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ABSTRACT 

A two dimensional axisymmetric quasi-neutral fluid model of an emissive hollow cathode that includes neutral 

xenon, single charge ions and electrons has been developed. The gas discharge is coupled with a thermal model 

of the cathode into a self-consistent generic model applicable to any hollow cathode design. An exhaustive 

description of the model assumptions and governing equations is given. Boundary conditions for both the gas 

discharge and thermal model are clearly specified as well. A new emissive sheath model that is valid for any 

emissive material and in both space charge and thermionic emission limited regimes is introduced. Then, setting 

the emitter temperature to an experimentally measured profile, we compare simulation results of the plasma 

model to measurements available in the literature for NASA NSTAR barium oxide cathode. Qualitative 

discrepancies between simulation results and measurements are noted in the cathode plume regarding the 

simulated plasma potential. Motivated by experimental evidence supporting the occurrence of ion acoustic 

instabilities in the cathode plume, an enhanced model of electron transport in the plume is presented and its 

consequences analyzed. Using the obtained plasma model, simulated quantities in the plume are qualitatively 

comparable with measurements. Inside the cathode, the simulated plasma density agrees well with measurements 

and is within the ±50 % experimental uncertainty associated with these measurements. 

 A comparison of simulation results of the full coupled cathode model for the NASA NSTAR cathode with 

experimental measurements is presented in a companion paper, as well as a physical analysis of the cathode 

behavior and a parametric study of the influence of the operating point and key design choices. 
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NOMENCLATURE 

݁ = elementary charge 

݇஻ = Boltzmann’s constant 

 atomic mass of Xe = ܯ

݉ = electron mass 

݊ = plasma density 

݊௡ = neutrals density 

 velocity of species s = ࢙࢛

 ௦ = scalar pressure of species s݌

௦ܶ = temperature of species s 

 ഥ = deviatoric viscous stress tensor for neutral speciesࢀ

 dynamic viscosity of neutral xenon = ߤ

߶ = plasma potential 

ܵ = plasma production source term 

 momentum exchange term for species s due to elastic collisions with other species = ࢙ࡾ

 energy exchange term for species s due to elastic collisions with other species = ࢙ࡽ

߶ = plasma potential 

 .௜௢ = 1st ionization energy of Xe atomsߝ

݇ఈ,ఉ
௠  = elastic collision rate between species ߙ and ߚ 

 ߚ with species ߙ ఈ,ఉ = collision frequency of speciesߥ

 ௦ = thermal conductivity of species sߣ

 current density of species s = ࢙࢐

Γ௦ = particle flux of species s at a boundary of the fluid domain 

 ௘ = discharge currentܫ

 ௘ = electron mobilityߤ

ܳ௑௘ = xenon mass flow rate 

߶௪௙ = work function 

߶௕ = effective work function or potential barrier that opposes thermionic emission 

௪ܶ = local emitter temperature 
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  standard cubic centimeter = ܯܥܥܵ
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INTRODUCTION 

Hollow cathodes are critical components of Hall Thrusters (HTs). Since they provide electrons for both the 

discharge chamber and beam neutralization, the resulting current draw may be quite important and as large as 

100 A. With the advent of higher power HTs comes an increasing demand for cathodes capable of supplying 

large discharge currents. With this goal in mind, it is crucial to study the physics of hollow cathodes, so as to 

understand the important mechanisms playing a role in the cathode, and in turn to determine scaling laws which 

might aid the development of new more powerful, more efficient, and more durable cathodes. A typical hollow 

cathode geometry is represented in fig. 1. 

Hollow cathodes have been studied extensively both theoretically [1–9] and experimentally [10–14]. Many 

aspects relevant to the cathode operation have been the topic of specific modeling studies such as the numerical 

modeling of the interior plasma region [1] and of the near plume plasma [3,5] or the description of electron 

emission physics and the influence of emitter surface features [8]. Thanks to this wide literature, hollow cathodes 

using barium oxide (BaO) as an electron emitter are well understood and the region inside the cathode has been 

numerically modelled with a very high degree of accuracy[8]. An extensive account of an existing numerical 

model (Orca2D) developed by Mikellides et al. at the Jet Propulsion Laboratory is given in [5] and references 

therein. Yet, most of these contributions to hollow cathode modeling focus on a single operating point for one 

cathode design. Only little work has been done to globally describe the influence of design choices and of the 

operating conditions on the discharge[15,16]. 

 

Figure 1: Typical hollow cathode geometry. A support tube holds an emissive insert which is self-heated by plasma 
bombardment. The heater provides initial heating of the emitter. The keeper is not represented. 

 

In this work, we will present a numerical model of both the interior region and the near plume of a hollow 

cathode. Similarly to existing fluid models (e.g. [3,8,9]), the model presented here is a 2D-axisymmetrical quasi-

neutral model which treats neutrals, ions and electrons as separate fluids. Plasma sheath and most importantly 

emissive sheaths are accounted for through a new first principles based emissive sheath model which is valid in 
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both space charge limited and thermionic emission limited regimes. Unlike most of earlier models published in 

the literature (with one noteworthy exception in [2]), we couple here the plasma model to a thermal model which 

allows us to compute self-consistently the emitter temperature. Therefore this model could be applied in 

principle to any cathode geometry or operating point without requiring any input from experimental 

measurements. Since our work here is focused on modeling hollow cathodes for HTs, most simulations shown 

here do not include an applied magnetic field. However, the influence of an applied axial magnetic field in the 

plume of the cathode will be briefly discussed in our companion paper [17]. As in many experimental setups 

[10], the cathode operates in diode mode in the simulation: the discharge current is collected from a metallic 

anode placed in the near plume of the cathode. 

In the present paper, we focus on thoroughly describing the cathode model, while we leave the physical analysis 

and cathode design study to a companion paper [17]. During the development of the model, we used the NASA 

NSTAR BaO orificed hollow cathode design as a reference design[2]. Yet, the model developed remains 

applicable to any cathode design or emissive element. 

In section I, we summarize the important hypotheses of the model. We then detail in section II the equations 

governing the plasma and thermal aspects of the cathode as well as the associated boundary conditions. Because 

of the presence of the thermionic emitter inside the cathode, some specific treatment is needed to account for the 

electron emission. During the course of this study, we found that cathode simulations greatly benefit from a 

treatment of electron emission that is valid across both space charge and thermionic emission limited regimes. 

As this feature is uncommon in cathode models, we describe the emission model in details in the appendix. The 

conditions of application of this emissive sheath model are not limitative and it might find its use outside the 

scope of hollow cathode modeling.  

We then compare simulations results of the plasma model to experimental measurements in section III. 

Discrepancies that arise between simulation results and measurements are analyzed. Finally we introduce in 

section IV a numerical model of the experimentally observed ion acoustic instability in the plume of the cathode. 

The use of such a model is new to the hollow cathode modeling literature and reproduces self-consistently 

several qualitative features of the anomalous transport and plasma oscillations in the plume of hollow cathodes. 

I. CONTEXT AND MAIN MODEL ASSUMPTIONS 
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An emissive hollow cathode schematically consists of a tube lined with a low-work function emissive material 

and capped at one end by an orifice plate where an extraction potential is applied. When heated, the emissive 

element emits electrons which are carried toward the discharge chamber of the thruster by the electric field. A 

constant mass flow of xenon passes through the cathode tube, so as to maintain a relatively dense plasma (≈

10ଶଵ݉ିଷ locally) through ionization inside the cathode. This enables the extraction of large electron currents at 

low discharge potentials (typically tens of amperes and more for a few tens of volts of discharge potential) 

without suffering from space-charge limited currents. A typical cathode geometry is schematized in fig. 2. 

