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List of Symbols

RomanSymbols

A Interfacial area per unit volume

B Generalised extinction coefficient

g Scattering asymmetry factor

Gext Extinction cumulative distribution function

k , kjm Conductivity, conductivity tensor

K Generalised absorption coefficient at equilibrium

I Radiation intensity

L Functional

m Real phase material

n Refractive index

n Normal unit vector

p Scattering phase function

P Power per unit volume of the whole porous medium

P Cumulative probability

P Power

q Flux vector

r, (R) Coordinate, (at macroscale)
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s Curvilinear abscissa

S Radiation source term

u Direction unit vector

V Volume

w Distance between source and extinction points

xj Tensorial vector coordinate

GreekSymbols

α Real or effective phase

β Extinction coefficient

γ Real or effective phase

δ Scale such that a phase is optically thick

δ(−) Kronecker distribution

η Criterion

κ Absorption coefficient

µ, µsc Incidence, Scattering angle cosine

ν Radiation frequency

Π Volume fraction

ρ Reflectivity

σ Scattering coefficient

Σ Generalised scattering coefficient at equilibrium

τ transmissivity

ω Albedo

Ω Solid angle

Superscripts
B Beerian
i Incident
ot Optically thin limit
r Reflected
R Radiative
S ,(S) Issued from an interfacial source, an interfacial

or volume source
t Transparent real phase
tr Transmitted
′′

Bidirectional
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+ Normalised quantity
◦ At Ideal Thermal Equilibrium
(0), (1) At zero, first perturbation order

Subscripts

a Absorption

b Porous medium boundary

e Emission

eff Effective

ext Extinction

i Interfacial

sc Scattering

Acronyms

DOOS Dispersed Overlapping Opaque Spheres

DOTS Dispersed Overlapping Transparent Spheres

GRTE Generalised Radiative Transfer Equation

Kn Knudsen number

OT Opaque and Transparent phases

OST Opaque and Semi-Transparent phases

RTE Radiative Transfer Equation

STT Semi-Transparent and Transparent phases

ST2 Two Semi-Transparent phases

Abstract

A purely statistical modelling of radiative transfer is applied to statistically

anisotropic and sometimes non-homogeneous macroporous media, in which the geo-

metrical optics laws are assumed to be valid. It is focused on the physical features of

media characterised, after statistical homogenisation, by non-Beerian effective phases

such that the extinction law is not exponential. Approaches that have been devel-

oped for media with Opaque and Transparent phases (OT) are generalised to media

with Opaque and Semi-Transparent phases (OST), Semi-Transparent and Transpar-

ent phases (STT) and two Semi-Transparent phases (ST2). Many assumptions of

previous papers are justified or invalidated. Limitations of the models are intro-

duced.
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Non-Beerian effective phases are exhaustively characterised by accurate radiative

statistical functions: Extinction cumulative distribution functions, scattering cumu-

lative probabilities and general scattering phase functions. Key studied phenomena

are the correlations that occur in radiative transfer: i) Between transmission, from

source points to interfacial points, and interfacial extinction; ii) In OT and OST

cases, between interfacial emission, the following transmission and interfacial ex-

tinction; iii) In the case of non-diffuse reflection or transmission law, between an

interfacial incident intensity and an interfacial scattered intensity, and between this

scattered intensity and the following transmission and extinction.

In the case of a diffuse reflection or transmission law, the two first types of correlations

are taken into account within a non-Beerian effective phase by a unique Generalised

Radiative Transfer Equation (GRTE) that is expressed in terms of the radiative sta-

tistical functions and also includes the boundary conditions. The GTREs associated

with OT, OST, STT and ST2 media are detailed. In the case of a non-diffuse re-

flection or transmission law, the three types of correlations are taken into account

for a non-Beerian effective phase by specific GRTEs. These GRTEs are associated

with the successive elementary paths from emission to final absorption after multiple

scattering events.

Under specific validity conditions, the GRTE of a homogeneous effective phase of

an OT medium degenerates into a classical RTE and a radiative Fourier law can be

applied within this effective phase. In the case of an OST or a ST2 medium, this

model can only be applied if the homogeneous effective phases are characterised by

the same temperature field. A radiative Fourier law is never valid for homogeneous

effective phases of a STT medium or for a non-homogeneous effective phase of any

type.

A non-homogeneous effective phase, with strong volume fraction gradients, is char-

acterised by radiative statistical functions that also depend on the coordinates of

the source points. All the previous models of radiative properties are generalised by

using a global transmissivity, product of the volume fraction at the source point by

the transmissivity deduced from the extinction cumulative distribution function.

Finally, the spatial limitations of the use of a GRTE or a radiative Fourier law are
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enlightened from a comparison of all the spatial scales involved in the characterisa-

tion of the radiative statistical functions with the thickness of the radiative boundary

layer of the porous medium and with the spatial resolution of the temperature field.

1. Introduction

Macroporous media at high temperature are involved in many technologies of

energy (hydrocarbon reforming, solar absorbers, safety of a core of a nuclear reac-

tor, waste combustion, insulators for extreme thermal conditions, etc.). An accurate

modelling of radiative transfer has to be achieved in these applications. Radiation is

even preponderant in some cases. The present study is devoted to radiative transfer

within macroporous media such that the typical radiation wavelength is small com-

pared to the smallest considered spatial scale of the medium. The geometrical optics

laws are then assumed to be valid. More specifcally, this work is focused on effective

phases, obtained after homogenisation, that exhibit a non-Beerian behaviour, i.e.

that are not characterised by an exponential extinction law.

In a recent past, the characterisation of the radiative properties of porous media

was generally based on parameter identification techniques. In these approaches,

the porous medium was globally homogenised by a one-phase model and this effec-

tive phase was always assumed to be Beerian, i.e. characterised by an exponential

extinction law. A review of these methods is given in Ref.[1] and many practical

developments are gathered in a textbook[2].

In the two last decades, the development of advanced tomography techniques

has allowed the morphology of most macroporous media to be well known and the

radiative properties of these media to be accurately characterised, in particular by

a multi-phase approach. Two families of models have mainly been developed in

parallel: On the one hand, models that are based on the spatial averaging theorem

and, on the other one, purely statistical models.

Consalvi et al.[3] have first applied to radiative transfer within divided media an

approach similar to the volume averaged method of Whitaker and Quintard[4–7],

which is based on the spatial averaging theorem. Other approaches based on this
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theorem have been developed: i) For statistically isotropic porous media by Lipinski

et al.[8, 9], Randrianalisoa et al.[10–12], Coquard at al.[13, 14], and Gusarov [15–18].

In many cases, an extinction coefficient is based on an extinction mean free path

that is determined from a Monte Carlo approach, without using in the model the

complete extinction distribution function; ii) For statistically anisotropic media by

Gusarov[19].

The spatial averaging theorem is applied to the two coupled radiative transfer equa-

tions associated with the real phases. Two scales are then considered[8]: i) The

continuous scale of these equations; ii) The discrete scale of the final results. Effec-

tive scattering, absorption and extinction coefficients and effective scattering phase

functions, which take into account the interfacial effects, are obtained at the dis-

crete scale. The final coefficients are the sum of the intrinsic coefficients and of the

corresponding effective ones. The final phase functions are combinations of intrinsic

and effective phase functions. Two coupled effective Beerian phases are finally ob-

tained. This model has been successfully applied to different media that verify, at

least approximately, the scale separation assumption: Indeed, a validity condition

of the spatial averaging theorem is that the continuous and discrete scales are not

of the same order of magnitude[4–7]. But strongly non-Beerian effective phases are

generally characterised by continuous and discrete scales of comparable orders of

magnitude, due to long-range interactions between interfaces. Cite, for instance: i)

Regular arrangement of rods with void alleys (see Fig.2); ii) Absorbing long fibres of

a felt (see Sec.5.3). Models based on the spatial averaging theorem are questionable

in these conditions.

The developments of the X and γ tomography techniques[20–25] and of the power

of the computers have also allowed an effective phase of a macroporous medium to be

accurately characterised by radiative statistical functions: Extinction cumulative dis-

tribution functions, scattering cumulative probabilities and general scattering phase

functions. The first works have been simultaneously achieved by Tancrez[26] and

Petrasch et al.[27], followed by many other authors[20–22, 25, 28–31]. Strongly non-

Beerian behaviours have been observed with a high degree of accuracy[25, 29, 31, 32].

As this statistical characterisation of the radiative properties was a new approach,
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many assumptions have been made without justification[20, 25–27, 29, 33]. More-

over, the limitations of the models derived from these assumptions have generally

not been enlightened. An ad hoc model related to interfacial emission[25, 32, 34],

now appears to be erroneous for a non-Beerian effective phase.

The present theoretical paper deals with a purely statistical modelling of radia-

tive transfer within non-Beerian effective phases of macroporous media, which are

in most cases statistically anisotropic and sometimes non-homogeneous. Works that

have mainly been achieved for media with Opaque and Transparent phases (OT)

are generalised to media with Opaque and Semi-Transparent phases (OST), Semi-

Transparent and Transparent phases (STT) and two Semi-Transparent phases (ST2).

Specific physical phenomena that are involved in these different types of media are

enlightened in this original study. Assumptions made in previous papers are then

justified or invalidated and the limitations of the models are clarified. Moreover, all

these developments are achieved in order to be easily applied in radiative transfer

with a controlled spatial resolution, by using a Generalised Radiative Transfer Equa-

tion (GRTE) in a general case or, under some conditions, a radiative Fourier law.

The key theoretical features of non-Beerian effective phases, which are linked to the

homogenisation of the interfacial extinction, are presented with a minimum use of

equations in Sec.2 that is focused on the physical understanding of these phenom-

ena. The strong correlations that occur within non-Beerian effective phases between

interfacial emission, transmission and extinction and possibly between the previous

phenomena and the interfacial scattering source terms are enlightened and discussed.

The specific conditions of a Beerian behaviour are also stated.

Sections 3-6 deal with the practical application of the theoretical model of Sec.2

to OT, OST, STT and ST2 media. Section 3 is devoted to an original characteri-

sation of the radiative statistical functions associated with emission and scattering

interfacial sources, and to the modelling of the correlations discussed in Sec.2. Gen-

eralised Radiative Transfer Equations (GRTEs) associated with OT, OST, STT and

ST2 media are expressed in Sec.4 by taking into account the correlations between

interfacial phenomena defined in Sec.2 and expressed in Sec.3. The validity of the
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radiative Fourier law, applied to an effective phase or to the whole porous medium,

is discussed for OT, OST, STT and ST2 media. When it is valid, a radiative con-

ductivity tensor is directly determined from the radiative statistical functions. The

spatial limitations of the different models that are based on the statistical method

are enlightened in Sec.6, from a comparison of all the spatial scales involved in the

characterisation of the radiative statistical functions with the scale of the optically

thick radiative boundary layer and with the spatial resolution of the temperature

field.

General conclusions are finally drawn.

2. Theoretical model

This Section deals with an original complete presentation of the key theoretical

features of radiative transfer within non-Beerian effective phases of a macroporous

medium, by comparison with the case of Beerian media. Published partial results

are synthetised, corrected and mainly generalised

In the statistical approach, two effective phases α and γ are assumed to be present at

any point M ′(r′) of a physical volume element dV of the whole porous medium with

presence probabilities Πα and Πγ, which are the corresponding volume fractions. An

interfacial element is also statistically assumed to be present at any point, as it is com-

monly done for small particles within a particle-gas mixture. The radiative exchange

between interfacial elements occurs within a continuous semi-transparent effective

phase, even if the corresponding real phase is transparent. After homogenisation,

the possible non-Beerian behaviour of an effective phase is due to this interfacial

exchange, which often corresponds to a long-range interaction.

A non-Beerian effective phase is characterised by a non-exponential transmissivity

τν α(u, s, s′ − s) between two points M and M ′, of abscissa s and s′ along an axis of

direction u. Consequently, extinction, scattering and absorption coefficients have no

physical meaning. If the effective phase is homogeneous, characterised by a uniform

volume fraction Πα, the transmissivity τν α(u, s′ − s) is independent of the position

M(s) of the source. This assumption will be implicitly made in the following with

the exception of Secs.3.4 and 6.2.
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When interfacial extinction is not ruled by an exponential law, the knowledge of the

radiative intensity at a point is not sufficient for characterising the variation of this

intensity at this point within a non-Beerian effective phase:

i) Correlations occur in the OT, OST, STT and ST2 cases between transmission up

to an interfacial point and interfacial extinction at this point, as shown in Sec.2.1;

ii) In OT and OST cases, correlations also occur between interfacial emission, the

following transmission up to an interface and interfacial extinction (Sec.2.2);

iii) If the real phases are characterised by a non-diffuse interfacial transmission or

reflection law, such as a Fresnel law, the intensity that is scattered by the interfaces

at a point within an effective phase is also strongly correlated with the incident in-

tensity at this point, as shown in Sec.2.3. On the contrary, such a correlation does

not occur in the case of a diffuse transmission or reflection law that is independent

on both the incidence and final directions. A necessary and sufficient condition for

an effective phase to be Beerian is also stated in this Section.

