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Abstract
Negative ion sources for fusion are high densities plasma sources in large discharge volumes. There are
many challenges in themodeling of these sources, due to numerical constraints associatedwith the
high plasma density, to the coupling between plasma and neutral transport and chemistry, the
presence of amagneticfilter, and the extraction of negative ions. In this paper we present recent results
concerning these different aspects. Emphasis is put on themodeling approach and on themethods
and approximations. Themodels are not fully predictive and not complete as would be engineering
codes but they are used to identify the basic principles and to better understand the physics of the
negative ion sources.

1. Introduction

Negative ion sources are used in a variety of researchfields and applications [1] such as in tandem type
electrostatic accelerators, cyclotrons, storage rings in synchrotrons, nuclear and particle physics (for instance to
produce neutrons in the SpallationNeutron Source [2]) and inmagnetic fusion devices (generation of high
power neutral beams [3]). High brightness negative ion sources (i.e., which produces large negative ion currents)
use cesiumvapor to significantly enhance the production of negative ions on the source cathode surface. Cesium
lowers thework function of themetal and hence facilitates the transfer of an electron from themetal surface to a
neutral hydrogen atomby a tunneling process. Themain types of devices that use cesium aremagnetrons,
Penning andmulti-cusps ion sources. The former have applications in accelerators and the latter are often large
volume ion sources like those developed for fusion applications. The plasma in large volume devices can be
generated by hot cathodes (heated filaments) or radio-frequency (RF) antennas (inductively coupled-plasma,
ICP discharges) standing either inside or outside the discharge [1]. Ion sources for fusion are tandem type
devices with a so-called expansion chamber juxtaposed next to the discharge region. The expansion chamber is
oftenmagnetizedwithmagnetic field lines perpendicular to the electron flux exiting the discharge. Themagnetic
field strength is typically of the order of∼100 G and is generated either by permanentmagnets placed along the
lateral walls of the ion source or via a large currentflowing through the plasma electrode (which is also called
‘plasma grid’). The plasma grid (PG) separates the ion source plasma from the accelerator region, where the
extracted negative ions are accelerated to high energies. The axial electronmobility is strongly reduced by the
magnetic field inside the expansion chamber and the electron temperature is hence significantly reduced as
electrons loose a large amount of energy through collisions. In ion sources for fusion, the background gas
pressure (either hydrogen or deuterium type) is∼0.3Pa and the electron temperature is of the order of 10eV in
the discharge region. Themagnetic filter reduces the electron temperature down to the eV level in the extraction
region, close to the PG. The role of themagnetic filter field in the expansion chamber is threefold: (i) a large
versus low electron temperature between the discharge and the extraction region allows the production of
negative ions through the dissociative impact between an electron and an hydrogen (or deuterium)molecule

n( )H 42 , where ν is the vibrational level. The vibrational excitation of the hydrogenmolecule ismaximized at
high electron temperatures (typically ~T 10e eV)while the cross-section for the dissociative attachment of H2

and hence the production of a negative ion is the largest for ~T 1 eVe . (ii)A low electron temperature in the
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vicinity of the PG significantly increases the survival rate of the negative ions and (iii) themagnetic filtermore or
less lowers the electronflux onto the PGbut this is not sufficient and a suppressionmagnetic field is used to limit
the co-extracted electron current. Co-extracted electrons have a damaging effect inside the electrostatic
accelerator [4]. The electron beam is unfocused and induces a large parasitic power deposition on the accelerator
parts. Note that in fusion-type, high power, large volume and lowpressure ion sources, negatives ions produced
via dissociative attachment of the background gasmolecules (so called ‘volume processes’) range between 10%–

20%of the total amount of extracted negative ion current [5, 6], the remaining part corresponds to ions
generated on the cesiated PG surface through neutral atom and positive ion impacts. Inmagnetic fusion
applications, negative ion sources are a subset of a neutral beam injector (NBI)producing high power neutral
beamswhich are injected into the Tokamak plasma.Neutrals are insensitive tomagnetic fields and can hence
penetrate into the hot plasma core. The neutral beamprovides power to the plasma, current (which is necessary
to sustain the poloidal field) and are helpful tominimize the buildup of some type of instabilities. In the future
International Thermonuclear Experimental Reactor (ITER), NBIs are designed to inject 33MWof power (split
over two beam lines)with an energy of 1MeV into the Tokamak plasma [7]. The ITERproject is the first fusion
device whichwillmainly be heated by alpha particles ( +He

2 ). The plasmawill consist ofDeuterium andTritium
ions providing 500MWof fusion power. 50MWof additional external powerwill be necessary in order to heat
and control the plasma during the operating phasewhile the alpha particles will re-inject 100MWof power to
the fusion plasma (the total heating power is 150MW). The remaining 400MWis carried by the neutrons
toward thewall of the Tokamak [8]. The external heating system for ITER also includes 20MWof electron
cyclotron heating at 170GHz and 20MWof ion cyclotron heating in the –35 65 MHz frequency range [9]. Total
power is consequently 73MW (including neutral beams), slightly above the required 50MWfor ITER.

In this paperwe illustrate and analyze, on the basis of new results, thework performed in our group in the
last ten years on themodeling and simulation of the negative ion source and negative ion extraction. The
modeling of the negative ion source in all its complexity (power absorption, plasma chemistry, couplingwith
neutral transport and chemistry, transport acrossmagnetic field, negative ion production and extraction) is a
formidable task andwe address the different questions separately with dedicatedmodels using simplifying
assumptions. Inmost cases themodels are applied to the ITERprototype negative ion source BATMAN [5, 10–
12] (BAvarian TestMAchine forNegative ions) developed at theMax-Planck-Institut für Plasmaphysik,
Garching, Germany. The source is a tandem type device similar to the ITER configuration butwith one ICP
discharge (driver) and a smaller expansion chamber volume, accordingly. The driver dimensions are a cylinder
of diameter 24.5cm and length 16cm [11, 13]. An external cylindrical antenna confers to the background gas
(eithermolecular hydrogen or deuterium) about 100kWof RF power, which generates a high density plasma of
the order of ´ -4 10 m17 3 (averaged over thewhole ion source volume). The expansion chamber, which is
connected to the driver, has a larger volume and ismagnetized; its size is approximately 57.9cm in height, width
of 30.9 and 24.4cm in depth.

Most results presented and discussed in this paper have been obtainedwith particle-in-cellMonte Carlo
collisions (PIC-MCC)methods. In section 2we describe in details themethod and discuss different points such
as (1) parallelization, (2) use of scaling tomake the simulationsmore tractable, (3) 3D versus 2D and 2.5D
calculations, (4) amethod for injecting power into the plasma (electron heating), (5) implementation of
collisions (including physical-chemistry) and lastly (6) themodeling of the production of negative ions on the
PG surface.

The negative ion source is a high density plasma in a large volume, i.e. theDebye length ismuch smaller than
the dimensions of the source. The strong constraints on the grid spacing and time steps of a PIC-MCC
simulationmake it difficult to deal with the real values of the plasma density or dimensions. In several recent
publicationswe have been using scaling of the plasma density (or, equivalently, of the vacuumpermittivity) to
keep the computation timewithin reasonable limits. Section 3 is devoted to the study of the effect of density
scaling on the simulation results in a simplified problemof plasma transport across amagnetic filter where the
Hall effect contributes to the cross-field transport and leads to plasma asymmetry (as in the ITERnegative ion
source).

We have previously published the results of afluidmodel of the negative ion sourcewhere the plasma
properties were analyzed as a function of power and pressure [14, 15]. The plasmafluidmodel was coupled to a
fluid description of the neutral transport and chemistry. Interesting outcomes of the simulationwere the strong
neutral depletion due to gas heating and ionization, and the high temperature of hydrogen atomswith respect to
molecules. TheKnudsen number can be close to one in the negative ion source and thismay have consequences
on the velocity distribution functions of neutral particles. In section 4we look at the possible effects of the low
gas density on neutral transport and on the velocity distribution of hydrogen atoms andmolecules. The particle
transport in this section is described by a direct-simulation-Monte-Carlo (DSMC)model.

In section 5, we provide a detailed description of the plasma transport across themagnetic filter field inside
the expansion chamber of the ion source (potential profiles, electron density and temperature).We discuss the
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incidence of theHall effect on the plasma dynamics (induction of a transverse asymmetry), the kinetics of
negative ions and the role of positive ions in the production of negative ions on the cesiated surface of the PG.
Section 6 compares themodel predictions with experimentalmeasurements.We show that the plasma
asymmetry (and hence the incidence of theHall effect) is observed in both cases. Section 7 analyses the
numerical issues associatedwith themodeling of negative ion extraction from the PG surface. The simulation
geometry is restricted to a zoom around a single aperture. PIC simulations are difficult to usewith the real values
of the plasma density.We present calculations obtained for plasma densities lower than in a real negative ion
source and discuss the possible scaling laws that can be use to extrapolate the results tomore realistic conditions.

2.Numericalmodel

2.1. PIC simulations
The principles of the PIC-MCCsmethod are described in textbooks [16, 17] and in various publications. In this
sectionwe discuss some specific issues associatedwith the simulation of ITER-type negative ion sources, i.e. (1)
need to use parallel computing, (2) difficulty to simulate the high plasma density conditions of these sources
(and consequences of performing density scaling), (3) 2D versus 2.5D and 3D calculations (4) implementation of
a simplifiedmodel for the external power absorption inside the ICP discharge, (5) hydrogen plasma chemistry
and (6) on themethod tomodel the generation of negative ions onto the cesiated PG surface.

2.1.1. General features and parallelization of PIC-MCC simulation
Wehave developed and used 2D and 3Dparallel Cartesian electrostatic explicit PIC-MCCmodels [16, 17] to
study the plasma of negative ion sources for fusion. Due to he strong constraints on the grid spacing and time
step in the high density plasma of negative ion sources, the PICmethodmust be optimized and parallelized. In
this sectionwe recall the principles of PIC-MCC simulations and briefly describe the technique of parallelization
that is used in ourmodels and its performance in termof computer time as a function of number of computer
cores (or threads).

In an explicit algorithm, the particle trajectories are calculated based on thefields evaluated at the previous
time step. The (self) electric field is derived self-consistently from the densities estimated on the grid nodes of the
simulation domain. Themagnetic fields,filter and suppression fields (the latter is generated by permanent
magnets embedded in thefirst grid of the accelerator), are prescribed in this work. The time stepmust be a
fraction of the electron plasma period and the grid size close to the electronDebye length, accordingly (both are
set by the lightest of the simulated particles). The parallelization is performed in an hybridmanner using
OpenMP [18] andMPI libraries.We use a particle-decomposition scheme for the particle pusher where each
core (thread) have access to thewhole simulation domain (as opposed to a domain-decomposition approach).
The number of particles per core is nearly identical.We further implemented a sorting algorithm [19] in order to
limit the access to the computermemory (RAM) and boost the execution time,Dtpush, of the pusher subroutine.
The latter includes electron heating (inside the ICP discharge),field interpolations, update of the velocities and
positions together with the charge deposition on the grid nodes. Particles are sorted per grid cell. The field and
density arrays are hence accessed sequentially.Dtpush is shown infigure 1 normalized to the number of particles
in the simulation. The best performance is obtained by attaching aMPI thread per socket and a number of
OpenMP thread identical to the number of cores per socket. For the simulations offigure 1, we set the number of
OpenMP threads to 10.We sort particles every 10 time stepswithout any loss of performance. The calculation is
performedwith a 3DPIC-MCCmodel and the numerical resolution is either ´ ´96 64 128 grid nodes or
eight times larger with 80 particles-per-cell (ppc). The time gained in the pusherwith the particle sorting is a
factor∼4. The sorting algorithm remains efficient as long as there is on average at least one particle per cell per
thread. Beyond this limitDtpush converges toward the valuewithout sorting as shown infigure 1.We define the
efficiency of the pusher without sorting as,

b =
D

D
( )

( )t

t N
, 1

push
1

push core

where Ncore is the number of cores (threads) andD ( )tpush
1 the execution time of the pusher for =N 1core .β should

be equal to 1 for a perfect parallelization of the pusher.Wefind b 78 %for 20 cores, 70% for 320 cores and
lastly, dropping to∼60% for 640 cores (i.e., about 23% loss in efficiencywith respect to 20 cores).

