to the UTA of M-shell iron is particularly prominent above 0.7
keV, as well as absorption due to Ne (and iron L-shell) between 0.9-1.0 keV, as well as an absorption trough
due to Mg near 1.3 keV. Note the strong OVII emission at 0.56–0.57 keV. Energy is plotted in the quasar
rest frame.
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Fig. 2.— Fluxed 2011 Chandra HETG spectra of MR 2251-178, MEGis shown in black, HEG is red.
The top panel shows the spectra, while the dotted green line is a representative power-law continuum with
Γ = 1.6. The upper dashed blue line shows the actual intrinsic levelof the continuum, once the absorption
is modeled. The lower panel shows data/model ratio to theΓ = 1.6 power-law, the downwards continuum
curvature due to the warm absorber is clearly present. Note that data are binned at4× the HWHM resolution
for clarity, while the HEG spectrum is only plotted above 2 keV.



– 39 –

Fig. 3.— 2011 Chandra MEG spectrum of MR 2251-178, showing the wealth of absorption lines below
2 keV. The data are shown as residuals (inσ) against the baseline continuum and are plotted in the quasar rest
frame in wavelength (with energy marked along the upper axis). Panel (a) shows the Si K band, including
inner shell absorption from SiVIII –XIII ; (b) the Mg K band, including inner shell absorption from MgVI–XI ;
(c) absorption from NeIX , NeX and L-shell Fe; (d) inner shell absorption due to Neon ions from NeV–NeIX

and (e) the iron M-shell UTA band.
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Fig. 4.— As per Figure 3, but showing the Chandra HEG spectrumof MR 2251-178, Panels (c), (d) and
(e) show the absorption present in the Si, Mg and Ne bands respectively. Panels (a) and (b) also show the
spectrum in the Fe and S K-shell bands.
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Fig. 5.— Enlarged view of theXMM-Newton/RGSdata (RGS1: black, RGS2: red), showing the count rate
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Fig. 6.— Enlarged view of theXMM-Newton/RGSdata showing the Ne and Mg energy regimes. The blue
line again shows the best-fit absorption model. Both Ne and Mghave a number of inner-shell lines (i.e., the
B-, Be-, Li-like charge states) present in the spectrum. As in the Figure 5, the likely identification of the
numbered lines are presented in Table 3.
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Fig. 7.— Velocity profiles of the main H-like lines, as measured by XMM-Newton RGS (for CVI , N VII ,
O VIII ) and Chandra HEG (for NeX, Mg XII , SiXIV ), see Section 3.4 for details. The data points show the
data divided by continuum model for each line and negative velocities correspond to blue-shifts. The solid
line indicates the simple single Gaussian absorption profile fitted to each line profile. In the case of the C, N,
O (and to a lesser extent Ne) lines, a clear blue-shift of the Gaussian centroid is observed, while the higher
energy Mg and Si lines do not require any net blue-shift and appear unresolved. The subsequent best-fit
values of the Gaussian profiles are reported in Table 4.
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Fig. 8.— As per Figure 7, except the velocity profiles correspond to the He-like lines of NVI , OVII (RGS)
and NeIX , Mg XI (HEG).
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Fig. 9.— Contribution of respective warm absorption components towards the X-ray spectrum. The low
ionization component 1 (panel a) carries the largest opacity with absorption due to inner shell O, Ne, Mg, Si
and M-shell Fe; component 2 (panel b) contains absorption due to He-like ions and moderately ionized Fe
and component 3 (panel c) contributes absorption due to H-like ions and highly ionized Fe.
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Fig. 10.— Enlarged portions of the 2011Chandra/HETG observation of MR 2251-178, focusing on the
Ne and Mg energy bands. The HETG data give a much clearer view of the inner-shell Ne and Mg lines
than was possible with theXMM-Newton/RGS. Both elements have lines due to their B-, Be- and Li-like
charge states. The solid lines correspond to the fit that is obtained when the low ionization xstar absorber
(component 1, Table 5) has an input photon continuum ofΓinput = 2.0 (red) andΓinput = 2.5 (blue).
Importantly, the inner-shell lines cannot be accounted forwithout an intrinsically soft X-ray continuum,
which in turn provides evidence for a partially-covered X-ray spectrum. See text for further details.
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Fig. 11.— Zoom-in of the 2011 RGS spectrum in the region of theiron M-shell UTA, showing the effect of
the change in the ionization state of component 1 in the warm absorber model (solid line). Panel (a) shows
the best fit case to the RGS, whereby the ionization parameterof component 1 islog(ξ/erg cm s−1) = 1.27.
Panel (b) shows the model fitted when the ionization is lowered to log(ξ/erg cm s−1) = 1.15, as found in
the 2011 Chandra HETG spectral fits. In panel (c) the ionization parameter islog(ξ/erg cm s−1) = 0.91,
as found in the spectral fits to the 2002 Chandra HETG data. Thus the fits to the UTA region are sensitive
to the ionization parameter in the xstar absorber model and models with a substantially lower ionization, as
found in the Chandra datasets, can be ruled out by the RGS data.
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Fig. 12.— Data/model ratio residuals to the HEG spectrum of MR 2251-178, in the iron K band, to the best
fit continuum model. The 2011 data are shown as black crosses,the 2002 HEG data shown in red circles
(with dashed errors). The datasets have also been binned to have a minimum of 20 counts per bin, in addition
to the instrument resolution binning. Energy is plotted in the quasar rest frame atz = 0.064. Both datasets
appear to show a weak, but statistically required, absorption feature near 7.3 keV, which if identified with
H-like iron would require a blueshift of∼ −15000 km s−1. Note the lack of a strong Kα emission line at
6.4 keV.
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Fig. 13.— Broad OVII emission line complex as observed by RGS 1, plotted againstobservedframe en-
ergy. Black crosses show the data, while the solid (red) lineis the best fit model. The line profile has
been fitted by a blend of forbidden, intercombination and resonance emission components of equal velocity
width (FWHM 7300 km s−1), as shown by the solid lines below from left to right (green,blue and magenta
respectively). The forbidden line dominates the profile, implying densities ofne < 1011 cm−2. Note that
narrow absorption lines of OV-VI are superimposed upon the broad emission profile.
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Table 1. Summary of MR 2251-178 Observations

