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ABSTRACT 

 

 The chemical, structural and thermomechanical properties of SiC and diamond CVD-

monofilaments have been investigated. Electron and Raman microprobe analyses showed graded 

radial atomic and phase distributions in the SiC filaments. Thermomechanical investigations 

(tensile/bending elastic modulus/creep tests) were carried out on single filaments and these 

properties were correlated with the physicochemical features. The thermal behaviour of the CVD-

SiC filaments is strongly related to the nature and the amounts of intergranular secondary phases 

(free carbon or silicon). The strong covalent bonds and the microcrystalline state of the CVD-

diamond filaments give rise to an outstanding thermal behaviour. 

 

 

1 INTRODUCTION 

 

 Titanium matrix composites (TMCs) combine the high strength, stiffness and creep 

resistance of silicon carbide (SiC) monofilaments with the high ductility, toughness and corrosion 

resistance of titanium alloys. These high specific properties make TMCs highly innovative 

https://doi.org/10.1016/j.jeurceramsoc.2004.06.013


materials for aeronautic engines, as their use in a bladed disc may yield a 55% weight reduction 

[1-2]. Unfortunately, a major obstacle to their industrial use is the high materials costs and the 

complexity of the manufacturing processes known to date (such as the foil-fibre-foil method or 

the electron beam physical vapour deposition (EB-PVD) tape/monofilament coating [1-3]). 

An alternative and more affordable processing route is the liquid-state coating of the 

filament with Ti-alloy recently developed by Snecma-Moteurs [4]. This process is fast (the 

residence time of the fibres in the molten alloy is only of few tenths of a second) and high 

temperature (close to the Ti-alloy melting temperature); and it does, however, require particularly 

high strength and thermally stable monofilament reinforcement. This has led to the development 

of new monofilaments at the firm QinetiQ, the properties of which are discussed here. 

 High performance SiC monofilaments are prepared by chemical vapour deposition (CVD) 

on an electrically heated filament substrate. The market of CVD-SiC filaments is mainly shared 

by two companies; Specialty Materials Inc. (formerly Textron) in Lowell (USA) and QinetiQ 

(formerly DERA) in Farnborough (UK), providing, respectively, the SCS-6 and SM1140+ 

monofilaments. A small diameter tungsten wire (15 m) is used as the substrate by QinetiQ. 

Alternatively, a carbon wire of relatively large diameter (33 m) is used by Specialty Materials. 

The CVD-SiC sheath is deposited at about 1200°C from chloromethylsilanes in the presence of 

hydrogen and, in some cases, hydrocarbon species. The diameter of the SCS-6 filament is 140 

m. The CVD-SiC sheath consists of a carbon rich SiC layer near the carbon core and a near 

stoichiometric SiC outer layer [5-6]. The filament is subsequently covered by a 3 m 

multilayered pyrocarbon-based coating. The diameter of the SM1140+ filament is 105 m. The 

CVD-SiC coating is stoichiometric near the tungsten core and silicon-rich in the outer part [7]. 

Alternatively, CVD-diamond filaments are very attractive candidates for TMCs 

reinforcement [8-9]. Current diamond growth rates achieved by plasma enhanced CVD (PE-

CVD) are still moderate as compared to those for CVD-SiC, but active research on diamond PE-

CVD processing has recently given rise to promising advances [10]. CVD-diamond filaments 

display outstanding Young’s modulus values, close to that for bulk diamond (1200 GPa) [9]. 

Moreover, they are expected to show a very high creep resistance and maintain their stiffness up 

to high temperatures in inert conditions, as long as graphitization does not occur (T>1600°C in 

vacuum or argon). 

This paper reports a detailed and comparative study of the chemical, structural and 

thermomechanical properties of commercial and experimental CVD filaments. The objective is to 

evaluate the compatibility of the filaments with the liquid coating process and, for a better 



understanding and modelling of the Snecma-Moteurs process (e.g. the calculation of the thermal 

residual stresses), to acquire various thermomechanical data within a wide temperature range. 

 

2 MATERIALS 

 

 Four types of CVD-SiC filaments have been studied: SCS-6 and Ultra SCS from 

Speciality Materials Inc. and SM1156 and SM2156 from QinetiQ (table 1). The Ultra SCS is an 

upgrading of the SCS-6. It is reported to have a significantly higher failure strength [11]. The 

SM1156 filament is an early development version similar to the commercial SM1140+ but with 

an outer diameter of 147 m instead of 105 m (Fig. 1). The SM2156 filament is a recent 

material from QinetiQ, now undergoing production trials. In order to reduce the amount of free 

silicon co-deposited with SiC, to subsequently improve the stiffness and thermal stability of the 

filament, hydrocarbon species were added to the dichloromethylsilane/hydrogen mixture used for 

the SM1140+ or SM1156 filament [7]. SM2156 is 140m in diameter and has a tensile strength 

between 4 – 5GPa. 

