
HAL Id: hal-02326926
https://hal.science/hal-02326926v2

Submitted on 27 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Large-Scale Characterization and Segmentation of
Internet Path Delays with Infinite HMMs

Maxime Mouchet, Sandrine Vaton, Thierry Chonavel, Emile Aben, Jasper den
Hertog

To cite this version:
Maxime Mouchet, Sandrine Vaton, Thierry Chonavel, Emile Aben, Jasper den Hertog. Large-Scale
Characterization and Segmentation of Internet Path Delays with Infinite HMMs. IEEE Access, 2020,
8, pp.16771-16784. �10.1109/ACCESS.2020.2968380�. �hal-02326926v2�

https://hal.science/hal-02326926v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Received December 4, 2019, accepted December 31, 2019, date of publication January 21, 2020, date of current version January 28, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2968380

Large-Scale Characterization and Segmentation
of Internet Path Delays With Infinite HMMs
MAXIME MOUCHET 1, SANDRINE VATON 1, THIERRY CHONAVEL 1,
EMILE ABEN 2, AND JASPER DEN HERTOG 2
1Lab-STICC, IMT Atlantique, 29280 Plouzané, France
2RIPE NCC, 1012 Amsterdam, The Netherlands

Corresponding author: Maxime Mouchet (maxime.mouchet@imt-atlantique.fr)

The work of Maxime Mouchet was supported by the Futur and Ruptures Program of Institut Mines Télécom for his Ph.D.

ABSTRACT Round-Trip Times are one of the most commonly collected performance metrics in computer
networks. Measurement platforms such as RIPE Atlas provide researchers and network operators with an
unprecedented amount of historical Internet delay measurements. It would be very useful to process these
measurements automatically (statistical characterization of path performance, change detection, recognition
of recurring patterns, etc.). Humans are quite good at finding patterns in network measurements, but it can
be difficult to automate this and enable many time series to be processed at the same time. In this article
we introduce a new model, the HDP-HMM or infinite hidden Markov model, whose performance in trace
segmentation is very close to human cognition. We demonstrate, on a labeled dataset and on RIPE Atlas
and CAIDA MANIC data, that this model represents measured RTT time series much more accurately than
classical mixture or hidden Markov models. This method is implemented in RIPE Atlas and we introduce
the publicly accessible Web API. An interactive notebook for exploring the API is available on GitHub.

INDEX TERMS Round-trip times, RIPE Atlas, hidden Markov models, nonparametric Bayesian models,
anomaly detection, time series clustering.

I. INTRODUCTION
A. SCOPE OF THE PAPER
Network management has traditionally been entrusted to
humans. But this is expensive, error-prone, and slow to adapt
to changes. The task of human experts is very complex
because of the large number and heterogeneity of equipments,
as well as the wide variety of applications.

We believe that the future of network management is
in automation, or driverless (autonomous) networks. Ref-
erences [1]–[4]. For self-driving networks to become real-
ity, recent machine learning techniques must be used to
extract information from network measurements and auto-
mate decision-making. Different needs should be addressed:
statistical characterization, prediction, detection of changes
or anomalies, classification, etc. The results must be reliable
and accurate in order to automate decision-making related to
network management or to security and resilience, and the
analysis should be scalable and fully automated (no human
intervention).

The associate editor coordinating the review of this manuscript and

approving it for publication was Xiaofei Wang .

FIGURE 1. RTT between two RIPE Atlas anchors from May 1st to May 5th,
2018.

Delay is an important performance metric. In particular,
it is easy to measure Round Trip Time (RTT) and data is read-
ily available from measurement infrastructures at the Internet
scale like RIPE Atlas [5]. Humans are quite good at finding
patterns in this latency data, as you can see for yourself
in Figure 1, but this is difficult to automate. An automated
solution would allow many time series to be processed at the
same time.

In this article we propose to use a Hierarchical Dirichlet
Process Hidden Markov Model (HDP-HMM), also called
infinite HMM, or nonparametric Bayesian HMM.

This model mimics human cognition very well (in terms
of segmentation of the series, recognition of different states,
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etc.). These models are used to segment audio sequences for
which they give very good results for speaker recognition [6].
These recent techniques are more complex than standard
HMMs but they are worth the effort.

The goal of the article is to recall the major principles of
infinite HMMs and apply this theory to networkmeasurement
data. Whereas [6]–[8] are written for statisticians, we want to
make the theory accessible to a wider audience and show the
potential of this model for automating the analysis of a wide
variety of delay time series.

The method has been implemented in RIPE Atlas to auto-
mate the processing of anchor to anchor RTT measurements,
and a Web API is available. The article introduces the API
and an accompanying notebook is provided to get started with
the API: https://github.com/maxmouchet/atlas-trends-demo.
To the best of our knowledge, this is the first time that such a
method has been applied to automatically segment large delay
measurements databases, which is made possible thanks to
the robustness of this model. On the contrary, the validation
of segmentation methods based on more standard approaches
has been limited to a few subsets of time series in the
literature.

B. STATE OF THE ART
Network delay modeling and prediction is a well-studied
problem. Some of the simplest models assume independent
observations and can be used to detect anomalous delay val-
ues. They, however, cannot predict the delay or find recurring
patterns in a delay series since they do not account for time
dependencies. Suchmodels include the Pareto distribution [9]
and mixtures of Weibull [10] or Normal distributions [11].

More complex time series models have been used for
short-term delay predictions (from seconds to minutes), with
applications such as telerobotics. These include autoregres-
sive models [12], [13] and deep neural networks [14], [15].
Unfortunately, their parameters are more difficult to interpret
and they do not provide a segmentation of the data.

HMMs are another kind of time-series model that can
model different delay distributions and the dynamics between
them. In [16], a discrete-time HMM is used to model packet
losses, while in [17], a continuous-time HMM is used to
model both packet losses and delays. In [18], a HMM is used
tomodel inter-packet times and packet sizes. HMMs have few
parameters and they are easily interpretable (state transition
probabilities, means, variances, . . .).

However, standard HMMs require the use of heuristics
to determine the number of hidden states. To remedy this
problem,we use a nonparametric HMMforwhich the number
of hidden states is inferred from the data. A nonparametric
mixture model has been used in the past to model the delay
of a set of hosts measured over disjoint time intervals [19].
In comparison, our model is a nonparametric HMM and con-
cerns the delay between two hosts over a large and continuous
time interval, from a few hours to a few weeks.

We first introduced the use of the HDP-HMM for RTT
time series in [20], [21]. In these papers we explain how

the time-dependency of such a Markov model can be used
to reduce the frequency of measurements in routing over-
lays. This article expands on the statistical details behind
the model, describes two new applications (CAIDA MANIC
measurements, and anomaly detection), and introduces a
RIPE Atlas API for time series segmentation as a service.
We also demonstrate the genericity of the HDP-HMMmodel,
which can fit any measured RTT time series much more
accurately than classical mixture and hiddenMarkov models.

C. STRUCTURE OF THE ARTICLE
The paper is structured as follows. Section II is a reminder on
mixture models (MM) and hidden Markov models (HMM).
In section III we describe their nonparametric Bayesian coun-
terparts, the Dirichlet Process MM (DPMM) and the Hier-
archical Dirichlet Process HMM (HDP-HMM, or infinite
HMM). In the same section, we explain how to automatically
calibrate these models, that is how their parameters can be
inferred from measurements without human intervention.

In section IV the accuracy of the model is demonstrated
on a dataset that has been labeled by humans, as well as
on some RIPE Atlas RTT time series where we discuss the
matching between routing configurations (from traceroutes)
and states learned by the statistical model. We also briefly
address the analysis of some CAIDAMANICmeasurements.
In Section V we introduce a Web API that makes it possible
to request the HDP-HMM analysis of anchor to anchor RTT
measurements in RIPE Atlas. We also demonstrate that ana-
lyzing the frequency of state changes in RTT time series over
Atlas allows a very precise detection of the moment of occur-
rence of events affecting large infrastructures of the Internet
(such as IXPs). In Section VI we conclude and present our
vision of the research axes to be developed in the future.

Readers who are less interested in the description of the
Bayesian nonparametric context might wish to skip most
of sections II and III, and read their summaries instead
(subsections II-E and III-F).

II. A REMINDER ON MIXTURE MODELS AND HIDDEN
MARKOV MODELS
In the next two sections our goal is to help the reader under-
stand the HDP-HMMmodel, starting from simpler and more
popular models such as mixtures or HMMs.