Mission Obsid Start Date/Timea Inst Exposure (ks) Net Rate s−1

XMM-Newton 0670120201 2011-11-11 07:58:17 RGS 1 133.1 0.518± 0.002

– – RGS 2 – 0.562± 0.002

0670120301 2011-11-13 18:50:38 RGS 1 127.8 0.506± 0.002

– – RGS 2 – 0.544± 0.002

0670120401 2011-11-15 18:42:16 RGS 1 128.0 0.464± 0.002

– – RGS 2 – 0.501± 0.002

Total – RGS 1 389.1b 0.496± 0.001

– RGS 2 389.1b 0.535± 0.001

Chandra 2977 2002-09-11 00:52:46 MEG 146.3 0.317± 0.001

– – HEG – 0.164± 0.001

Chandra 12828 2011-09-26 20:34:38 MEG 163.1
– – HEG –

12829 2011-09-29 07:03:04 MEG 187.6
– – HEG –

12830 2011-10-01 22:53:18 MEG 48.6
– – HEG –

Total – MEG 392.9 0.485± 0.001

– – HEG – 0.245± 0.001

aObservation Start/End times are in UT.

bNet exposure time, after screening and deadtime correction, in ks.
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Table 2. Soft X-ray absorption lines in 2011 Chandra HETG Spectrum

IDa Eb
atomic Ec

quasar EWc ∆Cd

O VIII 653.5 [18.972] 654.4+0.1
−0.3 [18.946] −0.8± 0.3 9.8

O VIII – 733.3+0.5
−0.9 [16.908] −1.6± 0.5 20.4

FeIX -X 2p− 3d – 750.4± 1.2 [16.522] −1.5± 0.6 18.0
NeV 871.4 [14.228], 873.7 [14.191] 873.3± 0.5 [14.197] −1.2± 0.4 15.6
NeVI 885.0 [14.010], 883.3 [14.036] 884.5± 0.5 [14.017] −1.7± 0.4 27.3
NeVII 898.2 [13.804] 897.7± 0.4 [13.811] −1.6± 0.5 29.9
NeVIII 909.2 [13.637] 908.6± 0.3 [13.646] −1.0± 0.3 12.1
FeXIX 2p− 3d 918.0 [13.506] 918.6+0.2

