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Abstract 

 

Particle-In-Cell models have been extensively used in the last few years to describe negative 

ion extraction for neutral beam injection applications. We show that some of these models 

have been employed in conditions far from the requirements of particle simulations and that 

questionable conclusions about negative ion extraction, not supported by experimental 

evidence, have been obtained. We present a critical analysis of the method that has led to 

these conclusions and propose directions towards a more accurate and more realistic 

description of negative ion extraction. We show in particular that, as expected in Particle-In-

Cell simulations, mesh convergence is reached only if the grid spacing is on the order or 

smaller than the minimum Debye length in the simulation domain and that strong aberrations 

in the extracted beam are observed if this constraint is not respected. The method of injection 

of charged particles in the simulated plasma is also discussed and we show that some injection 

methods used in the literature lead to unphysical results. 
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A number of papers presenting results of Particle-In-Cell (PIC) simulations [1-12] of 

negative ion extraction for neutral beam injection (NBI) applications [13-16] have been 

published in the last ten years. In the negative ion source for ITER, to extract negative ions, 

an extraction grid (EG) is biased positively with respect to the plasma grid (PG) in contact 

with the plasma. The plasma grid is covered with a caesium layer. The bombardment of the 

caesiated PG by fast hydrogen atoms created in the plasma source by the dissociation of 

molecular hydrogen leads to the generation of negative ions on the PG surface [17]. 

In the particle simulations of negative ion extraction (we consider here a two-dimensional 

model), the computational domain is a small region around a grid aperture and periodic 

boundary conditions around the grid aperture are assumed.  In the simulations, the extraction 

grid (EG) is at a potential of several kV above the plasma grid (see figure 1) and a negative 

ion current density is emitted from the PG surface. Space charge saturation of this emitted 

current may occur depending on the intensity of the emitted current density, and on the 

plasma properties. A magnetic field perpendicular to the simulation domain, the magnetic 

filter field, (BF - see fig. 1), is imposed in the extraction region. Its role is to reduce the 

temperature of electrons flowing from the driver located upstream of extraction region (fast 

electrons can detach negative ions). A deflection magnetic field BD is added to limit the flux 

of electrons extracted with negative ions (co-extracted electrons). One of the requirements for 

ITER is that the co-extracted electron current be less than the negative ion current. In the PIC 

simulations, bulk collisions between charged and neutral species are implemented using a 

Monte Carlo collisions procedure (PIC MCC model). 

We focus in this letter on two reasons for which the results presented in a series of recently 

published papers [3], [7-11] are, in our opinion, not correct and led to questionable 

conclusions concerning negative ion extraction. These are related to the way the PIC method 

is used and concern 1) the too large grid spacing used in the simulations, 2) the way the 



 3 

plasma is generated in the simulation domain. Our argument is based on a detail study of 

mesh convergence of the simulations for the first point and on basics plasma physics 

considerations for the second point. These two points are discussed successively below. 

Debye length and grid spacing  

In Refs. [3], [7-11] the authors generate and maintain a plasma in the simulation domain by 

injecting one charged particle each time one particle exits the domain (we come back below 

with more detail on this method). In this way the average charged particle density in the 

simulation domain stays constant. The region where the particles are generated is upstream, 

on the left part of the simulation domain. The authors chose to impose a plasma density close 

to the experimental value measured in the vicinity of the plasma grid, i.e. 10
17

 m
-3

 [18]. 

Assuming an electron temperature of 2 eV, this corresponds to an electron Debye length of 33 

m. The authors chose to perform the simulations with a grid spacing between 5 and 10 times 

larger than the Debye length. They argue that since the plasma density strongly decreases 

from the injection region to the plasma grid, the grid spacing close to the extraction grid is 

smaller than the local Debye length. Since the region of interest is the vicinity of the plasma 

grid (the negative ions are emitted from the surface of the grid and extracted through the grid 

aperture), they argue that having a grid spacing smaller than the Debye length in this region 

(and not upstream) is sufficient to get accurate results. This is questionable for two reasons: 1) 

because the grid spacing is much larger than the Debye length upstream, the plasma transport 

from the injection region to the plasma grid is not correctly described, 2) the current density 

of negative ions emitted from the grid surface is on the order of 600 A/m
2
 [19], which gives, 

assuming a velocity of 10
4
 m/s of the emitted ions (temperature 1 eV), a density next to the 

surface of about 3×10
17

 m
-3

. In order to properly describe extraction it is necessary to resolve 

a Debye length associated with this density and temperature. On a more general point of view 

it is well known that the grid spacing must be smaller than the minimum Debye length 
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everywhere in explicit PIC simulations to prevent numerical heating leading to unphysical 

results, and it is surprising that the authors did not consider this constraint. One of the reasons 

why they did not respect this constraint may be the fact that using a grid spacing smaller than 

the Debye length in these conditions is very time consuming in a 2D simulation and would be 

prohibitive in a 3D simulation. 