A. A TAXONOMY OF STATISTICAL MODELS
We start by providing a taxonomy of the different models dis-
cussed in the article. Our taxonomy takes into account three
criteria: (i) whether there is naturally a notion of ‘‘hidden
state’’ in the statistical model (ii) whether time dependency
is taken into account, and (iii) whether the number of states
is supposed to be known (and finite) or unknown (and poten-
tially infinite).

The RTT is stable over long periods of time (usually a
few hours) before its distribution switches from one proba-
bility law to another (see Fig. 1). This can be explained by
reference to IP-level routing changes, congestion, and traffic
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TABLE 1. Taxonomy of models.

engineering at lower layers than layer 3 [22]. Propagation
delays give a lower bound on the RTTs, and as router queue
lengths increase with the traffic, so do the observed RTTs.
From a statistical point of view, it is natural to think of models
with ‘‘hidden states’’ such as MMs or HMMs.

Knowing that the delay is stable over several hours means
that, if the path quality is measured at a frequency of one
‘‘ping’’ every fewminutes, the delay distribution remains sta-
ble for tens or hundreds of time slots. In order to have a model
that can be used for prediction, it is necessary to account for
this temporal dependence. This is made possible by HMMs,
while mixture MMs assume independent observations.

But a classical problem in statistics with MMs or HMMs
is that the order of the model is assumed to be known
(and finite). In practice this hypothesis is unrealistic in most
applications considered. This is where models with Dirichlet
processes (DP) priors on the number of components of the
mixture, or of the HMM, find their interest.

In the Dirichlet ProcessMM (DPMM) and the Hierarchical
Dirichlet Process HMM (HDP-HMM), the number of model
states is ‘‘infinite’’. And the order of the model can be learned
from themeasured data, as is the case for the other parameters
of themodel. This is an important property as it means that the
model is flexible enough to adapt to a large number of time
series, without manual human intervention (initialization of
algorithms, etc.).

In Table 1 we have summarized which properties are
satisfied by which models. This justifies the choice of the
HDP-HMM to characterize RTTs and to automate their pro-
cessing.

This flexibility is obtained at the cost of a greater complex-
ity of the model of inference algorithms for parameter estima-
tion. However, we could provide an efficient implementation
for it embedded in an operational API (see Section V-B).

B. MIXTURE MODELS
Some of the simplest statistical models that include hidden
states are mixture models. MMs are a generative statistical
model used to describe data produced by different system
states. For instance, in a Gaussian Mixture Model (GMM),
observations y1:T = (y1, y2, . . . , yT ) are assumed to be inde-
pendent and a normal distribution is associated to each hidden
state. For continuously distributed observations, condition-
ally to the underlying state zt = k ∈ {1, 2, . . . ,K }, where
K denotes the number of states of the model, the observation

yt follows a distribution with probability density function pθk ,
where θk is a parameter vector. For example, in a GMM, θk
consists of mean and variance parameters, so θk = (µk , σ 2

k )

and pθk (y) = N (y;µk , σ 2
k ) = (2πσ 2

k )
−1/2 exp

(
−

(y−µk )2

2σ 2k

)
.

Finally, the data distributionwrites p(yt ) =
∑

k=1:K πkpθk (yt )
where πk denotes the probability that the state of an observa-
tion is k , that is, πk = P(zt = k).

MM parameters φ = {πk , θk}k=1:K can be estimated
from measurements y1:T according to different criteria and
algorithms. A common choice is the Maximum Likeli-
hood Estimator (MLE) which supplies the parameters that
maximize the likelihood of the observations: φMLE =

argmaxφ p(y1, y2, . . . , yT ;φ). In general, direct maximiza-
tion of the likelihood p(y1:T ;φ) with respect to φ is infea-
sible. The Expectation-Maximization (EM) algorithm [23] is
a popular iterative two-step algorithm used to compute the
MLE for models with incomplete data, in particular mixture
models.

C. HIDDEN MARKOV MODELS
Because of the independent observations assumption, the pre-
dictive ability of MMs is limited. Knowing model parameters
and which state value zt has generated the last observation
yt does not bring any information about the next state zt+1.
HMMs are a generalization of MMs that take into account
temporal dependencies among states. These temporal depen-
dencies are expressed through aMarkov property assumed for
the states, written as p(zt+1|z1:t ) = p(zt+1|zt ). Thus, the prob-
ability distribution of the next hidden state zt+1 depends on
the current state zt only.

More formally the transition probabilities between succes-
sive states are defined via a K × K matrix 5 with entries
5ij = P(zt+1 = j|zt = i). The model parameters are
now φ = {5, {θk}k=1:K }, the steady state probability vector
π = (π1, . . . , πK ) being related to 5 through the linear
system π5 = π and πe = 1, where e = (1, . . . , 1)T .

The MLE of HMM parameters can be estimated using a
variant of the EM algorithm known as the Baum-Welch (or
forward-backward) algorithm [24]. While easy to implement
and well-studied, this approach is prone to overfitting on
noisy data or data with few samples. Furthermore this method
requires the number K of hidden states to be known, which is
usually not the case when studying RTTs.

D. LIMITATIONS OF VANILLA MMS AND HMMs
Classical mixtures and HMMs are parametric models, mean-
ing that they have a set of parameters with fixed size. This is
a major difficulty when estimating HMM parameters as often
the number of hidden states is not known in advance.

One could estimate models for different numbers of states,
but the maximum of the likelihood would increase with the
number of states as a model of order K is a degenerated
case of model of order K + 1. A classical approach consists
of penalizing the MLE optimization criterion by adding a
penalty term to the log-likelihood such as the AIC [25] or the
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BIC [26] criterions and by selecting the model that minimizes
this penalized criterion. Another approach is to use nonpara-
metric models with unbounded number of parameters.

Another limitation of parametric models is that the EM
algorithm usually used to tune the parameters of the model is
sensitive to the choice of its initialization point. Appropriate
initialization strategies must be used otherwise it may con-
verge to a local but non-global maximum of the likelihood.

Because of these limitations, standardMMs or HMMs can-
not be used on a large scale to analyze Internet measurements.
In the following section we introduce a new approach for RTT
measurement analysis, based on nonparametric Bayesian
models, and more particularly the HDP-HMM.

E. SECTION SUMMARY
MMs andHMMs are interesting for characterizing time series
of RTTs. They are designed to model phenomena that change
state from time to time and in which the value of the observa-
tions, here the RTTs, noisily depends on the hidden states.
One can imagine that different hidden states result from
different routing configurations, traffic engineering choices,
or link loads. However, these models are too simple to char-
acterize a large variety of RTT series and are not suitable for
automatic processing on a large scale.

We propose to use a more generic model, the HDP-HMM.
This model does not make assumptions about the number of
states of the system, contrary to vanilla mixtures or HMMs,
and it is possible to learn the number of states from the data
itself. Contrary to DPMMs it also takes into account time
dependency and makes it possible to account for the RTT
distribution being stable for a long period of time.

III. NONPARAMETRIC BAYESIAN APPROACH
A more formal approach to models with an unknown num-
ber of components can be found in Bayesian statistics. The
Bayesian framework allows one to specify models with sev-
eral layers of uncertainty and infer the parameters in a system-
atic way.Wewill make better use of this flexibility to estimate
HMMs from RTT series where neither the number of states
nor the probability distribution in each state is known.

A. BAYESIAN SETTING
In theMLE approach, estimates of the parameters are inferred
from data. In contrast, Bayesian approaches make use of
prior distributions upon the model parameters, and output a
posterior probability distribution over the model parameters.
These prior distributions can account for prior knowledge of
the parameter distributions.

When the dimension of the model is unknown, as for
MMs or HMMs with unknown order K , one can resort to
nonparametric Bayesian approaches, where the number of
components of the model is inferred from the data itself.

Bayesian inference can be performed from the posterior
likelihood which is defined as p(φ|y1:T ) ∝ p(y1:T |φ)p(φ)
where p(y1:T |φ) is the likelihood of the data y1:T , p(φ) is a
prior distribution and ∝ denotes proportionality.

In general, a direct maximization of the posterior likeli-
hood p(φ|y1:T ) with respect to φ is not feasible as p(φ|y1:T )
can be quite complex. Note, however, that there are situations
where the likelihood and the prior distribution are such that
posterior distribution belongs to the same family as the prior.
In this case, the prior is said to be conjugate. Using conjugate
priors, when possible, often makes inference simpler.