−0.4 [13.497] −1.0± 0.4 15.2
Ne IX 922.0 [13.447] 922.6± 0.4 [13.439] −1.5± 0.5 25.7
FeXX 2p− 3d 967.3 [12.818] 966.4± 0.7 [12.829] −1.3± 0.5 17.2
FeXX 2p− 3d 987.8 [12.552] 986.4± 0.8 [12.569] −1.2± 0.4 14.7
FeXXI 2p− 3d 1000.9 [12.387] 1010.1± 0.8 [12.274] −0.9± 0.4 9.8
NeX 1021.5 [12.137], 1022.0 [12.132]1022.8± 0.4 [12.122] −1.8± 0.3 56.6
FeXXII 2p− 3d 1053.6 [11.768] 1052.9± 1.0 [11.766] −1.0± 0.4 13.6
Ne IX 1s− 3p 1073.8 [11.546] 1074.1± 0.7 [11.543] −1.0± 0.3 18.5
Ne IX 1s− 4p 1127.1 [11.000] 1128.6± 0.6 [10.986] −1.2± 0.3 36.3
Ne IX 1s− 6p 1165.0 [10.642] 1165.5± 0.7 [10.638] −0.7± 0.3 11.2
NeX 1s− 3p 1210.9 [10.239] 1211.7± 0.5 [10.232] −0.6± 0.3 11.6
Mg VI 1276.8 [9.711] 1276.9± 0.9 [9.710] −0.7± 0.3 12.6
Mg VII 1291.6 [9.599] 1294.5± 1.3 [9.578] −0.7± 0.3 10.8
Mg VIII 1306.4 [9.491], (1304.2 [9.507]) 1306.4± 0.7 [9.491] −1.4± 0.3 41.8
Mg IX 1323.1 [9.371] 1322.6± 1.1 [9.374] −0.6± 0.3 9.7
Mg XI 1353.1 [9.163] 1352.7± 0.8 [9.166] −0.8± 0.3 18.2
Mg XII 1472.6 [8.419], 1471.7 [8.425] 1473.0± 0.5 [8.417] −1.2± 0.2 47.3
Mg XI 1s− 3p 1579.3 [7.851] 1581.3± 0.9 [7.841] −0.6± 0.3 12.6
Si VIII 1772.8 [6.994] 1772.6± 0.6 [6.994] −1.3± 0.3 38.8
Si IX 1792.2 [6.918], (1788.2 [6.933]) 1791.9+0.9

−1.2 [6.919] −0.9± 0.3 19.2
Si X 1810.3 [6.849], 1807.3 [6.860] 1809.6+1.4

−2.2 [6.851] −0.8± 0.3 15.5
Si XI 1830.6 [6.773] 1830.2± 1.1 [6.774] −0.7± 0.3 14.1
Si XIII 1866.4 [6.643] 1866.0± 0.9 [6.644] −1.0± 0.3 23.5
Si XIV 2006.1 [6.180], (2004.8 [6.184]) 2007.0± 1.2 [6.178] −0.8± 0.4 12.3

a Line identification. Lines correspond to the1s− 2p transition unless stated.

bKnown atomic line energy in eV. Values are from www.nist.gov, Behar et al. (2001) for Fe M-shell
UTA and Behar & Netzer (2002) for inner shell Ne, Mg, Si. The corresponding wavelength in̊A is given
within brackets.
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cMeasured line energy and equivalent width in quasar rest frame, units eV. The corresponding mean
wavelength value in̊A is given within brackets.

dImprovement in C-statistic upon adding line to model.
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Table 3. Soft X-ray Lines identified in 2011 XMM-Newton RGS.