Ions and neutrals exhibit large density variations across the spatial domain relevant to the physics of the cathode, 

starting from the neutral inlet where the plasma is almost non-existent to high density plasma in the emission 

region. Downstream of the orifice, the densities of the expanding neutrals and plasma rapidly fall to very low 

values[13]. While in the dense region, the highly collisional weakly ionized gas discharge is appropriately 

described by fluid equations, kinetic effects are most likely important in the plume. Still, we choose to describe 

both regions using the same fluid equations and we will interpret the simulation results and trends related with 

the plume phenomenologically. More advanced models of the near-plume neutral flow downstream of the 

cathode orifice have been developed in the literature, which describe the transition region between the dense 

internal fluid region and the free flow like plume [18] based on a raytracing approach. The neutral density in the 

near plume remains qualitatively similar to the full fluid simulation in this approach [18]. Quantitative 

differences in the neutral density in the plume could arguably modify the electron collision frequencies in the 

plume and thus alter the plasma properties. However, we will see that in absence of any applied magnetic field in 

the plume (as in HTs), the resistivity of the plume is not dominated by classical collisions between electrons and 

neutrals but rather by the effects of streaming instabilities that grow in the plume of the cathode (see section IV 

and our companion paper [17]). Therefore, the exact neutral density profile in the plume is of secondary 

importance for our plasma simulations. 

The simulation domain, which extends from the gas inlet of the cathode upstream to an arbitrary boundary in the 

plume downstream of the orifice, will be described in section II.B. The physical anode of the system is 

represented as an electron current collecting domain boundary. 

Cathodes of practical interest for satellite thrusters are mostly self-heated: the heat fluxes resulting from plasma 

bombardment of the walls of the cathode, be it electrons, ions or both, are sufficient to keep the emissive 

material hot enough so that it sustains a high thermionic electron emission current density[19]. Therefore, it is 
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important to combine both plasma and thermal aspects in a single modeling effort so as to fully understand the 

physics of the cathode and the interplay between design parameters. 

Three species are considered: Xe atoms, Xe+ ions and electrons. Multiple charge ions are neglected because of 

their small production rate at low electron temperature (which is on the order of a few eV in this discharge). 

Because of the high collisionnality of the plasma, we will consider Maxwellian velocity distributions for all 

species. Inside the cathode, the transport of species is dominated by collisions and we take into account the 

following processes: collisions between electrons and neutrals (e-n), collisions between ions and neutrals (i-n, 

both isotropic and charge exchange collisions), and coulomb collisions between electrons and ions (e-i). 

Experimental investigations have shown that the bulk of the plasma is optically thick[20] at wavelengths close to 

Xe I excitation lines. This is easily understood as the high neutral density (as high as 10ଶଶ  ݉ିଷ in the NSTAR 

BaO cathode, see our companion papier [17]) constitutes an efficient radiation absorber that traps most de-

excitation radiations of xenon. We estimate the optical thickness using the following formula[21] where all units 

are cgs:  

߬ = 5.4 × 10ିଽߣ ൬
ߤ
௡ܶ
൰
ଵ
ଶ
݊௡(1) ܮ

where ߬ stands for the optical thickness, ߣ is the considered wavelength, ߤ the atomic mass of Xe in a.m.u., ௡ܶ 

the neutral species temperature, ݊௡ its density and ܮ a characteristic length of the system. Numerically, close to 

the orifice region, substituting values obtained through simulation ߣ = 450  × 10ି଻ܿ݉, ߤ = 131, ௡ܶ =  ,ܭ 3000

݊௡ = 10ଵ଺ܿ ݉ିଷ and ܮ = 2 × ܴ = 0.4 ܿ݉, we estimate ߬ ≈ 200. Therefore it is reasonable to assume that the 

plasma is for the most part optically thick to radiation lines of interest here and that all the energy lost by atoms 

through de-excitation is reabsorbed locally. Practically, we will simply neglect energy losses caused by inelastic 

collisions which are not ionizing. Only direct ionization is considered. The influence of stepwise ionization on 

plasma simulation results was seen to be negligible (see the discussion in the last paragraph of section III). 

Lastly, we will assume the quasi-neutrality of the plasma, as the Debye length in the interior region of high-

current hollow cathodes is typically on the order of 1 µm and so its discretization would require an unpractically 

fine mesh. Under this hypothesis, the plasma sheaths at the walls of the cathode have to be modeled through the 

use of specific boundary conditions, which also account for thermionic emission when applicable. The sheath 

model will be described in detail in section II.B.1 and in the appendix. 

II. NUMERICAL MODEL 
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In the next sections, we provide a detailed description the numerical model used here. Sections A and B will 

focus on the plasma model and its boundary conditions while sections C and D will detail the thermal model and 

the thermal properties relevant to the materials constituting the cathode. 

A. GAS DISCHARGE MODEL 

1. CONSERVATION OF MASS 
Under the assumption of quasi-neutrality (݊ = ݊௜ = ݊௘), the ion conservation equation reads: 

߲
ݐ߲ ݊ + સ ⋅ (࢏࢛݊) = ܵ (2)

where ݊ and ࢏࢛ are respectively the plasma density and velocity of ions. S is the plasma source term which 

equals to: 

ܵ = ݊ ݊௡⟨ߪ௜௢ݑ௘⟩ = ݊ ݊௡  ݇௜௢( ௘ܶ) (3)

The ionization rate coefficient ݇௜௢  is determined from collision cross section data [22] integrated over a 

Maxwellian electron distribution function for values of ௘ܶ  between 0.03 and 25 ܸ݁. 

Similarly, conservation of neutrals is expressed by: 

߲
ݐ߲ ݊௡ + સ ⋅ (݊௡࢔࢛) = −ܵ (4)

where ݊௡ and ࢔࢛ are respectively the density and velocity of neutral species. 

2. CONSERVATION OF MOMENTUM 
The general form of the conservation of momentum for a species s may be written as follows: 

݉௦ ൭
߲
௧߲

(݊௦࢙࢛) + સ ⋅ (݊௦࢙࢛⊗࢙࢛)൱ = ݊௦ࡲ− સ ݌௦ + સ ⋅ ഥࢀ ࢙ࡾ+ + ݉௦(࢛ࡿ)௦ (5)

where ⊗ is a tensor product. On the RHS, ݊௦ࡲ and −સ݌௦ are respectively the force term and pressure gradient 

term.  ࢀഥ is the traceless deviatoric viscous stress tensor. For a Newtonian isotropic fluid, it takes the form: 

ഥࢀ = ߤ2 ൬
1
2
൫(સܛܝ) + (સ࢙࢛)ࢀ൯ −

1
3

(સ ⋅ ത൰ (6)ࡵ(࢙࢛
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where ߤ is the dynamic viscosity of the fluid. Neglecting the spatial gradient of ߤ and after some manipulation, 

the term સ ⋅  :ഥ may be approximated asࢀ

સ ⋅ ഥࢀ ≅ ߤ ൤સଶ࢙࢛ +
1
3સ

(સ ⋅ ൨ (7)(ܛܝ

 is the momentum exchange term that accounts for elastic collision between species. The last term in Eq. (5) ࢙ࡾ

represents the initial momentum of particles which are produced in reactions between other species.  