We analyze in detail below the effect of the grid spacing over Debye length ratio,  x/ d 

with the 2D EP-PIC (Explicit Parallel – PIC) model [20] based on standard PIC techniques 

[21], [22]. The computational domain is sketched in figure 1. The grid spacing in x and y 

directions are the same. To keep a reasonable number of grid cells when d is resolved, 

calculations have been performed with an initial density n0 of 6×10
16

 m
-3

 and a negative ion 

current density emitted from the surface equal to 120 A/m
2
 (about five times smaller than real 

values). Species considered are electrons, positive ions (𝐻2
+) and negative ions (𝐻−). At the 

beginning of the simulation, an equal number of electrons and positive ions are loaded with a 

Maxwellian distribution with a temperature of 2 eV, randomly distributed between x = 0 to x 

= 26.5 mm. All the simulation parameters are given in Table 1. Only significant collisional 

processes are considered (assuming a constant cross section , derived from Ref. [23]): for 

𝐻− electron detachment and elastic collision with H2 (same cross-section, = 6.2×10
-20

 m
2
), 

charge exchange with H ( = 1.3×10
-18

 m
2
), and for electrons elastic collision with H2 ( = 

1.4×10
-19

 m
2
).   

In all the calculations presented here, the requirements on the time step are strictly 

respected [21], [22] and the initial number of electrons and positive ions is 40 particles per 

cell. For particle injection, we used a simple technique which consists in loading a new 

electron-positive ion pair in the source region each time one positive ion exits the domain i.e. 

either collides with the PG or crosses the left boundary of the simulation domain [4-6], [12].  

We discuss below other techniques used by different authors. Another important point 
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concerning  plasma injection is related to how to impose a given plasma electron temperature. 

One way to do it is to use an external “thermalization mechanism” [2], [24] which consists in 

changing at a given frequency (h) the components of the electron velocity according to a 

Maxwellian distribution at the given “thermalization” temperature Th (equal to the initial 

electron temperature Te). In the simple case of an un-magnetized plasma composed of electron 

(of mass m) and positive ions (of mass M) between two grounded walls, if such thermalization 

(or another similar technique to impose the plasma electron temperature) is not performed, the 

electron temperature will decrease in time because of the loss of fast electrons through the 

sheaths. It is easy to check that the injection method with thermalization above allows to 

reach a steady state with a plasma potential given by the usual formula (for low collisionality): 

𝑉𝑝 =
𝑘𝑇𝑒

2
[ln (

𝑀

2𝜋𝑚
) + 1] (1) 

We show in figure 2 the axial profiles of Te, electric potential V, and charged species 

densities at y = 0 for two cases: the first one with a grid spacing of 250 m, i.e. a Debye 

length significantly larger than the grid spacing, x/d = 6, and the second one with a grid 

spacing of 32.1 m, equal to the Debye length, x/d = 1 (note that the Debye lengths in both 

cases are not identical because of different maximum plasma densities, see Fig. 2c). In Fig. 2b, 

we see that for the case with x/d = 6, Te increases from 2 eV in the source region (where the 

thermalization process is used) to 9 eV, along a line from the left boundary to the plasma grid 

surface. This result is totally unphysical and is due to self-heating [21], [22]. It is a clear 

consequence of not resolving the Debye length. As a result, we see in figure 2a that the 

maximum of electric potential reaches 4 V (with large fluctuations in time, not shown). This 

potential increase strongly affects positive ion transport and limits the flux of positive ions 

from the injection region to the plasma grid (see Fig. 2c). The presence of positive ions in 

front of the plasma grid is necessary to neutralize the extracted negative ions. Therefore, in 

this example, not resolving the Debye length in the injection region, clearly limits the positive 
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ion flux to the plasma grid and prevents efficient negative ions extraction from the surface. At 

the PG, the positive ion density is low (~ 10
16

 m
-3

) and a virtual cathode is formed with a 

potential well of 3.4 V and most of emitted negative ions are reflected back leading to a very 

low negative ion density in the volume (~ 3×10
14

 m
-3

). When x < d, a much more physical 

description of the plasma properties is obtained. The electron temperature Te (~2 eV) is 

practically constant and the potential is relatively flat along a line from the left boundary to 

the plasma grid surface. The value of the plasma potential with respect to, e.g., the left 

boundary adjusts according to the balance of charged particle flows to the walls. Its value can 

be adjusted by changing the imposed potential VLB on the left boundary. The diffusion of 

electrons and positive ions from the source region to the PG leads to a positive ion density of 