The bases of a statistical modelling of radiative transfer within an effective phase that

takes into account all the previously defined correlations are introduced in Sec.2.4.

Finally, Section 2.5 deals with a critical study of previous statistical works that is

based on the discussions of the present Section.

2.1. Correlation between interfacial transmission and extinction

Consider first, within an effective phase, a radiative source term Sν(u, s) due to:

i) Either emission or scattering by a semi-transparent real phase; ii) Or interfacial

scattering that is associated with a diffuse transmission and reflection law within the

real phases. Sν(u, s) is issued from an interval [s, s + ds] of an axis of direction u.

As shown in the following Sections, there is no correlation in the previously defined

conditions between Sν(u, s) and the following transmissivity τν(u, s
′ − s) from s to

s′, even for a non-Beerian effective phase.

If the effective phase is Beerian, the variation within the interval [s′, s′ + ds’] of

the transmissivity from s to s′ is equal to τν α(u, s′ − s) βν(u)ds′, where βν(u) is

an extinction coefficient that is independent of s′ − s and τν α(u, s′ − s) is equal to

exp[−βν(u)(s′ − s)]. The variation of the global intensity due to extinction at s′
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simply writes in these conditions

dIextν α (u, s′) = −βν(u) ds′
∫ s′

0

Sν(u, s) exp[−βν(u)(s′ − s)] ds = −βν(u) ds′ Iν α(u, s′).

(1)

The global intensity Iν α(u, s′) then synthetises all the information required for de-

termining dIextν α (u, s′), which drastically simplifies the model. There is no correlation

between transmission from s to s′ characterised by τν α(u, s′ − s) and extinction be-

tween s′ and s′+ds′ characterised by βν(u)ds′.

But, for a non-Beerian effective phase that is characterised by a non-exponential

extinction law, extinction coefficients, and consequently absorption and scattering

coefficients, can not be defined. The variation of the transmissivity within [s′, s′+ds′]

can be expressed as the product of the transmissivity τν α(u, s′−s) by a function that

characterises extinction between s and s′ and also depends on the distance s′ − s.
There is a strong correlation between transmission from s to s′ and extinction and

consequently scattering or absorption within [s′, s′+ds′]. The variation of the global

intensity due to extinction between s′ and s′+ds′ then writes

dIextν α (u, s′) = ds′
∫ s′

0

Sν(u, s)
dτν α(u, s′ − s)

ds′
ds. (2)

It can not be expressed as a function of this intensity and is only obtained by summing

the contributions of all the sources. There is a memory effect of all the radiation

sources.

2.2. Correlated interfacial emission sources

According to the discussion of Sec.2.1, interfacial emission in OT and OST cases

can not be expressed by using an absorption coefficient, as commonly done for a

Beerian semi-transparent medium.

This difficulty is solved by using the reciprocity theorem, which is issued from the

detailed balance principle[35, 36] in statistical physics. This theorem states that

interfacial emission between s and s+ds in the direction u can be expressed from

interfacial absorption between s+ds and s in the reverse direction −u. As interfa-
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cial absorption is strongly correlated with transmission from s′ to s, the interfacial

emission source is strongly correlated with transmission from s to s′ and interfacial

extinction within [s′, s′+ds′]. The corresponding equations are developed in Sec.3.2.2

in the case of a diffuse reflection law. The much more complex approach associated

with a non-diffuse reflection law is exposed in Sec.3.3.

2.3. Correlated and non-correlated interfacial scattering sources

Within an effective phase α of an OT or OST medium, the scattering source

term in a given direction u associated with an incident radiation in a direction u1

depends on the reflection law at the interfaces of the real phase. Similarly, for a STT

or ST2 medium, the scattering source terms within the effective phases α and γ in

the direction u depend on the interfacial transmission and reflection laws of the real

phases. For the sake of simplicity, we only consider here the first case and assume

that the interfacial reflection law simply depends on the incidence angle cosine µ1 at

an impact point M ′. The results associated with a STT or ST2 medium can easily

be deduced from all the results obtained for an OT or OST medium.

The rays that are issued from points M(s) in an elementary solid angle dΩ1

around the direction u1 and impact interfaces at points M ′(s′) are characterised by

the distribution function fα(s′− s,u1) of the distances MM ′ and by the distribution

function fα(µ1,u1) of µ1. Three cases occur and are considered in the following:

i) µ1 and s′ − s are statistically independent, whatever the interfacial reflection law.

This case corresponds to a Beerian effective phase, as shown in Sec.2.3.1;

ii) Interfacial reflection within the real phases is diffuse, independent of the initial

and final directions. This commonly considered case is discussed in Sec.2.3.2;

iii) Reflection is not diffuse and µ1 and s′−s are not statistically independent, general

case discussed in Sec.2.3.3.

2.3.1. Beerian effective phase

Assume first that, within the real phase α of an OT or OST medium, the inci-

dence angle cosines µ1 at the impact points M ′ of the rays belonging to an elemen-

tary solid angle around the direction u1 are statistically independent of the distances
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MM ′ = s′ − s from the source points M(s). The internal scattering directions

within the effective phase α, which depend on the distribution function fα(µ1,u1) of

µ1 through the reflection law, are then independent of s′ − s.
Within the effective phase α, there is then no correlation between the transmissivity

from M to M ′ and the internally scattered intensity at the point M ′ in dΩ, around

the direction u. The global variation of the incident intensity Iν α(u1, s
′) in the di-

rection u1 at the point M ′(s′) that is due to internal scattering in all directions is

then proportional to Iν α(u1, s
′) and, consequently, to an internal scattering coeffi-

cient σν αα(u1). The scattering source term within an elementary solid angle dΩ is

then characterised by a unique phase functions pν αα(u1,u), which depends both on

the reflection law and the morphology of the medium. The variation of the intensity

at the point M ′(s′) due to absorption is also proportional to Iν α(u1, s
′) and to an

absorption coefficient κν α(u1).

The statistical independence of s′ − s and µ1 is then a sufficient condition of a Bee-

rian behaviour. If, on the contrary, it is assumed that s′ − s and µ1 are statistically

dependent, a strong correlation will occur between the scattered or absorbed inten-

sity and the history of the incident radiation, as shown in Sec.2.3.3: Absorption or

scattering coefficients can then not be defined. The statistical independence of s′− s
and µ finally is a necessary and sufficient condition of a rigorous Beerian behaviour

of an effective phase.

Note that, in the case of a diluted medium (high volume fraction value), there is no

strong variation of s′− s and the higher is the dilution the weaker is the variation of

s′ − s. The correlations between µ1 and s′ − s are then weak independently of the

geometrical configuration and the medium is then practically Beerian.

This condition is illustrated in Fig.1[26, 34] by the opposite behaviours of two

models of statistically isotropic and homogeneous foams:

i) Dispersed Overlapping Opaque Spheres within a transparent medium (DOOS);

ii) Dispersed Overlapping Transparent Spheres within an opaque medium (DOTS).

The logarithm of the transmissivity within the effective phase is plotted vs the optical

thickness βotw at the optically thin limit, equal to Aw/(4 Π)[26, 37], where A and

Π are the specific area per unit volume of the medium and the volume fraction of
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Figure 1: DOOS and DOTS: ln[τ(w)] vs βotw for different porosity Π values[34] from the
model of Ref.[26]; DOOS: universal dotted straight line; DOTS: Curves associated with Π =
0, 18; 0, 26; 0, 37; 0, 48; 0, 56; 0, 65; 0, 72; 0, 78; 0, 82 (EM2C/GDF study).

the phase. A curve associated with a Beerian effective phase is then a universal

straight line of slope −1. It is rigorously the case for DOOS: βot is then valid for

all the optical thickness range. On the contrary, the effective phase of DOTS is

never exactly Beerian. Whatever the porosity value, βot is valid for the weak optical

thicknesses, but another extinction coefficient, which strongly increases when the

porosity decreases, characterises the large optical thicknesses. For high porosity

values, as previously discussed, a DOTS effective phase can also approximately be

considered as Beerian, with an optimal extinction coefficient value close to βot. But it

is more and more non-Beerian when the porosity decreases, even though the medium

is statistically isotropic.

In fact, for DOTS or within a simple sphere, the chord lengths s′−s and the incidence

angle cosine value µ1 are strongly correlated: For instance, the values µ1 = 1 and

s′−s = D, where D is the diameter of a sphere, are totally correlated. The condition

of a Beerian behaviour is then not fulfilled. On the contrary, in the case of DOOS,

µ1 and s′ − s are statistically independent.

Another example is given by a statistically axi-symmetrical felt made of overlapping
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infinite semi-transparent cylinders within a transparent phase[31], more specifically

defined in Sec.5.3. The medium is statistically isotropic in two dimensions. The

effective phase outside the cylinders is strongly Beerian, as in the DOOS case. But

the semi-transparent phase is strongly non-Beerian: Indeed, within a cylinder, µ1 is

clearly correlated with the chord length s′ − s.
The same results can obviously be obtained for Beerian effective phases of STT

and ST2 media.

2.3.2. Diffuse reflection law

If the interfacial reflection law is diffuse within the real phase α of an OT or OST

medium, the probability that any ray that is incident in dΩ1(u1) at a given point

M ′(s′) will be reflected in dΩ(u) is independent of µ1 and consequently of s′ − s.

It only depends on the geometrical configuration, more specifically on the belonging

of dΩ to the real phase α. In these conditions, even for a non-Beerian effective

phase α, the phase function pν αα(u1,u) is unique but not isotropic and only depends

on the morphology of the medium. The associated scattered intensity in dΩ(u)

is proportional, as in a Beerian semi-transparent medium, to the global incident

intensity Iν α(u1, s
′) and to the phase function pν αα(u1,u). This property used in

Sec.2.1 can be generalised to STT and ST2 media and drastically simplifies the

models. Nevertheless, interfacial extinction by scattering or absorption is correlated

with the incident radiation in the case of a non-Beerian effective phase.

In the paper, transmission or reflection is assumed to be diffuse for OT, OST, ST

and ST2 media with the exceptions of Secs.2.3.3 and 3.3.

2.3.3. Non-diffuse transmission and reflection laws (Non-Beerian case)

Within a real phase α of an OT medium, all the rays belonging to an elementary

solid angle dΩ1 around a direction u1 that are issued from interfacial points M(s)

and incident over interfacial elements at points M(s′) are characterised by the distri-

bution functions fα(s′ − s,u1) of the distances MM ′ and fα(µ1,u1) of the incidence

angle cosine µ1, as shown in the introduction of Sec.2.3. These distribution functions

only depend on the morphology of the porous medium. In many cases, µ1 and s′− s
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are not statistically independent: For instance, in the extreme case of a medium be-

tween two parallel planes, µ1 and s′−s are totally correlated. When µ1 and s′−s are

not statistically independent, the interfacial reflection law is correlated with s′ − s.
In these conditions, the scattered intensity in a direction u at a point M ′(s′) within

the effective phase α is correlated with the transmissivity ταν(u1, s
′ − s).

In the same manner, all the rays that are reflected within the real phase at the

interfacial points M ′(s′) in the elementary solid angle dΩ(u) and impact another

interfacial elements at the points M ′′(s′′) are characterised by the distribution func-

tions fα(s”− s′,u) of the distances s”− s′ and fα(µ,u) of the reflection angle cosine

µ, which only depend on the medium morphology. As µ1 and s′−s, µ and s′′−s′ are

not statistically independent. The scattering intensity within the effective phase α

at M ′(s′) in the direction u is also correlated with the transmissivity ταν(u, s”− s′)
from s′ to s”.