The CVD-diamond filament was processed at the University of Bristol. The diamond 

coating was deposited on a tungsten wire (50 m in diameter), in a hot filament CVD reactor 

using 1% methane in hydrogen as the precursor gas mixture [9]. The outer diameter of the 

resulting W/diamond filaments ranges from 120 to 150 m (i.e. 82-89 vol.% diamond) (Fig. 2). 

 

3 EXPERIMENTAL 

 

 The morphology and the microstructure of the filaments were characterised with a field 

emission gun scanning electron microscope (FEG-SEM) (Hitachi S-4500, Japan). 

 The local chemical composition of the filaments was determined by electron probe 

microanalysis (EPMA) (SX 100 from CAMECA, France). The analyses were conducted on 

polished cross-sections of filaments. EPMA measurements were performed in the wavelength 

dispersion mode (10 kV, 10 nA), with a thallium acid phthalate (TAP) crystal analyser for Si-K 

and a large multilayer pseudo-crystal analyser (LPC2) for C-K. A SiC single crystal was used as 

standard. The spatial resolution was of the order of 1 to several m3. Linescan data were recorded 

along the radius of the filaments with a 2m stage step. 

 Raman microspectroscopy (RMS) is very useful to examine the microstructure of the 

filaments at the micrometer scale [12-14]. RMS analyses (LABRAM 010 from Dilor, France) 



were carried-out on the same samples as those for EPMA. The excitation source was the 633 nm 

emission line of a He/Ne laser. The power was kept below 0.5 mW to avoid heating of the 

sample. The objective of the microscope (100) allowed a lateral resolution of the laser probe 

close to 1 m (the depth resolution being of the order of one to several hundreds of nanometers, 

depending on the material). As for EPMA, linescan measurements were recorded along the 

diameter of the fibres. 

 The diameter of the filament (d0) was measured by SEM and laser interferometry. Tensile 

tests were carried out at room temperature to measure the Young’s modulus of the 

monofilaments. Owing to the high stiffness of the samples, the assessment of strain was 

examined with a particular attention. A direct strain measurement device was used (to avoid any 

compliance effect), derived from a commercial extensometer modified to allow the connection to 

the filament (L0=30 mm) (see Appendix, Fig. A1). 

 Longitudinal thermal expansion measurements were performed with a thermomechanical 

analyser device (TMA SETSYS 2400, from Setaram, France) specifically developed for the 

tensile testing of single filaments (L0 = 20 mm, F = 210-2 N) (Appendix, Fig. A2). The thermal 

strain (L(T)=L(T)/L0) and the coefficient of thermal expansion (CTE, L=dL/dT) were 

recorded versus temperature on both heating and cooling of the samples under argon (105 Pa) up 

to 1600°C (10°C min-1). A standard graphite specimen (AXM5Q from POCO Graphite) was used 

to correct the thermal expansion and the method was firstly validated by testing a tungsten wire. 

 Three-point bending tests were performed with a specific thermomechanical testing 

device (TMA SETSYS 2400, Setaram) on single filaments, at room and high temperature in 

argon (105 Pa) (Appendix, Fig. A3). These tests allowed both the measurements of the bending 

modulus versus the temperature and the flexural creep. The specimens were all loaded with a l0 = 

12 mm-span alumina device. Both the applied load (F, F < 310-2 N) and the filament deflection 

(y) were recorded versus time and temperature with a high resolution (10-4 N and 4 nm, 

respectively). The bending modulus (Ebend) and both the maximum strain (max) and applied stress 

(max) at the surface of the filament were calculated from the load (F) and the deflection (y) 

assuming the ideal three point bending theory (thin and homogeneous cylinder, low deflection...). 
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 Bend stress relaxation (BSR) tests were conducted on the filaments in argon (105Pa) at 

temperature T (T=1000-1500°C). The samples were set in a graphite tool imposing a constant 

curvature R0 and heat treated for 1 h [15]. The thermal behaviour of the samples is characterised 

by the stress relaxation ratio m = 1-(R0 / R), where R0 and R are respectively the initial and final 

curvature of the filaments (R0 = 60 and 150 mm for the SiC and diamond filaments, respectively). 

 

4 RESULTS AND DISCUSSION 

 

4-1 Chemical and structural analyses 

 

SCS-6 filament 

 Linescan EPMA data along the cross-section of the CVD-SiC coating of the SCS-6 

filament are shown in figure 3. This filament displays a free carbon excess of about 5 at.% from 

the interface with the carbon core to about 20 m. The free carbon concentration suddenly 

decreases and stabilises to a near stoichiometric composition (with a slight silicon excess) along 

the last part of the coating up to the CVD-SiC/pyrocarbon coating interface. 

 From SEM observations, the CVD-SiC sheath consists of two main distinct parts, the first 

layer being actually composed of three intermediate layers [5-6, 11]. The main inner coating has 

a fine microstructure whereas the outer part is significantly coarser, with radial columnar grains. 