Markov Chain Monte Carlo (MCMC) techniques, and in
particular Gibbs sampling, can be used in very general situ-
ations for inference [27]. Alternatively, variational Bayesian
methods can be considered ( [28], chap. 33). The principle of
MCMCmethods is to use simulations to draw a large number
of samples φ from the posterior distribution p(φ|y1:T ).

B. DIRICHLET PROCESSES AND DP MIXTURES
Modelling a HMM with an infinite number of states is gen-
erally achieved by means of a Dirichlet process (DP) prior.
DPs were introduced by Ferguson [29] in 1973 and were
first applied to mixture models with an unknown number
of components in [30]. The extension to the modelling of
HMMs was first defined in 2002 in [31]. More recently this
has been formalized in the framework of hierarchical Dirich-
let processes (HDP) in [8] where HDP-HMMs have been
introduced. These models are called nonparametric Bayesian,
meaning that they are Bayesian and involve parameter spaces
of infinite dimension [32].

A Dirichlet Process (DP) is a stochastic process G ∼
DP(α,H ), the realizations of which are probability distribu-
tions. It is parameterized by a concentration parameter α and
a base distribution H . It can be seen as a process indexed by
partitions (A1, . . . ,An) (n > 0) of the space E on which H is
defined, with n-variate Dirichlet random realizations:

(G(A1), . . . ,G(An)) ∼ Dir(αH (A1), . . . , αH (An)). (1)

Here Dir(α1, . . . , αn) denotes the n-variate Dirichlet distri-
bution with parameters α1:n = (α1, . . . , αn), that is to say the
probability distribution with density function:

p(x1:n;α1:n) =
1

B(α)
1I{1}(

∑
i=1:n

xi)
∏
k=1:n

xαi−1i 1I[0,1](xi) (2)

where 1IA(x) = 1 if x ∈ A and 0 otherwise, and B(α) is a
normalization factor.

Alternative definitions of DPs are also useful both for their
understanding and simulation. In particular it can be proved
that a Dirichlet Process G ∼ DP(α,H ), can also be defined
via the stick-breaking constructive approach [33]. The idea is
to build a discrete distribution by assigning probabilities πk to
samples θk drawn independently fromH . As the probabilities
πk must sum to 1, a unit-length stick is divided as displayed
in Figure 2. The stick is first broken into two parts, of lengths
η1 and 1 − η1. Then the second portion, of length 1 − η1,
is broken again into two parts in proportions η2 and 1 − η2.
The three resulting portions are now of lengths η1, η2(1−η1)
and (1 − η2)(1 − η1). The process of breaking the stick into
smaller parts continues indefinitely.
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FIGURE 2. The stick-breaking process.

The weights πk are defined as π1 = η1, π2 = η2(1 −
η1), π3 = η3(1 − η2)(1 − η1), and in general πk =
ηk
∏

l=1:k−1(1−ηl). The proportions ηk are independent and
ηk ∼ Beta(1, α), where Beta(a, b) is the beta distribution
with parameters a and b and probability density function
xa−1(1− x)b−11I[0,1](x).
The distribution with weights π = [π1, π2, . . .] is called

a Griffiths-Engen-McCloskey distribution, denoted by π ∼

GEM(α). Clearly,
∑

k=1:∞ πk = 1. We then get the
stick-breaking representation of the Dirichlet Process G:

G =
∑

k=1:∞

πkδθk , with π ∼ GEM(α) and θk ∼ H . (3)

Note that the πks tend to decay to zero at geometric rate.
Indeed it can easily be proven that:

E[πk ]=E[ηk ]
∏

l=1:k−1

(1−E[ηl])=
1

α+1

(
α

α+1

)k−1
. (4)

Now, suppose we want to fit a mixture model to some
observations y1:T = (y1, y2, . . . , yT ). Assume that the mixing
distributions are in the form pθ (y), where θ is a vector of
parameters and that the prior distribution over the vector
of parameters is θ ∼ H . We can build a nonparametric
Bayesian generative model of observations in the form of a
Dirichlet Process Mixture model (DPMM). In this model the
distribution of observations is a mixture:

p(y) =
∑

k=1:∞

πk pθk (y) (5)

and the weights πk and parameters θk of the different compo-
nents of the mixture are defined as a Dirichlet Process:

G =
∑

k=1:∞

πkδθk ∼ DP(α,H ) (6)

C. HIERARCHICAL DIRICHLET PROCESS HMM
The idea of using a DP as a prior in mixture models has been
extended to the case of Hidden Markov Models (HMMs).
In fact, for some technical reasons that we will explain,
the extension of this approach to HMM modelling involves
a hierarchy of DPs.

In the Hierarchical Dirichlet Process HMM (HDP-
HMM), DPs are used as priors on the rows π i =

(πi1, πi2, . . . , πik , . . .) of the transition matrix 5 of the hid-
den Markov chain (zt )t . This makes it possible to specify that
the number of states of the Markov chain is unknown.

But it is also necessary to ensure that the transition
probabilities πik , for all row i, weigh the same emission

FIGURE 3. The Hierarchical Dirichlet Process - Hidden Markov Model
(HDP-HMM).

distribution pθk . This is made possible by parameterizing the
DPs Gi (i = 1, 2, . . .) by the same discrete valued base
distribution G0

Gi =
∑
k

πikδθk ∼ DP(α,G0) (7)

whereG0 is modeled by a DP prior with base distributionHλ:

G0 =
∑
k

βkδθk ∼ DP(γ,Hλ) (8)

This hierarchy of DPs yields the HDP-HMM process [8].
A graphical representation of the HDP-HMM is given in Fig-
ure 3, where the arrows represent the dependencies. The
HMM itself is represented by states zt and observations yt .
Its parameters are (θk )k≥1 and (π i)i≥1, where pθk (yt ) =
p(yt |zt = k) and π i denotes the ith row of the transitionmatrix
5 of the HDP-HMM, so πij = P(zt+1 = j | zt = i).
α, γ and λ are hyper-parameters. γ and λ are the param-

eters of a Dirichlet process G0 ∼ DP(γ,Hλ) that lies at the
top of the HDP hierarchy. These random dependencies and
vague priors introduce enough flexibility in the model to let
it adapt to many different time series.

D. INFERENCE IN DP MIXTURES
Inference in DPMMs is better addressed via the so-called
Polya urn representation of DPs than through stick breaking.
Imagine an urn that contains black and colored balls. The
‘‘values’’ of balls are their colors. At initialization the urn
only contains α black balls. When drawing a ball from the
urn, if the ball drawn is black then a new colored ball is drawn
from a base distributionH and the black and colored balls are
put back into the urn. When the first ball drawn is not black,
it is put back into the urn together with a new one of the same
color. The labels of the infinite sequence of draws follow
a DP.

We are going to use this formalism in a DPMM, where zt
denotes the hidden state and yt is the observation. The Polya
urn model can be described as follows. Let us introduce θ ′t =
θzt the value of θ associated with zt . If zt = k then θ ′t = θk
and yt is distributed according to pθk (•). Given a sequence of
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random variables (θ ′t )t>0 with

P(θ ′1 ∈ B) = H (B), and

P(θ ′t+1 ∈ B|θ
′

1:t ) =
1

α + t

(∑
τ=1:t

δθ ′τ (B)+ αH (B)
)
. (9)

it has been shown, in [34], that the distribution of θ ′t converges
almost surely to a DP(α,H ) (when t →∞).

The estimation of the parameters and states of a non-
parametric mixture model from the posterior distribution
p(z1:T , θ1:KT |y1:T ), where y1:T represent the data, can be
addressed via Gibbs sampling [7]. The principle of Gibbs
sampling [27] is to sequentially update, in turn, the values of
zt , t = 1, . . . and θk , k = 1, . . . conditionally to y1:T and to
the current value of the other parameters. It requires knowing
the distribution of each latent variable conditionally to the
observations y1:T and the other latent variables.
Going back to the Polya urn model, let us index by

1, . . . ,Kt the distinct colors of the balls present in the urn
at time t and let zt denote the color index of the new ball.
As the role of the balls can be exchanged, letting z−t =
{z1:t−1, zt+1:T } and n−t,k = #{zτ ∈ z−t ; zτ = k} be the
number of occurrences of the value k among z−t , it can be
shown [7] that:

P(dzt |z−t ) =
1

α + T − 1
(
K−t∑
k=1

n−t,kδk (dzt )+ αδK−t+1(dzt ))

(10)

where K−t is the number of distinct elements in z−t with
indexing set from 1 to K−t . Equation 10 can be interpreted
as follows: knowing the values of z1:t−1 and zt+1:T , the dis-
tribution of zt is a mixture of the values k ∈ z−t and of a new
index value (K−t +1). The respective weights of this mixture
are n−t,k

α+T−1 for any k ∈ z−t and α
α+T−1 for the value K−t + 1.