Consequently, after multiple scattering events, the scattered intensity at a point

M ′ of the effective phase in a given direction is correlated with all the successive trans-

mission and scattering phenomena from the non-correlated emission point within a

real semi-transparent phase, in OST, STT or ST2 case, or from the correlated in-

terfacial emission point, in OT or OST case, up to the scattering point M ′. This

complex case is developed in Sec.3.3.

2.4. Radiative transfer modelling

Any model of radiative transfer is based on the determination of the radiative

flux vector qRα (r′) and the radiative power per unit volume PR
α (r′) at a point M ′(r′)

of an effective phase α, of abscissa s′ along an axis of direction u, i.e.

qRα (r′) =

∫ ∞
0

∫ 4π

0

Iν α(u, r′) u dΩα(u) dν, (3)

PR
α (r′) = − div[qRα (r′)] = −

∫ ∞
0

∫ 4π

0

dIν α(u, s′)

ds′(u)
dΩα(u)dν. (4)

The intensity Iν α, qRα and PR
α are defined by unit volume dV of the whole porous

medium, i.e. are proportional to the the phase volume fraction Πα.
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As detailed in Secs. 2.1-2.3, the key difficulty is to express for a non-Beerian effective

phase dIν α(u, s′), the variation of the intensity between s′ and s′+ds′, due on the one

hand to extinction by scattering and absorption and on the other one to emission and

scattering sources. As extinction, scattering and absorption coefficients have then

no physical meaning for interfacial phenomena, a classical Radiative Transfer Equa-

tion (RTE) based on such quantities is not valid. A Generalised Radiative Transfer

Equation (GRTE) is then directly expressed in terms of the extinction cumulated

distribution function, scattering and absorption cumulated probabilities and general

phase functions (see Sec.4). When some restrictive conditions are fulfilled, simple

radiative Fourier laws are directly deduced from the statistical radiative properties,

in OT, OST and ST2 cases, as detailed in Sec.5.

Different models of temperature fields can be implemented:

i) If the effective phases are at equilibrium at temperature T within dV , PR[T (r), r] is

a source term of the unique energy equation, similar to the one of a reactive medium;

ii) In the case of an OT or an OST medium, if the interfacial temperature is equal

to the temperature of the solid opaque phase Ts(r), which differs from the one of

the gaseous (semi-)transparent phase Tg(r), the radiative power within the energy

equation of the solid phase writes: PR
s [Ts(r), r] = PR[Ts(r), r]/Πs, where Πs is the

solid phase volume fraction.

iii) If, in a more advanced approach, the temperatures of the two effective phases

Tg(r) and Ts(r) and of the interfaces Ti(r) of an OT or OST medium differ, the

interfacial flux writes: ϕR = PR[Ti(r), r]/A, where A is the porous medium specific

area;

iv) For a medium with a semi-transparent solid phase and a transparent gaseous one

(STT) the radiative power PR
s [Ts(r), r] is simply applied to the solid phase energy

equation;

v) In the case of a medium with two semi-transparent phases (ST2) PR
s [Ts(r), r]

and PR
g [Tg(r), r] are applied to the solid phase and gaseous phase energy equations,

respectively.

Unless otherwise specified, the results of the models iii), iv) and v) are presented

in the following. It is easy to deduce the results of the models i) and ii) from the
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previous ones.

A GRTE, which is directly expressed in terms of cumulative distribution func-

tions, is easily solved by a statistical Monte Carlo radiative transfer model, which

leads by taking into account the radiative boundary conditions to the determination

of Iν α(u, r′) and dIν α(u,s′)
ds′(u)

, and consequently of the fields of radiative flux qRα (r′) and

power per unit volume PR
α (r′) by Eqs 3 and 4.

As the implementation of the Monte Carlo radiative transfer model does not present

any specific originality, this transfer method is not detailed in the paper.

2.5. Critical comments on previous works

The models based on the statistical approach have been built step by step from

2004[26, 27] without a full knowledge of the theoretical bases associated with a non-

Beerian effective phase. Some first approaches are here discussed in the light of the

developments of Secs.2.1-2.4.

In first works[20–22, 26–29], a Beerian behaviour of an effective phase has been as-

sumed. The numerical determination of the transmission field τν α(u, s′ − s) from

any volume source point to any interfacial point of the effective phase has allowed

this Beerian behaviour to be numerically checked. Insofar as an effective phase is

considered, at least approximately, as Beerian by taking into account an accuracy

criterion, scattering, absorption and extinction coefficients can be identified and a

general scattering phase function directly built.

But the effective phases of some samples of porous media[25, 29] and of some classical

models[26, 29, 31] clearly present a non-Beerian behaviour. In particular, in case of

strong anisotropy an effective phase generally is non-Beerian[25, 29, 31].

In a first attempt for modelling by a statistical approach the radiative transfer within

a non-Beerian effective phase, the correlations between transmission and extinction

discussed in Sec.2.1 are taken into account in a first formulation of a Generalised

Radiative Transfer Equation(GRTE)[34]. But, in this equation that has only been

defined in the core of the medium an interfacial scattering source term is assumed

to be non-correlated with the incident intensity and interfacial emission has been

empirically expressed. This first model has not been implemented. A correct GRTE
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has been numerically implemented for radiative transfer within different strongly

non-homogeneous OT media characterised by a diffuse reflection law [30]. It ac-

counts for the radiative boundary conditions and pragmatically for the correlations

between interfacial emission, transmission and extinction defined in Sec.2.2. In an-

other work[31] dedicated to a STT medium, a felt of absorbing fibres characterised

by Fresnel transmission and reflection laws, all the correlations discussed in Sec.2.3.3

are taken into account and different GRTEs have been associated with the paths

between successive scattering events within any effective phase.

A radiative transfer model based on a radiative Fourier law, valid in restrictive con-

ditions such that the medium becomes Beerian at the considered scale, has led to

express a radiative conductivity for an isotropic OT medium[34] and to a radiative

conductivity tensor for an anisotropic OT medium[25].

The following Sections 3-5 deal with the practical implementation of the theoret-

ical models of the present Section.

3. Correlated radiative properties of an effective phase

The characterisation of the extinction, scattering and absorption properties of

an effective phase associated with a real transparent propagation phase is directly

achieved by statistical numerical approaches. These approaches are, in practice,

specific Monte Carlo methods, which strongly differ from Monte Carlo radiative

transfer methods. They have extensively been described by many authors[20–22,

25–29] and are not presented here. In these methods, an accurate knowledge of

the medium morphology is required. It is issued from tomography data[20–22, 25,

28] with a spatial resolution a or is theoretically known[26, 29, 30]. Moreover, the

interfacial radiative properties have to be known at a scale smaller than a. The laws

of geometrical optics are assumed to be valid: a has to be larger than the typical

radiation wavelength.

Section 3.1 is an original presentation of the radiative statistical functions that

characterise of a non-Beerian effective phase: Specific functions are associated, on one

hand, with interfacial radiation sources and, in the other hand, with volume sources.

In the case of diffuse interfacial transmission and reflection laws, an equation which
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links the two types of functions generalises recent results[38]. The borderline case of

a Beerian effective phase is finally discussed.

Section 3.2 deals with the specificities of a non-Beerian effective phase associated

with a real phase with diffuse transmission and reflection laws. The interfacial non-

correlated scattering source terms and the correlated interfacial emission source term

are expressed, as results of the physical discussions of Sec.2.3.2 and 2.2 respectively.

The obtained equations generalise the results of Zarrouati et al.[30], obtained in spe-

cific conditions.

The case of a non-Beerian effective phase associated with a real phase characterised

by non-diffuse transmission and reflection laws, in particular Fresnel laws, which has

been recently studied by Dauvois et al.[31] for a STT medium is generalised in Sec.3.3

to other media.

The principles of the modelling of a non-homogeneous effective phase, recently de-

veloped by Zarrouati et al.[30], are exposed in Sec.3.4. This approach is the key of

future advanced accurate models as developed in Sec.6.

3.1. General statistical radiative properties

Within a real phase, the emission sources are interfacial (OT and OST cases) or

belong to the phase volume (OST, ST2 and STT cases); The scattering sources belong

to the phase volume (OST, STT and ST2 cases) or are interfacial (all cases). In the

following, any quantity associated with an interfacial source presents a superscript S,

unlike the case of a quantity associated with a volume source. A quantity with the

superscript (S) is related to a volume source or an interfacial one.

3.1.1. General definitions

Extinction within any type of homogeneous effective phase α is characterised by

an extinction cumulative distribution function G
(S)
ext ν α(u, w), which a priori depends

on the frequency, on the direction u and on the distance w = s′ − s within the real

phase between a source point M(s) and the corresponding extinction point M ′(s′)

of an axis of direction u . Physically, 1−G(S)
ext ν α(u, w) represents the transmissivity

τ
(S)
ν α (u, w) between M and M ′ within the effective phase. If the effective phase α is
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associated with a transparent real phase (OT or STT case), GS t
ext α(u, w) is also the

cumulative distribution function of the chords MM ′ within this last phase, which is

independent of ν.

In the following, the superscript t is related to an effective phase associated with a

transparent real phase of an OT or STT medium or a virtual one of any medium.

An accurate expression of Gt
ext ν α is given in Ref.[20]. The expression of GS t

ext ν α is

similar.
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Figure 2: For a degraded cross section of a rod bundle, ln[1 −Gtext(θ = π/2, ϕ, w)] vs βotw; From
above to below: ϕ = 1.5◦ (red crosses); ϕ = 16.5◦ (green crosses); ϕ = 31.5◦ (blue circles);
ϕ = 43.5◦ (violet squares); Bold black line associated with ln[1−Gtext(θ = π/2, w)] averaged over
ϕ values[25] (EM2C/IRSN study).

An example of a strongly non-Beerian extinction cumulative distribution func-

tions associated with a strongly anisotropic effective phase is shown in Fig.2: A

degraded rod bundle of a nuclear core that has been submitted to the conditions

of a severe nuclear accident[25]. The extinction cumulative distribution functions

Gt
ext(θ = π/2, ϕ, w) of this OT medium have been determined from the images built

from γ ray tomography experiments [25]; θ = π/2 corresponds to a plane perpen-

dicular to the initially intact rods; ϕ is the azimuth within this plane; βot, equal

to A/(πΠ) where A is the specific area and Π the porosity of the medium, is the
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extinction coefficient at the optically thin limit for a statistically axi-symmetrical

configuration[29].

For a Beerian medium, ln[1−Gt
ext(θ = π/2, ϕ, w)] would be represented, as for DOOS

in Fig.1, by a decreasing straight line of slope −1, which also occurs in the case of

small optical thicknesses. For βotw values that correspond to the semi-transparency

range, up to 5, the behaviour of ln[1−Gt
ext(θ = π/2, ϕ, w)] is strongly non-Beerian.

Note that the bold black line associated with values of ln[1 − Gt
ext(θ = π/2, w)] av-

eraged over the azimuth ϕ is much closer to a Beerian behaviour.

A comment related to the modelling of radiative transfer can be deduced from the

previous results. Many studies dedicated to anisotropic porous media have been

limited to an isotropic characterisation of their radiative properties, which has often

led to assume, at least approximately, a Beerian behaviour, as for instance shown

in Fig.2. As the radiative flux vector is generally oriented in a main direction, a

radiative transfer model that is based on averaged isotropic and Beerian data would

lead to erroneous results of radiative transfer by comparison with the results of a

model based on anisotropic non-Beerian data.

In OST, STT or ST2 media, extinction, scattering and absorption within the

real Beerian semi-transparent phase, characterised by extinction, scattering and ab-

sorption coefficients βmα ν , σmα ν and κmα ν , are statistically independent of the cor-

responding interfacial phenomena. G
(S)
ext ν α(u, w) then writes for the effective phase

of such a medium

w = s′ − s, 1−G(S)
ext ν α(u, w) = exp(−βmα ν w) [1−G(S) t

ext α(u, w)]. (5)

Interfacial absorption and interfacial internal scattering within an effective phase

that is associated with a real transparent phase (OT case) or a virtual one (OST

case) are characterised by absorption and internal scattering cumulative probabilities

P
(S) t
a ν α(u, w) and P

(S) t
sc ν αα(u, w), respectively. The corresponding extinction cumulative

distribution function verifies

G
(S) t
ext α(u, w) = P (S) t

sc ν αα(u, w) + P (S) t
a ν α(u, w). (6)
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Similarly, interfacial internal and external scattering within an effective phase that

is associated with a real transparent phase (STT case) or a virtual one (ST2 case) are

characterised by internal and external scattering cumulative probabilities P
(S) t
sc ν αα(u, w)

and P
(S) t
sc ν αγ(u, w). G

(S) t
ext α(u, w) then writes

G
(S) t
ext α(u, w) = P (S) t

sc ν αα(u, w) + P (S) t
sc ν αγ(u, w). (7)

As the radiative properties associated with the interfaces of an effective phase of

a STT or ST2 medium are statistically independent of those of the real semi-

transparent phase, the variation of the interfacial external scattering cumulative

probability between s′ and s′+ds′ writes

dP (S)
sc ν αγ(u, w) = exp(−βmα ν w)

∂

∂w
P (S) t
sc ν αγ(u, w) ds′. (8)

The variation of the interfacial internal scattering cumulative probability of an OST,

STT or ST2 medium is obtained by replacing γ with α in Eq.8. Finally, in the OST

case, the variation of the interfacial absorption probability between s′ and s′+ds′ is

deduced from Eq.8, by replacing P
(S) t
sc ν αγ(u, w) with P

(S) t
a ν α(u, w).