 Figure 4 shows the Raman spectra recorded along the radius of the SCS-6 filament. As 

already mentioned by other authors, the first spectra recorded along the inner CVD-coating near 

the carbon core show simultaneously crystalline SiC and free aromatic carbon features [12-14]. 

This is in good agreement with the EPMA profile and confirms the coexistence of both the SiC 

and free carbon phases. The two broad bands at 1600 cm-1 and 1350 cm-1 are assigned 

respectively to the G peak with the E2g symmetry, characteristic of graphite (involving vibrations 

within the graphene sheets) and to the D peak (generally associated with a broadening of the G 

peak) characteristic of polycrystalline or disordered carbons [16-17]. The SiC Raman features 

appear within the 600-1000 cm-1 (optical modes) and the 200-600 cm-1 (acoustical modes) 

regions. In the pure cubic -SiC polytype, only two sharp and well defined transverse optical 

(TO) and longitudinal (LO) phonons are expected, respectively, at 796 and 972 cm-1 [18]. In the 

present case, the occurrence of acoustic features and of the two broad components in the optical 

region point out a heavily faulted -SiC structure involving grain boundaries and a high density 

of stacking faults [14]. Consistently with the EPMA profiling, the carbon Raman features 



suddenly vanish within the outer part of the coating (Fig. 4). The faulted -SiC phase is the only 

one observed, the intensity of the TO peak slightly decreasing outward, owing to the decrease of 

the SiC grain size. It is worthy of note that although free silicon is not evidenced in the outer part 

of the as-processed filament, it was detected in small amounts as a weak, sharp peak at 520 cm-1 

after re-crystallisation at 1400°C. 

 

Ultra SCS filament 

The radial elemental composition of the Ultra SCS filament differs from that of the SCS-

6. The carbon concentration is significantly higher near the carbon core (about 20 at.% of free 

carbon) (Fig. 5). There is a gradual decrease in free carbon with radius, the bulk of the fibre being 

essentially stoichiometric SiC. The carbon concentration slightly increases again near the surface 

of the filament (4 at.% of free carbon). 

 Whereas the SCS-6 filament shows a pronounced transition in the microstructure of the 

CVD-SiC sheath, the SCS Ultra exhibits a relatively regular and fine-grained microstructure 

throughout the whole SiC layer (Fig. 6). The first deposit apparently consists of very fine 

nanocrystallites. A radially oriented columnar structure gradually appears at increasing distance 

from the core, with grains up to about 1 m long at approximately 10 m from the core. The 

columnar shape of the SiC crystallites is still observed along the rest of the deposit but their size 

gradually decreases until the surface of the filaments. Such features agree well with a previous 

TEM investigation [19], although an homogeneous microstructure with relatively equiaxial SiC 

grains was also described by other authors [11]. 

 The Raman spectrum recorded from the carbon core/CVD-SiC interface shows 

simultaneously disordered carbon (the G and D bands at 1350 and 1600 cm-1) and faulted -SiC 

(TO and LO peaks respectively at 793 cm-1 and 967 cm-1) features (Fig. 7). The presence of very 

intense G and D bands, together with weak and broad SiC peaks near the carbon core/CVD-SiC 

interface, is indicative of a large excess of free carbon and a small SiC grain size [11]. In 

agreement with the EPMA data, the intensity of the carbon bands rapidly decreases (and the 

intensity of the SiC peaks increases) away from carbon core. The G and D bands broaden and 

combine to a weak and wide single band (1100-1700 cm-1) in the central part of the SiC layer, 

which is characteristic of a very disordered form of carbon. The intensity of the carbon band 

slightly increases again near the surface, confirming the free carbon enhancement evidenced by 

EPMA. The LO peak is significantly more intense, both the TO and LO peaks are sharper and the 

acoustic modes (around 300-650 cm-1) are much less intense in the central part of the Ultra SCS 



CVD-layer than in the outer part of the SCS-6 filament. Such features suggest a better crystalline 

state of the CVD-SiC (i.e. closer to -SiC) and/or a likely different microstructure, as compared 

to the highly oriented columnar texture of the SCS-6 outer sheath [11, 14]. This microstructure 

may be related to the presence of free carbon at the SiC grain boundaries. This could lead to 

smaller crystallites and some deviation from the usual textured CVD structure [14]. As already 

suggested by the SEM analyses, the slight decrease in intensity (and increase in width) of both 

the TO and LO peaks from the inner to the outer part of the SiC sheath, supports a gradual 

reduction of the crystallite size during deposition. 

 

SM1156 filament 

 The SM1156 filament consists of stoichiometric SiC near the tungsten core only (Fig. 8). 

The silicon concentration gradually increases outwards to reach a free silicon excess of about 10 

at.%. 

 Very large radial columnar grains are found at the W/CVD-SiC interface of the SM1156+ 

filament (Fig. 9). The central part of the etched filament shows an irregular concentric 

morphology due to interruptions of the CVD-grain growth. The microstructure becomes 

gradually finer outwards until the surface, with no apparent texture at the outer part of the CVD-

layer, as evidenced by FEG-SEM (Fig. 9). 