Poisson’s equation is solved iteratively on the grid nodes with a 3Dmulti-grid solver [20]. The latter is
parallelized via a domain-decomposition approach. Inmulti-grid algorithms, a hierarchy of discretizations (i.e.,
grids) is implemented. A relaxationmethod (so-called successive-over-relaxation, SOR, in our case) is applied
successively on the different grid levels (from fine to coarse grid levels and vice versa).Multigrid algorithms
hence accelerate the convergence of a basic iterativemethod because of the fast reduction of short-wavelength
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errors by cycling through the different sub-grid levels. Each sub-domain (i.e., a slice of the simulated geometry)
is attached to aMPI threadwhile the do-loops are parallelizedwithOpenMP (SOR, restriction and prolongation
subroutines [20]). Once there is less that one node perMPI thread in the directionwhere the physical domain is
decomposed then the numerical grid ismerged between all theMPI thread. The parallelization for the coarsest
grids in consequently only achieved by theOpenMP threads. This is clearly a limiting factor andmorework is
needed to further improve the algorithm. As an example, using amesh of 5123 nodes, the speedup is about∼30
for 80 cores (b 40 %). The execution time of the Poisson solver (normalized to the number of grid nodes)
versus the number of cores in the simulation is shown infigure 2.

Lastly, for the numerical resolutionwhichwe typically implement to characterize the plasma properties of
the ITER-prototype ion source at BATMAN, that is, ´ ´192 128 256 grid nodes with 20 ppc, the fraction of
the execution time per subroutine averaged over one time step is,∼55% for the particle pusher,∼8% for the
Poisson solver,∼16% forMonte-Carlo (MC) collisions,∼4% for the sorting. The remaining time concerns both
the evaluation of the electricfield and the calculation of the total charge density on the grid nodes (which involve
some communication betweenMPI threads).

2.1.2. Scaling of PIC-MCC simulations
The high plasma density and large volume of negative ion sourcesmake it practically impossible to perform
multi-dimensional PIC-MCC simulations for real conditions. The ratio of discharge dimension toDebye length
is on the order of 104 (tens of centimeters versus tens ofmicrometers) so a simple 2DPIC-MCC simulation in
real conditions would involve 108 grid points andmore than 109 super-particles. This is clearly prohibitive for
parametric studies with 2D simulations and impossible for 3D. The 3D simulation of negative ion extraction is
also difficult although the plasma density there is smaller than in the driver and one generally consider a small
simulation domain around a grid aperture.

To overcome this problem, one solution is to perform some ‘scaling’ i.e. to run the simulations formore
tractable conditions (e.g. smaller plasma densities or smaller dimensions) and extrapolate the results to the real
conditions by using some scaling laws [21–24]. The simplest scaling is the scaling on plasma density. The

Figure 1.Execution time of the particle pusher (per time step)normalized to the number ofmacroparticles in the simulation versus
the number of cores. The time is shown either with (red and gray lines) orwithout implementing a sorting algorithm (black-line).We
use 80 particles-per-cell (ppc), a numerical resolution of ´ ´96 64 128 grid nodes (black and red lines) and ´ ´192 128 256 (gray
line). The calculation is performedwith a 3DPIC-MCCmodel on a 10 cores Intel Xeon processor E5-2680 v2 (25Mcache, 2.80 GHz).
There is 2 sockets per CPU, 20 cores in total.

Figure 2.Execution time of the geometricmultigrid Poisson solver (per time step)normalized to the number of grid nodes in the
simulation versus the number of cores. the numerical resolution is 5123 (black line), 10243 (red) and 20483 (gray) grid nodes,
respectively. The calculation is performed on a 10 cores Intel Xeon processor E5-2680 v2 (25Mcache, 2.80 GHz).We set the number
ofOpenMP threads to 10.
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Boltzmann equation for electrons or ions is linear in the density of charged particles if the collision term is linear
(i.e. when only charged particle collisionswith neutrals are considered, with a given, constant velocity
distribution function of neutral species), i.e. the equation is invariant if the distribution function (hence the
charged particle density) f is divided by a constantα:

a a a
a

¶
¶

+
¶
¶

+
¶
¶

=
- - -

-[ ] ( )f

t

f f
I fv

r
a

v
. . , 2

1 1 1
1

where a is the acceleration of the charged particles due to the Lorentz force:

= + ´( ) ( )q

m
a E v B , 3

and I is the collision operator.
In a quasineutral plasma, the electric field is deduced from current continuity and is invariant when the

plasma density n is divided by a constantα. This can be easily seen on the electron and ionmomentum equations
(fromwhich the total current density can be deduced). A simplified formof the electron current density is:

n- ´ = - + ( )P mE J B Jen , 4e e e en e

where Je is the electron current density, Pe the electron pressure and nen the electron-neutral collision frequency.
In this equation, the electric field is invariant when the electron density ismultiplied by a given factor. A similar
argument can bemade for ions.

Therefore we can conclude that the properties of a quasineutral plasma are not changedwhen the plasma
density is scaled by a constant factor (for linear collision terms) and a PIC-MCC simulation of a quasineutral
plasma can be performedwith scaled densities. In a real problem the plasma is boundedwhich implies the
presence of non-neutral Debye sheaths next to thewalls. The sheath properties are clearly not invariant with a
scaling of the plasma density (the sheath length is generally proportional to theDebye length), but the sheath
voltage and hence the plasma potential do not depend on plasma density (the plasma potential depends only of
the electron temperature and electron to ionmass ratio). Therefore, when a PIC-MCC simulation is performed
with scaled densities (i.e. plasma density smaller that the real density) only thewall sheath thickness ismodified.
If the sheath thickness is still much smaller than the discharge dimensions the scaled simulation gives an accurate
description of the real problem.However, caremust be taken in the following situations:

• Since the sheath is larger for lower plasma densities itmay becomemore collisional. The charged particle
fluxes to thewallsmay bemodified if the scaling is too important (ionization can also take place and be
enhanced by secondary emission if present).

• In amagnetized plasma, the ratio of the charged particle gyroradius to the sheath length is alsomodified by the
density scaling. Thismay also impact the charged particle transport and charged particle fluxes to thewalls.

• The properties of the ion beam extracted from the plasma source aremodified by the plasma density for a
given extraction voltage (Child Langmuir law in the case of a collisionless sheath) and therefore the applied
voltage should be scaled accordingly. This is clearly an important issuewhen scaling is used in amodel of
negative ion extraction (see section 7.5).

• In the presence of instabilities or turbulence associatedwith space charge separation (e.g. in amagnetized
plasma) the density scaling no longer works. The instabilities and associated anomalous transport across the
magnetic field do not scale linearly with the plasma density and density scaling cannot be used.

If Coulomb collisions (or other nonlinear collisions such as electron–ion recombination) are important in
the real conditions, the collisionmodule of the scaled PIC-MCC simulation can easily bemodified to take into
account the real collision frequencies (by using the real value of the target particle densities instead of the scaled
value).

Note that in some published papers the scaling used is presented as a scaling of the vacuumpermittivity
instead of a scaling of the density [21–23]. It is easy to see (in Poisson’s equation) that dividing the plasma density
by a factorα is exactly equivalent tomultiplying the vacuumpermittivity by the same factor. In that case no
scaling needs to be done for Coulomb collisions since the plasma density in the simulation is the real one.

Finally some authors have been using scaling on the discharge dimensions instead of a density scaling (see,
eg, [25, 26]). In a quasineutral plasma, the system formed by the Boltzmann equations coupledwith the
generalizedOhm’s law is invariant when the dimensions are reduced by a factorβ provided that the gas density
(i.e. collision operator) andmagnetic field aremultiplied byβ (the time scale is also divided byβ). The
Boltzmann equation in that case can bewritten as:
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We see that this equation is invariant if the collision term ismultiplied byβ, i.e. if the gas density ismultiplied
byβ (the collision term is proportional to the gas density in the absence of Coulomb collisions), and if the
acceleration, = + ´( )a E v B

q

m
ismultiplied byβ. The electricfieldE being a potential gradient is

automaticallymultiplied byβwhen the dimensions are reduced by the same factor, while the externalmagnetic
fieldBmust bemultiplied byβ.

The scaling, defined above, on density, permittivity and dimensions, are all equivalent since in these three
cases, the ratios l Lc and r LL are the same as in the real problemwhile the ratio l LD is larger than in the real
problemby a factor a1 2 in the density scaling and by a factorβ in the dimensions scaling. The density scaling
and dimensions scaling are therefore strictly identical, for a quasineutral plasma, if b a= 1 2. lc, rL, lD, and L
are respectively the charged particlemean free paths, Larmor radii, Debye lengths, and discharge dimensions.

2.1.3. 2D, 2.5D, and 3D simulations
3DPIC-MCC calculations are restricted to lowplasma densities, typically~ -10 m13 3 on 40 coreswith

´ ´192 128 256 grid nodes (20 ppc) for the prototype source at BATMAN. The density is about 105 times
lower than the real density (i.e. a = 105, see previous sub-section). In 2D rectangular PIC simulations, on the
other hand, onemay simulate a significantly larger plasma density. The plasma in the direction perpendicular to
the simulation domain is implicitly supposed to be uniform and infinite and no charged particle losses along this
direction are taken into account. A solution that allows to implement approximately the charged particle losses
in the direction perpendicular to a 2D simulation domainwithout performing a 3D calculation is the so-called
2.5Dmodel [23, 24]. Formagnetized plasmas, the particle transport is simulated in the plane perpendicular to B
(i.e. where themagnetized driftmotion takes place).We assume that the plasma is uniform along the un-
simulated direction, perpendicular to the 2D simulation plane (i.e., parallel to themagnetic field lines), andwe
use the following considerations to estimates the charged particle losses:

• The ion dynamics in the direction perpendicular to the 2D simulation plane is not calculated butwe estimate
the ion losses from the Bohmfluxes to thewalls. The loss frequency at a given location in the simulation plane
is obtained from [27] n = hu L2 yL B , where = ( )u eT x z m, iB e is the local Bohmvelocity, Ly is the length of
the ion source in the third dimension, = á ñh n n 0.5s  , ns is the local plasma density at the sheath edge, á ñn
the averaged density,Te (mi), the local electron temperature (ionmass), respectively.

• The electron and negative ion trajectories are followed in the third dimension assuming that the plasma
potential isflat (i.e., no electricfield).When a negatively charged particle reaches awall, it is removed if its
kinetic energy along the un-simulated dimension is greater than the difference between the plasma potential
and thewall, i.e., f ( )m v x z1 2 ,i z

2 for a groundedwall.mi is the particlemass.

Macroparticles are created anywhere between  y L0 y in the third dimension (via ionization processes).
The 2.5Dmodel estimates plasma characteristics which are averaged over Ly. Note that thismodel is restricted to
simplifiedmagnetic fieldmaps, where the field lines are straight in the un-simulated direction. The comparison
between 2D, 2.5D and 3Dmodels has been extensively discussed in [23].