Similarly, the variation of the scattering cumulative probability associated with the

real semi-transparent phase between s′ and s′+ds′ becomes

dP (S)
sc ν mα(u, w) = [1−G(S) t

ext α(u, w)] exp(−βmα ν w)σmα ν ds′. (9)

There is here no correlation between transmission from s to s′ and extinction by

scattering within [s′, s′+ds′], unlike the case of Eq.8. The variations of the absorbing

cumulative probability and of the extinction cumulative distribution function asso-

ciated with the real semi-transparent phase between s′ and s′+ds′ are also obtained

by replacing in Eq.9 σmα ν with κmα ν and βmα ν , respectively.

An effective phase is also characterised by a refractive index nν α and scattering

phase functions p
(S)
ν αα(u1,u) and possibly p

(S)
ν αγ(u1,u). These phase functions a priori

depend on the incidence and scattering directions, u1 and u respectively. A phase

function pν α(µsc) associated with a real isotropic semi-transparent medium mα only
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depends on the scattering angle cosine µsc.

3.1.2. Links between GS t
ext α and Gt

ext α

For an effective phase associated with a real phase with diffuse transmission and

reflection laws, the extinction cumulative distribution functions GS t
ext α and Gt

ext α are

linked, as shown in Appendix A, by

w < wmin : GS t
ext α(u, w) = 0,

w > wmin : GS t
ext α(u, w) = 1− ∂

∂w
Gt
ext α(u, w)/

(
∂

∂w
Gt
ext α(u, w)

)
wmin

, (10)

where wmin is the smallest distance between two interfacial points. These original

equations generalise the results of Ref.[38] to media such that the solid phase is not

continuous. Only Gt
ext α(u, w) is practically determined by a numerical Monte Carlo

method, as it is much easier to shoot rays within the real phase from random points

that belong to a volume than from random interfacial points. GS t
ext α(u, w) is then

deduced from Gt
ext α(u, w) by using Eqs.10.

The internal scattering and external scattering (or absorbing) cumulative probabili-

ties are then given by

P S t
sc ν αα(u, w) = ων αα G

S t
ext α(u, w), P S t

sc ν αγ(u, w) orP S t
a ν α(u, w) = (1−ων αα)GS t

ext α(u, w),

(11)

where ων αα is the interfacial albedo equal to ρν αα the interfacial diffuse reflectivity.

3.1.3. Case of a Beerian effective phase

If an effective phase is Beerian, it appears from Eqs.10 that GS t
ext α and Gt

ext α are

identical and write

GS t
ext α(u, w) = Gt

ext α(u, w) = 1− exp[−βν α(u)w], (12)

where βα(u) is the extinction coefficient of the Beerian effective phase α. The scat-

tered or absorbed intensities between s′ and s′+ds′ are proportional to the initial

intensity Iν α(u, s′) and to global scattering or absorption coefficients, independently
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of the nature of the radiation source and are not correlated with the transmission

from s to s′. For instance, Equation 8 becomes

dPsc ν αγ(u, w) = exp

(
− [ βmα ν + βα(u) ]w

)
σν αγ(u) ds′. (13)

In most of the papers dedicated to the characterisation of OT and OST media,

Gt
ext α has only been determined instead of GS t

ext α, without using Eq10, without an

explicit justification[21, 22, 25–27, 29]. This approach is valid insofar the effective

phase is at least approximately Beerian[21, 22, 26, 27], even if in some case this

assumption is poor[29]. It is also valid even for a strongly non-Beerian effective

phase, when the results are only used in the validity conditions of a radiative Fourier

law[25], i.e. at a limit such that the phase becomes Beerian.

3.2. Effective phase with diffuse transmission and reflection laws

Reflection and transmission are commonly assumed to be diffuse, due to the fre-

quent lack of accurate data but also to the simplicity of the associated modelling.

The expressions of an interfacial scattering source term and of the associated scat-

tering phase function are detailed under this assumption in Sec.3.2.1 and that of a

correlated interfacial emission source term in Sec.3.2.2, by taking into account the

discussions of Sec.2.3.2 and 2.2 respectively.

3.2.1. Interfacial scattering source terms

As discussed in Sec.2.3.2 the internal and external scattering phase functions

pν αα(u1,u) and pν αγ(u1,u) of an effective phase that is associated with a real phase

characterised by diffuse transmission and reflection laws are unique and independent

of the history of the incident radiation. Indeed the associated scattered intensities

only depend on the global intensity in the incidence direction u1 and on the dif-

fuse bidirectional reflectivity and transmissivity within the real medium[39, 40]. The

phase functions are, in practice, determined in parallel with Gt
ext α(u, w) in a Monte

Carlo method based on rays that are shot from random volume points, by determin-

ing for all rays the final directions from the transmission and reflection laws [26, 27].

In the case of an STT or ST2 medium, the external scattering phase function
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pν αγ(u1,u) is the probability per units of incidence and scattering solid angles, for

rays incident in the solid angle dΩ1α(u1) to be externally scattered in dΩγ(u), i.e.

pν αγ(u1,u)

4π
(14)

=

∫
V /u.nα≤0

τ ′′ν α γ [u1,u,nα (r,u1)] [−u1.nα (r,u1)] dr∫ 4π

0

(∫
V /u′.nα≤0

τ ′′ν α γ [u1,u′.nα (r,u1)] [−u1.nα (r,u1)] dr

)
dΩ′γ(u

′)

.

The incidence and scattering directions, u1 and u respectively, are defined in the fixed

frame of the porous medium. The source points M(r) belong to a given volume V

of the real phase α. The bidirectional transmissivity τ ′′ν αγ [u1,u,nα (r,u1)] is defined

in the coordinates of the fixed frame; nα (r,u1) is the normal unit vector, oriented

towards α, at the interfacial impact point that is associated with a ray issued from

M(r) in the incidence direction u1. The condition u.nα ≤ 0 means that the scattered

direction belongs to γ.

In the case of an OT, OST, STT or ST2 medium, the similar expression of pν αα(u1,u)

is given for instance in Ref.[26].

Consider now, within a non-Beerian effective phase of an OT, OST, STT or ST2

medium, the interfacial scattering source term SS tsc ν αα(u, s) of an interval [s, s+ds] of

axis u, around a point M(s). As discussed in Sec.2.3.2, the fraction of the incident

intensity Iν α(s′1,u1) at the same point M(s′1), of abscissa s′1 in the direction u1, that

is scattered in the direction u is not correlated with Iν α(s′1,u1). It is proportional to

the globally scattered intensity ων αα Iν α(s′1,u1) and to the scattering phase function

pν αα(u1,u), which is determined by an equation similar to Eq.14. The interfacial

scattering source term then writes

SS tsc ν αα(u, s) =
ων αα
4π

∫
4π

∂

∂s′1(u1)
Iν α(u1, s

′
1) pν αα(u1,u) dΩ1(u1). (15)

As also discussed in Sec.2.3.2, SS tsc ν αα is not correlated with the following transmis-

sivity 1 − GS t
ext α(u, s′ − s) from s to s′ in the direction u. In the case of a STT or

ST2 medium, SS tsc ν αγ(u, s) is obtained by an equation similar to Eq.15, by replacing
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ων αα with ων αγ and pν αα with pν αγ.

3.2.2. Interfacial emission source terms (OT and OST cases)

Figure 3: Reciprocal emission and absorption events

For an OT medium, the key problem is to express dPe i
ds s′ ν , power emitted in the

elementary solid angle dΩ(u) by the interfaces of a volume element dV , equal to

dSds, of temperature field Ti(s) and incident at s′ after transmission through the

effective phase from s to s′, as shown in Fig.3. The normal unit vector of dS is n.

This power is also equal to dPe a
ds s′ ν , emitted by the interfaces of dV in dΩ(u) and

absorbed at the abscissa s′ by an interfacial element that is assumed to be black, dS ′

intercepted by dΩ(u), of normal unit vector n′ and of arbitrary temperature Tb .

The reciprocity theorem states that

w =| s′ − s |, dPe a
ds s′ ν(u, w) = dPe a

s′ ds ν(−u, w)
I◦ν (Ti)

I◦ν (Tb)
(16)

It is then sufficient to express dPe a
s′ ds ν , power emitted by the black interfacial element

dS ′ in the reciprocal elementary solid angle dΩ′(−u) and absorbed by dV , between s

and s+ ds. By using Eq.16 and the Clausius theorem (invariance of n2
ν u.n dS dΩ),

dPe i
ds s′ ν writes, as ∂P S t

a ν (−u, w)/∂w = ∂P S t
a ν (u, w)/∂w,

dPe i
ds s′ ν(u, w) = dPe a

ds s′ ν(u, w) = Πn2
ν I
◦
ν (Ti) dν dV dΩ

∂

∂w
P S t
a ν (u, w). (17)

This result is valid for any type of reflection law. It appears in Eq.17 that emission

between s and s+ds, as absorption, is strongly correlated with transmission from s

to s′: It is the signature of a non-Beerian effective phase, as discussed in Sec.3.2.2.
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In the common case of a diffuse reflection law, Equation 17 simply becomes

dPe i
ds s′ ν(u, w) = Πn2

ν I
◦
ν (Ti) dν dV dΩ (1− ων)

∂

∂w
GS t
ext(u, w), (18)

and, moreover if the effective phase is Beerian, the following classical result is found

again

(1− ων)
∂

∂w
GS t
ext(u, w) = (1− ων)βν [1−GS t

ext(u, w)] = κν [1−GS t
ext(u, w)]. (19)

As extinction by the real phase of an OST medium is not correlated with interfa-

cial emission, extinction, absorption or scattering, the additional extinction factor

exp[−βν mw] is simply introduced in Eqs. 17 and 18.

3.3. Non-Beerian effective phase with non-diffuse interfaces

If transmission and reflection are not diffuse, all the transmission and scattering

phenomena are correlated within a non-Beerian effective phase, from an emission

point up to any considered point, as discussed in Sec.2.3.3. Moreover, in OT or

OST case, interfacial emission is also correlated with all these following phenomena.

The case of a STT medium has been pragmatically and numerically developed by

Dauvois et al.[31]. The present Section deals with the complete physical formalism

for an OST medium.

Consider first the case of emission by the real semi-transparent phase of an OST

medium in an elementary solid angle dΩ0 around the direction u0. A set of specific

radiative statistical functions are associated with any elementary path between the

initial emission point and the first scattering point and between all the successive

scattering points. Gext α 0(u0, w0), Psc α 0(u0, w0) and pHν αα 0(u0,u1) are the specific

extinction cumulative distribution function, scattering cumulative probability and

phase function associated with the first path in the direction u0 between the emission

point M0(s0) and the impact point M ′
0(s′0); w0 is equal to s′0 − s0. Here and in the

following, a quantity with a superscript H is correlated with the history of the incident

radiation.

The point M ′
0(s′0) becomes a scattering source point that is now called M1(s1) for
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a scattering direction u1, as s1 is its abscissa along the axis u1. GS H
extα 1(u1, w1),

P S H
scα 1(u1, w1) and pS Hν αα 1(u1,u2) are the radiative statistical functions associated with

the second path in the direction u1 from the scattering point M1(s1) to the impact

point M ′
1(s′1); w1 is equal to s′1 − s1. The point M ′

1(s′1) becomes a scattering source

point that is now called M2(s1) for a scattering direction u2, as s2 is its abscissa

along the axis u2, etc.