 A particularly sharp and intense SiC-TO peak (790-800 cm-1) is observed near the 

tungsten core, indicating a SiC highly crystalline state (Fig. 10). The spectrum also shows very 

broad additional features within both the optical and acoustical regions, typical of a heavily 

faulted -SiC structure (grain boundaries, stacking faults). The absence of a well defined LO 

mode (which is observed in the Ultra SCS) is related to the preferential orientation of the (111) 

crystallographic planes parallel to the CVD-SiC coating (i.e. to the fibre axis) which is 

equivalent, in the present case, to the Raman scattering direction. The SiC-TO feature broadens 

and weakens rapidly outwards, showing a strong decrease of the SiC grain size from micro to 

nanocrystallites (as shown by the SEM analysis). An additional broad band at 400-550 cm-1 

appears while reaching the outer part of the filament, which is assigned to a large amount of 

amorphous free silicon (as suggested by EPMA). 

 

SM2156 filament 

 The SM2156 filament shows a slight carbon excess (about 8 at.% of free carbon) close to 

the tungsten core (Fig. 11). EPAM indicates the free carbon amount fluctuates slightly along the 



first 20 m of the coating. The composition remains almost stoichiometric throughout the rest of 

the CVD-sheath, though with a very slight carbon excess. 

The microstructure of the SM2156 filament is very similar to that of the Ultra SCS, but 

with a smaller SiC grain size (Fig. 12). The initial coating is nanocrystalline and radial columnar 

sub-micrometer grains appear at increasing distance from the core. A discontinuity in the CVD 

growth is observed at about 10m from the core interface. The columnar shape of the SiC 

crystallites is still observed along the rest of the deposit but their size progressively decreases 

until the surface. 

 As in the central part of the Ultra SCS CVD-coating, the Raman carbon features are 

visible near the W core/CVD-SiC interface as a single broad band at 1100-1700 cm-1, 

characteristic of a very disordered form of carbon (Fig. 13). The evolution of the intensity of this 

band along the radius is consistent with the free carbon concentration obtained by EPMA. The 

SiC phase appears rather well crystallised, though in a more faulted form than in the Ultra SCS. 

As in the Ultra SCS, no free silicon (400-550 cm-1) is detected throughout the filament. 

 

CVD-diamond filament 

 Whereas all the CVD-SiC filaments have smooth surfaces and relatively fine 

microstructure, the CVD-diamond deposit is rough and highly textured with large columnar 

microcrystals (Fig. 2). Raman spectra recorded along the cross-section of the diamond coating are 

rather similar. In addition to an intense photoluminescence background, the spectra clearly show 

the sharp diamond characteristic peak (triply-degenerate optical phonon) at about 1335 cm-1 (Fig. 

14). The peak position changes slightly, probably because of local stress variations [9]. 

 

4-2 Thermo-mechanical analyses 

Elastic modulus 

 All the filaments show a linear and brittle behaviour in tension. The average Young’s 

modulus (as measured in tension) of the various filaments (Etens) is shown in Table 1. The 

Young’s modulus of the three CVD-SiC filaments currently ranges from 330 to 385 GPa whereas 

it is as high as 930 GPa for the CVD-diamond filament. Using the Rule of Mixtures, the modulus 

of the CVD-diamond coating alone reaches 1030 GPa, close to the theoretical value for bulk 

diamond (1200 GPa) [8]. The bulk modulus of pure SiC is generally accepted to be close to 450 

GPa. The lower values obtained from the CVD-SiC filaments are partly due to the contribution 

from the outer pyrocarbon coating, the core and the CVD-SiC coating itself, i.e. the 

microstructure of the SiC phase as well as the presence of possible secondary phases. The 



SM1156 filament shows a modulus significantly lower than those of the near-stoichiometric 

SM2156 and Ultra SCS filaments. Such a low value is undoubtedly due to the rather high 

amounts of free silicon in the former (Esi = 190 GPa, for an average silicon fraction of about 5 

vol.%). The Young’s modulus of the SCS-6 filament is intermediate, with a value in-between 

those of the silicon-rich and the two near stoichiometric filaments. The lower stiffness of the 

SCS-6 filament is likely related to the free carbon phase co-deposited with SiC within the inner 

region of the CVD-layer. 

 The bending modulus (Ebend) of the various filaments is also reported in Table 1. Ebend is 

rather characteristic of the near-surface part of the filament which is more stressed in bending 

than the core. This is indeed the case for the 50 m core CVD-diamond filament, where the 

bending modulus is closer to the value expected for bulk diamond. The contribution of the thicker 

pyrocarbon coating is also thought to be responsible for the lower bending modulus of both 

SM1156 and SM2156 as compared with that of SCS-6 and Ultra SCS. Ebend may be also affected 

by the chemical and structural gradient along the CVD-SiC layer itself. The presence of a more 

compliant layer located either near the core (the free carbon rich layer in SCS-6) or near the 

surface (the free silicon rich layer in the SM1156), respectively, results in a higher or lower value 

of Ebend with respect to Etens. 