It can be proven [7] that, if observations y1:T and parame-
ters θ ′−t are taken into account, then:

P(dzt |z−t , y1:T , θ ′−t )

∝

∑K−t

k=1
n−t,kpθk (yt )δk (dzt )+ αI(yt )δK−t+1(dzt ). (11)

where I(yt ) = p(yt | zt = k, θ ′−t ) =
∫
pθ (yt )Hλ(dθ).

Note that, provided I(yt ) is known, the proportionality
factor in Eq. (11) can be obtained from the normalization
condition

∑
k P(zt = k | z−t , y1:T , θ ′−t ) = 1. If pθ

and Hλ are conjugate distributions, I(yt ) can easily be cal-
culated in closed form. In other cases one can resort to
Metropolis-Hastings simulation using the prior distribution
of zt in (10) as an auxiliary distribution [7] to calculate I(yt ).
After sampling zt , t = 1 : T from Eq. (11), θk , k = 1, . . .

can be sampled from the following distribution [7]:

P(dθk |z1:T , y1:T , θ−k ) ∝ Hλ(dθk )
∏
{t;zt=k}

pθk (yt ). (12)

Here again simulation can be performed directly or via
Metropolis-Hastings simulation depending whether pθ and
Hλ have conjugate distributions.

E. INFERENCE IN HDP-HMMs
Inference in HDP-HMM is technically more involved than
for mixture models. We briefly summarize it here. Interested
readers can find additional information in appendices of [6].

Letting K denote the current number of states, the Gibbs
sampler should sample z1:T . Note that θ1:K can be marginal-
ized out and does not need to be sampled in Gibbs. To make
it possible, we will also have to sample the πj, which in turn
requires sampling the weights of the base distribution G0 =∑

k=1:∞ βkδθk . As only (βk )k=1:K is concerned for describing
the weights of the states of the finite size data set at hand,
letting β−K =

∑
k=K+1:∞ βk = 1 −

∑
k=1:K βk , we simply

sample (β1:K , β−K ) that follows a Dirichlet distribution of
order K +1. The sampling of (β1:K , β−K ) is described in [6].
Note also that we want to implement inference for a sticky

HDP-HMM, that is, a modified version of the HDP-HMM
that models persistency of the states by biasing the model
towards self transitions (zt−1 = j, zt = j). This is ensured
by introducing an additional parameter κ and changing the
prior upon πj:

πj|α, β, κ ∼ DP
(
α + κ,

α(
∑

k βkδk )+ κδj
α + κ

)
. (13)

When κ = 0 we get the standard HDP-HMM, while when
κ →∞, πj tends to only weight state j.
To implement the Gibbs sampler for the states z1:T letψ =

(α, β, κ, λ), and π = (πj)j. Then P(zt |y1:T , z−t , ψ) can be
expressed by marginalizing against the πjs and θks:

P(zt | y1:T , z−t , ψ) ∝ P(zt | z−t , ψ)p(yt | y−t , z1:T , ψ) (14)

Let us introduce the following notations: xi• =
∑

j xij and
n−tjk denotes the number of transitions from state j to state k ,
not counting the transitions zt−1 → zt or zt → zt+1. Then,
the first factor in (14) can be written as:

P(dzt | z−t , ψ)

∝

∑K−t

k=1

αβk + n
−t
zt−1,k

+ κδzt−1,k

α + κ + n−tzt−1,•

×

αβzt+1 + n
−t
k,zt+1

+ κδzt−1,kδk,zt+1

α + κ + n−tk,• + δzt−1,k
δk (dzt )

+
α2β−Kβzt+1

(α + κ)2
δK−t+1(dzt ). (15)

And the second factor in (14) as:

p(yt | y−t , z1:T , ψ)

∝

∫
θzt

p(yt | θzt )Hλ(dθzt | {yτ ; zτ = zt , τ 6= t}). (16)

As far as discussed earlier, if the θks have conjugate prior
distributions, p(yt | y−t , z1:T , λ) can be calculated in closed
form. Note in addition that to avoid a particular choice of
hyperparameters (α, γ, λ) biasing the solution, they can also
be given some prior distribution.

At the end of the process, after the z1:T have been esti-
mated, the θks can be estimated easily, e.g. by maximizing
the likelihood p({yt ; zt = k} | θk ).

16776 VOLUME 8, 2020



M. Mouchet et al.: Large-Scale Characterization and Segmentation of Internet Path Delays With Infinite HMMs

F. SECTION SUMMARY
In this section we have introduced non-parametric Bayesian
approaches. In Bayesian statistics some of the parameters
on which the data depend are considered random. The term
‘‘non-parametric’’ means that there is a large number of
parameters that are estimated from the data.

When the number of states of a mixture or a HMM is
not known in advance, it is possible to use a non-parametric
Bayesian approach using Dirichlet processes (DP) as pri-
ors. This is called the Dirichlet Process Mixture Model
(DP-MM) or the Hierarchical Dirichlet Process Hidden
MarkovModel (HDP-HMM). Equivalently, the name infinite
(or non-parametric) mixture or HMM can also be used.

Missing data, that is, states and parameters, can be esti-
mated from observations using a Gibbs sampling algorithm
which comes up to randomly simulating, in turn, the different
components of the model which are not measured directly.
These components are simulated according to some condi-
tional distributions which have been specified in this section.

IV. A FIRST LOOK AT RTTS THROUGH THE HDP-HMM
As stated previously, HDP-HMM is a flexible method for
inferring HMM parameters and segmenting data when the
number of latent states is unknown. This fits the problem
of segmenting RTT time series (remember that of Figure 1),
where the number of different states is not a priori known.
Furthermore, it is not mandatory to make an assumption
on the type of RTT distribution in each state (Gaussian,
exponential, or other kind of parametric distributions). This
distribution can be assumed nonparametric, which introduces
even more flexibility and allows a very generic model that
adapts to a very large number of traces.

In this section we show that the model produces realistic
segmentations from a human point of view, and that the
inferred parameters can be interpreted easily, given the appli-
cation domain. In addition, we provide two validations for
the model. We show on a labeled change point dataset that
the model performs at least as well as ad-hoc change point
detection methods. And we also show that the states inferred
from the RTT time series match well with the AS and IP paths
seen in RIPE Atlas traceroutes.

A. A NONPARAMETRIC OBSERVATION MODEL
Many parametric models have been proposed in the literature
to explain the distribution of the delay in computer networks
and on the Internet. For example, in [11] a Gaussian mixture
model is proposed, in [10] aWeibull mixturemodel, and in [9]
a Pareto distribution. In practice, however, it seems that the
distribution can be very different depending on the network
state. For example, in some states the delay can be relatively
stable with occasional spikes above a baseline, in which case
it might be modeled by an exponential distribution, while in
other states the delay can experience large variations caused
by a high volume of traffic, and might be better modeled by
a normal distribution.

FIGURE 4. Segmentation of RTT observations between at-vie-as1120
and sg-sin-as59253.

In this work, we choose instead to use nonparametric
Dirichlet ProcessMixtureModels (with aGaussian as ‘‘base’’
distribution) as emission distributions of the HDP-HMM.
As such, the delay in each state is modeled by a varying num-
ber of Gaussian components. This allows us to model a wide
range of distributions, and we avoid choosing a particular
parametric emission distribution for each state of the HDP-
HMM. For each Gaussian component, we use a Normal-
Inverse-χ2 prior, which is the conjugate prior to the normal
distribution with unknown mean and variance. The use of
a nonparametric observation model reinforces the need for
Bayesian inference methods, since a more traditional MLE
approach would require several layers of penalization.

The segmentation of the series from Figure 1 using an
HDP-HMM with DP-GMM emissions is shown in Figure 4,
in which states are represented by colors.