2.1.4. External RF power absorption andMaxwellian heating in the driver
The ITER-type tandem reactors have an ICP dischargewhich couples a highRF power (typically 100 kWat
1MHz frequency) to a hydrogen or deuteriumplasma.We do not simulate directly the interaction of the RFfield
with the plasma but assume instead, a given absorbed power. Every time step,macroparticles which are found
inside the region of RF power deposition are heated according to some artificial heating collision frequency.
Electrons, being the lightest particles, are assumed to absorb all of the external power. Redistribution of energy to
the heavier ions and neutrals is done through collisions (both elastic and inelastic) and the ambipolar potential.
Electrons undergoing a heating collision have their velocities replaced by a new set sampled from aMaxwellian
distributionwith a temperature calculated from the average specie energy (inside the power deposition region)
added to the absorbed energy per colliding particles, i.e.,

n
= á ñ + ( )T E

P

eN

3

2
, 6kh h

abs

eh h

whereTh(eV) is the heating temperature in electron-Volts (eV), á ñEk h is the average electron energy, Pabs (W) is
the absorbed power, nh the heating frequency andNeh the number of electrons, respectively. For a given time
step, n DN tem h collidingmacro-electrons are chosen randomlywhereNem is the total number ofmacroparticles
inside the heating region.
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The simulated electron temperature profile is constant inside the discharge region. This is consistent with
plasma conditions which are found in devices running at low pressure, lowRF frequency (∼1MHz)where
electrons have typically a large thermal velocity in the driver ( ~T 10e eV), and a low collision frequency (a
mean-free-path of the order of the discharge radius). These non-local heating conditions allow electrons, which
canmove freely, to deposit energy over thewhole driver volume. Kinetic effects such as collisionless heating
(leading to a so-called anomalous skin depth) and a non-negligible ponderomotive force (due to the high power
and the low frequency of the RF antenna) are also expected inside the ICP discharge. The electron distribution
function is typically non-Maxwellian in these conditions. A complete self-consistentmodel of the energy
coupling in the ICPwould be required to obtain a better estimation of the electron distribution in the driver. A
non-self-consistent butmuch simpler and useful approachwould be to study the influence of a non-Maxwellian
distribution on the plasma parameters by imposing in the driver electron distributions that are deduced from
experiments.

2.1.5. Implementation of collisions in a particlemodel—MCandDSMCmethods
In a PIC-MCCalgorithm, the Boltzmann equation,

¶

¶
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¶

¶
+

¶

¶
=
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¶
( )

⎛
⎝⎜

⎞
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. . , 7i i i i
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is solved numerically in two steps [28, 29].
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T
t

is the collision operator, fi ( ft) is the distribution function for the incident (target) specie, respectively,mi the
mass, F the forcefield, = -∣ ∣v v vr i t the relative velocity, s ( )vt

T
r the total differential cross-section (summed

over all the collision processes between the incident and the target particles) and, lastly,Ω the solid angle. Primes
denote the distribution function after the collision. For small time steps, equation (7)may be rewritten as,

+ D = + D + D( ) ( )( ) ( ) ( )f x v t t tI tD f x v t, , 1 1 , , , 9i i

where ( )f x v t, ,i is known explicitly from the previous time step. This finite-difference analog of equation (7) is
second order correct inDt . The operatorsD and I are,
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and = ¶ ¶( ) ( )I f f ti i c . Applying the operator ( - DtD1 ) on the distribution function fi is equivalent to solving
theVlasov equation,

¶

¶
+

¶

¶
+

¶

¶
= ( )

f

t

f f
v

r
a

v
. . 0. 11i i i

The PIC procedure [16, 17] is a characteristic solution of equation (11). Once the particle trajectories have been
updated, then the second operator ( - DtI1 )may be applied on the (updated) distribution function. A
macroparticle is equivalent to aDirac delta function in position-velocity space (Eulerian representation of a
point particle) and hence a probabilitymay be derived from equation (9) for each collision processes [28, 29].
The probability for an incident particle to undergo an elastic or inelastic collisionwith a target particle during a
time stepDt is

å s= D
=

( ) ( ) ( )P t n v , 12i
c

N

c c rmax
1

max

c

withNc corresponding to the total number of reactions for the incident specie, nc the density of the target specie
associatedwith a given collision index and = -∣ ∣v v vr i c . s( )vc r max is artificially set to itsmaximumvalue and
hence ( )Pi max is greater than the real probability and is constant over the entire simulation domain. There is
consequently a probability,

å= -
=

( )
( )

( )P
P

P
1 , 13i

c

N
c

i
null

1 max

c

that a particle undergoes a fake collision (dubbed ‘null’ collision), whichwill be discarded. s= D( )P n v v tc c c r r .
The total number of incident particles whichwill hence collide during a time stepDt (including a ‘null’ collision)
is,

= ( ) ( )N N P , 14i imax max

whereNi is the number of incidentmacroparticles in the simulation.Nimust be replaced by -( )N 1 2i for
collisions with another particle of the same specie [28]. ( )Pi max is equiprobable for any pairs of incident-target

7

New J. Phys. 19 (2017) 015002 GFubiani et al



particles and consequently the lattermay be chosen randomly inside the simulation domain. In themodel, one
checksfirst if the incidentmacroparticle experienced a real collision,

- ( ) ( )r P1 , 15i null

where r is a randomnumber between 0 and 1. The probabilities Pc for each reactions (whose total number isNc

for a given incident specie) are ordered from the smallest to the largest and a reaction k occurred if,

å
= ( )

( )r
P

P
. 16

c

k
c

i1 max

Once a collision type is selected then themacroparticles (both incident and target) are scattered away in the
center-of-mass (CM) frame (see next section). In themodel, neutrals are either considered as a non-moving
background specie with a given density profile or are actually implemented asmacroparticles and their
trajectories integrated. In the case of the former, collisions between charged particles and neutrals are performed
by the so-calledMCmethodwhile for the latter, actual particle–particle collisions are evaluated using aDSMC
algorithm [30]. Both are similar except that in theMCmethod, one artificially extract a neutral particle velocity
from aMaxwellian distribution function. Collisions between charged particles are always performed by aDSMC
algorithm in themodel. Collisions (both elastic and inelastic), are implemented assuming that particles
(incident, target or newly created) are scattered isotropically in theCM. Energy andmomentum is conserved
andwe assume for simplicity that each byproduct partner after the collision have identicalmomentum in the
CM frame. This implies that the lightest particles will equally sharemost of the available energy. For further
details, please refer to [21].

2.1.6. Physical chemistry of charged particles
Wedescribe below themost complete version of the plasma chemistrymodule embedded in our PIC-MCC
model (we often use a simplified sub-set of thismodule, depending on the purpose of themodel). In thismodel,
the plasma consists of electrons,molecular hydrogen (background) gas H2, hydrogen atoms H, molecular ions

+H2 and +H3 , protons and lastly negative ions
-H . Collisions between electrons, ions and neutrals are considered;

the set of reactions is presented in tables 1 and 2 (66 collision processes in total) and is very similar to the one used
by previous authors [15, 31]. Table 1 corresponds to the collision processes associatedwith electrons. Reactions
#2, 6, 7, 8 and 14 combinemultiple inelastic processes included in themodel in order to correctly account for
the electron energy loss. Reaction#2 regroups the excitation of the hydrogen atom from the ground state to the
electronic level = –n 2 5 [32]. Reaction#7 combines the ground state excitation of the hydrogenmolecule

nS =+( )H X ; 0g2
1 to the vibrational levels n¢ = –1 3 [32, 33], electronic levels (for all n¢) SB u

1 , ¢ SB u
1 ,  SB u

1 ,

Table 1.Electron collisions.

# Reaction

Cross section

reference

1 +  +e H e H (elastic) [71–75]
2 +  +e H e H (inelastic, 4 proc.) [32]
3 +  + +e H 2e H [32]
4 +  +e H e H2 2 (elastic) [76]
5 +  + +e H 2e H2 2 [32]
6 +  + ++e H 2e H H2

(2 proc.)
[32]

7 +  +e H e H2 2 (inelastic,
16 proc.)

[32–38]

8 +  +e H e 2H2 (3 proc.) [32, 77]
9 + +e H 3H3 [32]
10 +  ++e H H H3 2 [32]
11 +  + ++ +e H e H 2H3 [32]
12 +  + ++ +e H e H H3 2 [32]
13 + +e H 2H2 [32]
14 +  + ++ +e H e H H2

(2 proc.)
[32, 77]

15 +  ++ +e H 2e 2H2 [77]
16 +  +-e H 2e H [32]
17 +  +-*e H H H2 (1%of H2) [77]
18 +  ++ +e H e H2 2 (Coulomb) [22]
19 +  ++ +e H e H (Coulomb) [22]
20 +  ++ +e H e H3 3 (Coulomb) [22]
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PC u
1 , PD u

1 , ¢ PD u
1 , S+a g

3 , Pc u
3 , Pd u

3 [32], Rydberg states [34] and lastly rotational levels J=2 [35, 36] and 3
[37, 38]. Reaction#17models in a simplemanner the generation of negative ions in the ion source volume,
which are a byproduct of the dissociative impact between an electron andmolecular hydrogen n( )H 42 [32].
The concentration of excited species is not calculated self-consistently in themodel. To estimate the volume
production of negative ions, we assume that 1%of H2 molecules are excited in vibrational levels with n  4.
This is in accordancewith the H2 vibrational distribution function calculated either with a 0Dmodel [39] or a 3D
particle tracking code [40]. Table 2 summarizes the collision processes of heavy ionswith neutrals. Reaction#9
corresponds to the excitation of the hydrogenmolecule from the ground state to vibrationally excited levels
n¢ = –1 2 [41, 42] and to the rotational levels = –J 2 3 [43]. To our knowledge there is no reliable data available
for the elastic collision between +H3 and neutral atoms (reaction#2), we consequently use the same cross-
section as in reaction#1.

2.1.7. Physical chemistry of neutrals
Cross-sections for collisions between neutrals inside the ion source volume, which are summarized in table 2
(reactions#18-20), as well as backscattering, dissociation or recombination probabilities against the ion source
walls are required for themodeling of the neutral particle dynamics (and the associated neutral depletion).
Table 3 shows the surface processes and corresponding coefficients. In a low-pressure plasma device such as the
one used for fusion applications (ITER orDEMO for instance. DEMO is a concept for the next generation of
Tokamaks), the plasma-wall processes have a strong impact on the source characteristics. Low-temperature
backscatteredmolecular hydrogen is assumed to be in thermal equilibriumwith thewall. An average

Table 2.Heavy particle processes.

# Reaction

Cross section

reference

1 +  ++ +H H H H3 2 3 2 (elastic) [78]
2 +  ++ +H H H H3 3 (elastic)
3 +  ++ +H H H H2 2 3 [43, 78]
4 +  ++ +H H H H2 2 2 2 [78]
5 +  ++ +H H H H2 2 (elastic) [79]
6 +  ++ +H H H H [80]
7 +  ++ +H H H H (elastic) [80]
8 +  ++ +H H H H2 2 (elastic) [78]
9 +  ++ +H H H H2 2 (inelastic,

4 proc.)
[41–43, 78]

10 +  +-H H e 2H [32]
11 +  +-H H e H2 [32]
12 +  +- -H H H H2 2 (elastic) [43]
13 +  +- -H H H H (elastic) [43]
14 + + -H H 2H (2 proc.) [32]
15 +  ++ - +H H H e2 [32]
16 +  + +-H H H H e2 2 [32]
17 +  +- -H H H H [81]
18 +  +H H H H [80]
19 +  +H H H H2 2 [80]
20 +  +H H H H2 2 2 2 [82]

Table 3. Surface processes.

# Reaction Probability Accommodation coef.γ Reference

1 +H H2 0.4 1 [44]
2 +H H 0.6 0.5 [44]
3 +H H2 2 0.2 1 [45]
4 +H H2 0.8 0.5 [45, 50]
5 +H H3 2 1/3 1 None

6 +H H3 2/3 0.5 None

7 H H2 0.4 1 [44]
8 H H 0.6 0.5 [44]
9 H H2 2 1 1 None

10 -H H 1 1 None
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backscattered energy is considered for fast atoms and ions, i.e. a thermal accommodation coefficient g < 1
(g = 1corresponds to thewall temperature). These estimates are based onMonte Carlo calculations from the
code TRIM [44]. Average reflection probability is also taken from the same database. Furthermore, we assume
that atomswhich are not backscatteredwill recombine. The interaction of +H3 and +H2 ionswith thewalls and
the corresponding coefficients are notwell known. The coefficients used in the simulations are reported in
table 3. For +H2 we use coefficients that are consistent with themeasurements of [45]. For +H3 we assume guessed
values (the +H3 flux to thewalls is relatively small with respect to the +H2 and +H , and the results are not very
sensitive to these coefficients).