 The evolution of the bending modulus versus test temperature is shown in Fig. 15. A 

decrease of Ebend is observed with increasing T for all the filaments, but to a considerably 

different extent. The CVD-diamond and the nearly-stoichiometric CVD-SiC filaments show the 

best thermal stability. The CVD-diamond material has strong sp3 covalent bonds and a large grain 

size. It therefore shows only a very limited decrease in stiffness with temperature. The slight drop 

of Ebend with T in this case may be assigned essentially to the contribution of the 50 m tungsten 

core and to a minor superficial graphitisation (as observed by RMS) occurring at high 

temperature. The Ultra SCS filament shows the best thermal behaviour of all the CVD-SiC 

specimens. This is not only due to its nearly stoichiometric composition but also, to the existence 

of the free carbon phase. Free carbon as an intergranular phase is expected to show better thermal 

stability than free silicon (melting point = 1410°C). The detrimental effect of intergranular free 

silicon upon the elastic modulus is clearly noticeable for the SCS-6 filament [20], in which the 

slightly silicon-rich CVD-SiC layer is located at the highly stressed outer part. A similar but 

much more accentuated phenomenon is apparent for the SM1156 filament which contains higher 

amounts of free silicon near the surface. 

 

Longitudinal thermal expansion 



 The longitudinal thermal expansion of the SCS-6 filament has already been investigated 

by several authors [21-23]. The thermal expansion (L) of all the filaments is presented in figure 

16. 

 The thermal behaviour of the SCS-6 filament is similar to that previously reported in 

literature [21-23]. L increases almost linearly from room temperature up to 1600°C (with an 

average CTE value of L = 5.15 10-6 K-1 within T = 200-1000°C), except a slight and sudden 

shrinking around 1350-1400°C. This phenomenon is reversible but slightly delayed on cooling 

(1350-1280°C). It is assigned to the fusion of the small amounts of free silicon present in the 

outer CVD-SiC layer, as evidenced by RMS after annealing [12]. 

 The thermal behaviour of the SM1156 filament shows a similar reversible shrinkage at 

about 1350-1420°C but with a significantly higher amplitude. L is also close to 5 10-6 K-1, a 

typical value for stoichiometric SiC (L = 5.1 10-6 K-1 for T=200-1000°C), on both heating and 

cooling. Such shrinkage phenomenon on heating (expansion on cooling, respectively) is 

unambiguously due to the presence of large amounts of free silicon (10 at.%) in the outer CVD 

sheath of this filament. 

 The SCS Ultra and the SM2156 filaments both show a linear and almost entirely 

reversible thermal expansion behaviour within the whole tested temperature range. Such a 

behaviour is consistent with the absence of free silicon, as evidenced above by the chemical and 

structural analyses. The coefficient of thermal expansion is respectively equal to 5.1 and 5.2 10-6 

K-1 within T = 200-1000°C for both filaments. A minor evolution of L is however noticed 

beyond 1250°C for the SM2156 filament and 1400°C for the Ultra SCS filament. This 

phenomenon is not reversible (as opposed to the discontinuity due to the presence of free silicon) 

and might be related to a structural evolution of the material, e.g. a possible ordering of the free 

carbon phase at high temperature. 

 The diamond filament also displays a quasi-linear and reversible thermal expansion. This 

behaviour is indicative of the apparent thermal stability of the CVD-diamond coating in inert 

atmosphere up to 1600°C. As expected, the CTE is significantly lower than that of the SiC-based 

filaments. It increases continuously with the temperature, from 3 10-6 K-1 at 200°C, to 3.8 10-6 

K-1 at 1400°C. The CTE of bulk diamond at room temperature is generally accepted to be of the 

order of 1-2 10-6 K-1. It is reported to increase significantly with temperature (e.g. L = 1 10-6 K-

1 at 20°C and L = 5.1 10-6 K-1 at 1130°C) [24]. Such a thermal expansion discrepancy observed 

between pure bulk diamond and the CVD filament might be related to the structural defects 

evidenced by RMS.  



 

Bending stress relaxation and bending creep 

 The thermal evolution of the BSR parameter m is presented in figure 17. A smaller 

curvature (R0=150 mm) had to be applied to the CVD-diamond filament owing to its lower 

fracture strain. For comparison, the same conditions were also used for the CVD-SiC filaments. 

The R0 value and therefore, the applied surface strain (s  d0/2R0), has a minor influence on m 

for the SiC filaments at 1500°C (Fig. 17) [25]. The BSR resistance of the SM1156 filament is 

significantly lower than that of the SCS-6 (about 250°C lower for a given m value), while they 

show similar thermal activation [25]. The Ultra SCS and SM2156 filaments show a BSR 

resistance improvement of about 150°C with respect to the SCS-6 and a slightly lower thermal 

activation. 