Applying this conservation law to ܺ݁ା ions while neglecting the viscosity and the effect of any magnetic field, 

one obtains: 

൭ܯ
߲
௧߲

(࢏࢛݊) + સ ⋅ ൱(࢏࢛⊗࢏࢛ ݊) = −݊݁સΦ− સ݌௜ ࢏ࡾ+ (8) ࢔࢛ܵܯ+

where M is the mass of xenon, Φ the plasma potential and e the elementary charge. The momentum exchange 

term for ions reads: 

࢏ࡾ = ࢏→࢔ ,࢈ࡾ ࢏→࢔,࢕࢙࢏ࡾ+ + ࢏→ࢋࡾ =
ଶܯ

௕ߥ̅)݊ܯ2 + ࢔࢛)(௜௦௢ߥ̅ − (࢏࢛ +
ܯ݉
ܯ ௘࢛)௘௜ߥ݊݉+ − ௜) (9)࢛

Momentum exchange collisions between ions and neutrals terms have been split in two terms depending on the 

nature of the collision (ܴ௕, ௡→௜  for backscattering or “charge exchange” collisions and ܴ௜௦௢, ௡→௜  for isotropic 

collisions). ̅ߥ௕ and ̅ߥ௜௦௢ are the associated collision frequencies averaged over drifting maxwelian ion and neutral 

populations computed from collision cross section data [23] . ݉ is the electron mass. In (9), both ̅ߥ௕ and ̅ߥ௜௦௢ are 

multiplied by the factor 2/ܯ which is usually associated with isotropic processes. For backscattering collisions 

 this factor is compensated by a factor 2 in the collision cross section data. Backscattering collisions and ,(௕ߥ̅)

isotropic collisions are two mutually exclusive processes which are dominant where their respective interaction 

cross section is the largest [24]. In this model, we retain the process with the highest collision frequency (i.e. 

backscattering collisions where the relative drift velocity or the temperatures are large enough) and neglect the 

other collision process.  

 :௘௜ is the electron-ion coulomb collision frequency for which we used the following expression[25]ߥ

௘௜ߥ =  ݊ߨ4 ln(Λ) ቆ
݁ଶ

଴݇஻ߝߨ12 ௘ܶ
ቇ
ଶ

ඨ8݇஻ ௘ܶ

݉ߨ   (10)
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where ln(Λ) ≈ 10 is the Coulomb logarithm and ௘ܶ  is the electron fluid temperature. 

When applied to neutrals, the conservation of momentum Eq. (5) becomes:  

൭ܯ
߲
௧߲

(࢔࢛݊) + સ ⋅ ࢔࢛ ݊) ൱(࢔࢛⊗ = −સ݌௡ + સ ⋅ ഥ܂ ࢔ࡾ+ (11) ࢔࢛ܵܯ−

The momentum exchange term for neutrals ࢔ࡾ is expressed similarly to ࢏ࡾ earlier (see Eq. (9)): 

࢔ࡾ = ࢔→࢏ ,࢈ࡾ ࢔→࢏  ,࢕࢙࢏ࡾ+ ࢔→ࢋࡾ+ =
ଶܯ

௕ߥ̅)݊ܯ2 + ࢏࢛)(௜௦௢ߥ̅ (࢔࢛− +
ܯ݉
ܯ ௘࢛)௘௡ߥ݊݉+ (12) (࢔࢛−

The electron elastic collision frequency with neutrals ߥ௘௡ is computed in the same way as in Eq. (3).  

Data for the dynamic viscosity of neutrals, which are used to compute തܶ, are available in the literature [26]. 

3. ELECTRON DRIFT DIFFUSION 
Inertial terms in the conservation of electron momentum are neglected. Thus, defining the electron current 

density as: 

ࢋ࢐ = (13) ࢋ࢛݊݁−

Electron current density may then be expressed as: 

ࢋ࢐ = +௘સΦߤ݊݁− ௘݌ࢺ௘ߤ  (14)

where ݌௘  is the scalar electron pressure, ݌௘ = ݊݇஻ ௘ܶ. The electron mobility in absence of magnetic fields reads: 

௘ߤ =
݁
௘ߥ݉

 (15)

with ݉ being the electron mass and ߥ௘  the electron collision frequency  ߥ௘ = ௘௡ߥ +   .௘௜ߥ

4. CONSERVATION OF CHARGE 
Defining the ion current density as: 

࢏࢐ = (16) ࢏࢛݊݁

We then write the equation of charge conservation as: 

સ ⋅ ࢏࢐) + (ࢋ࢐ = 0 (17)
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Substituting Eq. (14) into Eq. (17), we obtain a differential equation for the plasma potential Φ: 

સ ⋅ (௘સϕߤ݊݁) = સ ⋅ ௘݌௘સߤ) + (18) (࢏࢛݊݁

5. CONSERVATION OF ENERGY 
Eliminating drift energy terms from the general total energy conservation law using Eq. (2) and Eq. (5), an 

internal energy conservation equation for species s may be derived: 

߲
ݐ߲
൬

3
2 ௦݌ 

൰ + ∇ ⋅ ൭൬
5
௦݌2

൰࢙࢛ + ൱ࢗ = ࢙࢛ ⋅ સ݌௦ ࢙࢛− ⋅ સ ⋅ ഥࢀ + સ ⋅ (࢙࢛ഥࢀ) + ܳ௦ ࢙ࡾ− ⋅ ࢙࢛

+ ൬ܵ
3
2݇஻ܶ

൰
௦

+
1
2݉௦((࢛ࡿ)௦ଶ − ࢙࢛ 2 ⋅ ௦(࢛ࡿ) +  (ଶ࢙࢛ ܵ

(19)

where ݌௦ = ݊௦݇஻ ௦ܶ is the scalar pressure for an ideal gas and ࢗ the thermal conduction flux. −࢙ࡾ ⋅  represents ࢙࢛

the transfer from drift kinetic energy to fluid internal energy during elastic collisions. ܳ௦  includes both the 

energy losses for species ݏ in inelastic collisions and heat transfer between species during elastic collisions. This 

may be written as: 

ܳ௦ = ෍ 3 ݉௦  
݉ఈ

(݉௦ +݉ఈ)ଶ ݊ఈ݊௦݇ఈ,௦
௠ (݇஻ ఈܶ − ݇஻ ௦ܶ)

ఈஷ௦

+෍݊ఉ݊௦݇ఉ,௦
௜௡ ఉߝ

ఉஷ௦

 (20)

where ݇ఈ,௦
௠  is the momentum exchange collision rate between species α and s. ݇ఉ,௦

௜௡  is the inelastic collision rate 

for species ݏ and a collision process ߚ, and ߝఉ the associated energy threshold. ݊ఉ is the density of the species 

that collides with ݏ. The second term has to be summed over all inelastic collisions that concern the species ݏ. 

The last two terms in Eq. (19) come from the initial internal energy ቀܵ ଷ
ଶ
݇஻ܶቁ

௦
, and initial momentum (࢛ࡿ)௦ of 

species whose reaction product is s.  

When applied to neutrals, this equation yields: 

߲
ݐ߲
൬

3
௡݌2

൰ + સ ⋅ ൬
5
࢔࢛௡݌2 + ൰࢔ࢗ = ࢔࢛ ⋅ સ݌௡ −

3
2݇஻ ௡ܶܵ − ࢙࢛ ⋅ સ ⋅ ഥࢀ + સ ⋅ (࢙࢛ഥࢀ)

+ ܳ௡ − ൫࢔→࢏ ,࢕࢙࢏ࡾ ൯࢔→ࢋࡾ+ ⋅  ࢔࢛

(21)

where ܳ௡ = )௜௦௢݇஻ߥ̅݊ ௜ܶ − ௡ܶ) + 3௠
ெ
݊݊௡݇௘,௡

௠ ݇஻(  ௘ܶ − ௡ܶ). Neutral thermal conduction fluxes are expressed by:  

࢔ࢗ = ௡સߣ− ௡ܶ (22)

Here ߣ௡ is the thermal conductivity of  Xe [26]. 
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In Eq. (21), we did not include heating terms related to backscattering collisions between ions and neutrals since 

these collisions lead to a 180° deflection of incoming particles and as such, contrary to isotropic collisions, do 

not alter strongly the shape of the velocity distribution of the colliding particles. In cathode simulations results, 

we observed that including this term led to a strong increase of the maximum neutral temperature (from circa 

 ,ܽܲ and an unrealistic increase in the simulated gas pressure inside the cathode (up to 2000 (ܭ to 7000 ܭ 3000

whereas a pressure close to 1000 ܲܽ is measured in the same conditions [9]). 