2.1.8. Negative ions
Negative ions are produced on the cesiated PG surface as a byproduct of the impact of hydrogen atoms and
positive ions. Our PIC-MCCmodel has not been coupled to a neutral transportmodule so the negative ion flux
emitted by the surface is not obtained self-consistently from aflux of neutral atoms deduced from the
simulation. Themagnitude of the negative ion current density due to the impact ofH atoms on the cesiated PG is
either derived fromplasma parametersmeasured experimentally or fromDSMCcalculations. Assuming a
Maxwellian velocity distribution of the hydrogen atoms, the flux of these atoms on the PG is:

p
G = ( )n

eT

m

1

4

8
, 17H H

H

H

where nH is the atomic hydrogen density,mH themass and e the electronic charge. The negative ion current is
deduced from,

= G- ( ) ( )j eY T , 18H H H

with ( )Y TH the yield [46], whichwas not obtained in a plasma (the experiment produced hydrogen from thermal
dissociation in a tungsten oven) and consequently remains approximate for the ITER-type ion sources. For
typical BATMANworking conditions, wefind -n 10 mH

19 3 , ~T 1 eVH which gives ~ -
-j 600 A mH

2 [47–
49]. Negative ions are generated on the PG assuming aMaxwellianflux distribution functionwith a temperature

=T 1eVn in themodel. Furthermore, the surface production of negative ions resulting frompositive ion
impacts is calculated self consistently. For each ion impinging the PG, the yield is evaluated assuming amolecular
ionmay be considered as an ensemble of protons sharing the incident ion kinetic energy (a +H3 ion for instance
would be equivalent to three protons eachwith an energy =+ +( ) ( )E H E H 3k k 3 ). Each of these ‘protons’may
produce a negative ion. The condition r Y must be fulfilled for the negative ion to be generatedwith r a
randomnumber between 0 and 1. The yield is taken fromSeidl et al [46] forMo/Cs surface with dynamic
cesiation. The negative ions are scattered isotropically toward the ion source volumewith a kinetic energy
assumed to be =- +( ) ( )E H E H 2k k . There is experimental evidence that negative ionsmay capture a large
amount of the incident positive ion energy [50]. In addition, for cleanmetallic surfaces (tungsten) the reflected
atomic hydrogen particle energy is numerically evaluated to be around 65%of the impact energy at normal
incidence and for =E 1 eVk [51]. Lastly, it has been reported in the experiments that the extracted negative ion
current increases only slightly with cesiumwhen the PG is water-cooled [52]while a PGheated to a temperature
of~ 100 C–250◦C induces a significant increase of the negative ion current, by a factor~ –4 5 in the experimental
conditions of [5, 52] (the other walls of the ion-sourcewerewater-cooled). In themodel, we consequently
assume that negative ionsmay only be produced on the cesiated PG surface.

2.2. Simulation domain
The simulation domain for the 3DPIC-MCCmodeling of the BATMANdevice is shown infigures 3(a) and (b).
Themagnetic filterfield is generated in themodel by permanentmagnet bars which are located on the lateral
side of the ion sourcewalls close to the PG. Thefield is calculated by a third-party code [53]. In 2.5D, solely the
XZ plane is considered (figure 3(b)) butwith a higher numerical resolution (or similarly plasma density) than in
3D.We assumed =L 32 cmy for both the driver and the expansion chamber andwe implemented aGaussian
profile for themagnetic filter (i.e.,mirror effects are neglected [23]),

=
- -( ) ( ) ( )

⎡
⎣⎢

⎤
⎦⎥B x z B

x x

L
, exp

2
, 19y

m
0

0
2

2

with an amplitudeB0, width Lm and amaximum located at x0. Themagnetic field generated by the permanent
magnets has a shape very similar to aGaussian profile on the ion source axis [23], as shown in figure 4. Figure 3(c)
shows the simulation domain for higher numerical resolution 2D and 3DPIC-MCCmodeling of negative ion
extraction from the PG surface. BD corresponds to the deflectionmagnetic field frompermanentmagnets
embedded into the extraction grid (EG). A domain restricted to the vicinity of the PG allows the implementation
of plasma densities closer to the real one. This will be discussed in section 7.
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3.Density scaling andHall effect

As said above, the high plasma density and large volume of negative ion sources for fusionmake it practically
impossible to run full scale PIC simulations in 3D (and very difficult in 2D) and scaling the plasma density to
lower values or the permittivity to higher values allow to perform computationally tractable simulations. As
discussed in section 2.1.2 the scaling provides an approximate solution of the problem, the validity of the
approximation depending for example on the size and role of thewall sheath in the considered problem.

In this sectionwe provide a quantitative description of the effects of the density scaling in a simplified plasma
sourcewithmagnetic filter. This example allows us to discuss both the influence of the density scaling on the
results and the physics of theHall effect induced by the presence of themagnetic filter andwhich contributes to
non-collisional charged particle transport across the filter, and to the development of an asymmetry in the
plasma properties.

Figure 3. Schematic view of the BATMANgeometry. On the left side, the driver where the power fromRF coils (unsimulated) is
coupled to the plasma. The box on the rhs is the expansion chamberwhich ismagnetized. Themagneticfilterfield BF is generated by a
set of permanentmagnets located on the lateral walls of the chamber near the PG. Field lines are outlined in blue. The dashed line on
the rhs of (a) and (b) correspond to the PG. The simulation domain for themodeling of negative ion extraction from the PG surface
with a higher numerical resolution is displayed in (c). BD is themagnetic field generated by permanentmagnet bars embedded inside
the extraction grid.

Figure 4.Magnetic filterfield profile on the ion source axis ( = =Y Z 0) for both theGaussian case (solid line), equation (19) and the
field generated by permanentmagnets standing against the lateral side of the ion sourcewalls (dashed lines). =B 750 G, =L 8 cmm

and =x 31 cm0 in this example (i.e., 9 cm from the PG).
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3.1.Hall effect in a bounded plasmawith amagneticfilter
It has been demonstrated in previous publications [14, 21, 22, 54] that themagnetized electron drift dynamics
inside themagnetic filter induce a transverse plasma asymmetry in the expansion chamber. The effect of the
magnetic field on electron transport can be analyzed from thefluid representation of themomentum equation
(considering steady-state conditions),

mG G= -  + + ´( ) ( )P n E B , 20e e e e e

where m n= ∣ ∣e me e e is the electronmobility withoutmagnetic field, e is the elementary charge, =P n Te e e is the
electron pressure, ne the electron density,Te the temperature (in electron-Volts), G = n ue e e the electron flux
and lastly, B themagnetic filterfield. Equation (20) assumes that the electron distribution function is
approximately aMaxwellian and neglects viscosity and inertia effects (the latter are of course taken into account
in a PIC simulation). The electronflux diffusing from the driver toward the extraction region experiences a
Lorentz force perpendicular to the direction of the flux and themagnetic field (same direction as the cross
product ´J Be , where G= -eJe e is the electron current density). The force is directed toward the bottom
surface of the ion source for the filter configuration schematically shown infigure 3(b). The presence of walls
induces a charge separation (polarization) and the creation of an average electric field that opposes the effect of
the Lorentz force, as in theHall effect. ThisHall electric field (which is consequently downward-directed), EH,
generates in turn an ´E BH drift along theX-axis which significantly increases electron transport across the
magnetic filter with respect to an ideal 1D filter without transverse walls [54, 55].We therefore expect that the
Hall effect will create a plasma asymmetry with an electric potential and a plasma density higher in the top of the
chamber (largeZ) than in the bottom (smallZ). The electron flux in equation (20)may be expressed as follows
[21],

G =
+

+ ´ +[ ( · ) ] ( )
h

G h G h G h
1

1
, 21e 2

with,

m= - + ( ) ( )n PG E , 22e e e

where n m= W =h BB e e e is theHall parameter. Note that G = Ge when =B 0. In fusion-type negative ion
sources h 1 and in the plane perpendicular to themagnetic field lines ( =·h G 0), we have,

m
G -

´ ( )
B

G B
. 23e

e
2



The electronmotion is consequently dominated by themagnetic drift which is composed of a diamagnetic term
 ´P Be (collective effects), and an ´E B term [54, 56]. The electricfield is a combination of theHall and the
ambipolarfields.

TheHall effect in low temperature plasmas and its impact on plasma asymmetry have been studied
analytically in the simple conditions of a positive column [57, 58]. The situation ismore complicated in the
magnetic filter of the negative ion source because of the non-uniformmagnetic field and of the presence of axial
plasma density gradients. Furthermore, the general features of theHall effect (i.e., production of a voltage
difference across an electrical conductor, perpendicular to both the direction of the electric current in the
conductor and the appliedmagnetic field) have been clearly observed in othermagnetized plasma sources with
particle transport properties comparable to those of the ITERprototype ion sources. Experimental
measurements have been recently performed in a low power inductively coupled plasmawith amagnetic filter
and have shown the presence of a strong asymmetry in the collected current density [59]. Notefinally that the
Hall effect is not present in devices such asHall thrusters where the electron drift perpendicular to the discharge
current is closed and is not impeded by the presence of walls (closed-drift devices).

3.2. Transport across afilter in a simplified geometry and influence of density scaling
In order to illustrate theHall effect inmagnetized plasmas in a simplifiedmanner, and, at the same time study
the influence of density scaling on the results, we implemented a 2D simulation domainwhich is a square box of
dimensions ´20 20 cm2. Themodel is a 2DPIC-MCCand there is no particle losses in the plane perpendicular
to the simulation domain.Wemodel theXZ plane and themagnetic filter field is along (OY) as infigure 3(b).
Themagnetic field profile is given by equation (19)with =B 200 G, =L 2 cmm and =x 10 cm0 .We consider
only electrons and +H2 ions as particle species composing the plasma and therefore we use a subset of the
physical-chemistry described in tables 1 and 2. Instead of assuming that an external power is absorbed by the
plasma, as described in section 2.1.4, we keep the plasma density constant by re-injecting an electron–ion pair
each time a positive ion is lost on the external boundaries of the simulation domain. The latter are absorbing
surfaces. The particle re-injection is set inside amagnetic field free region between x= 1.5 and 4.5cm.
Furthermore, the electron temperature ismaintained constant in that areawith =T 10 eVe . The scope is to
draw an electron current (flux from left to right) through themagnetic filter and evaluate theHall effect. For that
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purposewe assume that there is no ionization processes and hence reaction#5 in table 1 is artificially replaced
by an inelastic collision (excitation). The density profile ofmolecular hydrogen is constant with

= ´ -n 5 10 mH
19 3

2
andwe bias the rhs electrode positively with respect to the other surfaces, =V 20bias V.