The CVD-diamond filament displays the best BSR resistance of all the tested filaments, 

i.e. at least 250°C higher than SM2156. 

 

 The bending creep behaviour of the various filaments is compared at 1200 and 1400°C 

(=300MPa) (Fig.18a-b). Short partial unloading cycles (300-30 MPa) were carried out during 

the creep tests to minimise the effect of friction forces and to measure the residual strains and the 

bending moduli. All the CVD-SiC filaments show only primary creep at 1200°C within the 

studied time range. The correlation between the creep behaviour and the 

composition/microstructure of the various filaments is particularly apparent. Both the near 

stoichiometric CVD-SiC filaments (Ultra SCS and SM2156) show a similar and particularly high 

creep resistance. The creep strain of the SCS-6 filament is about twice that of Ultra SCS and 

SM2156, whereas the SM1156 strain is about fifteen times that of SM2156. The discrepancy 

between the various CVD-SiC filaments is even more pronounced at 1400°C. The SCS-6 creep 

strain rate is at least five times higher than that of the Ultra SCS and SM2156 and the creep strain 

rate of the SM1156 filament was so high when loaded that it failed after only few minutes (the 

creep behaviour of the SM1156 filament was therefore not studied beyond 1200°C). 

The bending creep behaviour of the various CVD-SiC filaments was investigated as a 

function of the temperature (900-1400°C) and the load (max = 150-900 MPa). For all the 

filaments and almost the whole temperature range the maximum creep strain versus time (t) can 

be experimentally described by a simple power law: max(t) = Ctp, where C and p are numerical 

constants. Such a bending creep time dependence is similar to the tensile creep law generally 

proposed for the SCS-6 filament; i.e. a function of the temperature-compensated time  = t exp(-



Q/RT)) (where Q is the activation energy and R the universal gas constant R = 8.3144 Jmol-1K-1) 

and a power of the applied stress . The corresponding expression of the creep strain is [26-27]: 

 

)exp()( 0
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pQ
tAt np    

 

where A0 is a constant, p, the time power exponent and n, the stress exponent. When the CVD-

SiC filaments are tested in tension, using temperature and stress conditions similar to those 

examined here, the creep strain is usually less than 1%, a steady-state creep is never observed and 

the stress exponent n is very close to 1, a feature suggesting that the creep mechanism is 

controlled by diffusion [26-27]. The time and temperature dependence of the bending creep strain 

can therefore be described by the same above equation, provided that n  1. For all tested 

filaments, the bending creep curves recorded for various temperature and stress levels were fitted 

to simple power law: max(t) = Ctp. The time exponent p was determined for each type of filament 

by averaging the best-fit time power laws (table 2) and the ln C values were plotted as a function 

of ln  and 1/T (Fig. 19-20) to determine respectively the stress exponent (n), the activation 

energy (Ea) and the pre-exponential constant (A0), (Ea, table 2). 

 Figures 18-20 confirm the significant influence of the chemical/microstructural features 

on the creep resistance of the various filaments. As presumed above, and already stated by other 

authors for similar materials, the bending creep stress exponent is very similar for all tested 

filaments and near unity (Fig. 19), suggesting a diffusion controlled creep mechanism.. The 

activation energies of the SCS-6 and SM1156 filaments are very close within the temperature 

range 1000-1100°C (456-466 kJ mol-1, Table 2, Fig. 20). The creep rate of the near stoichiometric 

filaments is less temperature dependent, especially at low temperature. The SM2156 filament 

shows two distinct temperature domains with a transition at 1200°C (Q = 239 kJ mol-1 for T  

1200°C and Q = 410 kJ mol-1 for T  1200°C) (Table 2, Fig. 20). The activation energies of the 

SCS-6, SM1156 and both the Ultra SCS and SM2156 filaments at high temperature, are all near 

the range of the silicon or carbon grain boundary self-diffusion (respectively 612 kJ mol-1 and 

554 kJ mol-1 [27-28]), suggesting a common creep behaviour involving grain boundary sliding 

and controlled by grain boundary diffusion [25-26]. Their significantly different creep rates can 

be explained by the SiC grain size, as well as the nature of the grain boundary and particularly of 

the intergranular phase. The grain boundary sliding leads to intergranular normal stresses. The 

creep rate is, therefore, strongly related to the accommodation of the intergranular phase. The 



poor creep resistance of the SM1156 filament is obviously related to the particularly large excess 

of amorphous free silicon (Tf = 1410°C) and to the smaller SiC grain size of the outer layer 

(predominantly stressed in bending). Conversely, as already established for an other experimental 

filament from Textron (SCS-X), the better thermal resistance of both the Ultra SCS and SM2156 

filaments can be assigned to the presence of co-deposited free carbon [29]. The small amount of 

intergranular carbon hinders the grain sliding and therefore improves the creep resistance. Such a 

disordered aromatic carbon phase has considerably better creep resistance than  amorphous 

silicon. It is, however, likely to be subject to a slight structural evolution activated at temperatures 

close to or beyond that of the CVD process. This irreversible phenomenon might be responsible 

for the change of the activation energy occurring at 1200°C in the case of the SM2156 filament. 