Similarly, applied to ܺ݁ା ions, this yields: 

߲
ݐ߲
൬

3
௜݌2

൰ + સ ⋅ ൬
5
࢏࢛௜݌2 + ൰࢏ࢗ = ࢏࢛ ⋅ સ݌௜ + ܳ௜ − ൫࢏→࢔ ,࢕࢙࢏ࡾ + ൯࢏→ࢋࡾ ⋅ ࢔࢛

+
3
2 ݇஻ ௡ܶܵ+

1
ܵܯ2

࢏࢛)  ଶ(࢔࢛−

(23)

where ܳ௜ = )௜௡݇஻ߥ݊ ௡ܶ − ௜ܶ) + 3௠
ெ
)௜௘݇஻ߥ݊ ௘ܶ − ௜ܶ) . Ions thermal conduction fluxes are given by ࢏ࢗ =  ,௜સT୧ߣ−

where we use Braginskii’s  expression of the thermal conductivity ߣ௜ in the case of a null magnetic field[27]. 

Heating terms related to backscattering collisions between ions and neutrals have once again been excluded from 

this equation. 

Lastly, applied to electrons, the energy equation reads: 

߲
ݐ߲
൬

3
௘݌2

൰ + સ ⋅ ൬
5
ࢋ࢛௘݌2 + ൰ࢋࢗ = ࢋ࢛ ⋅ સ݌௘ + ܳ௘ ଶࢋ࢛௘݊ߥ݉+ − ௜௢ (24)ߝܵ

where ߝ௜௢  is the first ionization energy threshold for ܺ݁ . Here the energy exchange term is: ܳ௘ =

3௠
ெ
)௜௘݇஻ߥ݊ ௜ܶ − ௘ܶ) + 3௠

ெ
݊݊௡݇௘,௡

௠ ݇஻( ௡ܶ − ௘ܶ) .  In the absence of magnetic field, the electron thermal 

conduction flux is ࢋࢗ = ௘સߣ− ௘ܶ, where ߣ௘  is the electron thermal conductivity[27]. In Eq. (24) the resistive 

heating term −ࢋࡾ ⋅ ௘ݑ has been expressed in the limit ࢋ࢛ ≫ ௜ݑ  .௡ݑ,

B. PLASMA SIMULATION DOMAIN & BOUNDARY 

CONDITIONS 

This model is concerned with the description of the interior region of the cathode and of its near plume (see fig. 

2). The simulation domain is 2D-axisymmetric with respect to the axis of the cathode (horizontal line on fig. 2). 

Upstream of the cathode (left of fig. 2), xenon is fed in the cathode at a constant flow rate. At the other end, the 
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gas and the plasma expand in the plume of the cathode. A cylindrical anode has been included to collect the 

discharge current. The chosen cathode geometry is that of the NASA NSTAR BaO cathode[2]. An external 

electrode encloses the cathode (the part named keeper in fig. 2) and protects the cathode from ion bombardment. 

It is used experimentally to provoke the gas breakdown at cathode startup. The interstitial space between the 

keeper and the orifice plate has not been included in the simulation domain. Instead, the keeper boundary has 

been prolonged to the left towards the orifice plate (see fig. 2). This choice was made so as to simplify the 

geometry and we do not anticipate much influence from it either on the electric field or electron current lines 

since experimentally the keeper electrode is either a floating electrode or collects only a weak current (w.r.t. the 

discharge current, see below and also Ref. [28]). 

 

Figure 2: Plasma simulation domain. Dimensions are in millimeters (drawing is not to scale). Letters stand for the various 
species entering and leaving the domain (i for ions, n for neutrals and e for electrons). Superscripts ab, em and ex respectively 
denote electrons coming from the plasma and absorbed at the wall, electrons emitted at the wall and collected electrons at the 

anode. Dashed lines are simulation domain boundaries. Boundary conditions have been numbered (circled figures) to ease 
their description. 

The cathode is assumed to be made of a conducting material and is kept at ground potential. We note that while 

the bulk of all conductors are at ground potential, the plasma potential immediately outside depends on the work 

function of the material. Thus, we chose the electrical ground of the cathode as our plasma potential reference 

and account for the work function of a specific material as a potential shift in boundary conditions. Because of 

the lack of sufficient data, electron emission is only considered at the emissive insert surface. For non-emissive 

conducting walls, a unique work-function of 4.6 V is assumed, as this value is close to that of many metals such 

as Mo and W that are constitutive of some cathode parts[12,29]. Photoemission and secondary emission under 

particle impacts are neglected w.r.t. the high thermionic emission current densities. 

The assumption of quasi-neutrality in the domain requires accounting for the plasma sheaths through specific 

boundary conditions. These will be detailed hereafter. 
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1. CONDUCTING WALLS 
Boundaries 1, 2 on fig. 2 are associated with conducting walls. 1 is a plasma sheath at the surface of a grounded 

metallic wall. Regarding 2, one needs to account for the thermionic emission current, as explained below.  

Incoming particle fluxes to a metallic wall can be found in many textbooks[30]. First, we reproduce here some 

well-known results for a non-collisional plasma sheath with cold ions and maxwellian electrons coming from the 

plasma.  

Ions: 
The ion flux leaving the bulk of the plasma and entering the plasma sheath is: 

Γ௜ = ݊଴ݑ஻ , ݑ஻ = ට௞ಳ ೐்
ெ

 (25)

where Γ௜  is the incoming ion flux, ݊଴  the local plasma density and ݑ஻  the Bohm velocity. See the appendix, 

section 1 for a justification of the use of Bohm criterion even in presence of emitted electrons. 

The energy flux carried by ions is taken to be the usual advection flux appearing in ion energy conservation Eq. 

(23)  i.e. 5/2 Γ௜݇஻ ௜ܶ. 

Electrons: 
Maxwellian electrons coming from the bulk of the plasma cross a potential barrier drop ߶଴ before being lost to 

the wall. The electron flux leaving the maxwellian bulk plasma and crossing the sheath is: 

Γ௘௔௕ = ଵ
ସ
݊଴ܿ௘ഥ exp ቀ− ௘థబ

௞ಳ ೐்
ቁ, ܿ௘ഥ = ට଼௞ಳ ೐்

గ௠
 (26)

Here Γ௘௔௕ is the incoming plasma bulk electron flux at the wall, ߶଴  the sheath potential drop.  

The energy carried by a maxwellian distribution of electrons at temperature ௘ܶ  crossing a potential barrier drop 

߶଴is: [1] 

Γ௘௔௕ܧ௘௔௕ = Γ௘௔௕(2݇஻ ௘ܶ + ݁߶଴) (27)

This is directly applicable to plasma bulk electrons leaving the simulation domain.  

When the plasma sheath stands in front of a thermionic emitter, one has to account for the emitted electron 

population, in addition to the maxwellian electrons and cold ions coming from the bulk of the plasma. 
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This problem was approached analytically by Mikellides et al.[1] through the addition of an emitted mono-

energetic beam of electrons, whose current density is given by Richardson-Dushman equation corrected with the 

Schottky emission enhancement: 

݆௘௘௠ = ଴ܣ ௪ܶ
ଶ  exp ቀ− ௘(థೈಷିథೄಹ)

௞ಳ்ೢ
ቁ, with ߶ௌு = ට ௘ாೢ

ସగఢబ
 (28)

Here ܣ଴ = .ܣ 119.58 ܿ݉ିଶ.ିܭଶ  is Richardson’s constant, ௪ܶ  the local temperature of the emitter, ߶ௐி  the 

temperature dependent work function, and ߶ௌு  the work-function lowering Schottky potential. The Schottky 

potential is determined using ܧ௪, the magnitude of the electric field component normal to the surface of the 

emitter.  

Poisson’s equation was then solved analytically over the sheath[1], yielding a monotonic potential profile and 

the magnitude of ܧ௪ . Since the Schottky potential ߶ௌு  depends on the potential profile itself (through the 

electric field), a transcendental equation had to be solved to obtain the correct emission current.   