As a matter of comparison, we provide in Fig. 5 the seg-
mentation obtained with a HDP-HMMwith DPMM emission
distributions, with that resulting from parametric and non-
parametric MMs and HMMs with a Gaussian observations
model. In the case of the Gaussian MM and of the HMM,
the number of latent states has been chosen by estimating
the model for a varying number of components and choos-
ing the number that minimizes the penalized log-likelihood
using the BIC criterion. As we can see the HDP-HMM
produces a segmentation close to what a human would do,
contrary to other models which generate far too many state
changes.

B. CHANGE POINT DETECTION
Quantifying the performance of the HDP-HMM on real RTT
time series is not easy since there is no ground truth. The
‘‘network state’’ is not known or vaguely defined. But it was
possible to compare the performance of the model in a change
point detection task where the goal is to detect significant
changes in the delay. While not the primary purpose of the
HDP-HMM, detecting change points is simply a matter of
segmenting the data and finding changes in the inferred state
sequence. This can be used to partially validate the quality of
the segmentation obtained.

We have benchmarked the HDP-HMM against different
change point detection methods on a labeled dataset intro-
duced by [35]. This dataset is particularly interesting because
change points in RTT timeseries have been manually labeled
by human experts. To our knowledge, there are no other RTT
time series datasets that are both realistic and labeled.
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FIGURE 5. Segmentation of a RTT time series with parametric and nonparametric mixture models and HMMs.

FIGURE 6. Benchmark of the HDP-HMM against classical change point detection methods on a human-labelled change point dataset [35]. The
weighted recall gives more importance to large delay changes.

The dataset consists of 50 RTT series of varying length for
a total of 34,008 hours of observations. In [35] change point
detection is performed by minimizing

∑m+1
i=1 C(yτi−1+1:τi ) +

βf (m). m is the number of changes, C is a cost function that
measures the stability of the delay over a range of successive
values, and f (m) is a penalty that prevents overfitting. Differ-
ent cost functions and penalties are considered.

We have compared the performance of the segmenta-
tion obtained by HDP-HMM with the best performing
changepoint detection methods of [35]. In our approach a
HDP-HMM model is learnt on each timeseries, the most
likely hidden state sequence is computed, and changepoints
are simply defined as changes in the hidden state sequence.

In Figure 6 we show that the HDP-HMM performs simi-
larly to the best performing change point detection methods
of [35] in terms of precision ( # True Positive

# True Positive+# False Positive ),
while performing better in terms of recall
( # True Positive
# True Positive+# False Negative ). This means that our model is
more sensitive to small changes in the delay without gen-
erating unnecessary false alarms.

C. RIPE ATLAS MEASUREMENTS
In addition to detecting significant changes in the delay,
the HDP-HMMalso provides a notion of hidden states. In this
section we validate the quality of this clustering both visually
and by studying the correlation with AS and IP paths revealed
by traceroutes.

1) DATASET
RIPE Atlas offers two types of measurement sources: probes
and anchors. Probes are deployed in heterogeneous envi-
ronments while anchors are restricted to high-availability

environments such as data centers, universities, and IXPs
(Internet eXchange Points). Anchors tend to be located
in well-connected autonomous systems and measurements
between anchors represent more stable paths than may be
observed from probes located at the edges of the Internet.
Moreover, anchors are more powerful and perform so-called
anchoring mesh measurements, where various measurements
are performed regularly between each pair of anchors. This
allows us to collect traceroute results both on the outward and
on the return path.

Our dataset consists of one week of IPv4 RTT measure-
ments between all Atlas anchors and the at-vie-as1120
anchor.1 Delay is measured every four minutes using three
ICMP (Internet Control Message Protocol) pings towards the
target anchor. Theminimumvalue of the delay is kept for each
time step. Considering the subset of anchors that were online
over the time period, we collected 301 series of 2520 data
points. The associated traceroute measurements were also
collected, both on the outward path, and on the return path.
Traceroutes are performed every fifteen minutes using three
ICMP probe packets for each hop.

2) INFERENCE
Each series were segmented using our Julia implementation
of the Gibbs sampler. It takes less than 2 seconds on a single
thread of a 2.80GHz Intel Core i7-7600U CPU to process a
2520 point time series (1 week of anAtlas RTTmeasurement)
with 300 iterations of the sampler. The task is highly paral-
lelizable as each time series can be processed independently.

1RTT measurement results are available at https://atlas.ripe.net/
measurements/1437285. We considered the period between the 2nd
and the 9th of May 2018.
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FIGURE 7. Segmentation of RTT observations between at-vie-as1120 and us-bos-as26167 using an HDP-HMM with DP-GMM emissions. Each
color identifies a state or an IP path observed in the traceroute.

FIGURE 8. Distribution of the number of states learned for different
timescales.

Using 4 threads, 300 one-week long time series can be pro-
cessed in 6 minutes.

Figure 8 shows the distribution of the number of states in
the resulting HMMs for different measurement timescales.
It is clear that the number of states grows with the length
of the series. This is not surprising and visual inspection by
a human expert would also probably identify more states in
longer timeseries. One, three, and seven-day long series have
less than 8, 10, and 11 states respectively. This confirms the
capability of the HDP-HMM to learn more complex models
as the number of RTT observations, and possibly the number
of underlying network configurations, grows.

3) STATE DURATIONS VS. DELAY VARIATIONS
An advantage of HMMs over other timeseries models (e.g.
autoregressive models or neural networks) is that the param-
eters can be interpreted easily, given the application domain.
In our case, the state transition matrix5 gives us information
about the frequency of network configuration changes and
the relation between them, while the observation distributions
give us in particular the mean value of the delay and its
variance (of the delay in each configuration).

On most time series we can distinguish two types of states:
those where the delay is relatively constant (such as the green
one on Fig. 7), and states where the delay is very variable
(such as the purple one). This is reflected by the variance
of the delay in the state. And the average duration of a
HMM in a state i is given by 1/(1 − πii) where πii is the

FIGURE 9. Density estimation of the (standard deviation, average
duration) couple. Darker colors indicate a higher density.

probability of self-transition. In the example of Fig. 7 the
average duration of the purple state is of 45 timesteps
(= 3 hours) and of 149.5 timesteps (= 9 hours 58 minutes)
for the green state. The standard deviation of the delay in
the purple state is of σ = 10.3 msec while the standard
deviation of the green state if of σ = 4.1 msec. States with a
high variance could possibly be explained by intra-domain
load-balancing (since Atlas ping flow ID is not constant),
congestion, or in-path devices delaying the processing of
ICMP packets. However, assessing the cause of such vari-
ations and studying the possibility of detecting them from
delay measurements is to be done in future works.

Figure 9 displays the standard deviation of the RTT against
the average duration in a state. In the analyzed dataset,
the average state duration decreases as the RTT standard devi-
ation increases. This is not surprising as we expect Internet
paths to spend more time in stable states.

4) RELATIONSHIP WITH THE AS AND IP PATHS
We hypothesized that the distribution of delay observations
is conditioned on the underlying network state, such as the
inter and intra-AS routing configuration, as well as the traffic
level. As shown in Figure 10, themajority of the states learned
over all the paths in our dataset match only one AS path and
one IP path. For example there are 595 states which always
correspond to the same AS path over the 746 states learned.
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FIGURE 10. Distribution of the number of states associated with a given
number of unique paths.

In other words, only 16% of the states learned can match two
AS paths or more. States associated with more than one AS
path can be explained by delay differences too small to be
separated into two clusters.

Conversely, one AS or IP path can be mapped to sev-
eral states. For example in Figure 7 we only observe the
AS path ASN MARKLEY → GTT BACKBONE → NTT
COMMUNICATIONS→ ACONET SERVICES in the tracer-
outes from us-bos-as26167 to at-vie-as1120 and
ACONET SERVICES→ ACONET→ NEXTLAYER AS→
NTT COMMUNICATIONS→ASN MARKLEY in the reverse
traceroutes (as resolved using the RIPEstat API). In the for-
ward traceroutes we observe IP path changes every 15 min-
utes, in the GTT and NTT ASes, probably due to intra-AS
load-balancing, while in the reverse traceroutes we only
observe two different IP paths in NTT AS that are perfectly
correlated to state changes in the model.