 Primary creep is observed for all the filaments, at least at the initial loading stage. This 

behaviour might be assigned to concurrent SiC grain growth (the creep parameters indeed suggest 

a grain-boundary diffusion mechanism) and/or to load sharing due to the multilayered composite 

structure of the SiC-CVD filaments [25]. Steady state creep is never observed for the free silicon 

rich filaments for the studied time range, whereas it appears only after a sufficient duration (t > 

104 s) in the case of the Ultra SCS and SM2156 filaments. Raman analyses evidenced a 

significant SiC grain growth in the former, whereas crystallisation was strongly inhibited by the 

presence of the intergranular free carbon phase in the latter. Although the contribution of load 

sharing can not be excluded, the structural changes of the both the silicon carbide and the free 

carbon phases are likely to contribute extensively to transient creep. These effects have not been 

investigated in detail here because of the complexity of the flexural loading analysis. 

 The CVD-diamond filament exhibits a considerably higher creep resistance than the 

CVD-SiC filaments (Fig. 18b). Despite the large 50 m W core, the creep strain is less than 1/10 

that of the SM2156 filament. The strong C-C covalent bond, the large grain size and the absence 

of low melting temperature and/or compliant intergranular phase, are responsible for the 

exceptional thermal behaviour of the diamond filament. Besides the creep strain, the unloading 

cycles evidenced a slight and constant decrease of the bending modulus versus time. This 

phenomenon might be related to the superficial degradation of the CVD-diamond at high 

temperature, as shown by RMS. 

 

5 CONCLUSION 

 

 The SCS-6 filament consists of a free carbon-rich inner layer and a near stoichiometric 

outer layer, with a slight silicon excess. The SM1156 filament composition is stoichiometric near 



the tungsten core and turns to a large silicon excess (10 at.%) near the surface. The SM2156 

monofilament is carbon-rich near the core and near stoichiometric with a slight amount of free 

carbon all along the CVD-SiC sheath. . Ultra-SCS is similar, having slightly more free carbon 

distributed within the SiC. All these filaments contain sub-micron SiC crystals, with decreasing 

grain size when increasing the amount of the secondary phase. The CVD-diamond filament 

shows an homogeneous microcrystalline structure. 

 The thermomechanical behaviour of the CVD-SiC filaments (tensile or bending modulus 

and creep) depends on their radial composition and microstructure. The room temperature 

stiffness increases with decreasing amounts of compliant secondary phases (free carbon or 

silicon). The presence of intergranular free carbon results in an elastic modulus stable at high 

temperature and an improved creep resistance. By contrast, free silicon leads to a catastrophic 

drop of high temperature stiffness and creep resistance. The high temperature bending tests have 

shown that the filaments undergo essentially primary creep, especially in the case of the free 

silicon rich filaments. The transient creep of the free carbon containing filaments eventually 

changes to a steady state process at high temperature (T1400°C). The creep parameters (n, Ea) 

suggest a grain boundary diffusion mechanism. The increase of the amount of intergranular free 

silicon leads to a catastrophic creep rate whereas the presence of free carbon improves the creep 

resistance considerably. The transient behaviour is likely to be a consequence of the simultaneous 

SiC grain growth and the ordering of the free carbon phase. It might also be related to load 

redistribution due to the multilayered composite structure of the CVD-SiC filaments. The CVD-

diamond filament displays exceptional stiffness and creep behaviour up to high temperatures due 

to the strong C-C covalent bonds, the large grain size and the absence a low melting temperature 

and/or compliant intergranular phase. If the growth rate and the failure strain could be increased 

to reasonable levels, such filament may find uses as CMM or CMC reinforcements. 

 

ACKNOWLEDGEMENTS 

 

 The authors would like to thank Speciality Materials Inc. for the supply of filaments. They 

are also greatly indebted to M. Lahaye from CeCaMa, Pessac as well as M. Couzi and J.L. 

Bruneel from LPCM, Talence for fruitful contribution to the EPMA and RMS analyses, 

respectively. 