Nevertheless, even if this approach does work well in the thermionic emission limited regime, Eq. (28) lacks a 

mechanism to physically inhibit the emission in space charge saturated sheaths regardless of the wall 

temperature. In their later work [5], Mikellides et al. upgraded their emissive sheath model to account for the 

maximum current density that may be carried through the sheath due to space charge limitation. Here, we 

propose a new emissive sheath model which naturally includes space charge limitation effect and its retroaction 

on the thermionic emission current. Indeed, a thorough description of the sheath and of the emission process (see 

the appendix) shows that both the Schottky effect and the emission inhibition originate from a non-monotonic 

variation of the electric potential in the immediate vicinity of the emitter due to image charges effects.  The 

inclusion of this region in the description yields a sheath model that is consistent across both the thermionic 

emission and space charge limited regimes. As such, it bears interest for hollow cathode emission modeling, 

since hollow cathodes often exhibit a transition from a strong emissive region to an inactive region where the 

plasma stops being dense enough to carry the emission current[8]. It is interesting to note that if we consider the 

space charge limited regime in our sheath model, the emission current density departs from Richardson-

Dushman equation (28) when the sheath potential decreases to very low values and drops to zero irrespective of 

the emitter temperature (see the appendix). In our model, this phenomenon stems from the accumulation of space 

charge in the sheath close to the emitter, which limits the emission process itself (see Eqs. (A6) and (A7) in the 

appendix), rather than from the current density limit associated with the emitted electron current transport 

through the sheath. 
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The sheath model still requires input from experimental data to specify the work function dependence on the 

temperature. For the BaO-W (411) emitter in the NASA NSTAR cathode, we used the following experimental 

work function [31]: 

߶ௐி = 1.67 + 2.82 × 10ିସ ௪ܶ  [ܸ݁] (29)

where the emitter temperature ௪ܶ is in Kelvin. 

When considering emitted electrons, it is important to understand that the emission process is well modelled by a 

maxwellian fluid of electrons at wall temperature ௪ܶ that has to cross a potential barrier ߶௕ (i.e. the true work 

function of the emitter as computed from the sheath model) before leaving the emitter and entering the plasma 

sheath (see fig. A-1). The emitted electrons are then accelerated toward the quasi-neutral region by the sheath 

potential ߶଴. Evaluating the incoming energy flux, as seen from the bulk of plasma, which results from electron 

emission at the emitter boundary, we obtain by analogy with Eq. (27) : 

Γ௘௘௠ܧ௘௘௠ = Γ௘௘௠(2݇஻ ௪ܶ + ݁߶଴) (30)

The mean energy of electrons emitted at the wall having enough energy to cross the first barrier is 2݇஻ ௪ܶ + ݁߶௕. 

However they first lose an amount of energy ݁߶௕  before reaching the accelerating potential ߶଴ , hence the 

expression (30).  

Some common emissive inserts such as BaO-W are constituted from a metallic matrix impregnated with a low 

work function emissive element.  This results in an emissive surface which displays a porous aspect[32] and 

may lead to an effective emissive surface much larger than the geometrical surface of the emitter (under the 

assumption that the plasma penetrates in the pores of the emitter). This mechanism is important in obtaining a 

good agreement  with experimental measurements of the plasma density along the axis of the cathode[8]. 

Mikellides et al. compared the characteristic dimension of the pores to the Debye length to obtain an estimate of 

the effective emissive surface (locally as large as 6 times the geometrical surface) [8]. We opted here for a 

simpler approach, and multiplied uniformly the emission current by a factor of 2 (noted ܭாெ = 2 ). This 

assumption, its influence and alternatives to this arguably simplistic approach will be discussed in section III. 

Other fluxes (collected electrons and ions) are left unchanged. 

Neutrals: 

We assume that ions lost to the sheath are neutralized at the wall and return to the domain as neutrals. Thus the 

incoming flux of neutrals in the domain is the opposite of that of ions toward the wall. The temperature of 

returning neutrals is set to that of wall. This hypothesis has almost no influence on the cathode simulation: 
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setting the temperature of the returning neutral to that of the incoming ion had no other consequence than 

lowering the neutral temperature by about 100 ܭ in the non-emissive region of the cathode. A no-slip boundary 

condition is usually employed for viscous fluids at atmospheric pressure. Here, because of the low gas pressure, 

we use the slip-length boundary condition[33]: 

ቐ݈௦   ൬
∥ݒ݀
࢔݀

൰
௪௔௟௟

= ௪௔௟௟∥ݒ slip length boundary condition

݊௡(ୄݒ)௪௔௟௟ = −ડ࢏ ⋅ ࢔ normal component
     (31)

where ݈௦ is the slip length which is on the order of the mean free path, and ࢔ the unit vector normal to the 

boundary. An analytical expression links ݈௦ to the dynamic viscosity [33]ߤ. Physically, Eq. (31) nullifies the 

fluid velocity component parallel to the wall at a distance ݈௦ below the surface. In more collisional gasses, ݈௦ falls 

to zero and we recover the usual no-slip boundary condition. We also set the normal component of the neutral 

flux (݊௡(ୄݒ)௪௔௟௟) to the recombined ion flux at the wall (Eq. (25)).  

2. KEEPER BOUNDARY 
Especially in cathodes operating at low discharge current, the keeper electrode (boundary 4 in fig. 2) can be 

biased relative to the cathode ground to draw enough electron current from it so as to maintain the cathode 

plasma. We model the keeper as a non-emissive metallic electrode (see section 1) and compute the voltage-bias 

߶௄  (relative to ground) by integrating the collected current over the keeper boundary ܵ௄: 

௄ܥ
݀
ݐ݀ ߶௄ = ඵ(࢏࢐ + (ࢋ࢐ ⋅ ࡷࡿࢊ

ௌ಼

+ ௄ (32)ܫ

where ܫ௄ is the current drawn from the keeper and ܥ௄ is an arbitrary capacitance which has been set to 1 ܥ .ܨߤ௄ 

has been chosen small enough so that the keeper voltage adapts quickly enough to the plasma and does not excite 

oscillations of the discharge by itself. Here, we set ܫ௄ = ௄ܫ This value of .ܣ 1.5  is of the correct order of 

magnitude for neutralization hollow cathodes [28] though it is probably too large for discharge hollow cathodes 

(which are our main concern here). The consequences of this choice will be analyzed in a companion paper [17]. 

It was noted in [4] that the keeper plasma sheath may become transiently ion repelling in which case the sheath 

model described in section 1 is invalid. We use here the same approach as in [4], which was originally developed 

by Andrews and Varey in [34], and we now set the ion velocity towards the keeper boundary to the following 

expression: 
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௜బݑ = ට௞ಳ ೐்
ெ

× ଵ
ଵାிೞ(ఎೞ) with ܨ௦(ߟ௦) = ୣ୶୮(ିఎೞ)

ඥగఎೞ(ଵାୣ୰୤(ఎೞ)) and ߟ௦ = ௘థబ
௞ಳ ೐்

 (33)

This expression is analogous to the Bohm velocity introduced in Eq. (25). When the sheath potential ߶଴  in front 

of the keeper is large w.r.t. to ௘ܶ , we recover the usual Bohm velocity, whereas the collected ion current falls to 0 

when the sheath potential drops (or is reversed). This expression provides a smooth transition between the ion-

attracting and ion-repelling regimes. In the ion-repelling regime, the collected electron flux is saturated to the 

flux expected from a maxwellian distribution, ଵ
ସ
݊଴ܿ௘ഥ  (see Eq. (26)). 