D. CAIDA MANIC AND OTHER MEASUREMENTS
In addition to RIPE Atlas delay measurements, the HDP-
HMM fits other kinds of network measurements as well.
In this sectionwe show the results obtained on delaymeasure-
ments from the CAIDA MANIC project [36]. The CAIDA
MANIC project uses Time Series Latency Probes (TSLP)
to measure inter-domain congestion. Once a peering link
between two ASes has been identified, ICMP probes are sent
to the near-end (i.e. the last router in the first AS) and the
far-end (i.e. the first router in the second AS) of the link. The
intuition is that if there is congestion the router queues will fill
up, and the delay between the near-end and the far-end will
increase. Using the same model as for the RIPE Atlas RTT
series, we segment the delay difference time series (far-end -
near-end) from publicly available measurements.

In Figure 11 we show the resulting segmentation for a
peering link experiencing periodic congestion. Three states
are learned. The green state, corresponding to a non-saturated
link, has a standard deviation of 0.1 ms, while the standard
deviations for the red and blue states are 7 ms and 11 ms,
respectively. The blue state seems to correspond to a state
of increased traffic, while the red state seems to correspond
to a saturated link. Because the model accounts for temporal
dependencies, it is able to clearly separate those two states
even though their distributions overleap.

In addition, we have tested the use of this segmentation
method with application-level delay measurements such as
web Page Load Times (PLTs) and obtained promising results.
Figure 11 shows the PLT for the baidu.comwebsite measured
from a probe located in Lannion, France. Measurements have
been performed with the WebView platform.2

V. LARGE-SCALE MEASUREMENT ANALYSIS
Internet monitoring projects such as RIPE Atlas provide
a large amount of latency information. Due to its scale,
RIPE Atlas has a good chance of providing enough infor-
mation to allow the detection of anomalous latency patterns
in important network components, such as IXPs or large
transit providers. However, detecting and characterizing these
anomalies has proven challenging (e.g. the analysis in [37]
took weeks). In this section, we start by showing the validity
of the model on a very large scale considering all the mea-
surements of the Atlas anchoring mesh. We show that real
data are as likely under the model considered as simulated
data would be. Then we introduce the trends API that we
have developed and that publicly provides an on-demand
segmentation service for Atlas RTT measurements. Finally,
we show how aggregating change points learned with the
HDP-HMM from a large number of origin-destination pairs is
a simple and elegant method for detecting and characterising
anomalies in key Internet infrastructures.

A. VALIDATION OF THE HDP-HMM MODEL AT LARGE
SCALE ON RIPE ATLAS
In Section IV-B, we have shown that the HDP-HMM model
is at-least as good as classical change point detectionmethods
on a labelled RTT change points dataset. This however, does
not tell us whether the model fits RTT data well from a sta-
tistical point of view. In this section, we propose to compare
the likelihood of the time series (with respect to their inferred
model) with the likelihood of time series simulated according
to an HDP-HMM model. If the models fit the data well,
we can expect the likelihood of the data with respect to the
model to follow the same distribution as the likelihood of
synthetic data generated by the model.

To perform a comparison, 100k time series of one week
duration (2520 data points) from the anchoring mesh mea-
surements were considered. For each time series, the model
was learned, and their likelihood p(y|π , θ) computed with
respect to the model. In addition, for each HMMwith param-
eters (π , θ ), a time series y′ was sampled and its likelihood
p(y′|π , θ) computed.
The distributions of the likelihood on observed and syn-

thetic time series are compared in Figures 13 (Q-Q plot)
and 14 (histograms). It can be seen that both distributions
are similar, with the simulated time series being slightly
more likely. This demonstrates that the HDP-HMM explains
well the diversity of observed trajectories in RIPE Atlas
measurements.

2https://webview.orange.com
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FIGURE 11. Segmentation of a RTT difference (far - near) time series obtained with TSLP probes from the CAIDA MANIC project. Each color identifies a
state.

FIGURE 12. Segmentation of a PLT time series obtained from a WebView probe. Each color identifies a state.

FIGURE 13. Q-Q plot of observed vs. simulated log-likelihood on 100k
time series.

In addition, a Neyman-Pearson (NP) test was performed
between two simple hypothesis: H0 : the time series is
distributed according to an HMM, H1 : the time series
is distributed according to an HDP-HMM. The false alarm
rate (FAR) was set to α = 5% and α = 10%. The FAR is
the probability of deciding in favor of the HDP-HMM (H1)
when the series is distributed according to an HMM (H0 is
true). When α = 5% (resp. 10%) the NP test result was
that the time series was distributed according to H1 (HDP-
HMM) in 96% (resp. 97%) of the cases. The same experiment
was performed to compare the HDP-HMM hypothesis (H1)
against the DPMM hypothesis (H0). In that case, for α = 5%
and α = 10%, the test result supported the HDP-HMM
hypothesis in 99% of the cases.

Thus, we have not only visually verified on a large number
of series that the segmentation obtained with the model is

FIGURE 14. Distribution of observed and simulated log-likelihood on
100k time series.

consistent with what a human expert would produce
(Section IV). In addition, we have checked on a very large
scale (about 100k randomly chosen series among the Atlas
mesh measurements) that all these series are well modeled
by the HDP-HMM.

B. RIPE ATLAS TRENDS API
In order to make our method widely accessible, we have
developed a publicly exposed Web API into RIPE Atlas.
Given an origin-destination pair (measurement and probe ID)
and a time frame (start and stop time), the trendsAPI provides
the segmentation of a RIPE Atlas delay measurement. The
API offers three endpoints, described in Table 2.

The /ticks endpoint returns the minimum RTT for
a given pair with a constant time interval (duplicated
results due to probe connectivity problems are sup-
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TABLE 2. Endpoints of the Atlas Trends API.

FIGURE 15. RIPE Atlas Trends API sample JSON output.

FIGURE 16. Change frequency on the 13th of May 2015 for the 20k pairs
that saw AMS-IX in their traceroutes the day before.

pressed, and missing results are explicitly inserted). The
/trends endpoint returns the minimum RTT and the
associated segmentation. For example, the URL https://
trends.atlas.ripe.net/api/v1/trends/1437285/6222/?start=2018
-05-02&stop=2018-05-10 gives the segmentation in Figure 7
(it should take less than 10 seconds to segment one week of
data). A summary of the time series, as shown in Figure 15,
can also be requested by appending /summary to the path.
Start and stop time are specified as YYYY-MM-DDTHH:MM
where THH:MM is optional and defaults to the start of the day.

In addition to this article, we provide interactive notebooks
to document and demonstrate the API, and compare various
statistical models. Links to interactiveGoogle Colab sessions,
as well as the notebooks source and code to facilitate the
usage of the API are provided on GitHub [38].

C. MONITORING LARGE INTERNET INFRASTRUCTURES
As shown in [37], a significant number of Atlas
origin-destination pairs reliably go through large Internet
infrastructures, such as IXPs (AMS-IX, DE-CIX, etc.) and
transit providers (Level 3). By reliably, we mean that the
relevant infrastructure was consistently seen in traceroutes for
the relevant pairs over a given time frame. Furthermore, Atlas
provides measurements towards the 13 DNS root servers
from every probe (more than 10k probes), although such

FIGURE 17. Change frequency between the 9th and the 10th of
April 2018 for the 60k pairs that saw DE-CIX Frankfurt in their traceroutes
the day before.

measurements are more difficult to exploit due to the anycast
nature of DNS root servers.

In order to detect anomalous events in those infrastruc-
tures, we propose to aggregate the change points learned
from each time series individually, so as to obtain a state-
change frequency, which represents the number of state
changes in a given time frame over all the origin-destination
pairs considered. One problem is the selection of those
origin-destination pairs. One could imagine learning the
model for all the origin-destination pairs available in Atlas,
or a large subset, such as anchoring mesh measurements
(160k origin-destination pairs), and then looking for events
in state-change frequency. However, preliminary experimen-
tation shows that the signal obtained is too noisy and
requires a lot of manual processing to find relevant events.
Instead, we propose to monitor each infrastructure individ-
ually, by considering only the origin-destination pairs for
which the infrastructure has been seen in recent traceroute
measurements.

To validate the ability of our method to detect events,
we analyzed two events which have been discussed in the
literature (as this provides some groundtruth against which
to compare our results): AMS-IX outage in May 2015 [37],
[39], [40], and DE-CIX Frankfurt outage in April 2018 [41].