Figure 5 shows the electron flux profile in theXZ plane for two plasma densities, that is, á ñ = -n 10 mp
14 3 in (a)

and á ñ = ´ -n 6.4 10 mp
15 3 in (b). The profiles are very similar except that the electronflux channels closer to

thewalls in the higher density case. This is due to the transverse shape of the plasma potential. The size of the
Debye sheath is smaller and hence the pre-sheath extends closer to the boundaries. This also indicates that the
electronmotion across themagnetic filter field occursmainly in the pre-sheath. This is confirmed by quasi-
neutralfluid calculations. Themaximumvalue of theHall parameter is h 40max  in themodel and the electron
flux is hencewell described by equation (23). The electron flux is a combination of a diamagnetic drift, which is a
consequence of the particle randommotion (i.e., the velocity spread) expressedmathematically in the pressure
term and an ´E B drift. The two terms are often of opposite sign, i.e., cancelling each others. The electric field is
itself a combination of theHall (which is downward directed) and ambipolar fields as demonstrated in section 3.
In the regions (1) and (2) highlighted infigure 5(a), we find  >∣ ∣ ∣ ∣P n Ee e and the electron transport is driven
by the diamagnetic drift while in (3), > ¶ ¶-∣ ∣ ∣ ∣E n P yy e

1
e , i.e., the drift is of ´E B type, respectively. The

electron current density profile depends on the shape andmagnitude of themagnetic filterfield but the general
features described in this section are reproduced in any type ofmagnetized plasma sources where a current is
drawn across themagnetic field (biasing the rhs electrode hence enhance theHall effect). Figure 5 shows that the
plasma density has a small influence on the plasma properties in the considered range (the ratio of the plasma
density between the two simulations is equal to 64). Charged particle transport in the plasma occursmainly
inside the quasi-neutral region driven by the pressure gradient, the ambipolar andHall electric fields, and the
effect of the sheath on the electron current density distribution is negligible on the figure. The sheath should be
about 8 times larger in the lower plasma density case of figure 5(a). Note that the presence of themagnetic filter
can also induce plasma instabilities seeded by charge separation. This happens, in the simulations of the
simplified problem considered here, when the length of the transverse direction is significantly increased. In that

Figure 5.Electron flux profile in theXZ plane for an average plasma density of á ñ = -n 10 mp
14 3 (with G = ´ - -2.5 10 m smax

19 2 1) in
(a), and á ñ = ´ -n 6.4 10 mp

15 3 (G = ´ - -1.45 10 m smax
21 2 1) in (b). The electron density is shown in (c). = ´ -n 2.75 10 mmax

14 3.
Themagnetic filterfield is directed along (OY)with aGaussian profile axially ( =B 200 G, =L 2 cmm and =x 100 cm). The
boundaries of the simulation domain are ofDirichlet type and grounded except the rhs surface which is biased, =V 20bias V. The
numerical resolution is 2562 grid nodes in (a) and 20482 nodes in (b)with 40 ppc. Themodel is a 2DPIC-MCC.
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case theHall effect is no longer sufficient to ensure cross-field transport and instabilities develop, enhancing
electron transport across thefilter. The asymmetry of the plasma density resulting from theHall effect can be
seen infigure 5(c).

Figure 6which shows the transverse plasma potential profile versus the average plasma density. The latter is
increased from á ñ = ´ -n 2.5 10 mp

13 3 up to á ñ = ´ -n 6.4 10 mp
15 3. The ratio of the densities between the two

extreme cases is a = 256. The variations between the potential profiles infigure 6 lie essentially on the size of the
Debye sheath. The amplitude of the potential in the quasi-neutral region is similar within∼10%. TheHall
electric field EH is about 15Vm−1 (measured between the top and bottomplasma sheath edges). Figure 7 shows
the electron current collected on the biased electrode (rhs of the simulation domain) versus the plasma density.
The current increases linearly with the plasma density as expected.

Onemay qualitatively estimate the ratio of the simulation domain occupied by the plasma sheath by
comparing the average electronDebye length l̄De with respect to a characteristic length defined as

= =L V 20 cms s , whereVs is the ion source volume.Wefind l̄ 3.7 mmDe  for á ñ = ´ -n 2.5 10 mp
13 3 and

a sheathwidth of l~ ¯L 4sh De, giving a ratio of ~L L2 15sh s %.

4.Neutral transport and plasma properties versus power and pressure

In a previousworkwe studied the properties of the plasma of the negative ion source versus power and pressure
based, on a quasineutral fluid description of the plasma, coupledwith aNavier–Stokesmodel of neutral
transport [14, 15]. It was shown that the neutral density was strongly depleted due to gas heating and ionization
and that the temperature of atomic hydrogenwasmuch larger than that ofmolecular hydrogen. In this section
we use the same plasmamodel butwe couple it with a kinetic description of neutral transport based on aDSMC
method. The objective is to estimate the consequences of the fact that the gasflow is rarefied (Knudsen number
not small with respect to 1) on themodel results and on the velocity distribution of hydrogen atoms and
molecules.

Figure 6.Transverse plasma potential profile (at X 13.4 cm) versus the average plasma density inside the simulation domain. The
numerical resolution is 1282 grid nodes for á ñ = ´ -n 2.5 10 mp

13 3 up to 20482 nodes for á ñ = ´ -n 6.4 10 mp
15 3. 40 ppcwas used in

themodel.

Figure 7.Electron current (black dots) collected on the biased electrode (rhs of the simulation domain) versus the plasma density. The
dashed line corresponds to a straight line between the origin (np= 0) and the last data point.
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4.1.Modeling of the neutral transport and chemistry in the ITERprototype ion source
In the ITERprototype source BATMAN, the typically working conditions correspond to a lowbackground gas
pressure (molecular hydrogen or deuterium) of∼0.3Pa, together with a highRF power (coupled to the plasma
by an external antenna),∼100kW. Such conditions depletes the neutrals in the experiments [47]. This effect was
first described throughmodeling [15] and then confirmed by experiments [47].Wemodel neutral depletion by
coupling aDSMCalgorithm for the neutrals (bothmolecular and atomic hydrogen in our case)with the 2D
implicit fluidmodel described in details in [14]. In this self-consistentmodel, the plasma parameters adjust so
that charged particle and power balance are satisfied at steady state (e.g. volume ionization is compensated by
surface losses). The geometric parameter involved in the charged particle and power balance is the chamber
volume over surface ratio therefore the dimensions of the 2D geometry are rescaled accordingly in themodel of
BATMAN [23]. The dimensions of the ion source in themodel is a driver of length 9cm, height 8cm and an
expansion chamber of ´16 16 cm2. Theflow rate for themolecular hydrogen gas injected into the ion source
volume is adjusted, -Q 0.17 Pa m sH

3 1
2
 (i.e., ´ -4.2 10 H s19

2
1), in order to conserve a residence time for the

molecules similar to the experiments (t 57 ms in BATMAN).
Figure 8 shows the atomic hydrogen energy distribution function in the center of the negative ion source for

a 60kWabsorbed power and 0.3Pa background gas pressure. The distribution function is highly non-
Maxwellian and its properties aremostly controlled by the production and collisions of H atoms against the
walls of the ion source (the totalmean-free-path is of the order of 1 m, i.e., significantly larger than the
dimensions of the device). Reactionswhich either generate (so-called source term) or remove (loss term)
hydrogen atoms from the ion source volume are summarized in table 4. Particle and power (gain or loss) are
shown as a percentage of the total. H atoms aremostly created and heated by thewall recombination of protons
andmolecular ions on the ion sourcewalls (reaction#1with 45 %of the particle production and 77 %of the
energy gain) and by the volume dissociation of H2 (reaction#2). +Hx ions (where =x 1–3) aremainly generated
inside the discharge and are accelerated by the plasma potential toward thewalls of the ion source. The
amplitude of the potential in the driver is about 50 V for 60kWof RF power at 0.3Pa in the experiments [11]

Figure 8.Energy distribution function for atomic hydrogen in the center of the negative ion source.We implemented a 60kW
absorbed power, 0.3Pa background gas pressure and nomagnetic filterfield.

Table 4.Particle and power source (loss) terms for the
production (destruction) of hydrogen atoms inside the ion
source (60 kWabsorbed power, 0.3 Pa, nomagnetic
filterfield).

# Reaction Particles Power

Source terms

1 +H Hx (surface) 45.6% 77.2%

2 +  +e H e 2H2 47.6% 19.6%

3 Other processes 6.8% 3.2%

Loss terms

4 +  + +e H 2e H 14.2% 2.4%

5 +  +H H H H2 2 — 3.6%

6 H H (surface) — 40.4%

7 H H2 (surface) 85.8% 53.6%
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and hence +Hx ions impact thewalls with a high energy. This explains the origin of the large energy tail in the
distribution function of atomic hydrogen as shown infigure 8. Lastly, H atoms loosemost of their energy
through collisions with the sourcewalls (∼95%, reactions#6 and 7). The H and H2 temperatures are strongly
dependent on the assumptions that aremade on thewall reactions (accommodation coefficients provided in
table 3).

The energy distribution function formolecular hydrogen is shown infigure 9. H2 molecules are created
uniquely through the recombination of +Hx ions and H atoms on thewalls.Molecular hydrogen is emitted from
the surfaces as aMaxwellianflux atTw=300K (whereTw is the temperature of the surface). The energy
distribution function is wellfitted by aMaxwellian (up to about T6 H2

). Themean-free-path is∼10cm, i.e.,
smaller than the dimension of the ion source. The energy tail is induced by the collisions with thewarm H atoms
(T 1 eVH  for 60kWand 0.3PawhileT 0.08H2

 eV).Molecular hydrogen ismainly heated through elastic
collisions with atoms (∼65%of power gain, reaction#1) and by electrons (reaction#2) as shown in table 5.

The calculations have been performed either with orwithout amagnetic filterfield in the expansion
chamber. Themagnetized case corresponds to amaximumfield amplitude of =B 15Gmax close to the PG,
which is lower than the field in the actual experiment (∼75 Gon axis) but nevertheless m=h B 1B e  and the
electrons are fullymagnetized (a smallermagnetic field is used in the simulation because of numerical issues at
the timewith thefluidmodel for largemagnetic fields). The indirect effect of themagnetic field on the neutral
dynamics is that the depletion of H2 occurs in the area where the electron density is highest (i.e. in the driver
when the expansion chamber ismagnetized) becausemolecular hydrogen is dissociated or ionizedmainly by
electrons (table 5). The density profile of hydrogen atoms is on the contrary quite insensitive to themagnetic
field due to the fact that the volume losses (ionization) are significantly smaller than for H2 (i.e.,∼14%of the
total losses, see table 4) and that themean free path,∼1m, greatly exceeds the ion source dimensions. The 2D
density and temperature profiles for the H atoms are shown in figure 10. Figure 11 displays the electron density
and temperature averaged over the negative ion source volume versus the absorbedRF power in the discharge
and the background gas pressure. For a pressure of 0.75Pa, the electron temperature is almost independent of
the external powerwhile the electron density increases quasi-linearly with power. This behaviormay be

Figure 9.Energy distribution function formolecular hydrogen in the center of the negative ion source (60 kWabsorbed power,
0.3 Pa, nomagnetic filterfield).

Table 5.Particle and power source (loss) terms for the
production (destruction) of H2.

# Reaction Particles Power

Source terms

1 +  +H H H H2 2 — 66%

2 +  +e H e H2 2 — 13.7%

3 +H Hx 2 (surface) 17.3% 1.4%

4 H H2 (surface) 82.7% 6.7%

5 Other processes <0.1% 12.2%

Loss terms

6 +  +e H e 2H2 45.9% 6.4%

7 +  + +e H 2e H2 2 46.5% 6.5%

8 H H2 2 (surface) — 85.9%

9 Other processes 7.2% 1.2%
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explained by a globalmodel. Assuming steady-state conditions, the total amount of particles created through
ionization in the ion source volume at a given time is equal to the number of particles lost on the device walls,

= á ñ ( )n u S n k n V , 24is B g

where ns is the plasma density at the sheath edge, á ñn is the average plasma density (ne= ni is assumed),
=u eT miB e is the Bohmvelocity,mi is themass of +H2 , ( )k Ti e is the ionization rate (which is a function of the

Figure 10.Atomic hydrogen density (a) and temperature (b) profiles. 2DDSMCcalculationwith =P 60abs kW, a background gas
pressure of 0.3Pa, =B 15max Gand a PGbias voltage of 10V.