On the segment of the keeper boundary facing the plume (to the right of the keeper in fig. 2) we neglected the 

neutral flux generated by recombination of ions. We may justify this approximation as follows: the plasma 

density in the plume along the exterior surface of the keeper is quite low (on the order of 5 × 10ଵ଻݉ିଷ at a point 

5 ݉݉ off axis) and so is the neutral density (on the order of 6 × 10ଵ଼݉ିଷ at the same point). In the plume, mean 

free paths become quite large (for instance, using estimates from [21] for ion-ion collisions frequency, we obtain 

a mean free path on the order of a few tenths of mm), while in the same region the plasma sheath thickness is on 

the order of ten µm. Hence, the fluid approximation for ions becomes dubious in the plasma sheaths facing the 

keeper, and the assumption that ions are recombined at the walls may be questioned (instead, ions might simply 

“bounce” off the keeper). Nevertheless, we may estimate the ion current to the external surface of the keeper and 

obtain 16 mA. If all of these ions were recombined, this would amount to an equivalent neutral xenon mass flux 

of 0.2 ܵܯܥܥ. While not completely negligible w.r.t. the injected Xe mass flux (3.6 ܵܯܥܥ), it is unlikely that this 

process would make much difference on the simulation results. We add that, in the previous discussion, all the 

estimates were obtained from our simulations results for the cathode running at the operating point NASA TH 15 

described in section III. 

We also set a no-slip boundary condition for neutrals on the segment of the keeper boundary facing the plume. 

Keeping the slip-length condition (Eq. (31)) on this boundary led to a seemingly unphysical burst of the neutral 

velocity field in the plume which is probably linked to the partially incorrect use of fluid equations in the near 

plume of the cathode. As stated earlier, the simulation of the quantitatively correct neutral flow profile in the 

plume is beyond the scope of this work though. 

3. INLET 
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Physically, this boundary does not exist. However, since it is not practical to extend the simulation domain much 

further upstream, we specify a boundary condition (boundary 3 in fig. 2) which has the least possible impact on 

the solution. 

Electrons: 
We require here that ࢋ࢐ ⋅ ࢔ = 0 where ࢔ is the unit normal to the intake surface. While it would be preferable to 

deduce this result from a more general boundary condition, it guarantees a plasma potential profile upstream of 

the emissive region that is smooth and adapts itself to rest of the solution. This assumption is safe as long as the 

emission region remains far from the inlet boundary condition (e.g. in the NSTAR BaO cathode described here).  

Ions and neutrals: 
For ions, a non-reflecting ghost cell boundary is used. Neutrals are introduced in the domain with a radially 

parabolic velocity profile normal to the inlet boundary (i.e. a Poiseuille flow profile). A reference neutral density 

at the inlet is obtained from the first simulation domain node on the axis facing the inlet. The maximum velocity 

of the profile is then determined by setting the total flux at the inlet to a desired value (a few SCCM). The 

temperature of the incoming gas is set to that of the cathode tube near the inlet boundary. 

4. ANODE BOUNDARY 
The electron collecting anode boundary is designated by the number 7 in fig. 2. A uniform electron current 

density is drawn from this electrode totaling the set discharge current. The electron fluid internal energy loss at 

this boundary corresponds to the advection flux (5 2⁄  see Eq. (24)). Ions are headed towards this boundary ,ࢋ࢛௘݌ 

at the Bohm velocity (see Eq. (25)) and recombined. The anode boundary acts as a metallic wall for the neutral 

flow and includes a neutral flux for recombined ions. 

In simulation results, we observed a qualitative influence of both the radius and length of the anode as they 

define in our model the collection electron current density. The use of a much smaller anode led to a higher 

resistivity in the plume (mostly because of streaming instabilities, see section IV) and thus to a higher discharge 

potential. Simulation results were not affected for larger anodes though (in that case, streaming instabilities are 

mostly controlled by the electron current density in the cathode orifice region and not the anode geometry). 

Experimentally, the chosen anode geometry is known to influence the plume plasma (see Ref. [35] for instance) 

and this effect could in principle be analyzed in our model. This would require however an improved description 

of the anode boundary (using a more physical sheath model) as well as the use of a kinetic description of ions in 

the plume (as the plasma density falls rapidly away from the cathode). This is outside the scope of the current 

study. 
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5. OPEN BOUNDARIES IN THE PLUME 
The boundaries described in this section are numbered 5 and 6 in fig. 2. These boundaries do not correspond to a 

physical boundary of the system. 

Electrons 
The electron current density crossing these boundaries is set to 0. Thus, all of the electron current extracted from 

the cathode leaves the domain through the anode boundary (and also through the keeper boundary), where the 

electron energy flux is specified independently from the electron temperature inside the domain (see section 4). 

As a consequence of these boundary conditions and of the resistive electron heating in the cathode, the electron 

temperature may build up in the plume owing to the lack of a sufficient electron energy flux leaving the domain. 

We introduce an arbitrary electron thermal diffusion flux leaving the domain at boundaries 5 and 6 (see fig. 2) 

towards a fictive background at null temperature. The exiting thermal flux is set to: 

௘ݍ = )௘ߣ ௘ܶ − ௘௙௙ (34)ܮ/(0

where ௘ܶ  is the electron temperature at the considered boundary and ܮ௘௙௙ an effective diffusion length which is 

set to 1 ܿ݉ ௘ߣ .  is the electron fluid thermal conductivity [27]. ߣ௘  is inversely proportional to the electron 

collision frequency ߥ௘  and since both the gas and the plasma may be very tenuous at these boundaries, ߥ௘  has 

been set here arbitrarily to 10଺  ଵ . This sets an upper limit to the electron energy flux leaving the simulationିݏ 

domain. Albeit unphysical, the boundary condition described here was found not to influence the behavior of the 

cathode in any of the operating points studied here (both in this paper and our companion paper [17]). The 

simulated electron temperature on the domain boundary discussed here is on the order of a few tenths of eV. 

Ions and neutrals 
We set the following ion loss flux across the boundary: 

Γ௜ = ݊଴  ቀminቀmaxቀଵ
ସ
ܿ௜̅ , ௜ୄቁݑ , ஻ቁቁ, with ܿ௜̅ݑ = ට଼௞ಳ்೔

గெ
 and ݑ஻ = ට௞ಳ ೐்

ெ
 (35)

where ݊଴  is the local plasma density and ݑ௜ୄ  the ion velocity normal to the domain boundary. The 

quantity  1 4⁄  ݊଴ܿ௜̅  is the ion flux across the boundary expected from a maxwellian distribution of ions at 

temperature ௜ܶ, The ion flux Eq. (35) guarantees that some ions are always lost across the boundary (due to their 

diffusion outside of the simulation domain) and ensures at the same time that ions are not accelerated beyond the 

Bohm velocity. Since the Bohm velocity is a characteristic of the transition to a non-quasi-neutral region in a 

plasma sheath, this would be incompatible with our assumption of quasi-neutrality in the model. In Eq. (35), we 
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compute the ion flux based on the velocity maxቀଵ
ସ
ܿ௜̅ , ௜ୄቁ rather than just ଵݑ

ସ
ܿ௜̅ so as to avoid any accumulation 

of ions during numerical transients at the domain boundary. The physically expected ion flux is recovered as 

soon as the correct velocity field is obtained. 

No neutrals are lost through the interstitial boundary between the keeper outer radius and the cathode (boundary 

5 in fig. 2). On boundary 6, we let the neutral gas freely expand and set the neutral pressure on this boundary to: 

௡݌ → ൞0 ܲܽ ௡ୄݒ ݁ݎℎ݁ݓ < ܿ௦,௡ ≔ ඨ5
3  
݇஻ ௡ܶ

ܯ  

௡݌ ݁ݎℎ݁ݓ݁ݏ݈݁

 (36)

Physically, we reduce the neutral pressure on this boundary to generate a pressure gradient and the expansion of 

the gas. This is physically sound as long as the neutral velocity normal to the boundary ݒ௡ୄ stays below the local 

sound velocity. Otherwise, the expansion of the gas could not possibly influence the flow upstream, hence the 

boundary condition (36). 