The specific extinction cumulative distribution functions GS tH
ext αN(uN , wN) associ-

ated with a virtual transparent phase (see Sec.3.1.1) writes, by setting: wN = s′N−sN ,

GS tH
ext αN(uN , wN) = (20)

1

ΣH
N

1

δΩαN(uN)

∫ s′N

sN

∫
δΩαN (uN )/u′.nα>0

∫
ΣHN/V

δ[s”− sext(r,u
′
)] dr dΩαN(u

′
) ds′′.

In Eq.20, the summations are carried out:

i) Over all the source pointsM(r) of the part ΣH
N of the interfacial surface that belongs

to the physical volume V and is impacted by the rays issued from the elementary

solid angle dΩα(uN−1);

ii) Over all the directions u
′

of the elementary solid angle δΩα(uN), around the

direction uN of the fixed frame, such that u′ belongs to the phase, i.e.: u′.nα > 0,

where nα (r,u′) is the normal unit vector at an impact point that is oriented towards

α;

iii) Over all the points s” of the axis of direction u′, from MN(sN) to M ′
N(s′N);

sext(r,u
′
) is the abscissa of the interfacial impact point.

P S tH
scααN(uN , wN) is obtained in parallel by multiplying the weight δ[s”−sext(r,u

′
)]

by the hemispherical reflectivity[39, 40] ρ
′ h
ναα [u′,nα (r,u′)] in Eq.20. GS H

extαN(uN , wN)

is then deduced from GS tH
ext αN(uN , wN) by using Eq.5 and P S H

scααN(uN , wN) by using

a similar equation.

The specific phase function pS Hν ααN(uN ,uN+1), probability per units of incidence

and scattering solid angles for rays that are incident in the solid angle dΩN(uN) to
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be internally scattered in dΩN+1(uN+1), writes for an OST medium

pS Hν ααN(uN ,uN+1)

4π
=

∫
δΩαN (uN )/u′.nα>0

∫
ΣHN/uN+1.nα≥0

XN+1(r,u′) dΩαN(u
′
) dr∫ 4π

0

(∫
δΩαN (uN )/u′.nα>0

∫
ΣHN/u

′
N+1.nα

≥0
XN+1(r,u′) dΩαN(u′) dr

)
dΩ′N+1

,

(21)

with

XN+1(r,u′) = exp

(
−βν mα [sext(r,u

′
)−sN(r)]

)
ρ′′ναα [u′,uN+1,nα (r,u′)] [−u′.nα (r,u′)] .

(22)

The summations are carried out in Eq.21, both in the numerator and the denomina-

tor, over the source points belonging to ΣH
N and also over the elementary solid angle

δΩαN(uN) for the sake of compatibility with the determination of GS tH
ext αN(uN , wN).

Moreover the summations are carried out in the denominator over all scattering di-

rections of the phase α. The exponential factor in Eq.22 is associated with extinction

by the real semi-transparent phase of the OST medium of extinction coefficient βν mα .

Consider now the case of initial interfacial emission at the point M(s0) within a

non-Beerian effective phase of an OST medium. This interfacial emission is correlated

with the transmissivity from M(s0) to the first extiction point M ′
0(s′0) (see Eq. 17)

and with a possible scattering at this point, etc. The power emitted by an elementary

volume dV0 around M0(s0) in an elementary solid angle dΩ0 around the direction u0,

transmitted up to M ′
0(s′0) and scattered at this point writes, by generalising Eqs.17

and 20 ,

dP e sc t
dV0 s′0 ν

(u0, w0) = Πα n
2
ν I
◦
ν (Ti) dν dV dΩ (23)

x
1

ΣH
N

1

δΩα 0(u0)

∂

∂w0

∫ s′0

s0

∫
δΩα 0(u0)/u′.nα>0

∫
Σ/V

exp(−βmα νw0)Y (r,u′, s”) dr dΩα 0(u
′
) ds′′,

with

Y (r,u′, s”) =

(
1− ρ ′ h

ναα [u′,nα (r,u′)]

)
ρ

′ h
ναα [u′,nα (r,u′)] δ[s”− sext(r,u

′
)]. (24)
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pS iHν αα 0(u0,u1), GS iH
sc,α 1(u1, w1), P S iH

sc,αα 1(u1, w1), pS t iHν αα 1(u1,u2), etc. are then deter-

mined as in the previous case of emission by the semi-transparent real phase mα but

differ from the previous corresponding quantities.

3.4. Non-homogeneous effective phase

Figure 4: Left: Set of non-overlapping opaque cylindrical pellets of diameter D and height H = 0.8D
enclosed in a tube of radius Rt = 2.5D[41–43]; Middle: Porosity field Π vs χ = (Rt− r)/D, r radial

coordinate; Right: ln

(
Π(r)[1−Gtext(r, er, r′)]

)
in a tube cross section; er radial unit vector.

For the sake of clarity, this Section is only devoted to non-homogeneous effective

phases α associated with real phases with diffuse transmission and reflection laws.

For instance, the presence of a wall often generates a non-homogeneity within a

porous medium. It is the case of a set of pellets confined by a wall, as shown in

Fig.4[30]. Such media are characterised by strong gradients of the volume fraction

Πα(M) which is assumed to be continuous. They often present, in cartesian or

cylindrical coordinates, one or two dimensions that are much larger than the other

one(s) and along which they are statistically homogeneous.

The key quantities are radiative statistical distribution functions that also de-

pend on the position of the scattering or emission source point M(s), such as

G
(S)
ext α ν(u, s, s

′ − s) or G
(S)
ext α ν(u,M,M ′). A non-homogeneous effective phase is

never Beerian, due to this dependence of G
(S)
ext α ν(u,M,M ′) vs s. Moreover, within

an effective phase of a non-homogeneous medium the classical transmissivity 1 −
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G
(S)
ext α ν(u,M,M ′) is not invariant by time reversal. According to the reciprocity the-

orem, only the generalised transmissivity Πα(M)[1 − G(S)
ext α ν(u,M,M ′)] is invariant

by time reversal[30], i.e.

Πα(M) [1−G(S)
ext α(u,M,M ′)] = Πα(M ′)[1−G(S)

ext α(−u,M ′,M)]. (25)

All the developments of Sec.3 remain valid if they are based on the generalised

transmissivity instead of the classical one and on similar quantities associated with

scattering and absorption. This approach has been implemented and applied to ra-

diative transfer for an OT case, a set of opaque spheres confined at the vicinity of

plane walls[30], by taking into account interfacial emission correlated with transmis-

sion. Figure 4 is an illustration of Eq.25, issued from a parallel study dedicated to

an axi-symmetrical system[43].

4. Generalised Radiative Transfer Equation (diffuse interfacial laws)

The Generalised Radiative Transfer Equations (GRTEs) that are associated with

non-Beerian homogeneous effective phases of OT, OST, ST2 and STT media with

diffuse interfacial transmission and reflection laws are presented in this Section. As

discussed in Sec.2.4, they are based on the temperature field Ti(r) of the interfaces

(OT medium), on Ti(r) and the temperature field Tα(r) of the effective phase α

(OST medium), on Tα(r) (STT medium) or on Tα(r) and Tγ(r) (ST2 medium). The

GRTEs associated with models based on a global temperature field can easily be

deduced from these GRTEs.

The more complex case of an effective phase associated with a real phase with non-

diffuse reflection or transmission law has been discussed in Sec.3.3.

4.1. OT medium

A homogeneous effective phase α of an OT medium with a diffuse interfacial re-

flection law is characterised by the isotropic albedo ων αα. The emission source term

that is correlated with the following transmissivity has been expressed in Sec.3.2.2,
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the scattering source term and the associated phase function in Sec.3.2.1. The asso-

ciated GRTE then writes by setting: w = s′ − s,

Iν α(u, s′) =

∫ s′

sb

(1− ων αα) Παn
2
ν αI

◦
ν [Ti(s)]

∂

∂w
GS t
ext α(u, w)ds (26)

+

∫ s′

sb

SS tsc ν αα(u, s)[1 − GS t
ext α(u, w)] ds+ Iν α(u, sb) [1 − GSb t

ext α(u, wb)].

This equation was first introduced in Ref.[34], but for a model that was limited to the

core of the porous medium, and also in Ref.[38] but with a copy-paste mistake. The

first term of the right side of Eq.26 is the sum from the porous medium boundary sb

to s′ of the intensities that are emitted by the interfaces between s and s+ds in the

direction u and transmitted up to the point s′ (see Eq.18).

The second term of the right side of Eq.26 is the sum from sb to s′ of the intensities

that are incident from all directions of the space at the point M(s), scattered at

s in the direction u and transmitted from s to s′. As discussed in Sec.3.2.1, the

scattering source term, given by Eq.15, is not correlated with the incident intensity

distribution, but makes the GRTE extremely implicit, i.e.

SS tsc ν αα(u, s) =
ων αα
4π

∫
4π

∂

∂s′1(u1)
Iν α(u1, s

′
1) pν αα(u1,u) dΩ1(u1), (27)

where s′1(u1) is the abscissa in the incidence direction u1 of the point M of abscissa

s in the considered direction u.

The last term of the right side of Eq.26 represents the intensity that is transmitted in

the direction u from a boundary point Mb(sb) to M ′(s′). It is assumed that Iν α(u, sb)

is not correlated with [1 − GSb t
ext α(u, wb)] (case a wall with a diffuse reflection law,

for instance).

Equations 26 and 27 are directly expressed vs cumulative distribution functions,

which is the requirement of a Monte Carlo method. The GRTE is then as easily

solved as a classical RTE. [30, 31].
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4.2. OST medium

An effective phase α of an OST medium with a diffuse interfacial reflection law

is characterised by five source terms, associated with emission and scattering by

the interfaces and the real semi-transparent medium mα, and also with the radiation

issued from the boundaries. As previously, correlations only occur between interfacial

phenomena. The corresponding original GRTE, in which GS
ext α and Gext α are given

by Eq.5 and the interfacial scattering source term SSsc ν αα(u, s) is also given by Eq.15,

writes

Iν α(u, s′) =

∫ s′

sb

(1− ων αα) Παn
2
ν αI

◦
ν [Ti(s)]

∂

∂w
GS
ext α(u, w)ds

+

∫ s′

sb

κν mαΠαn
2
ν αI

◦
ν [Tα(s)] [1−Gext α(u, s′ − s)]ds

+

∫ s′

sb

SSsc ν αα(u, s)[1 − GS
ext α(u, s′ − s)] ds

+

∫ s′

sb

(
σν mα

4π

∫ 4π

0

pν mα(u1.u)Iν [u1, s
′
1(u1)]dΩ1(u1)

)
[1−Gext α(u, s′ − s)]ds

+ Iν α(u, sb) [1 − GSb
ext α(u, s′ − sb)]. (28)

4.3. ST2 and STT media

The expression of the GRTE of a non-Beerian effective phase α of a ST2 medium

with diffuse interfacial transmission and reflection laws coupled with the GRTE of

the effective phase γ involves five different source terms, i.e. emission and scattering

source terms of the real semi-transparent medium mα, internal interfacial scattering

source term SSsc ν αα of α, external interfacial scattering source term SSsc ν γα from γ to

α and intensity transmitted from the porous medium boundaries, which is assumed

to be non-correlated with the folowing transmissivity. This GRTE has not been
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implemented to our knowledge.

Iν α(u, s′) =

∫ s′

sb

Sν mα(u, s) [1−Gext α(u, s′ − s)]ds+ Iν α(u, sb) [1−GSb
ext α(u, s′ − sb)]

+

∫ s′

sb

[SSsc ν αα(u, s) + SSsc ν γα(u, s)] [1−GS
ext α(u, s′ − s)] ds, (29)

where the total source term within mα writes

Sν mα(u, s) = Πακν mα n
2
ν αI

◦
ν [Tα(s)] +

σν mα
4π

∫ 4π

0

pν mα(u1.u) Iν α[u1, s
′
1(u1)] dΩ1α(u1)

(30)

and the external interfacial scattering source term of γ

SSsc ν γα(u, s) =
ων γα
4π

∫
4π

∂Iν γ(u1, s
′
1)

∂s′1(u1)
pν γα(u1,u) dΩ1 γ(u1). (31)

As previously s′1 is the abscissa in the direction u1 of the point M of abscissa s in the

considered direction u. As the two phases are characterised by different refractive

indices, the solid angles dΩγ and dΩα at a scattering point differ. All the associated

transformations are ruled by the Clausius theorem.