1) AMS-IX MAY 2015 OUTAGE
According to [37], on the 13th of May 2015, AMS-IX expe-
rienced a partial outage due to a switch interface generating
looped traffic on the peering LAN. The event lasted for
seven minutes and two seconds, from 10:22:12 to 10:29:14
(UTC time) before the switch interface was disconnected.
This event caused some peers located at AMS-IX to lose their
BGP session. In [37], the event was studied using traceroutes,
by looking at the percentage of paths seeing AMS-IX peering
LAN in their traceroute over time. However changes in the
IP paths often result in changes in the delay. The models
were learned, and the changepoints extracted, using the ping
measurements corresponding to the same origin-destination
pairs, provided by RIPE NCC.

By default RIPE Atlas ping measurements are performed
every 4 minutes, with a jitter of 2 minutes to maximize
the temporal coverage over all the probes participating in a
measurement. We therefore counted the number of change-
points in buckets of 6 minutes. We show the resulting state
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change frequency in Figure 16. The real event durations are
highlighted in red. The event corresponds to a clearly visible
increase in the number of changes. The frequency stays high
for a few hours as first of all many peers switch to alternative
paths, and then some of them come back to AMS-IX.

We also see a spike between 14:45 and 15:00 (UTC).
Further investigation showed that almost all the changepoints
that occured during this period are related to measurements
targeting the DNS Root-A server. We repeated a similar pro-
cedure for all the origin-destination pairs in the Atlas built-in
measurement to this DNS server and we saw a similar spike,
but all source ASes seem to be affected equally, leading us to
believe that the spike was caused by an event close to one of
the DNS Root-A instances.

2) DE-CIX APRIL 2018 OUTAGE
According to [41], between April 9th and April 20th 2018,
some networks located at DE-CIX Frankfurt lost their con-
nectivity to the route servers, and as a result rerouted their
traffic to other interconnections, or experienced an inter-
ruption of traffic. An analysis of the rates of BGP updates
received by route collectors located at DE-CIX showed that
the rates of updates dropped close to zero between 19:43 and
23:28 on the 9th of April, and between 02:02 and 03:51 on
the 10th of April. Applying the same methodology as for
the AMS-IX event, the state changes frequency for this time
frame are shown in Figure 17. The two largest spikes match
exactly the two times where the rates of BGP updates dropped
to zero. The two smaller spikes match with the two times
when the collectors started receiving BGP updates again.

VI. CONCLUSION
In this paper we have shown that the HDP-HMM model,
a hidden Markov chain model with a potentially infinite
number of states, is a very promising method for analyz-
ing RTT time series over the Internet on long time scales
(hours to weeks). We have reviewed the principles of this
model that produce accurate segmentation of time series and
identification of hidden states. Unlike black box approaches,
the HDP-HMM provides some explainable parameters that
can be used as input in different network management tasks
such as the choice of routes, QoS prediction, or optimization
of the measurement strategy.

As shown in Sections IV and V, segmentation results are
very close to what a human expert would provide, and any
measured RTT time series is very accurately represented by
the model. Moreover the analysis method is fully automated
with no human intervention, even in the initialization phase,
and it is scalable. As proof, it has been implemented on an
Internet-wide operational measurement infrastructure, RIPE
Atlas, with a publicly available Web API.

We have shown that this method can accurately detect
moments when abnormal events occur on the Internet.
In the future we would like to automate this detection,
and in particular to locate anomalies (infrastructure failures,
etc.) precisely. This will require the use of other methods

exploiting the diversity of the measured paths and tomo-
graphic approaches, or using a preliminary time series fil-
tering strategy. We will also work on real-time process-
ing of measured data to detect novelties in RTT series
with HDP-HMMs in an almost instantaneous way, based
on some recent sequential approaches to inference in
HDP-HMMs [42], [43].Moreover, having a precise RTT time
series segmentation tool will allow us to perform a large
scale analysis of the statistical characteristics of Internet paths
performance and to revisit previous results [44], [45].

REFERENCES
[1] R. Boutaba, M. A. Salahuddin, N. Limam, S. Ayoubi, N. Shahriar,

F. Estrada-Solano, and O. M. Caicedo, ‘‘A comprehensive survey on
machine learning for networking: Evolution, applications and research
opportunities,’’ J. Internet Services Appl., vol. 9, no. 1, p. 16, 2018.

[2] B. Koley, ‘‘The zero touch network,’’ in Proc. IEEE CNSM, Nov. 2016,
pp. 1–39.

[3] M. Boucadair and C. Jacquenet, Emerging Automation Techniques for the
Future Internet. Philadelphia, PA, USA: IGI Global, 2018.

[4] ONAP Platform. Accessed: May 9, 2019. [Online]. Available:
https://www.onap.org/platform-2

[5] R. N. Staff, ‘‘RIPE Atlas: A global Internet measurement network,’’ Inter-
net Protocol J., vol. 18, no. 3, pp. 2–26, 2015.

[6] E. B. Fox, E. B. Sudderth, M. I. Jordan, and A. S. Willsky, ‘‘A sticky HDP-
HMM with application to speaker diarization,’’ Ann. Appl. Stat., vol. 5,
no. 2A, pp. 1020–1056, Jun. 2011.

[7] R. M. Neal, ‘‘Markov chain sampling methods for Dirichlet process mix-
ture models,’’ J. Comput. Graph. Statist., vol. 9, no. 2, pp. 249–265,
Jun. 2000.

[8] Y. W. Teh, M. I. Jordan, M. J. Beal, and D. M. Blei, ‘‘Hierarchi-
cal Dirichlet processes,’’ J. Amer. Statist. Assoc., vol. 101, no. 476,
pp. 1566–1581, Dec. 2006.

[9] W. Zhang and J. He, ‘‘Modeling end-to-end delay using Pareto distri-
bution,’’ in Proc. 2nd Int. Conf. Internet Monitor. Protection (ICIMP),
Jul. 2007, p. 21.

[10] J. Hernandez and I. Phillips, ‘‘Weibull mixture model to characterise end-
to-end Internet delay at coarse time-scales,’’ IEE Proc., Commun., vol. 153,
no. 2, pp. 295–304, 2006.

[11] Y. Sato, S. Ata, I. Oka, and C. Fujiwara, ‘‘Using mixed distribution for
modeling end-to-end delay characteristics,’’ Graduate School Eng., Osaka
City Univ., Fac. Mod. Manage. Inf., Osaka Seikei Univ., Osaka, Japan,
Tech. Rep., Jan. 2005.

[12] M. Yang, J. Ru, X. R. Li, H. Chen, and A. Bashi, ‘‘Predicting Internet end-
to-end delay: Amultiple-model approach,’’ in Proc. IEEE 24th Annu. Joint
Conf. IEEEComput. Commun. Societies, vol. 4,Mar. 2005, pp. 2815–2819.

[13] E. Kamrani, H. R. Momeni, and A. R. Sharafat, ‘‘Modeling Internet delay
dynamics for teleoperation,’’ in Proc. IEEE Conf. Control Appl. (CCA),
pp. 1528–1533, Aug. 2005.

[14] S. Belhaj and M. Tagina, ‘‘Modeling and prediction of the Internet end-
to-end delay using recurrent neural networks,’’ J. Netw., vol. 4, no. 6,
pp. 528–535, 2009.

[15] A. Dong, Z. Du, and Z. Yan, ‘‘Round trip time prediction using recurrent
neural networks with minimal gated unit,’’ IEEE Commun. Lett., vol. 23,
no. 4, pp. 584–587, Apr. 2019.

[16] K. Salamatian and S. Vaton, ‘‘Hidden Markov modeling for network com-
munication channels,’’ SIGMETRICS Perform. Eval. Rev., vol. 29, no. 1,
pp. 92–101, Jun. 2001.

[17] W. Wei, B. Wang, and D. Towsley, ‘‘Continuous-time hidden Markov
models for network performance evaluation,’’ Perform. Eval., vol. 49,
nos. 1–4, pp. 129–146, Sep. 2002.

[18] A. Dainotti, A. Pescapé, P. S. Rossi, F. Palmieri, and G. Ventre, ‘‘Internet
traffic modeling by means of Hidden Markov Models,’’ Comput. Netw.,
vol. 52, no. 14, pp. 2645–2662, Oct. 2008.