Line IDa Eb
lab Ec

quasar Ed
obs

1. NVI 1s → 2p 430.7 [28.787] 430.3 [28.813] 405.1 [30.606]
2. CVI 1s → 3p 435.5 [28.469] 435.6 [28.463] 409.8 [30.255]
3. CVI 1s → 4p 459.4 [26.988] 459.0 [27.012] 432.3 [28.680]
4. CVI 1s → 5p 470.4 [26.357] 470.7 [26.340] 443.2 [27.975]
5. CVI 1s → 6p 476.4 [26.025] 476.0 [26.047] 448.1 [27.669]
6. CVI K-edge 489.9 [25.308] 489.7 [25.318] 460.0 [26.953]
7. NVI 1s → 3p 496.7 [24.962] 497.3 [24.931] 467.4 [26.526]
8. NVII e 2p → 1s 500.4 [24.777] 500.3 [24.782] 470.2 [26.368]
9. NVII 1s → 2p 500.4 [24.777] 501.1 [24.742] 470.9 [26.329]
10. NVI 1s → 4p 521.6 [23.770] 521.8 [23.761] 491.1 [25.246]
11. OV 1s → 2p 554.5 [22.360] 554.2 [22.372] 521.8 [23.761]
12. OVII e 564 [21.983] 530 [23.393]
13. OVI 1s → 2p 562.6 [22.038] 564.0 [21.983] 530.1 [23.389]
14. OVI 1s → 2p 568.2 [21.821] 568.6 [21.805] 535.2 [23.166]
15. NVII 1s → 3p 592.9 [20.911] 592.9 [20.911] 558.1 [22.215]
16. NVII 1s → 4p 625.4 [19.825] 625.0 [19.837] 588.3 [21.075]
17. NVII 1s → 5p 640.4 [19.360] 640.2 [19.366] 602.6 [20.575]
18. OVIII 1s → 2p 653.5 [18.972] 653.3 [18.978] 614.9 [20.163]
19. OVIII e 2p → 1s 653.5 [18.972] 654.5 [18.943] 615.1 [20.157]
20. OVII 1s → 3p 665.6 [18.627] 665.9 [18.619] 626.8 [19.781]
21. OVII 1s → 4p 697.1 [17.786] 697.6 [17.773] 656.6 [18.883]
22. OVII 1s → 5p 712.7 [17.396] 712.8 [17.394] 670.9 [18.480]
23. OVII 1s → 6p 720.7 [17.203] 721.2 [17.191] 678.8 [18.265]
24. Fe M UTA
25. OVIII 1s → 3p 774.6 [16.006] 774.4 [16.010] 728.9 [17.010]
26. FeXVII 812.4 [15.261] 764.7 [16.213]
27. OVIII 1s → 4p 816.9 [15.177] 816.4 [15.187] 768.4 [16.135]
28. FeXVII -XIX 825.9 [15.012] 777.4 [15.949]
29. OVIII 1s → 5p 836.6 [14.820] 836.2 [14.827] 787.1 [15.752]
30. OVIII 1s → 6p 847.2 [14.635] 846.8 [14.642] 797.0 [15.556]
31. NeVi 873.7 [14.191] 874.2 [14.183] 821.7 [15.085]
32. NeVII i 898.8 [13.794] 898.1 [13.805] 844.1 [14.688]
33. NeIXe 922.1 [13.446] 866.6 [14.307]
34. NeVIII i 909.2 [13.637] 909.4 [13.634] 854.7 [14.506]
35. FeXIX 916.8 [13.524] 862.9 [14.368]
36. NeIX 1s → 2p 922.0 [13.447] 921.9 [13.449] 867.7 [14.289]
37. FeXX 965.5 [12.841] 908.9 [13.641]
38. NeX 1s → 2p 1021.5 [12.137] 1021.5 [12.137] 961.5 [12.895]
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Table 3—Continued

Line IDa Eb
lab Ec

quasar Ed
obs

39. MgVIII i 1306.4 [9.491] 1306.4 [9.491] 1227.9 [10.097]
40. MgIX i 1323.1 [9.371] 1322.5 [9.375] 1243.0 [9.975]
41. MgXI 1s → 2p 1353.3 [9.162] 1352.4 [9.169] 1272.9 [9.687]
42. MgXII 1s → 2p 1472.3 [8.421] 1471.9 [8.423] 1385.4 [8.949]

a Line identification. Line number corresponds to those marked Figure 5
and Figure 6.

bKnown atomic/lab frame energy of line in units eV. The corresponding
wavelength inÅ is given within brackets. Values are from www.nist.gov

cMeasured line energy in the quasar rest frame in eV. The corresponding
wavelength inÅ is given within brackets.

dMeasured line energy in the observed frame in eV. Typical uncertainty is
within ±1eV. The corresponding wavelength inÅ is given within brackets.

ePossible emission line.

iPossible inner-shell absorption line. Known atomic energytaken from
Behar & Netzer (2002).
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Table 4. Gaussian Fits to Velocity Profiles of H and He-like Absorption Lines