The GRTEs associated with the effective phases of a STT medium are simply ob-

tained by setting: βmγ = σmγ = κmγ = 0, as the γ phase is transparent.

4.4. Degeneration into RTE

In the core of a porous medium and in regions where a non-Beerian effective phase

is practically isothermal along an optically thick distance, the GRTE associated with

this effective phase degenerates into a classical RTE, as shown in in Sec.4.4.1 in the

case of an OT medium. These conditions correspond to a Local Thermal Equi-

librium of Radiation (LTER), which is similar to the Local Thermal Equilibrium of

Matter (LTEM) of the molecular theory[44, 45]. The LTER is introduced in Sec.4.4.2

by comparison with the Ideal Thermal Equilibrium (ITE) defined for radiation in

Sec.4.4.1. The cases of OT, OST, STT and ST2 media are discussed in Secs.4.4.3

and 4.4.4.
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The main practical interest of this Section is to be the theoretical base of the popular

model of the radiative Fourier law developed in Sec.5.

4.4.1. Ideal Thermal Equilibrium

Consider the case of the non-Beerian effective phase α of an OT medium which is

characterised by an emission term that is correlated with the following transmission

of radiation (see Eq.26). This fact was not accounted for in a previous study[34]. At

Ideal Thermal Equilibrium (ITE) the effective phase α, of volume fraction Πα and

refractive index nν α, is characterised by the equilibrium intensity Πα n
2
ν αI

◦
ν (T ) that

is independent of the position. The second term of the right side of Eq.26 vanishes

at a distance from the boundaries that is optically thick and this equation becomes

Πα n
2
ν αI

◦
ν (T ) = (1− ων αα) Παn

2
ν αI

◦
ν (T ) + SS t ◦sc ν αα

∫ ∞
0

[1 − GS t
ext α(u, w)] dw. (32)

In these conditions, the equilibrium scattering source term writes at any point of the

effective phase

SS t ◦sc ν αα(u, T ) =
ων αα Πα n

2
ν αI

◦
ν (T )∫∞

0
[1−GS t

ext α(u, w)] dw
, (33)

and the equilibrium emission source term is then deduced from Eqs. 33 and 26

SS t ◦e ν αα(u, T ) =
(1− ων αα) Πα n

2
ν αI

◦
ν (T )∫∞

0
[1−GS t

ext α(u, w)] dw
. (34)

In ITE conditions the terms of extinction by scattering and by absorption are

equal to the opposites of the scattering and emission source terms, respectively.

By taking into account Eqs. 33 and 34, they write −Σν α(u) Πα n
2
ν αI

◦
ν (T ) and

−Kν α(u) Πα n
2
ν αI

◦
ν (T ), by definition of the generalised scattering and absorption

coefficients at equilibrium

Σν α(u) =
ων αα∫∞

0
[1−GS t

ext α(u, w)] dw
and Kν α(u) =

1− ων αα∫∞
0

[1−GS t
ext α(u, w)] dw

.

(35)
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The generalised extinction coefficient at equilibrium that then writes

Bα(u) =
1∫∞

0
[1−GS t

ext α(u, w)] dw
(36)

is the inverse of a quantity averaged along an optically thick region, the area under

the curve associated with the transmissivity 1−GS t
ext α(u, w). For a Beerian effective

phase, 1−GS t
ext α(u, w) is equal to 1− exp[−βα(u)w] and Bα(u) is equal to βα(u).

Similar results are easily obtained in OST, STT and ST2 cases. In conclusion, the

GRTE associated with a non-Beerian homogeneous effective phase degenerates, in

ITE conditions, into a classical RTE that is characterised by the previously defined

coefficients at equilibrium.

A non-homogeneous effective phase is characterised by an extinction cumula-

tive distribution function G
(S)
ext ν α(u, s, w) that depends on the position s. In ITE

conditions, the total source term is then non-uniform and generalised extinction, ab-

sorption and scattering coefficients at equilibrium can not be defined. Consequently,

a RTE can never be defined in this case.

4.4.2. Local Thermal Equilibrium of Radiation

It is now assumed, as in the Chapman-Enskog theory applied to a molecular

assembly[44, 45], that the intensity field Iν α(u, r) within an effective phase α is

practically characterised at a spatial scale that is optically thick by an equilibrium

intensity Πα n
2
α I
◦
ν (T ) at the temperature T , which only differs from the real intensity

field Iν α(u, r) by a perturbation term that is neglected in this Section. This assump-

tion corresponds to a Local Thermal Equilibrium of Radiation (LTER), similar to the

Local Thermal Equilibrium of Matter (LTEM) of the molecular theory. Note that,

within a transparent real phase, this LTER condition can be realised even if the fluid

of this phase is strongly non-isothermal, but obviously in LTEM conditions. As seen

in this example, the scales of LTER and LTEM conditions are extremely different.

When an effective phase is in LTER conditions, it is characterised by physical

quantities defined in ITE conditions, as in LTEM conditions. In particular, a classical

RTE based on the extinction, absorption and scattering coefficients at equilibrium
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defined in Sec.4.4.1 is then introduced, as shown in Sec.4.4.3 for an OST or OT

medium and in Sec.4.4.3 for a ST2 medium.

The strict validity conditions of this model are discussed in Sec.5 in which the dis-

crepancies to equilibrium conditions are studied and which is mainly devoted to the

radiative Fourier law and its validity conditions in Sec.5.1.

4.4.3. OST or OT medium

Consider first the effective phase of an OST medium. When the temperature

fields of the real semi-transparent phase mα and the interfaces differ a predominant

radiative transfer occurs between the interfaces and the phase mα at an optically

thin distance. A RTE with two emission sources at different temperatures, as done

in Ref.[25], is then not justified. In these conditions, the GRTE defined by Eq.28,

which presents two emission terms, has to be solved.

On the contrary, if the interfaces and the phase mα are characterised by the same

temperature field T and are practically isothermal along an optically thick distance,

a global RTE is valid as discussed in the introduction of Sec.4.4.2, i.e.

d

ds
Iν α(u, s) = − [Bα(u) + βν mα ] Iν α(u, s) + Πα n

2
ν α [Kν α(u) + κν mα ] I◦ν [T(s)]

+
σν mα

4π

∫ 4π

0

pν mα(u1.u) Iν α[u1, s
′
1(u1)] dΩ1(u1),

+
Σν αα(u)

4π

∫ 4π

0

pν αα(−u,−u1) Iν α[u1, s
′
1(u1)] dΩ1(−u1), (37)

where Bα(u), Kν α(u), Σν α(u) and pν αα(−u,−u1) are the interfacial generalised

extinction, absorption and scattering coefficients at equilibrium and the interfacial

scattering phase function; βν mα , κν mα and σν mα and pν mα the extinction, absorption

and scattering coefficients and the scattering phase function of the phase mα.

In Eq.37, Σν αα(u1) has been replaced by Σν αα(u), due to using the invariance of the

flux at equilibrium by time reversal (see Appendix B) and Σν αα(u) has been extracted

from the directional integration. The resulting expression of the last scattering source

term of Eq.37, which is more general than the expression in use in Ref.[25], is proofed

in this Appendix.
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The RTE associated with an OT case is obviously deduced by setting: βν mα =

κν mα = σν mα = 0.

4.4.4. ST2 medium

In the case of a STT medium, if the effective phase corresponding to the transpar-

ent real phase is non-Beerian, a RTE can not can not be associated with it. Indeed,

the absorption optical thickness of this effective phase is always zero, never optically

thick.

In the case of a ST2 medium, as the assumption of optically thick effective phases

is never verified due to the predominant transfer between the two phases associated

with the external scattering terms, a model that is based on two coupled RTEs is not

valid for non-Beerian effective phases when the temperature fields of the two phases

differ. The two coupled GRTEs, given by Eqs.29-31, have then to be solved.

In regions where the two phases have the same temperature field and are prac-

tically isotermal along an optically thick distance, a porous medium of ST2 type is

globally modelled by considering a unique effective semi-transparent phase of uni-

form intensity Iν and effective refractive index nν . The intensities, refractive indices

and elementary solid angles associated with the two phases, the effective medium

and the void, characterised by a subscript v are linked by

Iν = n2
ν Iν v Iνα = Πα n

2
να Iν v, Iνγ = Πγ n

2
νγ Iν v,

n2
ν = Πα n

2
ν α + Πγ n

2
ν γ, n2

νdΩ = dΩv = n2
ν αdΩα = n2

ν γdΩγ,

Iν dΩ = Iv dΩv, Iν α dΩα = Πα Iν dΩ Iν γ dΩγ = Πγ Iν dΩ (38)

Indeed, the intensity expressed in void is uniform within the two real phases. A
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unique RTE is obtained from the two coupled Eqs. B.10 of Appendix B, i.e

d

ds
Iν(u, s) = − Bν(u) Iν(u, s) + κν n

2
ν I
◦
ν [T (s)] (39)

+
σν
4π

∫ 4π

0

pν(u1,u) Iν [u1, s
′
1(u1)] dΩ(u1)

+
Σν i(u)

4π

∫ 4π

0

pν i(−u,−u1) Iν [u1, s
′
1(u1)] dΩ(−u1)

where the global effective extinction and absorption coefficients Bν and κν and the

effective scattering coefficients coefficient σν and Σν i and phase functions pν and pν i

associated with the phases mα and mγ and the interfaces are defined by

n2
ν κν = Πα n

2
ν α κν mα + Πγ n

2
ν γ κν mγ

n2
ν σν = Πα n

2
ν α σν mα + Πγ n

2
ν γ σν mγ

n2
ν Σν i(u) = Πα n

2
ν α [Σν αα(u) + Σν αγ(u)] + Πγ n

2
ν γ [Σν γγ(u) + Σν γα(u)]

Bν(u) = κν + σν + Σν i(u)

σν pν(u1.u) = Πασν mα pν mα(u1.u) + Πγσν mγ pν mγ (u1.u)

Σν i(u) pν i(−u,−u1) = Πα Σν αα(u) pν αα(−u,−u1)

+

(
n2
ν α

n2
ν γ

)
Πα Σν αγ(u) pν αγ(−u,−u1)

+ Πγ Σν γγ(u) pν γγ(−u,−u1)

+

(
n2
ν γ

n2
ν α

)
Πγ Σν γα(u) pν γα(−u,−u1). (40)

As in the OST case, the expression of the different terms of the right side of Eq.39,

associated with the use of time reversal conditions, can be deduced from Appendix

B.

5. Radiative Fourier law

The radiative flux within a non-Beerian effective phase of an OT, OST or ST2

medium can be modelled by a radiative Fourier law in conditions such that the GRTE
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degenerates into a RTE, under two strong validity conditions detailed in Sec.5.1.

This radiative Fourier law is then obtained by a perturbation method, similar to

the Chapman-Enskog theory[44] based on the Boltzmann equation. This method

has been developed for obtaining analytic general expressions of the scalar radiative

conductivity kR(T ) in the case of an isotropic OT Beerian medium, with interfacial

gray or non-gray reflection law[34] and also by Chalhafi et al.[25] for the non-Beerian

effective phase of a strongly anisotropic OT medium. As shown in Sec.4.4.3, it can be

applied to a non-Beerian effective phase of an OST medium only if the transparent

fluid phase and the interfaces have the same temperature field, as a global RTE with

two sources at different teperatures is not valid.

Section 5.2 deals with an original development of the perturbation model in the case

of non-Beerian effective phases of a strongly anisotropic ST2 medium. A radiative

Fourier law is never valid in STT case, as shown in Sec.5.3.

5.1. Fourier law validity conditions

The validity conditions of the radiative Fourier law are the same for a RTE issued

from the degeneration of a GRTE of a non-Beerian effective phase and for a RTE

associated with a Beerian medium. These validity conditions[46] are here simply

summarised in the case of an isotropic semi-transparent Beerian medium.

The scattering phase function of such a medium only depends on the scattering

angle cosine µ = u1.u and scattering is globally characterised by the scattering

asymmetry factor g[47, 48] defined by

gν =
1

2

∫ 1

−1

pν(µ)µ dµ. (41)

Radiative transfer is characterised by a radiative Fourier law, i.e. a scalar radiative

conductivity kR, within a possible region of the medium that fulfils the three following

conditions[46]:

i) This region is homogeneous;

ii) The distances between all the points of this region and the porous medium

boundaries are optically thick. Indeed, in the zone that does not fulfil this condition
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the radiative flux is strongly influenced by the boundary radiative conditions (black

or reflecting opaque walls for instance). This last zone is called in the following

radiative boundary layer.

iii) For a given relative discrepancy ζ over the radiative power, the temperature

field fulfils, at any point of the region, the inequality[46]

1

T

dT

dx
< χ(ζ)κeff (ω, g), (42)

where κeff (ω, g) is an effective absorption coefficient that takes into account possible

multiple scattering events along the paths of the rays and depends on the albedo ω

and on the scattering asymmetry factor g.