[19] R. Fontugne, J. Mazel, and K. Fukuda, ‘‘An empirical mixture model for
large-scale RTT measurements,’’ in Proc. IEEE Conf. Comput. Commun.
(INFOCOM), Apr. 2015, pp. 2470–2478.

[20] M. Mouchet, S. Vaton, and T. Chonavel, ‘‘Statistical characterization
of round-trip times with nonparametric hidden Markov models,’’ in
Proc. IFIP/IEEE Symp. Integr. Netw. Service Manage. (IM), Apr. 2019,
pp. 43–48.

VOLUME 8, 2020 16783



M. Mouchet et al.: Large-Scale Characterization and Segmentation of Internet Path Delays With Infinite HMMs

[21] S. Vaton, O. Brun, M. Mouchet, P. Belzarena, I. Amigo, B. J. Prabhu, and
T. Chonavel, ‘‘Joint minimization of monitoring cost and delay in overlay
networks: Optimal policies with a Markovian approach,’’ J. Netw. Syst.
Manage., vol. 27, no. 1, pp. 188–232, Jan. 2019.

[22] H. Pucha, Y. Zhang, Z. M. Mao, and Y. C. Hu, ‘‘Understanding network
delay changes caused by routing events,’’ in Proc. ACM SIGMETRICS Int.
Conf. Meas. Model. Comput. Syst., New York, NY, USA, 2007, pp. 73–84.

[23] A. P. Dempster, N. M. Laird, and D. B. Rubin, ‘‘Maximum likelihood from
incomplete data via the em algorithm,’’ J. Roy. Stat. Soc. B, Methodol.,
vol. 39, no. 1, pp. 1–38, 1977.

[24] L. R. Rabiner, ‘‘A tutorial on hidden Markov models and selected appli-
cations in speech recognition,’’ Proc. IEEE, vol. 77, no. 2, pp. 257–286,
1989.

[25] H. Akaike, ‘‘A new look at the statistical model identification,’’ IEEE
Trans. Autom. Control., vol. 19, no. 6, pp. 716–723, Dec. 1974.

[26] G. Schwarz, ‘‘Estimating the Dimension of a Model,’’ Ann. Statist., vol. 6,
no. 2, pp. 461–464, Mar. 1978.

[27] C. P. Robert and G. Casella, Monte Carlo Statistical Methods. New York,
NY, USA: Springer-Verlag, 1998.

[28] D. J. C. MacKay, Information Theory, Inference and Learning Algorithms.
New York, NY, USA: Cambridge Univ. Press, 2002.

[29] T. S. Ferguson, ‘‘A Bayesian analysis of some nonparametric problems,’’
Ann. Statist., vol. 1, no. 2, pp. 209–230, Mar. 1973.

[30] C. E. Antoniak, ‘‘Mixtures of Dirichlet processes with applications
to Bayesian nonparametric problems,’’ Ann. Statist., vol. 2, no. 6,
pp. 1152–1174, Nov. 1974.

[31] M. J. Beal, Z. Ghahramani, and C. E. Rasmussen, ‘‘The infinite hid-
den Markov model,’’ in Proc. Adv. Neural Inf. Process. Syst., 2002,
pp. 577–584.

[32] S. J. Gershman and D. M. Blei, ‘‘A tutorial on Bayesian nonparametric
models,’’ J. Math. Psychol., vol. 56, no. 1, pp. 1–12, Feb. 2012.

[33] J. Sethuraman, ‘‘A constructive definition of Dirichlet priors,’’ Statistica
Sinica, vol. 4, pp. 639–650, Jul. 1994.

[34] D. Blackwell and J. B. Macqueen, ‘‘Ferguson distributions via Pólya urn
schemes,’’ Ann. Statist., vol. 1, no. 2, pp. 353–355, Mar. 1973.

[35] W. Shao, J. L. Rougier, A. Paris, F. Devienne, and M. Viste, ‘‘One-to-one
matching of RTT and path changes,’’ in Proc. 29th Int. Teletraffic Congr.
(ITC), vol. 1, Sep. 2017, pp. 196–204.

[36] MANIC: Measurement and ANalysis of Internet Congestion.
Accessed: Mar. 29, 2019. [Online]. Available: https://manic.caida.org/

[37] E. Aben, ‘‘Does the Internet route around damage? A case
study using RIPE atlas,’’ Tech. Rep., 2015. [Online]. Available:
https://labs.ripe.net/Members/emileaben/does-the-internet-route-around-
damage

[38] M. Mouchet, ‘‘Demonstration of the RIPE atlas trends API,’’ Tech. Rep.,
2019. [Online]. Available: https://github.com/maxmouchet/atlas-trends-
demo

[39] R. Fontugne, E. Aben, C. Pelsser, and R. Bush, ‘‘Pinpointing delay and
forwarding anomalies using large-scale traceroute measurement,’’ in Proc.
Internet Meas. Conf., 2017, pp. 15–28.

[40] V. Giotsas, C. Dietzel, G. Smaragdakis, A. Feldmann, A. Berger, and
E. Aben, ‘‘Detecting peering infrastructure outages in the wild,’’ in Proc.
ACM SIGCOMM, Aug. 2017, pp. 446–459.

[41] E. Aben and S. Strowes, ‘‘Does the Internet route around damage in 2018?’’
Tech. Rep., 2018. [Online]. Available: https://labs.ripe.net/Members/
emileaben/does-the-internet-route-around-damage-in-2018

[42] A. Bargi, R. Y. D. Xu, and M. Piccardi, ‘‘AdOn HDP-HMM: An adaptive
online model for segmentation and classification of sequential data,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 29, no. 9, pp. 3953–3968, Sep. 2018.

[43] N. Tripuraneni, S. Gu, H. Ge, and Z. Ghahramani, ‘‘Particle gibbs for
infinite hidden Markov models,’’ in Advances in Neural Information Pro-
cessing Systems, C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama,
and R. Garnett, Eds. Red Hook, NY, USA: Curran Associates, Inc., 2015,
pp. 2395–2403.

[44] Y. Zhang and N. Duffield, ‘‘On the constancy of Internet path prop-
erties,’’ in Proc. 1st ACM SIGCOMM Workshop Internet Meas., 2001,
pp. 197–211.

[45] M. Iodice, M. Candela, and G. Di Battista, ‘‘Periodic path changes in RIPE
atlas,’’ IEEE Access, vol. 7, pp. 65518–65526, 2019.

MAXIME MOUCHET received the Engineering
degree in telecommunications from IMT Atlan-
tique, where he is currently pursuing the Ph.D.
degree. His work concerns the optimization of
active monitoring in computer networks through
statistical modeling and prediction of the QoS.

SANDRINE VATON received the Engineering
degree from Télécom Paris, the master’s degree
in probabilities and finance from Université
Pierre et Marie Curie (UPMC), Paris, France,
the Ph.D. degree in signal processing from Télé-
com Paris, and the Accreditation to Supervise
Research (HDR) in computer science from Uni-
versité Rennes 1, France. She is currently a Full
Professor with IMT Atlantique, Brest, France.
Her research interests are statistical modeling of

telecommunications networks and traffic, performance evaluation, network
monitoring, and anomaly detection.

THIERRY CHONAVEL received the Ph.D. degree
from Télécom Paris, in 1992. Since 1993, he has
been a Professor with IMT Atlantique (formerly
Télécom Bretagne). His research is related to
statistical signal processing methods with appli-
cations to several fields (transmissions, speech,
sonar, radar, and networks). In the area of hidden
Markovmodeling, he contributed to techniques for
tracking states with unknown and varying dimen-
sion in dynamical systems observed from sensor
arrays.

EMILE ABEN received the M.Sc. degree in chem-
istry from the University of Nijmegen, Nijmegen,
TheNetherlands. He has been a Research Engineer
with the RIPE NCC Science Group, since 2009,
where he is currently a Senior Research Engineer
of the Research and Development Department.
Before ten years, he worked as a Web Devel-
oper, a Sysadmin, a Security Consultant, and a
Researcher. He is interested in the Internet mea-
surement and technology changes, such as the
transition to IPv6.

JASPER DEN HERTOG is currently a Software
Engineer with the RIPE NCCResearch and Devel-
opment Department. He is also a Core Devel-
oper of RIPE Atlas and RIPE IPMap. He is also
specialized in cleaning, aggregating and visualiz-
ing networking related datasets, and turning them
into APIs.

16784 VOLUME 8, 2020