Figure 11.Electron density and temperature averaged over the ion source volume. 2DDSMCmodel for neutral transport, 2D fluid
model of the plasmawithoutmagneticfilterfield.
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electron temperature), ng is the background gas density and S (V ) is the ion sourcewall surface area (volume),
respectively. Equation (24) is derived from the volume integration of the electron continuity equation. The term
on the left-hand side (lhs) corresponds to the electron flux impacting the ion sourcewalls and the rhs term is the
volume integrated ionization rate. If the neutral gas density ng isfixed then equation (24) provides an average
estimate for the electron temperature that is independent of power. The electron temperature is linked to the ion
source geometry through the surface-to-volume ratio S/V. An estimate for the average plasma densitymay be
deduced from the power balance equation, that is, the power absorbed (Pabs) in the ion source volume is equal to
the power lost on thewalls,

e= ( )P n u S, 25Tabs s B

where e ( )TT e is the average energy lost per electron–ion pair lost on thewalls [15, 21, 27]. For a given value of the
background gas density ng, the electron density hence increases linearlywith the absorbed power. The gas density
does varywith power as shown infigure 12 because of increased gas temperature and ionization rate as the
absorbed power is increased. For instance at 0.75Pa and 90kW the gas density is depleted by∼65% compared
to the density without discharge.

The charged particle balance in equation (24) provides a relation between the gas density and electron
temperature, = ( )n u k dig B eff where = ( )d V hSeff and = á ñh n ns . This relation can be calculated from the
hydrogen ionization cross-section assuming aMaxwellian electron velocity distribution function, and the
corresponding curve is shownonfigure 13 (dark solid line). The results from the 2Dmodel are also plotted
(symbols) on the same figure. The symbols correspond to different gas pressures before the plasma is on, and, for
the same symbol, the set of points correspond to several values of the discharge power (leading to distinct values
of the averaged gas density due to the depletion associatedwith gas heating and ionization).We see on thisfigure
that the 2Dmodel results are in excellent agreement with the simple 0Dmodel. High electron temperatures
correspond to low gas densities and the asymptotic behavior of the curve at high electron temperatures shows
that the discharge cannot be sustained below a given gas density (low gas pressure and high power). The good
agreement between the simple 0Dmodel (taking into account only +H2 ions) and themore complex 2Dmodel
with plasma chemistrymay seem surprising but is due to the fact that ionization ofmolecular hydrogen is on the
average significantly larger than ionization of atomic hydrogen. Also, in this plot, the neutral depletion is a
parameter in the 0Dmodel while it is self-consistently calculated in the 2Dmodel.

The gas density variations with power are displayed infigures 12(b) and 14(b) for different pressures (the
plotted densities are averaged over thewhole ion source volume). The atomic hydrogen density increases with
power because the dissociation rate increases with increasing plasma density and electron temperature while the
H2 density decreases with power because of gas heating and dissociation.However, the average H density reaches
a limit when the power increases, because of the increase in the hydrogen atom temperature. The variationswith
power and pressure of the volume averagedmolecular and atomic hydrogen temperatures are shown in

Figure 12.Molecular hydrogen density and temperature averaged over the ion source volume. 2DDSMCmodel for neutral transport,
2Dfluidmodel of the plasmawithoutmagneticfilterfield.
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figures 12(a) and 14(a). The H temperature (in the 0.1–1.2 eV range) ismuch larger than the H2 temperature (on
the order of 0.02–0.08 eV). Both temperatures increase continuously with power. It is interesting to note that,
for a given input power, the H temperature increases with decreasing pressure while the opposite is true for H2.
This is due to the larger energy exchange rate (between H and H2) at higher pressure. The large H temperature is
due (1) to the fact that H atoms are generatedwith a large energy during electron impact dissociation of H2 and
(2) to the generation of fast atoms at thewalls resulting from the recombination of positive ions.

Thewall accommodation coefficients are unknown experimentally. Themodelmay be used to evaluate its
influence on the plasma properties. Assuming that the neutral hydrogen particles are backscattered off thewalls
with the same temperature as the surface (accommodation of 1) for the reactions# 2, 4, 6 and 8 of table 3 instead
of g = 0.5, we find that (1) the amplitudes of themolecular hydrogen temperature and density are only slightly
modifiedwhile (2) theH atom temperature is on average divided by 5 and the density as a consequence is larger
by a factor of 2. The relationship between the accommodation coefficient and the neutral atom temperature is
almost linear. The calculationwas performed for a background gas pressure of 0.3Pa and an absorbed power of
60kW.There is experimental evidence that the temperature ofH atoms is significantly larger than that of H2 but
the strong dependence of theH temperature on the accommodation coefficients demonstrated by the
simulations shows that systematic comparisons of experiments andmodel results on theH temperature would
be useful to get a better estimation of the accommodation coefficient.

Figure 13.Average gas density versus the electron temperature. The black solid line is obtainedwith a 0Dmodel (see text)while the
symbols are from the 2Dmodels, for different values of the initial gas pressure and absorbed power. 2DDSMCmodel for neutral
transport, 2Dfluidmodel of the plasmawithoutmagnetic filterfield.

Figure 14.Atomic hydrogen density and temperature averaged over the ion source volume. 2DDSMCmodel, nomagnetic filterfield.
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4.2. Negative ion production on the cesiated PG surface
The non-Maxwellian flux of hydrogen atoms impacting the PG is G ´ - -2.4 10 m sH

22 2 1 in themodel for a
60kWabsorbed power, 0.3Pa background hydrogen gas pressure, amagnetic filter fieldwith amaximumof
15 Gnear the PG ( m=h B 1B e  ) and a PGbias voltage of 10 V. Seidl et al [46]have calculated the averaged
conversion yield á ñ( )Y TH for aMo/Cs surface with dynamic cesiation assuming that the distribution function of
the atomic specie wasMaxwellian. The experiments were not performed in a plasma. In our case, the
distribution function is highly non-Maxwellian and hence a range for the yieldmay be estimated either by (1)
fitting the energy distribution function of the atomswith aMaxwellian distribution,

há ñ = - ( )
⎛
⎝⎜

⎞
⎠⎟Y R

E R

T
exp , 26N

E
0

th

H

whereT 0.8 eVH  in the vicinity of the PG in themodel (figure 10) or (2) considering the atoms as a ‘beam’,

h= -( ) ( )YE R E E R . 27N Ein 0 in th

In both cases, h =R 0.42N 0 and =E R 1.05 eVEth is assumed [46] (deduced from the experiments).Ein is the
incident energy of the atom.Using equation (26), we find á ñY 11.5 %andhence -j 430 A mG

2 while
equation (27) gives Y 18 %and -j 690 A mG

2 . jG is the negative ion current density generated on the PG
surface.

5. Plasma transport across themagneticfilter

In this section, wemodel the plasma properties of the (one driver) ITER-prototype negative ion source at
BATMANwith a 2.5DPIC-MCCalgorithm (section 2.1.3)using a density scaling of a = 400 (plasma density
400 smaller than in the real source).We describe not only the plasma transport across thefilter, but also the
extraction of negative ions, considering a limited number of grid apertures (slits). Although caremust be taken
in the interpretation of the results on negative ion extractionwith such a large density scaling, we think that these
results are interesting because plasma source and negative ion extraction are described in the samemodel
(extractionmodels are generally performed on a simulation domain around a single aperture, and the
correctness of the boundary condition inside the simulated plasma region is currently an issue [60]).

Themagnetic filter field profile is Gaussian following equation (19)with =B 750 G, =L 8 cmm and
=x 39 cm0 .Wemodel theXZ plane, as shown infigure 3(b) and themagnetic field is directed along (OY). The

length of the third, un-simulated dimension, is =L 32 cmy (also for the discharge). The numerical resolution is
´1024 1536 grid nodes with∼100ppc andwemodel a lower plasma density, that is, á ñ = ´ -n 7.5 10 mp

14 3.
We simulate 7 slit apertures in the PG, eachwith a diameter of 1.5cm and length =L 32 cmy . The deflection
magnetic field BD is calculatedwith a third-party code [53]. Lastly, we consider an absorbed power of 60kWand
a background gas pressure of 0.3Pa. The external RF power is coupled to the plasma in themodel by artificially
heatingmacroparticles in the driver region following themethod described in section 2.1.4 (n = -10 sH

8 1).
Plasma particle species are electrons, negative ions -H and positive ions (protons, +H2 and +H3 ions). The
physical-chemistry is summarized in tables 1 and 2. The neutrals are notmodeled and a constant density and
temperature profile is implemented insteadwith ´ -n 4 10 mH

19 3
2
 ,T 0.1 eVH2

 (figure 12),
-n 10 mH

19 3 andT 1 eVH  (figure 14), respectively. The latter are consistent with experimental
observations [47]. Negative ions are produced inside the ion source volume (reaction#17 of table 1) and on the
cesiated PG surface either as a byproduct of positive ion impacts or atomic hydrogen.We assume a negative ion
current density of a = -j 600 A mG

2 generated by H atoms and an ion temperature of =T 1eVn .

5.1. Plasma asymmetry
Figure 15 shows the electron density in (a) and (b), electron temperature (c) and plasma potential profiles (d) in
the plane perpendicular to themagnetic field lines (XZ plane) of the BATMANnegative ion source. The PGbias
voltage is 25 V in (a), 20 V in (b)–(d). TheHall effect (section 3) generates an electric field directed downward
and hence the transverse potential profile is asymmetric. The plasma density is highest in the vicinity of the top
wall of the ion source, i.e., where the plasma potential ismaximum (themaxima is shifted up compared to a
situationwithout amagnetic field). The extent of the plasma asymmetry is strongly related to the PG voltage
[12, 24] (biased positively with respect to the ion sourcewalls). A larger electron current is drawn from the driver
through thefilter when the bias is increased and hence theHall electric field is strengthened. The temperature
profile is also asymmetric (oblique isothermals) due to themagnetized electron drift dynamics which evolve into
an oblique electronflux across themagnetic filter.T 10eVe  in the discharge region and∼1.5eV in the vicinity
of the PG. Lastly, the densities of the plasma particle species averaged over the ion source volume are
a á ñ ´ -n 2.9 10 me

17 3 , a á ñ ´ -n 9 10 mn
15 3 (negative ion density), a á ñ ´+

-n 6.5 10 mH
16 3

3
 and

a aá ñ á ñ ´+
-+n n 1.17 10 mH H

17 3
2

  , respectively.
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5.2. Negative ion dynamics
Figure 16 shows the negative ionflux (a) and density (b) profiles in the XZ plane of BATMAN. The PGbias
voltage is 20 V. Theflux corresponds solely to negative ions produced on the PGby neutral atom impacts. The
numerical resolution is ´1024 1536 nodeswith∼35ppc. The scaling factor is a = 400. Streamlines are
displayed infigure 16(a) to indicate the direction of the negative ion flux. Except close to the PG, theflux is
directed toward the ion source volume.Negative ionswhich are extracted originate consequently from the PG
surface surrounding the apertures. Negative ions are somewhatmagnetized, which significantly enhance the
skewness of the density profile displayed infigure 16(b). The negative ions drift toward the topwall. The average
kinetic energy about 2cm from the PG is á ñE 1.3 eVk  translating into a Larmor radius of r 2.2 cmL  with
∣ ∣B 75 G . The shortestmean-free-path for the negative ions corresponds to the charge exchange collisions
with atomic hydrogen (reaction#17, table 2).Wefind l 6 cmCEX  near the PG (∼2 cm). The ions are hence
magnetized, l <r 1L CEX . Othermean-free-paths are l 40 cmDES  for the destruction (sumof the reactions
#16 of table 1,#10,#11,#14,#15 and#16 of table 2, respectively) and l 20 cmEL  for the elastic collisions
with neutrals (reactions#12 and#13 of table 2). The negative ion density averaged over a line-of-sight (LOS)
parallel to the PG (from the top to the bottomwall) and 2cm from the latter is a á ñ ´ -n 6.5 10 mn

16 3 which
is of the order of experimentalmeasurements [12]. At the same distance from the PG, the negative ion density

Figure 15.Normalized electron density (a)–(b), electron temperature (c) and plasma potential profiles (d) in the XZ plane of the ITER
prototype ion source at BATMAN (figure 3) calculated by the 2.5DPIC-MCCmodel. The simulation parameters are a 60kW
absorbed power, 0.3Pa, a numerical grid resolution of 1024×1536 nodes,∼100ppc and a scaling factor a = 400 (corresponding to
a plasma density averaged over the whole simulation domain of aá ñ ´ -n 3 10 mp

17 3 ). The PG bias voltage is 25 V in (a), 20 V in
(b)–(d). Lastly, a= ´ -n 1.2 10 mmax

18 3, =T 10 eVmax and f = 40max V.
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averaged over thewidth of the grid is a ´ -n 1.3 10 mn
17 3 while a ´ -n 1.7 10 me

17 3 . Lastly, a negative
ion current of a = -j 600 A mG

2 produced on the PG is space charge saturated and a virtual cathode forms in
the plasma sheath in front of the electrode surface (the plasma potential presents aminimumwhich limits the
extracted negative ion current). The depth of the virtual cathode is f -1 Vc  in themodel and hence the
saturation current (corresponding to the ion current which escapes the PG surface) is

f a= - -( ∣ ∣ )j j Texp 220 A mGsat c n
2 for aMaxwellian flux distribution function [49]. Note that the

probability for a negative ion produced on the PG to be extracted from the ion source is on the order of 50% for a
PGbias voltage of 20 V.