The radiative conductivity is due to a large number of successive emission-absorption

sequences along short effective distances, often shortened by multiple scattering

events[46]. It is physically ruled by an effective absorption coefficient and not by an

extinction coefficient. For instance, the value of the generalised extinction coefficient,

only due to scattering, can be extremely large within the effective phase associated

with a real transparent phase of a STT medium, but the Fourier law is never valid

within this phase as there is no absorption, and consequently no emission. It is also

not valid within the other absorbing phase, as the transparent phase generates a long

range connection with other regions of the medium, as seen in Sec.5.3.

The functions χ(ζ) and κeff (ω, g) are tabulated in Ref.[46]. For instance, for ζ =

10−2, χ is equal to 0.033. If the albedo is equal to 0.5 and g to −0.3, typical values

of backscattering by a porous medium, the criterion corresponds to κeff = 1.70κ.

For a typical pore size of 100µm and a κ value of 50 cm−1, the radiative Fourier law

is valid if: dT
dx

< 2.8T K/cm. This criterion is generally valid at high temperature.

For instance, at 2000 K, the temperature variation has to be smaller than 56 K for

this pore size of 100µm and, at 500K, smaller than 14 K.

5.2. Fourier law for a ST2 medium

If the two phases of a ST2 medium are characterised by different temperature

fields, Fourier laws are not valid, even if these phases are Beerian, due to the prepon-
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derant exchanges between the two phases along distances of small optical thicknesses.

If the temperature fields of the non-Beerian effective phases of a ST2 medium are

identical and if the validity conditions of Sec.5.1 are fulfilled, radiative transfer is

ruled by a unique RTE (Eq.39) and a radiative Fourier laws is valid for the whole

medium, as developed in the following.

Consider the effective phases of a ST2 medium that are practically isothermal at the

unique temperature T (M) and are assumed to be optically thick within a sphere of

radius δ around a point M ; δ is typically larger than five times 1/κeff the effective

mean free path of photons between their emission and their absorption, after possible

multiple scattering events (see Eq.42). The position of any point M is now defined

at macroscale, i.e. at a spatial scale larger than δ, by R or by (u, S) where S is the

abscissa along the axis u. The aim of this Section is to express the radiative flux vec-

tor at macro-scale qR(R) given by Eq.3 vs the intensity field at macroscale Iν(u,R).

By analogy with the conduction case, a radiative Knudsen number is introduced

KnRν (u) =
1

Bν(u)δ
<< 1. (43)

It is based on Bν(u) instead of κeff , which would be more physical, for the sake

of simplicity, by assuming that the value of the effective absorption coefficient is

large; Anyway, Bν(u) will disappear in the following. By setting: R+ = R/δ and

S+ = S/δ, the RTE (Eq.39), which is in fact a Boltzmann equation applied to photon

momentum[48], becomes

Iν(u,R
+) = −KnRν (u) u.grad+

R [Iν(u,R
+)] +

κν
Bν(u)

n2
νI
◦
ν [T (R+)]

+
σν

4π Bν(u)

∫ 4π

0

pν(u1,u)Iν [u1, R
+
1 (u1)]dΩ(u1) (44)

+
Σν i(u)

4π Bν(u)

∫ 4π

0

pν i(−u,−u1) Iν [u1, R
+
1 (u1)] dΩ(−u1).

Equation 44 is then solved, as in the Chapman Enskog model, by a perturbation

method, of perturbation parameter KnRν (u). At the perturbation order 0, the first
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term of the right side of Eq.44, transport term, which is negligible compared to the

other terms, is not accounted for. The corresponding solution I
(0)
ν is the equilibrium

intensity n2
νI
◦
ν [T (R+)]. But the flux associated with this isotropic intensity is zero.

It is then assumed that the solution expressed in dimensional quantities writes at

macroscale

Iν(u,R) = I(0)
ν [T (R)] + I(1)

ν (u,R) with :
I

(1)
ν (u,R)

n2
νI
◦
ν [T (R)]

<< 1. (45)

I
(1)
ν (u,R) is anisotropic and generates the radiative flux. It is solution, at the pertur-

bation order 1, of the implicit equation obtained by removing in Eq.44 the emission

term, of perturbation order 0, and replacing Iν(u,R) in the transport term with the

solution at the perturbation order zero. By introducing the linear functional

Lν [X(u1)](u) =
σν

4π Bν(u)

∫ 4π

0

pν(u1,u)X(u1)dΩ(u1)

+
Σν i(u)

4π Bν(u)

∫ 4π

0

pν i(−u,−u1)X(u1) dΩ(−u1), (46)

and setting C(u, ν, T ) = [n2
ν/B(u1)] dI◦ν (T )/dT , the solution I

(1)
ν is obtained by an

iterative approach

I(1)
ν (u) = −C(u, ν, T ) u.gradR T −

∞∑
k=1

Lkν [C(u1, ν, T ) u.gradR T ] (u), (47)

where k is the iteration order. Consequently, the final solution I
(1)
ν (u,R) is propor-

tional to −u.gradR T . Applied to Eq.3 it leads to a radiative Fourier law, i.e. in

tensorial notation by using the Cartesian coordinates Xl at macroscale

qRm(Xl) = − kRmn[T (Xl)]
∂

∂Xn

T (Xl). (48)
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5.3. No Fourier law for a STT medium

The effective phase of a STT medium that is associated with a transparent real

phase is never optically thick. Consequently a radiative Fourier law is never valid for

the two effective phases of this porous medium, even if they are Beerian.

An illustration of the limits of the Fourier law is given in Fig.5 where the results

Figure 5: Normalised radiative power field PRL/σT (0)4 (x/L) obtained from the GRTE and the
radiative Fourier law applied to a layer of insulation felt of absorbing fibres, of thickness L; T (0) =
2000K, T (L) = 300 K; Left: κα d = 0.3; Right: κα d = 100 (opaque fibres).[31]

associated with a GRTE model are compared with results obtained by a non-physical

Fourier model for an insulation felt. The fibres are made of overlapping absorbing

cylinders of finite length L,diameter d and absorption coefficient κα within a trans-

parent phase. Details are given in Ref.[31]. Two extreme conditions are considered:

a) Optically thin fibres; b) Opaque fibres. The results of intermediate fibre optical

thicknesses vary between the two presented curves.

Different conclusion can be drawn: i) Whatever the optical thickness of the fibre,

the radiative Fourier model leads to strongly erroneous results, in the vicinity of the

hot wall; ii) It is not the case at the vicinity of the cold wall, where the weak relative

temperature difference along a large region allows a direct linearisation of the flux

(trivial case); iii) The Fourier model is valid in the core of the felt as predicted for

an OT case, i.e. a STT medium with κα d = 100, as shown in Fig.5 b; iv) It is never
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valid in the STT case, as shown In Fig.5 a, despite the fact that the absorbing phase

is optically thick at the considered scale, as previously discussed in Sec.5.1.

6. Spatial resolution of the statistical approach

The spatial resolution of the statistical model applied to radiative transfer is

here discussed, both in the core of a porous medium and in its radiative boundary

layer (see definition in Sec.5.1), according to the model in use (homogeneous or non-

homogeneous effective phase, transfer model based on a GRTE or on a radiative

Fourier law). This discussion is based on:

i) The four spatial scales that are involved in the characterisation of the radiative

statistical properties of an effective phase:

- dp, the typical pore size;

- dG, the spatial resolution of Gt
ext α that is determined by a Monte Carlo method. It

is only limited by the experimental resolution of a tomography or by the numerical

resolution if the medium is theoretically defined. It is generally much smaller than

the typical pore size dp;

- ds, the scale of the shooting zone, of volume V around a point M , from which are

issued the rays that allow the statistical radiative functions to be built[20, 26, 29, 31],

whatever the types of medium (OT, OST, STT or ST2), of effective phase (Beerian

or non-Beerian) and of interfacial transmission and reflection laws. This zone has to

be representative of the porous medium and as small as possible;

- dext, the typical size of the extinction zone of the shot rays, which is generally larger

than the shooting zone. The extinction zone is identical to the shooting zone when

all the boundaries of this last zone are opaque or characterised by a total specular

reflection of the rays that is associated with the symmetries of a porous medium of

regular morphology;

ii) dT , the spatial resolution of the temperature field that depends on the coupling

of the different modes of heat transfer;

iii) δ, the typical spatial scale of the radiative boundary layer.
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6.1. Homogeneous effective phase

Some typical examples allow the common case of radiative transfer within a

homogeneous effective phase to be illustrated:

y

x

D

P

30°
M

Figure 6: a) Left: Cross-section normal to the axis z of a bundle of parallel rods[25, 29]; Triangular
configuration; θ, angle with the axis z; ϕ, azimuth defined by reference to the axis x. Merged
shooting and extinction zones enclosed between the bold lines; Shot directions included between
the dashed lines within a 30◦ϕ angle range. A perfect specular reflection (ρ = 1) is applied at any
impact over a symmetry plane, within the extinction zone[25, 29]. b) Right: Cross section of the
arbitrary thin shooting zone y, y+dy when the flux vector is parallel to the axis y. (EM2C/IRSN
study)

i) A statistically homogeneous porous medium is often periodic or practically

periodic. The merged shooting and extinction zones are then defined both by the

periodic structure and the set of the medium symmetries. It is the case for instance

of the bundle of rods shown in Fig.6 a: The shooting and extinction zones are a

volume, of hight δz and of scale ds, that is limited by the bold lines within a cross

section normal to the opaque rods.

Even if the spatial resolution dG of Gext α is much smaller than the pore size dp, the

rays that contribute to Gext α are averaged over this shooting and extinction volume

of scale dr, which is of the same order of magnitude as the pore size dp, i.e.

dG << dT << ds = dext ' dp. (49)

The spatial resolution of radiative transfer results, based on a RTE or a GRTE for

a Beerian or a non-Beerian effective phase respectively, is then limited by ds in this
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homogeneous approach, even if the spatial resolution dT of the temperature field

issued from other heat transfer modes is smaller than ds. The homogeneous model

is then not optimal, in particular at the vicinity of the boundaries of the porous

medium which are often characterised by strong gradients of the temperature field.

On the other hand, if the validity conditions of the radiative Fourier law are ful-

filled, the medium is practically isothermal within zones larger than dp. The spatial

resolution of the temperature dT is then larger than dr, i.e.

dG <<< ds = dext ' dp < dT . (50)

The homogeneous model is then pertinent but with a limited spatial resolution.

Moreover, the Fourier model is not valid within the radiative boundary layer of

thickness δ and can lead to absurd results (see for instance Fig.5) .

ii) Some statistically homogeneous porous media do not present any symmetry

(case of a foam, DOOS or DOTS of Sec.3.1.1 for instance). If a compact shooting

zone is used, for instance a cube, the spatial scales associated with this medium

generally verify the conditions

dG << dp ' dT << ds << dext. (51)

as the the typical size ds of the shooting zone is equal to some typical pore sizes dp.

The practical spatial resolution of radiative transfer, based on a RTE or a GRTE,

for a Beerian or a non-Beerian effective phase respectively, is then limited by ds,

which a priori is larger than the spatial resolution dT of the temperature field that

is assumed to be three-dimensional. As in case i) this modelling is not optimal. A

model based on a radiative Fourier also presents the same limitation as in case i).

iii) In practical applications, the statistically homogeneous media of the para-

graph ii) often present two dimensions, along x and y, that are much larger than the

dimension along z and are often practically isothermal. The radiative flux vector is

then practically orthogonal to the directions x and y that are assumed to be infinite.
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In the core of the porous medium, the pertinent shooting zone is then a thin slice

that is representative of the medium. The following conditions are verified

dG << ds ' dT << dp << dext ' δ. (52)

A homogeneous approach based on a GRTE is accurate as ds and dT are of the

same order of magnitude. In the modelling, the extinction cumulative distribution

functions that are associated with directions u oriented towards the boundaries are

simply truncated at the boundaries as the extinction scale dext is much larger than

ds.