Line Instrument σobs
a σint

b vout
c ∆χ2d

H-like:-
C VI Ly-β (a) RGS 320± 80 < 270 −444± 73 43.0
C VI Ly-β (b)e RGS – – −1840± 100e 16.0
N VII Ly-α (a) RGS 480± 95 360+120

−140 −450± 94 57.5
N VII Ly-α (b)e RGS – – −2020± 120e 8.2
O VIII Ly-α RGS 297± 65 < 200 −353± 62 47.0
NeX Ly-α HEG 415± 135 395+170

−145 −227± 123 33.1
Mg XII Ly-α HEG < 120 – < 40 31.2
Si XIV Ly-α HEG < 125 – < 340 8.7
He-like:-
N VI He-α (a) RGS 320± 90 < 280 −428± 88 26.2
N VI He-α (b)e RGS – – −1990± 120e 12.1
O VII He-β RGS 600± 180 460+220

−280 −900± 180 22.3
Ne IX He-β HEG 440± 190 420+180

−200 < 234 14.1
Mg XI He-α HEG 310± 175 < 455 < 170 7.0
Si XIII He-α HEG < 120 – < 163 8.8

aObserved1σ width of absorption line in km s−1.

aIntrinsic 1σ width of absorption line in km s−1 after correcting for instrument
spectral resolution.

cVelocity shift of absorption line in km s−1. Negative values donate blue-shift.

dImprovement in fit statistic after modeling Gaussian absorption profile.

ePossible higher velocity component of absorption line.
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Table 5. Warm Absorber Parameters from RGS and HETG Spectra

Component Parameter RGS 2011 HETG 2011 HETG 2002

Power-Law Γ 2.32± 0.08 2.13+0.11
−0.10 = 2011t

(uncovered) funcov
a 0.39+0.03

−0.02 0.23± 0.03 0.18± 0.02

Warm Absorber NH
b 2.12± 0.07 2.10+0.19

−0.23 1.43+0.34
−0.37

(Component 1) log(ξ/erg cm s−1)c 1.27± 0.02 1.15± 0.05 0.91± 0.16

vout
d −480± 40 −315± 40 −290± 150

∆C or∆χ2e – 2065 176.2 –
Warm Absorber NH

b 1.50± 0.20 1.5+0.3
−0.5 1.2+0.9

−0.7

(Component 2) log(ξ/erg cm s−1)c 2.04+0.04
−0.07 2.14+0.10

−0.11 2.03+0.23
−0.13

vout
d −470± 60 −260+30

−60 −150+130
−140

∆C or∆χ2e – 244.6 148.1 –
Warm Absorber NH

b 3.6± 1.3 1.7+0.7
−0.6 2.3+2.5

−1.4

(Component 3) log(ξ/erg cm s−1)c 2.80+0.05
−0.07 2.88+0.11

−0.14 2.9+0.4
−0.3

vout
d < 130 < 70 −380+200

−220

∆C or∆χ2e – 18.5 33.7 –
Partial Coverer NH

b 60.0f 55+2
−3 = 2011t

(pc 1) log(ξ/erg cm s−1)c 1.0f 1.04+0.08
−0.11 = 2011t

fcov1
g 0.61± 0.05 0.40± 0.10 0.39± 0.07

∆C or∆χ2e – 213.1 193.1 –
Partial Coverer NH

b – 690+90
−100 = 2011t

(pc 2) log(ξ/erg cm s−1)c – 1.04f = 2011t

fcov2
g – 0.37± 0.10 0.43± 0.11

∆C or∆χ2e – – 31.6 –
Total Fluxh F0.5−2.0 1.80± 0.01 1.33± 0.01 0.75± 0.01

F2.0−10.0 – 3.8± 0.1 2.5± 0.1

aUncovered fraction of power-law component.

bHydrogen column density, units×1021 cm−2.

c Log ionization parameter.

dOutflow velocity in units km s−1. Negative values indicate outflow.

eImprovement in either C-statistic (HETG) orχ2 (RGS) upon the addition of the com-
ponent to the model.

f Indicates parameter is fixed.

gCovering fraction of partial covering component

h0.5–2.0keV or2− 10 keV band flux, units×10−11 erg cm−2 s−1.
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tParameter is tied to the 2011 HETG value.
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Table 6. Soft X-ray Emission Lines in 2011 RGS and Chandra HETG Spectra