C. THERMAL MODEL EQUATIONS 

We solve the following heat conservation equation: 

ܿ௩
݀ܶ
ݐ݀ + સ ⋅ ࢗ = ܵு  (37)

where ܿ௩ is the volumetric heat capacity,  ܶ the local thermal domain temperature, ࢗ the heat fluxes and ܵு  a 

volumetric source term representing for instance the thermal energy supplied to the cathode by the heater during 

the cathode ignition (see fig. 3). In principle, the time evolution of the temperature inside the thermal domain 

could be described coherently with the plasma simulation. This however would lead to unpractically long 

computations since durations of the order of thermal relaxation time would then have to be simulated. To 

alleviate this problem, we neglect the transient phase of the system and use ܿ௩ =  ଵ for the whole thermalିܭ.ܬ 1

domain so as to accelerate the convergence to a stationary thermal distribution. Therefore, the term ݀ܶ/݀ݐ is 

present in the numerical model but the characteristic evolution time is shorter than in reality. Numerically, this is 

akin to a relaxation approach of the steady-state solution of the heat equation. We retain however the physical 

behavior of the discharge since this value is still high enough to forbid any direct coupling between plasma and 

thermal modes. In the thermal model, radiative fluxes between the surfaces have been neglected w.r.t. heat 

conduction fluxes. Inside the interior region of the cathode, the gas is optically thick to thermal radiation 
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wavelengths (see section I). Thus the thermal radiation emitted at the surface of the hot emissive insert remains 

trapped close to the wall and radiative transfer between surfaces facing the discharge chamber may be neglected. 

D. THERMAL DOMAIN & BOUNDARY CONDITIONS 

We describe here the domain representing the thermal aspects of the cathode. This region encloses the discharge 

chamber described in fig. 2. Missing dimensions in fig. 3 are consistent with those defined on fig. 2. 

All information given here about the thermal design of the cathode have been either obtained from the literature 

on general hollow cathode design[29] or from articles which did specifically focus on the NASA NSTAR 

cathode[2]. Missing dimensions and parameters were deduced through fitting of numerical simulation results to 

experimental data obtained for the same NASA NSTAR cathode. Even if the simple thermal model used here 

does not account for the full complexity of the cathode, it provides a close enough agreement with available data 

(see our companion paper [17]) enabling us to investigate the physics and requirements of hollow cathode 

operation in self-heated regime. 

 

Figure 3: Schematic of the thermal simulation domain. All dimensions are in millimeters. Wave-like symbols represent 
radiative boundaries. 

The basic geometry of the cathode is schematized in fig. 3. It is composed of a thin support tube which holds the 

emissive insert. The insert is maintained close to the exhaust behind an orifice plate. A heater filament is wound 

up around the tube to provide heating power during cathode ignition. For our purposes, it is treated as a filament 

enclosed in an electrically insulating ceramic. Plasma heat fluxes (resulting from electronic and ionic 

bombardment as well as electron emission) produce a net heating of the insert from the inside while external 

boundaries radiate away thermal energy. The rest of the energy is conducted to the base of the cathode where we 

set a Dirichlet boundary condition on the temperature: ܶ =  The temperature profile upstream of the .ܭ 300

emissive insert is mainly driven by conduction. Thus, we reduce the thermal computation domain by replacing a 

segment of the tube with an equivalent thermal resistance (double dash in fig. 3). We also account for an 

imperfect thermal contact between the insert and the cathode tube through an interfacial surface conductivity[2], 
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which we set to ߪ = 800 ܹ.݉ିଶ.ିܭଵ . We found that this value provides the best agreement between the 

simulated emitter temperature profile and measurements. Assuming that the heat transfer between these two 

surfaces is purely radiative and that the radiative flux is close to that of a black body at 1400 ܭ  (a rough 

estimation of the emitter temperature[2]), we obtain that ߪ should be on the order of 600 ܹ.݉ିଶ.ିܭଵ. This 

estimation is obviously very approximate as both the true emissivity of the materials and the diffusion of barium 

in the gap between the emitter and the tube may alter the true value of ߪ. However, this estimation shows that the 

value of ߪ chosen in the model remains physically plausible. 

The temperatures reached in the emissive insert and the temperature gradient depend strongly on the thermal 

conductivity of the emitter ߣ௘௠௜௧௧௘௥. It is however difficult to estimate the latter for barium impregnated cathodes 

since the emissive material used is a complex composite made of barium oxide deposited on a tungsten matrix. 

The conductivity of the emitter was determined by comparison between the simulated and observed thermal 

gradient along the insert. The best fit to experimental insert temperatures was obtained for the thermal 

conductivities list in table 1. Likewise, surface emissivities were fine-tuned to adjust the simulation results to 

measured temperatures. 

Cathode part (Material) Thermal conductivity 
(W. mିଵ. Kିଵ) 

Surface emissivity 

Emissive insert (BaO-W) 95 - 
Heater (Al2O3) 90 0.11 

Tube (W) 100 0.33 
Orifice plate (W) 110 0.25 

Table 1: Themal model parameters 

We note however that the thermal model described here does not include a keeper and additional radiation 

insulating elements which might help lowering radiation losses. Thus our surface emissivities represent rather 

lumped coefficients than strictly physical emissivities. The low value used for the exterior side of the heater 

region is justified by the use of radiation shielding[29], while the emissivity of the non-insulated region roughly 

agrees with reported values for tungsten[2]. A probable material used for each cathode part in some 

designs[12,29] is also reported in table 1. The various thermal parameters roughly agree with the properties 

expected from these materials. In the simulation results, we observed a large sensitivity to the thermal 

conductivity of the emissive insert (which “controls” the temperature gradient along the emitter) and to the 

thermal conductivity of the cathode tube (which sets the minimum insert temperature for a given support tube 

length), although the qualitative behavior of the cathode is not affected by a relative modification of 20 % of the 

thermal coefficients. 
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Radiative heat fluxes on the plasma side are neglected. 

Specifically, the following boundary conditions are implemented in the thermal model: 

 Surface to ambient radiation flux 

Radiated thermal energy reads: 

௥௔ௗݍ = ௌ஻ߪ௦௨௥௙ߝ ௦ܶ௨௥௙
ସ  (38)

where ߝ௦௨௥௙  is the surface emissivity, ߪௌ஻ = 5.67 × 10ି଼ܹ.݉ିଶ.ିܭସ the Stefan-Boltzmann constant and ௦ܶ௨௥௙  

the local surface temperature. Ambient temperature is neglected. 

 Thermal conduction to the cathode base 

At cathode base boundary (leftmost in fig. 3), we set the following exiting thermal conduction flux: 

௖௢௡ௗ௨௖௧௜௢௡ݍ = )௧௨௕௘ߣ ௟ܶ௢௖௔௟ − ௦ܶ௨௣௣௢௥௧)/ܮ௧௨௕௘   (39)

where ߣ௧௨௕௘  is the thermal conductivity of the cathode tube,  ௟ܶ௢௖௔௟  the local thermal domain temperature, 

௦ܶ௨௣௣௢௥௧  the set cathode support temperature and ܮ௧௨௕௘  an additional tube length outside the simulation domain 

(2.5 cm for the NASA NSTAR cathode geometry). 

 Plasma heat fluxes 

We neglect conduction fluxes through plasma sheaths. Ions and electrons (both absorbed and emitted) carry 

energy to and from the emissive wall. We obtain the following energy flux along the normal exiting the thermal 

domain toward the plasma domain: 

௣௟௔௦௠௔ݍ = −Γ୧ ቀ
ଵ
ଶ
݉௜ݑ஻ଶ + ݁(߶଴ − ߶௕) + ௜௢ቁߝ − Γ௘௔௕(2݇஻ ௘ܶ + ݁߶௕) + Γ௘௘௠(2݇஻ ௪ܶ + ݁߶௕)   (40)

where Γ௜ ,Γ௘௔௕ and Γ௘௘௠ are respectively the ion, absorbed plasma electrons and emitted electrons fluxes(all taken 

positive). ݑ஻  is the Bohm velocity, ߶଴  the sheath potential, ߶௕  the work-function potential barrier (see the 

appendix) and ߝ௜௢  the first ionization of potential of Xe. ௪ܶ  is the local wall temperature. We use here the 

hypothesis that according to classical sheath theory, ions are quasi-monoenergetic and enter the sheath at Bohm 

velocity. Additional terms involving ߶଴  and ߶௕ account for the rise and fall of species through the potential 

barrier depicted in fig. A-1. The heat flux given by eq. (40) was already used in an already published coupled 

plasma-thermal model of a hollow cathode [2]. 
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At cathode ignition, we first establish a stationary temperature profile in the emitter: neglecting any thermal flux 

between the plasma and the cathode walls, we set a uniform heating source term in the heater totaling 45 ܹ. 