3×10
16

 m
-3

 at the PG, the potential well of the virtual cathode is now less deep (1.2 V) and a 

larger number of emitted negative ions crosses the potential well. A negative ion density of 

more than one order of magnitude larger than in the previous case (not respecting the Debye 

length constraint) is obtained. 

The convergence with grid spacing is clearly shown in figure 3. The profiles of the 

potential along the PG are shown in Fig. 3a for five different values of the grid spacing to 

Debye length ratio x/d (6, 3, 1, 0.7, 0.5). We see that potential profiles for x/d=1, 0.7, and 

0.5 are very close to each other while the profiles for grid spacing larger than the Debye 

length are significantly different. The particular potential well shape for small x is due to the 

concave meniscus shape (boundary between plasma and extraction region) formed around the 

slit aperture that prevents positive ions from reaching the grid close to aperture. For very large 

grid spacing, due to the large potential well along the grid surface, negative ions can be 

efficiently extracted from the PG surface only in a reduced to a zone around the aperture. As a 

result, since most of the extracted negative ions come from the periphery of the meniscus, the 

large electric field in the y direction induces a negative ion beam with a very bad optic. This 
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can be seen on Fig. 3b which displays the negative ion current density profiles along the 

extraction grid for the same five values of x/d. For values of x/d on the order or smaller 

than 1, the calculated current density profile is centered on axis and the distributions are very 

close together, which confirms the good mesh convergence of the simulation. For values of 

x/d  larger than 1, we see a very different current distribution, with a halo on the wings of 

the current density profiles. These particular profiles are qualitatively close to those shown in 

the published work of Refs [14], [25-27]. When the Debye length is resolved, 30 % of the 

negative ion current density is extracted. Note that charge exchange collisions in the plasma 

volume have an influence on the relative part of the negative ions that exit the domain toward 

the plasma through the left boundary and those that are extracted through the grid aperture.  

The percentage of the current extracted from the PG surface, that is extracted through the grid 

aperture also depends on the potential applied on the left boundary on the simulation domain 

[33], i.e. on the PG bias. These issues will be discussed in more detail elsewhere. 

Plasma injection 

The second critical point concerns the way the quasi-neutral plasma is injected and 

maintained in the simulation domain. We have described above the method used in our 

simulations and we comment here on the methods used by other authors. Taccogna et al. [1], 

[3], [7] have used the flux injection technique where appropriate flux distributions of charged 

particles are injected through the left-boundary plane [28], [32]. This is not trivial since the 

magnetic field applied along z (BF - see fig. 1) requires re-injecting most of electrons that pass 

again the left-boundary plane. The technique of re-injection of all charged particles crossing 

the left-boundary is questionable for negative ions which are accelerated towards the 

upstream plasma source where they will be detached by high energetic electrons. Another 

technique, used in Refs [29-31], consists in a continuous injection of charged particles in a 

source region and at a given rate. In the work of Refs. [4-6], [8-12], an equal number of 
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positive and negative charges is initially uniformly distributed in the simulation domain. In 

Refs [8-11], when one electron or positive ion collides with one electrode or leaves the box, 

the same type of particle is re-injected at a random position in the source region. We show 

below that this method is questionable and seems totally inconsistent with the self-consistent 

description of a plasma in the vicinity of a wall cannot describe properly the physics of a 

plasma in the vicinity of a wall. For example the balance of current between floating walls in 

an electron-positive ion, un-magnetized plasma imposes the formation of ion sheaths leading 

to a total number of electrons smaller than the number of positive ions. If only the total 

number of ions is imposed in the simulations (and an electron-ion pair is injected each time a 

positive ion exits the domain), the number of electrons adjusts to satisfy the current balance. 