Line ID Ea
quasar Fluxb EWc σv

d FWHMe ∆χ2 or∆Cg

RGS:-
C VI Ly-α 363+2.5

−3.5 [34.155] 34+14
−11 2.5+1.0

−0.8 4400+500
−600

t 10200+1200
−1400

t 43.9
N VI 419.3+1.5

−2.0 [29.569] 9.2+2.6
−3.2 1.1± 0.4 1800+900

−600 4200+2100
−1400 16.6

N VII Ly-α 498.7± 0.2 [24.861] 11.3+4.5
−1.8 0.9+0.4

−0.2 340± 130 780± 300 75.1
O VII (broad) 564.5± 0.9 [21.964] 38.3+4.2

−4.9 8.3+0.9
−1.1 4400+500

−600 10200+1200
−1400 345.1

O VII (narrow) 561± 1 [22.100] 4.8± 2.0 0.9± 0.4 < 530 < 1250 16.0
O VIII Ly-α 654.5± 1.0 [18.943] 6.4± 1.5 1.7± 0.4 1650+1400

−700 3900+3300
−1600 28.8

Ne IX 905.1± 1.3 [13.698] 1.2± 0.5 0.9± 0.4 < 1260 < 2700 9.7
O VII lineh:-
O VII (f) 561.0f [22.100] 26± 4 5.1± 0.8 3160+400

−600 7300+1000
−1500 –

O VII (i) 568.6f [21.805] 9± 6 1.7± 1.1 – – –
O VII (r) 573.9f [21.604] < 9 < 1.7 – – –
HETG:-
O VII 567± 5 [21.867] 20+11

−9 7.4+4.1
−3.3 4300+2000

1600 9900+4600
−3700 17.0

Ne IX (narrow) 905.3± 0.9 [13.695] 0.9+0.6
−0.5 1.0± 0.6 < 600 < 1400 10.6

Ne IX (broad) 940+6
−30 [13.190] 2.6+3.2

−1.6 3.0+3.7
−1.8 2100+1900

−1300 4800+4400
−3000 9.8

aMeasured line energy in quasar rest frame, units eV. The corresponding mean wavelength value inÅ is given
within brackets.

b Line photon flux, units×10−5 photons cm−2 s−1

cEquivalent width in quasar rest frame, units eV.

d1σ velocity width, units km s−1.

eFWHM velocity width, units km s−1.

f Indicates parameter is fixed.

gImprovement in C-statistic or∆χ2 upon adding line to model.

hRGS deconvolution of broad OVII line into forbidden, intercombination and resonance line components.

t Line velocity width of CVI line tied to broad OVII line.
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Table 7. Properties of the fully covered warm absorber components (“components 1, 2, and 3”) and the
highly ionized component (“component high”) discussed in§4.4. The values ofNH, log ξ andvout are
those inferred from the 2011 RGS observations (see Table 5) for components 1, 2, and 3, and from the

HETG observations for the highly ionized absorber. See textfor full definitions of the parameters.

Parameters component 1 component 2 component 3 component high

NH (×1021 cm−2) 2.12±0.07 1.50±0.20 3.6±1.3 >150
log(ξ/erg cm s−1) 1.27± 0.02 2.04+0.04

−0.07 2.80+0.05
−0.07 4.8+1.0

−0.8

vout
d (km s−1) −480± 40 −470± 60 < 130 −15600± 2400

rmin (cm)/(pc) 2.8×1019/9.0 2.9×1019/9.4 3.8×1020/ 122 2.6×1016/0.008
rmax

a (cm)/(pc) 5.3×1019/17.2 1.2×1022/3940 8.8×1020/285 2.1×1017/0.068
Ṁout (×1025 g/s) [1.9-3.6] [1.4-560] [11.8-27.3] > 4.0

Ṁout (Ṁ /yr) [0.3-0.6] [0.2-89] [1.9-4.3] > 0.6

ĖK/Lbol
b (%) [5.1× 10−4-9.8× 10−4] [3.5× 10−4-0.14] [2.4× 10−4-5.4× 10−4] > 1.1

Ṗout/Ṗrad (%) [0.63-1.2] [0.45-184] [1.1-2.5] > 46

armax is inferred from eq. 6.2.3, except for component 1 for whichrmax corresponds torvar inferred from recombi-
nation time-scale, see§6.2.2.

bLbol = 4.3× 1045 erg s−1 (Dunn et al. 2008), andLEdd = 3.0× 1046 erg s−1.
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