A radiative Fourier law can also be used as previously in the core of the porous

medium.

6.2. Non-homogeneous effective phase

Consider now non-homogeneous effective phases. If the temperature field is one-

dimensional along an axis y, a periodic porous medium as the rod bundle of case

i) can be characterised by using a very thin shooting zone, a slice between y and

y+ δy, that is practically infinite along x and z, as shown in Fig.6 b. As the medium

is statistically homogeneous along x and z, the porosity Π(y) of the shooting zone

is accurately defined. It is characterised by strong variations along y between a

minimum value and unity. This last value corresponds to a transparent medium. A

non-homogeneouse model of radiative transfer, defined in Sec.3.4 and necessary based

on a GRTE, can be applied in these conditions. Moreover, it also allows radiative

transfer within the radiative boundary layer to be accurately modelled, even if the

scale dext of the extinction zone is much larger than the thickness δy of the shooting

zone. Specific radiative statistical functions are then associated with any elementary

shooting zone.

7. Conclusion

This study deals with radiative transfer within macroporous media with Opaque

and Transparent or Semi-Transparent phases (OT or OST), with Semi-Transparent
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and Transparent phases (STT) or with two Semi-Transparent phases (ST2), in which

the geometrical optics laws are assumed to be valid. It is focused on media that

present after homogenisation non-Beerian effective phases such that extinction is not

characterised by an exponential law. When the medium is statistically anisotropic,

a directional characterisation of the radiative properties is necessary, as the radia-

tive flux vector then generally presents preferential directions in radiative transfer

applications.

Within a non-Beerian effective phase of an OST, a STT or a ST2 medium a strong

correlation occurs between transmission, from any emission or scattering source point

M of the real semi-transparent phase to an interfacial impact point M ′, and interfa-

cial extinction by scattering or absorption atM ′. An interfacial extinction cumulative

distribution function, internal and external scattering cumulative probabilities and

associated scattering phase functions exhaustively characterise an effective phase of

a STT or ST2 medium. The external scattering cumulative probability is replaced

with an interfacial absorption cumulative probability in the case of an OST medium.

Moreover, it has been shown from the reciprocity theorem that, within an effective

phase of a OT or OST medium, interfacial emission at a point M is also strongly

correlated with interfacial transmission from M to another point M ′ and interfacial

extinction by scattering or absorption at M ′. The associated extinction cumulative

distribution function, absorption and internal scattering cumulative probabilities and

internal scattering phase function are then correlated with the interfacial emission

source term.

If reflection or transmission is diffuse, i.e. independent of both the incidence

and final directions, an internally or externally scattered intensity at M ′ is corre-

lated neither with the incident intensity at M ′ nor with the following transmission

and extinction phenomena, even if the effective phase is non-Beerian. The radiative

statistical functions of this effective phase are then unique.

In these conditions, a unique Generalised Radiative Transfer Equation (GRTE) is as-

sociated with any non-Beerian effective phase of an OT, OST, STT or ST2 medium,

instead of a classical Radiative Transfer Equation (RTE). It is directly expressed in

terms of the previously defined radiative statistical functions instead of extinction,
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scattering and absorption coefficients and takes into account the radiative boundary

conditions. A GRTE can be easily solved by any classical Monte Carlo radiative

transfer model, as it is directly expressed in terms of cumulative distribution func-

tions, which is the requirement of a Monte Carlo approach.

Under specific validity conditions the GRTE of a homogeneous effective propagation

phase of an OT medium degenerates into a classical RTE and a radiative Fourier

can be applied within this effective phase. In the case OST or ST2 medium, this

model can only be applied if the homogeneous effective phases are characterised by

the same temperature field. A radiative Fourier is never valid in the cases of homo-

geneous effective phases of a STT medium or of a non-homogeneous effective phase

of any type.

If reflection or transmission is non-diffuse, as in the case of a Fresnel-Descartes

law, any scattering source term within a non-Beerian effective phase is strongly

correlated with the complete set of foregoing successive events: Possible interfacial

emission and, in any case, all successive interfacial scattering events. Instead of a

unique GRTE, the effective phase is then characterised by a set of specific GRTEs

associated with all the successive emission and scattering source terms. Any specific

GRTE is expressed in terms of specific radiative statistical functions, which are

strongly correlated with all the corresponding radiative functions associated with

the foregoing events. This more complex problem can also been solved by a Monte

Carlo radiative transfer model.

A non-homogeneous effective phase, with strong volume fraction gradients, is

characterised by radiative statistical functions that also depend on the coordinates

of the source points. All the previous models of radiative properties are generalised

by using a global transmissivity, product of the volume fraction at the source point

by the transmissivity deduced from the extinction cumulative distribution function.

The method can easily be applied to media with two dimensions that are assumed

to be infinite.

The spatial limitations of the transfer methods based, on one hand, on a GRTE

or a radiative Fourier law and, on the other one, on a homogeneous or a non-

homogeneous approach have been discussed from the comparison of all the scales
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associated with the resolution of the radiative statistical functions, the pore sizes,

the shooting and extinction zones of the numerical approach, the resolution of the

temperature fields and the width of the radiative boundary layer.
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Appendix A. Interfacial shots and volume shots

A.1. General case

Are GS text α associated with interfacial source points and Gtext α associated with volume

source points, defined in Sec.3.1.1, and consequently GSext α and Gext α identical or different?

In GS text α(u, w), w is the length of the chord between an interfacial source point D(s)

and an interfacial extinction one E(s′). GS text α(u, w) is in fact the cumulative distribution

function of the chords DE of length w; 1 − GS text α(u, w) is then the probability that the

length of a chord DE is larger than w. Int he case of a phase that presents only convex

interfaces, for instance the space outside non-overlapping cylinders or spheres, w varies

between a non-zero minimum length wmin and a maximum one wmax, possibly infinite.

On the other hand, Gtext α(u, w) is the cumulative distribution function of the segments

ME of length w joining a volume point of the phase M(s) to an interfacial impact point

E(s′) and F text α(u, w)dw is the probability that the length of a segment ME belongs to the

range [w,w+ dw], where F text α(u, w) is the associated distribution function. Now w varies

between 0 and a maximum length wmax, possibly infinite.

At any segment of impact point E in the direction u and length w, is associated a

unique chord of same impact point E and direction u and of length larger than w. As the

density of points in any element of length dw is uniform, the number of these segments ME

of direction u and of length in the range [w,w+ dw] larger than wmin is then proportional
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to the number of chords DE of lengths larger than w: If w > wmin, 1 − GS text α(u, w) is

proportional to F text α(u, w). Consequently, GS text α(u, w) verifies the equations

w < wmin : 1−GS text α(u, w) = 1, w > wmin : 1 − GS text α(u, w) =
F text α(u, w)

F text α(u, wmin)
.

(A.1)

Indeed 1−GS text α(u, w) is equal to 1 for w = wmin.

For a transparent effective phase, GS text α associated with interfacial source points is

finally linked to Gtext α associated with volume source points by

w < wmin : 1−GS text α(u, w) = 1,

w > wmin : 1−GS text α(u, w) =
d

dw
Gtext α(u, w) /

(
d

dw
Gtext α(u, w)

)
wmin

. (A.2)

Equation A.2 generalises the result of Ref.[38], valid for a phase that presents concave

interfaces, such that: wmin = 0.

A.2. Beerian case

For an effective phase characterised by wmin > 0, 1 − GS text α(u, w) is equal to 1 for

w < wmin, which is not a Beerian behaviour.

On the contrary, in the case of an effective phase characterised by wmin = 0, 1 −
Gtext α(u, w) and 1 − GS text α(u, w) have the same expression exp[−βν(u)w] if this effec-

tive phase is Beerian, as shown by Eq.A.2. This property has often been used, without

justification[20, 22, 26, 27, 29], etc.

Appendix B. Some properties of scattering

As discussed in Sec.4.4, coupled RTEs are not valid for a ST2 medium characterised

by two optically thick and practically isothermal non-Beerian effective phases if their tem-

peratures differ. Nevertheless, if the two non-Beerian effective phases are at the same

temperature, the whole medium can be characterised, in these conditions, by a global

RTE built by summing the two individual RTEs. Such an individual RTE, which also
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corresponds to a possibly Beerian interfacial behaviour, writes

d

ds
Iν j(u, s) = −[βν mj + σν jj(u) + σν jk(u)] Iν j(u, s) + κν mj Πn2

ν jI
◦
ν [T (s)] (B.1)

+

∫ 4π

0
σν jj(u1)

pν jj(u1,u)

4π
Iν j(u1, s1) dΩj1(u1) +

∫ 4π

0
σν kj(u1)

pν kj(u1,u)

4π
Iν k(u1, s1) dΩk1(u1),

+σν mj

∫ 4π

0

pν mj (u1.u)

4π
Iν j(u1, s1) dΩj1(u1).

In Ideal Thermal Equilibrium (ITE) at the temperature T , the detailed balance principle,

or principle of microreversibility[35, 36] states that all types of emission and scattering

source terms are equal to the reciprocal absorption and scattering dissipation terms. After

simplification, the equality between the source and dissipation terms corresponding to

external interfacial scattering writes

Πj n
2
ν j σν jk(u) = Πk n

2
ν k

∫ 4π

0
σν kj(u1)

pν kj(u1,u)

4π
dΩk1(u1) (B.2)

and, by using the Clausius theorem [48, 49] that states that: n2
ν k dΩk1(u1) = n2

ν j dΩj1(u1),

Πj σν jk(u) = Πk

∫ 4π

0
σν kj(u1)

pν kj(u1,u)

4π
dΩj1(u1) (B.3)

This last equation is entirely expressed in the phase j. The reciprocity theorem[50] applied,

in ITE conditions, to the external scattering of an elementary beam dΩk1 by a volume

element Πk dV of the effective phase k towards the volume element Πj dV of the effective

phase j allows the following equality to be written(
n2
ν k I

◦
ν (T )dΩk1(u1)Πk dV dν

)
σν kj(u1)

pν kj(u1,u)

4π
dΩj(u)

=

(
n2
ν j I

◦
ν (T )dΩj(−u)Πj dV dν

)
σν jk(−u)

pν jk(−u,−u1)

4π
dΩk1(−u1). (B.4)

By using the Clausius theorem, the equality dΩj(u) = dΩj(−u) and by simplifying Eq.B.4

by n2
ν j I

◦
ν (T )dΩj(u)dV dν this equation becomes

Πk σν kj(u1)
pν kj(u1,u)

4π
dΩj1(u1) = Πj σν jk(−u)

pν jk(−u,−u1)

4π
dΩk1(−u1) (B.5)
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Equations B.3 and B.5 then lead to

σν jk(u) = σν jk(−u)

∫ 4π

0

pν jk(−u,−u1)

4π
dΩk1(−u1) = σν jk(−u) (B.6)

This result can also be applied to internal scattering:

σν jj(u) = σν jj(−u) (B.7)

By using Eq.B.5, the Clausius theorem and Eq.B.6, the elementary external scattering

source term becomes

σν kj(u1)
pν kj(u1,u)

4π
Iν k(u1, s1) dΩk1(u1) =

(
n2
ν j Πj

n2
ν k Πk

)
σν jk(u)

pν jk(−u,−u1)

4π
Iν k(u1, s1)dΩk1(−u1).

(B.8)

Consequently, Equation B.1 also simply writes

d

ds
Iν j(u, s) = −[βν mj + σν jj(u) + σν jk(u)] Iν j(u, s) + κν mj Πj n

2
ν jI
◦
ν [T (s)]

+σν mj

∫ 4π

0

pν mj (u1.u)

4π
Iν j(u1, s1) dΩj1(u1) + σν jj(u)

∫ 4π

0

pν jj(−u,−u1)

4π
Iν j(u1, s1) dΩj1(−u1)

+

(
n2
ν j Πj

n2
ν k Πk

)
σν jk(u)

∫ 4π

0

pν jk(−u,−u1)

4π
Iν k(u1, s1) dΩk1(−u1). (B.9)

Equation 37 applied to a Beerian effective phase of an OT medium then also becomes, by

following a similar approach,

d

ds
Iν(u, s)+βi(u)Iν(u, s) = Πκν i(u)n2

νI
◦
ν [Ti(s)]+σν i(u)

∫ 4π

0

pν i(−u,−u1)

4π
Iν(u1, s1) dΩ1(−u1).

(B.10)
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