The asymmetry in the plasma parameters has important consequences on the (extracted)negative ion
beamlet profiles. The beamlet currentsmay deviate by asmuch as 50% from the average current in themodel.
The ITER accelerator has a±10%acceptance and thismay likely translate into some beam interception on the
accelerator grids.

5.3. Electron andnegative ion extraction versus the PGbias voltage
Figure 17 shows the electron and negative ion current extracted from the 7 slit apertures of diameter 1.5cm
versus the PG voltage. The EGpotential is set to ¢ =V 210EG V. This value is obtained by assuming that the

extracted currents scale with theChild–Langmuir law a m=j Vn EG
3 2 in order to estimate the EG voltage for a

plasma density a = 400 times smaller than the value encountered in the actual ITERprototype ion source at
BATMAN. This approximationwill be further discussed in section 7.μ is the perveance andVEG is the potential
for a = 1.Wefind a¢ =V VEG EG

2 3 assuming =V 11.4 kVEG on the EG,which is located 9mmfrom the back
of the PG in themodel (this corresponds to a potential V 7.5 kVEG  for the 6 mmgap of the ITER accelerator).
The other parameters of the simulation are identical to the ones of the preceding section.

The positive ion flux on the PGdecreases with a larger bias voltage [22]which has two consequences: (1) the
negative ion current produced on the PGby positive ion impacts decreases aswell and (2) a smaller positive ion

Figure 16.Normalized negative ionflux (a) and density (b) profiles in the XZ plane of the ITER prototype ion source at BATMAN. A
zoom in the vicinity of the PG is shown in (c) for the density and (d) for theflux. 2.5DPIC-MCCmodel, 60kWabsorbed power,
0.3Pa, a numerical grid resolution of 1024×1536 nodes,∼35ppc and a scaling factor a = 400. The PGbias voltage is 20 V,

a= ´ -n 2.8 10 mmax
17 3 and aG = ´ - -4 10 m smax

21 2 1. Theflux in (a) and (b) corresponds to negative ions produced on the
PG by neutral atom impacts. The arrows (white color) show the direction of theflux. The dashed lines are isocontours corresponding
to a = -n 10 mn

17 3 in (1), ´ -5 10 m16 3 (2) and ´ -3 10 m16 3 (3).

22

New J. Phys. 19 (2017) 015002 GFubiani et al



density in theDebye sheath results in a larger virtual cathode depth fc. The latter reduces themagnitude of the
negative ion current density escaping the PG ( jsat). The PGbias voltage changes also the shape of the plasma
potential in the vicinity of the apertures as shown in figure 18. The potential profileflattenswith an increasing
bias voltage until the PG isfloating (i.e., an equal amount of positive and negative charges are impacting the
grid). The PG is floating for =V 20 VPG in themodel (∼5%of the extracted negative ions are produced by
positive ions). Theflattening of the plasma potential greatly enhances the residence time of the negative ions in
the extraction region and beside a lower saturation current jsat, the extracted negative ion current increases with
the PGbias up to afloating PG (figure 17). For >V 20PG V, the amplitude of the plasma potential is gradually
getting lower than the applied bias voltage everywhere parallel to the PG.Negative ions are hence increasingly
trapped near the PG surface and the extracted current is dropping as shown infigure 17. The potential in the pre-
sheath 1cm from the PG is 1.2 V below the electrode voltage for =V 30 VPG infigure 18. This behavior is
confirmed by experimentalmeasurements [12]. Lastly, the gap between the plasma potential at the edge of the
Debye sheath in front of the PG and the bias voltage (VPG) decreases with a larger value of the bias (figure 18). The
Electron temperature in the extraction region isT 1.5 eVe  in themodel and consequentlymore electronsmay
cross the sheath barrier (and be collected on the PG surface). This explains the continuous drop of the co-
extracted electron current versus the PGbias voltage shown infigure 17.

5.4. Summary
Although they have been obtainedwith a large scaling factor, the results presented in this section raise some
questions about the plasma asymmetry in the source and its possible consequences on the non-uniform
distribution of the extracted negative ion current along the PG surface. They show that drawing an electron
current across themagnetic filter in a fusion-type negative ion source induces a plasma asymmetry due to the
Hall effect (the plasma asymmetry is confirmed by experiments as described in the next section). As a
consequence, the extracted negative ion beamlet current density is asymmetric as well in themodel, with values
exceeding the±10%current spread foreseen for the ITERNBI electrostatic accelerator. In addition, we found
that the PGbias voltage (1) enhances the plasma asymmetry (figures 15 and 16), (2) increases the extracted
negative ion current up to (approximately) afloating PG and lastly, (3), induces amonotonous decrease of the
co-extracted electron current (figure 17). The extracted particle currents and the plasma potential profiles were
derived from afixed value of the plasma density (scaling factor a = 400). Only the PGbias potential was varied

Figure 17.Normalized extracted electron and negative ion current versus the PGbias voltage. The extraction grid voltage is
¢ =V 210 VEG and a = 400. The PG isfloating for =V 20PG V.

Figure 18.Axial plasma potential profile between two apertures versus the PG bias voltage. ¢ =V 210 VEG and a = 400.
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in the simulations. The profiles strongly resemble experimentalmeasurements [12, 61]which seems to indicate
that the conclusions drawn from this sectionmay be extrapolated to higher plasma densities.

6. Comparisonwith experiments

In this section, we compare themodel to experimentalmeasurements.We simulate the conditions reported in
Schieko et al [62]. Themodel is a 3DPIC-MCC algorithmwith a numerical resolution of ´ ´128 96 192 grid
nodes, a scaling factor a = ´5 104 and 20ppc. Themagnetic filterfield is generated by permanentmagnets,
positioned against the lateral wall of the BATMANprototype source and 9cm for the PG. The simulation
domain is displayed infigures 3(a) and (b). The discharge is approximated as a rectangular box in themodel
instead of a cylinder. Thefilter fieldmap is calculated by a third party software [53]. The background hydrogen
gas pressure in the experiment was 0.6Pa and the RF power =P 40RF kW.The properties of the neutrals are
unknown experimentally andwe implemented the values derived from theDSMCmodel (figures 12 and 14),
i.e., amolecular hydrogen density of = ´ -n 9 10 mH

19 3
2

, temperature =T 0.07 eVH2
, atomic hydrogen

density = -n 10 mH
19 3 and temperature =T 0.3 eVH , respectively. The PGbias voltage is set to =V 18.5 VPG

[63] andwe assumed an absorbed power of 15kW.The conversion yield for hydrogen atoms on a cesiated PG
surface is derived from equation (26).Wefind á ñY 1.3 %for =T 0.3 eVH which translates into a negative ion
current produced on the PGof ~ -j 50 A mG

2 (this is about 12 times smaller than for a pressure of 0.3 Pa). The
latter corresponds to an optimal cesiation of the PG. Lastly, we assumed thatT Tn H . Figure 19 shows the axial
profile for the electron density, temperature and plasma potential for two Langmuir probe positions along (Oz),
that is, = -z 10 cm (bottom) and =z 10 cm (top). Both probes are positioned at = -y 5 cm. The
experimental data [62, 63] are plotted infigure 19 for comparison. Both the experiment and the 3DPIC-MCC
model exhibit similar features. Themagnetic filter field generates an asymmetry in the plasma parameters (the
gap in the plasma potential is the hallmark of theHall effect). Themain discrepancy between the experiments
and themodel comes from the external power (we assumed 15 kWof absorbed power versus 40 kWof RF power
in the experiments). The peak for the electron density near the exit of the driver is alsomore pronounced in the

Figure 19.Axial electron density, temperature and plasma potential profiles for two Langmuir probe positions along (Oz), that is,
= -z 10 cm (bottom) and z=10cm (top). Both probes are positioned at = -y 5 cm. The experimental data of Schiesko et al

[62, 63] are indicated by the symbols (square and triangles). The experimental conditions correspond to a background hydrogen gas
pressure of 0.6Pa, a RF power of 40kWand amagneticfilterfield generated by permanentmagnets on the sidewalls of the ion source,
9cm from the PG.
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model. Thismay be due to the oversimplifying assumption of implementing a rectangular geometry for the
discharge. The scaled electronDebye length is l̄ 6.5 mmDe  on average in the calculation. The fraction of the
volume occupied by the plasma sheath is ~L L2 15sh s %,where = =L V 37 cms s

3 withVs the ion source
volume and l~ ¯L 4sh De the size of the sheath. The numerical resolution is similar to the example shown in
section 3.2 for an average plasma density of á ñ = ´ -n 2.5 10 mp

13 3 (figure 6).

7. Extraction of negative ions

In this section, we simulate the extraction of negative ions from a fusion-type ion source using amodel which is
restricted to a single aperture [60]. The simulation domain is shown infigure 3(c).

7.1. Numerical issues
Recently published results fromPIC-MCCmodels [64–66] have led to a counter-intuitive and unexpected
description of negative ion extraction. Using chamfered apertures in the simulations, themodels [64, 66] show
that only those negative ions emitted from the tip of the chamfered aperture can be extracted, which is rather
surprising and does not seem to correspond to a proper operation of the extraction system. A very small negative
ion current is emitted from the rest of the grid surface due to space charge saturation associatedwith very large
values of the potential drop in front of the emitting surface (i.e., a virtual cathode). The numerical grid spacing
used in the simulationswasmuch larger than theDebye length (typically by a factor between 5 and 10).
Experiments, on the other hand, have shown that extraction of a negative ion beam from a plasma electrodewith
aflat surface around the aperture is actually possible [5, 67, 68].We show in section 7.3 that a grid spacing
smaller than theDebye length is required for a proper description of the plasma in the vicinity of the PG
(including the shape of the virtual cathode) [69].We describe in section 7.4 the properties of the plasma
meniscus predicted by themodel. Lastly, we discuss the use of scaling laws in a 2Dmodel of negative ion
extraction (slit apertures) in sections 7.4 and 7.5, i.e., we compare the real plasma density (a = 1) to lower
densities (a > 1) and analyze the correlations. An extrapolation to circular apertures (3DPIC-MCCmodeling)
is also discussed.