In the simulations of [8-11] the physical meaning and consequences of keeping constant the 

number of electrons and the number ions are absolutely not clear. This is illustrated in Fig. 4, 

where we show a comparison of the plasma potential profiles obtained with both methods of 

injection, in the simple case of a one-dimensional collisionless, non-magnetized plasma where 

only electrons (with a temperature of 2 eV) and 𝐻2
+ ions (with a temperature of 0.1 eV) are 

considered. The axial dimension is 32 mm and the initial plasma density is 1.2×10
15

 m
-3

 

(x/d < 1). The thermalization temperature is 2 eV and the source region is between x = 5 

mm and x = 27 mm. When the number of ions is kept constant, one obtains a plasma potential 

equal to 7.4 V in full agreement with the classical result of Eq. (1). In the second injection 

method ([8-11])  where the number of ions and electrons are conserved (electrons and ions are 

replaced independently in the source region when they reach a wall), the plasma potential is 

negative and the sheaths are reversed. At steady state positive ions are trapped in the domain 

(their number stays constant and there is almost no ion flux to the walls) while there is a large 

electron flux through both electrodes (electrons are continuously reinjected to keep constant 

the number of electrons in the domain). Clearly, current continuity is not respected in this 
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method since the rates of electron and ion generation in the domain are different. This 

unphysical result shows, on this simple example, that this injection method is not consistent 

and cannot describe the physics of sheath formation next to a wall and it is even less able to 

describe the complex physics of negative ion extraction. 

In summary, we consider that the results on the simulation of negative ion extraction for 

the ITER neutral beam injection system, presented in a series of recent publications, Refs [3], 

[7-11], are doubtful and led to highly questionable conclusions because 1) the Debye length is 

not resolved in the simulations, 2) the plasma injection method leads to unphysical results in a 

simple test case. 

Other important questions on the simulation of negative ion extraction are left for future 

publications [33]. Among those: 

- How to properly take into account the plasma properties upstream and around the 

simulation domain (improvement of plasma injection)? 

- What are the best boundary conditions on the sides of the simulation domain? 

- A reliable PIC mode must resolve the Debye length. Since this seems prohibitive for 

3D PIC simulations, is it possible to perform simulations at lower plasma densities and 

scale the results meaningfully to real densities? 
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Table 1. Input data used for the simulation 

Physical parameters Symbol Value Units 

Initial plasma density/Gas densities 𝑛0/𝑛𝐻2/𝑛𝐻 6×10
16

/4×10
19

/1×10
19

  m
-3

 

Temperature Te/𝑇𝐻2+/𝑇𝐻−/𝑇𝐻2/𝑇𝐻 2/2/1/0.1/1 eV 

Thermalization frequency/temperature h/Th 2×10
9
/2 s

-1
/eV  

negative ion current density injected Jinj 120 A/m
2
 

Applied potential VLB/VPG/VEG -5/0/1000 V 

Deflection/filter magnetic field BD/BF 600/75 G 
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Figure captions 

Figure 1: schematic view of the simulation domain. Positions are indicated in mm. The 

grey region is the source region. The electric potentials imposed at the left boundary, plasma 

grid, and extracting grid are noted VLB, VPG and VEG, respectively. The filter magnetic field is 

noted BF. The deflection magnetic field has the form  

BDx = BD sin[(y-yR)/d] exp[-(xR-x)/d], BDy = BD cos[(y-yR)/d] exp[-(xR-x)/d], where BD = 

600 G, d = 16 mm, yR = d/2, and xR = 32 mm. 

 

Figure 2: profiles along the x direction at y = 0 of (a) electric potential, (b) electron 

temperature, (c) densities, for a grid spacing of 31.2 and 250 m. The source region is also 

presented. 

 

Figure 3: profiles of (a) electric potential close to the PG and (b) negative ion current 

density at EG for five values of the grid spacing, 250, 125, 31.2, 21.3, and 16.5 m,  

corresponding to x/d =6, 3, 1, 0.7, 0.5. In (a), the potential profiles are plotted at a distance 

250, 125, 100, 60, and 60 m from the PG for decreasing values of x/d. 

 

Figure 4: plasma potential profiles obtained with the two injection methods in a simple 

one-dimensional collisionless and non-magnetized discharge with grounded walls, with only 

electrons and 𝐻2
+ ions. The source region is indicated. In the standard injection method one 

electron-ion pair is injected in the source region whenever an ion is lost to a wall (constant 

number of ions in the simulation). The plasma potential is consistent with Eq. (1). In the other 

method one ion (resp. electron) is generated in the source region whenever one ion (resp. 

electron) reaches a wall (constant numbers of ions and electrons in the simulation). This leads 

to an unphysical potential distribution.     
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Figure 3. 
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Figure 4. 
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