 

APPENDIX: description of the thermo-mechanical testing devices 

 



 Specific devices were developed for the thermo-mechanical testing of the CVD-

monofilaments. Tensile tests were carried out at room temperature with a standard tensile testing 

apparatus to measure the Young’s modulus. The strain was directly calculated from the 

elongation of the filament (to avoid any compliance effect), with a commercial extensometer that 

had been modified to allow the connection to the filament (Fig. A1). The filament was connected 

to the extensometer by means of two tinned copper clamps (to avoid any damage and early 

rupture of sample). Both the thermal expansion and the bending high temperature tests were 

carried-out with a thermomechanical analyser (TMA SETSYS 2400, from Setaram, France). A 

graphite device was specifically designed by Setaram for the longitudinal thermal expansion 

analysis of the monofilaments in tension (Fig. A2). A compact alumina three-point bending 

system was used for the high temperature modulus and creep tests (Fig. A3). 
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Table captions 

 

Table 1: Elastic modulus at room temperature of the filaments (a Øext=123 m, b Øext=143 m) 

 

Table 2: Bending creep features for the filaments (a T1200°C , b T1200°C) 



Tables 

 

 

 SCS-6 Ultra-SCS SM1156 SM2156 CVD-diamond 

d0(m) 144 146 147 141 120-150 

dcore(m) C(33+3) C(33+3) W(15) W(15) W(50) 

ecoating(m) 3 3 5 5 - 

Etensile(GPa) 3565 3855 3314 3855 93015a 

Ebend(GPa) 38510 38010 3108 35410 103030b 

 

Table 1: Elastic modulus at room temperature of the filaments (a Øext=123 m, b Øext=143 m) 

 

 SCS-6 Ultra-SCS SM1156 SM2156 

p 0.43 0.42 0.42 0.42 

n 1.040.04 0.960.02 1.07 1.010.06 

A0 2.1 10-7 1.5 10-8 6.2 10-7 4.2 10-11 a 1.4 10-8 b 

Q(kJmol-1) 46610 37218 45618 23914 a 41033 b 

 

Table 2: Bending creep features for the filaments (a T  1200°C , b T  1200°C) 



Figure captions 

 

Figure 1: Cross sections of the CVD-SiC filaments 

 

Figure 2: SEM micrograph of the CVD-diamond filament 

 

Figure 3: EPMA radial profile of the SCS-6 filament 

 

Figure 4: RMS radial profile of the SCS-6 filament 

 

Figure 5: EPMA radial profile of the Ultra SCS filament 

 

Figure 6: SEM micrograph of the Ultra SCS filament 

 

Figure 7: RMS radial profile of the Ultra SCS filament 

 

Figure 8: EPMA radial profile of the SM1156 filament 

 

Figure 9: SEM micrograph of the SM1156 filament 

 

Figure 10: RMS radial profile of the SM1156 filament 

 

Figure 11: EPMA radial profile of the SM2156 filament 

 

Figure 12: SEM micrograph of the SM2156 filament 

 

Figure 13: RMS radial profile of the SM2156 filament 

 

Figure 14: Raman spectrum from the CVD-diamond filament 

 

Figure 15: Bending modulus thermal behaviour of the filaments 

 

Figure 16: Longitudinal thermal expansion of the filaments 

 



Figure 17: BSR thermal behaviour of the filaments 

 

Figure 18a: Bending creep behaviour of the filaments (T=1200°C) 

 

Figure 18b: Bending creep behaviour of the filaments (T=1400°C) 

 

Figure 19: Bending creep behaviour of the filaments (stress behaviour) 

 

Figure 20: Bending creep behaviour of the filaments (temperature behaviour) 

 

APPENDIX 

 

Figure A1: Room temperature tensile testing device for Young’s 

modulus measurement (with direct strain measurement) 

 

Figure A2: High temperature tensile testing device for 

longitudinal thermal expansion analysis 

 

Figure A3: High temperature three-point bending device for 

for bending modulus and creep measurements 



Figure 1: Cross sections of some of the CVD-SiC filaments
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Figure 2: SEM micrograph of the CVD-diamond filament
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Figure 3: EPMA radial profile for the SCS-6 filament



Figure 4: RMS radial profile for the SCS-6 filament
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Figure 5: EPMA radial profile for the Ultra SCS filament
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Figure 6: SEM micrograph of the Ultra SCS filament



Figure 7: RMS radial profile for the Ultra SCS filament
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Figure 8: EPMA radial profile for the SM1156 filament
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Figure 9: SEM micrograph of the SM1156 filament



Figure 10: RMS radial profile for the SM1156 filament
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Figure 11: EPMA radial profile for the SM2156 filament
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Figure 12: SEM micrograph of the SM2156 filament



Figure 13: RMS radial profile for the SM2156 filament
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Figure 14: Raman spectrum from the CVD-diamond filament
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Figure 15: Bending modulus thermal behaviour

of the filaments
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Figure 16: Longitudinal thermal expansion of the filaments
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Figure 17: BSR thermal behaviour of the filaments (open

symbols: R0=60 mm, full symbols: R0=150 mm)
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Figure 18a: Bending creep behaviour of the filaments

(T=1200°C)
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Figure 18b: Bending creep behaviour of the filaments
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Figure 19: Bending creep behaviour of the filaments

(stress behaviour)
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Figure 20: Bending creep behaviour of the filaments

(temperature behaviour)
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Figure A1: Room temperature tensile testing device for Young’s

modulus measurement (with direct strain measurement)
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Figure A2: High temperature tensile testing device for

longitudinal thermal expansion analysis 



Figure A3: High temperature three-point bending device for

for bending modulus and creep measurements

l0=20mm
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