7.2.Model
The simulation domain is described infigure 3(c). Themodel is a zoomaround a single aperture of dimensions

´3.2 1.6 cm2 in 2D. The aperture (slit) is not chamfered andwith a diameter of 8mmas in the prototype ion
source at BATMANdescribed in [5]. The top and bottomboundaries are periodic while all the others are of
Dirichlet type. The PG is set at a given reference potential (0 V in our case) and the left-hand side (lhs) boundary
voltageVLB is adjusted in order to simulate the effect of a bias potential. The plasma is numerically sustained by
re-injecting an electron-positive ion pair for each positive ions lost on thewalls of the simulation domain.
Particles are re-injected on the lhs of the domain between =x 2 and 4cm and the electron temperature is
maintained by replacing themacroparticle velocity by a newone sampled fromaMaxwellian distribution at a
preset temperature =T 2 eVe . Negative ions are uniquely produced on the PG surface (we specifically want to
assess the dynamics of negative ionswhich are produced on the electrode). The physical chemistry is simplified.
We only consider negative hydrogen ions, +H2 and electrons (reactions#14 and#15 of table 2 have a negligible
contribution).We implemented a background gas density = ´ -n 4 10 mH

19 3
2

, temperature =T 0.1 eVH2
and

an atomic hydrogen density of = -n 10 mH
19 3 with =T 1 eVH , respectively. The positive ion temperature is

=T 2 eVp . Themagnetic filter field profile is assumed constant with =B 75 Gz and the cusp field from the
suppressionmagnetsBD is derived from an analytical formulation,

p p
=
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where =x 3.2 cmR is the position of the EG, =d 1.6 cm is the distance betweenmagnet bars and lastly
=B 600G0 for the BATMANconfiguration.

7.3. Convergence
Figure 20 shows the transverse virtual cathode potential profile (at itsminimum), parallel to the PG, versus the
numerical grid spacing (D = Dx y) in themodel. The latter is varied between mD =x 250 m ( lD á ñx 6De  )
down to mD =x 21.3 m ( lD á ñx 0.5De  ), where lá ñDe is the electronDebye length averaged over thewhole
simulation domain. The average plasma density in the calculation is á ñ = ´ -n 6 10 mp

16 3 and = -V 5LB V.
The virtual cathode profile converge for a grid spacing of the order of theDebye length (or below) [16, 17]. For
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lD á ñ x 1De , numerical heating increases the electron temperaturewhich in turnmodifies the plasma
parameters. The virtual cathode depth drops in themodel and the negative ion saturation current escaping the
PG is hence also significantly reduced.

7.4. Beam characteristics versus the extraction potential
Figure 21 shows the normalized negative ion current density profile versus the EGpotential for ¢ =V 450 VEG in
(a), 900 V in (b) and 1800 V in (c), respectively. Themodel is a 2DPIC-MCC algorithmwith slit apertures. The
average plasma density in the simulation domain is a á ñ = ´ -n 3 10 mp

17 3 with a = 4. =V 0LB V. The
numerical resolution is ´1024 512 grid nodes with 100ppc. Themeniscus, defined as the boundary where the
quasi-neutrality is no longer fulfilled, is highlighted inwhite. Themeniscus recedes toward the plasma volume

Figure 20.Transverse virtual cathode potential profile (parallel to the PG) versus the numerical grid spacing (D = Dx y) in the
model. lD á ñx 6De  for mD =x 250 m where lá ñDe is the electronDebye length averaged over the entire simulation domain.

Figure 21.Normalized negative ion current density profile versus the extraction grid potential ¢VEG. Themodel is a 2DPIC-MCC
algorithmwith slit apertures. The average plasma density in the simulation domain is a á ñ = ´ -n 3 10 mp

17 3 with a = 4.
¢ =V 450 VEG in (a), 900 V in (b) and 1800 V in (c), respectively. Themeniscus profile is highlighted inwhite.
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when the EGpotential is increased and below a curvature radius r ac (where =a2 8 mm is the diameter of
the aperture), aberrations appears in the extracted negative ion beam.

7.5. Scaling laws
Both the extraction (EG) voltage and the plasma density affect the shape of the virtual cathode (the capability of
the plasma to screen off the external potential is related to the electronDebye length). The EGpotentialmodifies
the amplitude of the plasma potential in the extraction region (it acts similarly to a bias voltage applied on the
PG). The trajectories of the charged particles in the vicinity of the aperture are hence altered and the virtual
cathode depth is in turn impacted. The latter is increasing (in absolute value)with the extraction potential. This
induces a drop of the extracted negative ion current as well. In order to derive scaling laws, i.e., to correlate the
plasma properties between high versus lowplasma densities, wemust preserve the curvature radius of the
meniscus. One approximate solution is to calculate the extraction potential with theChild–Langmuir law,

¢ =
¢

( )
⎛
⎝⎜

⎞
⎠⎟V V

I

I
, 30EG EG

n

n

2 3

where the extracted negative ion currents have hence been retained (primes denote the voltage and current for
a > 1). Figure 22 shows the negative ion current density profile along (OY) on the EG versus the EGpotential
and the plasma density. ¢ =V 200 VEG in (a) and 900 V in (b) correspond to plasmameniscus with nearly
identical curvature radius (r a 1c  ). In both cases, doubling the extraction potential induce the appearance of
aberrations in the extracted ion beamprofile ( ~r a 1c ). The profiles displayed infigures 22(a) and (b) are very
similar beside a factor 16 in plasma density. This shows the capability of themodel to reproduce correctly the
beamdynamics with lower densities. This is also visible infigure 22(c)which shows the beamprofiles for the
samemeniscus curvature radius (r a 1c  ) and for a density ranging from a = 1 to 64. The numerical
resolution is ´2048 1024 (256×128) grid nodes for a = 1 (a = 64), respectively, and 40ppc. =V 0LB V.
The extracted negative ion current varies by a factor 2 (scaling factor) between a = 1and 64while the virtual
cathode depth by a ratio of∼1.6. The lattermay be used to estimate the negative ion current density extracted
from circular apertures instead of slits. The onlymodification in themodel is the geometry of the extraction
aperture and hencewe posit that the scaling factors are preserved. The scaled negative ion current derived froma

Figure 22.Transverse negative ion current density profile on the EG grid versus the extraction voltage and the plasma density. The
average plasma density in the calculation is a á ñ = ´ -n 3 10 mp

17 3 withα ranging from a = 1 to 64. ¢ =V 200 VEG in (a) and 900 V
in (b) correspond to plasmameniscuswith similar curvature radius. r a 1c  .
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3DPIC-MCC calculation is -j 100 A mn
2 associatedwith a (scaled) average virtual cathode depth of

fá ñ -1.6c  V.Wemodeled an aperture radius of =r 4 mm, a width of 2mmand a negative ion current
emitted on the PG surface of a = -j 600 A mG

2. =V 0 VLB and ¢ =V 400EG V. The numerical resolutionwas
´256 962 nodeswith a = 64.We did notmodel themechanisms to either produce negative ions in volume via

the dissociative attachment of the background gasmolecules or from the impact of positive ions on the cesiated
PG. Speth et al [5] reports that∼20%of the extracted ions (gas pressure of∼0.4 Pa for a RF power of∼100 kW)
in BATMANoriginated fromvolume processes. Adding this small correction to the numerical estimates gives

-j 120 A mn
2 . This is to be compared to an experimental value of -j 140 A mn

2 . Note that a slight
disparity in the virtual cathode profile between themodel and the experiments translates into a significantly
larger difference for the amplitude of the extracted negative ion current. The properties of the virtual cathode are
unknown experimentally. In addition, the currentmodel (a zoomaround a single aperture with lateral periodic
boundary conditions)neither account for the complex dynamics of the electrons resulting from themagnetic
drifts inside the expansion chamber nor for the properties of the positive ionswhich are produced in the
discharge and impact the PGwith a high average energy [22]. Bothwillmodify the characteristics of the virtual
cathode. This question should be addressed in future work.

8. Conclusion

This paper proposes a synthesis, illustratedwith new results, of thework that has been carried at LAPLACEon
themodeling and simulation of the negative ion sources for the neutral beam injection systems used in fusion
applications (ITER,DEMO).We can summarize the important results as follows.

• Fluidmodels coupledwith the plasma chemistry and neutral flow in the negative ion source, show that the gas
density is non-uniform in the chamber and is strongly depleted due to gas heating and ionization.Due to the
low gas density, the properties of the plasma and gas phase are controlled not only by collisions in the volume
but by interactionwith thewalls. For example, the recombination of high energy ions at thewalls contributes
to the generation of fast neutrals in the discharge chamber (the presence of high energy, i.e. up to 50 eV ions is
due to the high plasma potential resulting from the low gas density).Moreover kinetic (DSMC) simulations of
the neutral gas transport show that the velocity distribution function of neutral species is strongly non-
Maxwellian, with a highly populated tail. This can certainly affect the production of negative ions on the PG
surface. Thefluidmodels of the plasma developed at LAPLACE are very useful and efficient to study the
plasma properties with complex chemistry and neutral transport. They are howevermore difficult to use at
highmagneticfields (problemswith numerical accuracy and convergence) and are not adapted to the
description of negative ion extraction.

• Particle (PIC-MCC) simulations are very powerful but due to constraints on the grid spacing and time step,
cannot be used for the high plasma densities and large volume of the negative ion source.We have discussed in
this paper how simulations performed under conditions of smaller plasma densities (‘scaling’), although not
‘exact’, can provide a very useful insight in the physics of the source, and that the results can often be linearly
extrapolated to the real densities with a good approximation. Caremust however be takenwhen the sheaths
play an active role in the discharge or in the simulation of negative ion extraction (andwhen instabilities and
turbulence are present). One important conclusion of the ‘scaled’PIC-MCC simulations is the demonstration
that the presence of themagnetic filter can induce a strong asymmetry in the plasma properties in the direction
parallel to the PG. This is because the diamagnetic and ´E B drift in themagnetic filter region are not closed,
as in closed-drift sources (Penning source,magnetron discharge,Hall thruster etc...) but are directed toward a
wall. This induces aHall effect which generates the plasma asymmetry and enhances electron transport
though thefilter. Calculations performedwith a large scaling factor tend to show that the plasma asymmetry
leads to a significant non-uniformity of the negative ion current density along the extraction apertures. The
validity of linear extrapolation of this result to the real conditions of plasma density is difficult to prove but
nevertheless, these simulations raise the question of beamuniformity.

• The description of negative ion extraction by PIC-MCC simulations is also difficult because of the high plasma
densities and even if the simulation domain is limited to a small region around a grid aperture, with periodic
boundary conditions.We have shown that erroneous and unphysical results can be obtained if the constraints
imposed by the PICmethod are not strictly taken into account.We have shown that the conclusion, drawn in
some recent papers, that only a small negative ion current can be extracted from the PG surface facing the
plasma due to space charge current limitation is highly questionable and is a consequence of amisuse of the
PIC-MCC technique. 3D simulations respecting the constraints inherent to an explicit PIC simulation seem
difficult to performor to use for systematic parametric studies even for parallel computations on a large
number of nodes.We believe that interesting and useful insight could be obtained from simulationswith
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scaled plasma densities and extraction voltages, althoughmorework is needed to study how the results of
simulations performed at lower plasma densities can be extrapolated to the real conditions.

Although themodels presented in this paper bring an interesting and useful insight into the physics of
negative ion sources and negative ion extraction, several questionsmust be addressed in futurework to improve
our qualitative understanding of the physics and the predicting capabilities of themodels. Among them: (1)
improvement of the boundary conditionsmimicking the plasma flow in negative ion extractionmodels which
are restricted to a sub-domain of the ion source volumenear an aperture, (2) extraction of negatively charged
particles versus the PGbias voltage, (3) assessment of the extracted beamlet asymmetry, (4) plasma properties in
front of an aperture surrounded by amagnetic cusp. Effect of the cusp on the extraction of negative ions and
electrons, role of secondary electron emission from the surface on electron extraction, (5)RFplasma coupling
inside the ICP discharge. Incidence of the highRF power and low gas pressure on the particle kinetics
(anomalous skin depth and ponderomotive effects), influence of a non-Maxwellian electron velocity
distribution in the driver, (6) role of volume produced versus surface produced negative ions as a function of gas
pressure, (7) impact of the ion sourcewalls on the plasma characteristics (for instance, the relationship between
the vibrational excitation ofmolecular hydrogen backscattering off the surfaces and production of negative ions
in volume).

Finally we note thatmodeling should also play an important role in the research on alternative plasma
sources for the neutral beam injection systemof future reactors (e.g., DEMO) [70].
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