Once a stationary temperature profile is obtained, we turn off the heater and initiate the coupling with the plasma 

simulation. 

III. FIRST COMPARISON WITH EXPERIMENTAL DATA 

The plasma simulation domain is discretized using a non-uniform logically Cartesian mesh comprising 1880 

nodes (710 in the internal region of the cathode). The mesh is the most fine in the vicinity of the orifice (the 

characteristic cell size is 50 ݉ߤ). A similar mesh has been used for the thermal domain with little over 1500 

nodes. Fluid conservation equations for neutrals and ions are solved using a second-order in space Kurganov-

Tadmor explicit scheme [36]. The time step is set by the Courant Friedrichs Lewy criterion in [36]. Current 

conservation equation (18) and electron energy equation (24) are solved implicitly in time (using Euler backward 

discretization). The resulting discretized equation systems are solved following the Newton method, written as 

matrix equation systems and then solved with a direct sparse matrix solver. We consider that the solution found 

with this iterative method is converged once the numerical error for both the plasma potential and electron 

temperature is below 0.01 ܸ and  0.01 ܸ݁ everywhere in the domain and at the boundaries. 

Before proceeding to simulations of the cathode, the model has been validated through comparison with the 

analytical solution for a plasma in a closed metallic box, and with a Poiseuille flow for the neutral model inside 

the cathode. Mesh convergence has been ascertained through simulations performed on a mesh twice as fine (in 

each direction). These have shown only weak modifications of both the peak plasma density (it varied by less 

than 5 %) and discharge potential (a variation of 0.03 V is obtained) w.r.t the simulation results shown here. 

A set of measurements of both the plasma properties (plasma density, plasma potential and electron temperature) 

and of the temperature distribution along the emitter has been published for the NASA NSTAR barium oxide 

cathode [2,8,9,13]. We seek to validate our numerical model on the basis of this body of experimental data. 

Instead of immediately comparing the full numerical model (which includes both the thermal and plasma 

models), we first set the temperature profile of the emitter according to measurements [2]. For this validation 

case, we will focus on the NASA NSTAR TH 15 operating point of the cathode [28]: the discharge current 

collected from the cathode will be set accordingly to ܫ௘ = and the xenon flow rate to ܳ௑௘ ܣ 13 =  The .ܯܥܥܵ 3.6
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current collected from the keeper is set to ܫ௘ =  Simulations that result from the coupled model (both .ܣ 1.5

plasma and thermal aspects) will be compared to measurements in a companion paper [17]. 

In practice, the NSTAR cathode is designed to provide the discharge current in the ionization chamber of the 

NASA NSTAR gridded thruster and thus operates in presence of a magnetic field (on the contrary to HTs 

cathodes). When tested in diode mode, an axial magnetic field whose maximum magnitude is on the order of 

 is applied to replicate the magnetic topology of the thruster [13]. Our main goal here is to study the ܩ 100

physics of cathodes designed for HTs which operate outside of magnetic field lines and thus, most simulation 

results shown here do not include an applied magnetic field. Therefore, simulations results obtained here might 

not represent the best possible match to experimental measurements. However, we anticipate that the absence of 

magnetic field will not have much influence on simulation results inside the cathode, since the dense collisional 

plasma there forbids any strong magnetization of the electrons (indeed, in the orifice, we may estimate the Hall 

parameter ℎ = ௖߱௘/ߥ௘ ≈ 0.02  with ௖߱௘  the electron cyclotron pulsation and ߥ௘  the total electron collision 

frequency). In our companion paper [17], we will briefly discuss the influence of the applied magnetic field on 

the plasma in the plume of the cathode.  

The temperature profile set to the emitter is shown in fig. 4. It corresponds to temperature measurements 

available in [2]. 

 

Figure 4: Emitter temperature profile set in plasma simulations of the cathode (no coupling to the thermal model) for the ܫ௘ =
and ܳ௑௘ ܣ 13 =  simulation case. The downstream boundary of the emitter (closest to the orifice plate) is located at ܯܥܥܵ 3.6

an abscissa of 2.5 ܿ݉ on the figure. The polynomial expression written here is used to specify the emitter temperature as a 
function of the normalized length ݖ along the emitter. 

In this paper we will focus on a comparison between the simulated quantities (plasma density, plasma potential, 

electron temperature) along the centerline of the cathode and their experimental counterparts. A physical analysis 

of the plasma inside and outside the cathode is saved for our companion paper [17].  
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Figure 5 shows a comparison of the simulated plasma density and plasma potential to measurements available in 

the literature for the NSTAR cathode. Two simulated cases are shown on each plot, depending on the assumption 

of either a porous (ܭாெ = 2) or nonporous emitter (ܭாெ = 1) (see section II.B.1).  

(a) (b) 

Figure 5: Comparison of the simulated plasma density (a) and plasma potential (b) to experimental measurements along the 
axis of the NSTAR cathode at ܫ௘ = and ܳ௑௘ ܣ 13 = ாெܭ) The influence of the porosity of the emitter .[13] ܯܥܥܵ 3.6 = 2) 

vs the non-porous case (ܭாெ = 1) is also shown. 

The simulated plasma densities inside the cathode for both simulation cases (either with or without a porous 

emitter) shown in fig. 5 (a) are in good qualitative agreement with experimental measurements. Compared to the 

non-porous emitter case (ܭாெ = 1), the simulation with a porous emitter (ܭாெ = 2) shows a steeper plasma 

density gradient towards the cathode inlet (decreasing abscissas in fig. 5) and the plasma is more tightly 

localized close to the orifice. In the simulation case ܭாெ = 2, in the interior region of the cathode, the difference 

between the simulated and measured plasma density is close to experimental error bars.  

In the plume, the simulated plasma density for both cases (ܭாெ = 1 and ܭாெ = 2) is almost identical and drops 

much faster than experimental measurements in the downstream direction. This difference is most certainly due 

to the lack of an applied axial magnetic field in the simulation, which confines the electrons in the radial 

direction (i.e. the anode direction) in the experimental setup. In simulations of the same cathode under the same 

operating conditions in which the applied magnetic field was accounted for, Mikellides et al. showed much 

better agreement with the plume density measurements [3]. Yet we will see in section IV that the excitation of 

plasma instabilities in the plume may cause an increase in plasma density there as well, even in the absence of an 

applied magnetic field. 

The simulated plasma potential profiles for both simulation cases (fig. 5 (a)) are qualitatively different from 

experimental measurements. Inside the cathode towards the gas inlet, the simulated plasma potential for both 
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cases drops quasi-linearly with the distance from the orifice along the centerline, while measurements data 

exhibit a plateau. The approximate treatment of the emitter porosity (ܭாெ = 2) alone cannot be blamed for the 

disagreement between simulated profiles and measurements, as it only increases the slope of the plasma potential 

which is already visible in the non-porous case (ܭாெ = 1). We note that both a similar slope of the plasma 

potential along the axis in the non-porous case and its steepening when porosity is taken into account were 

observed in earlier simulations available in the literature for this cathode and this operating point [8]. Even if a 

more sophisticated model of the porosity was presented and used in [8], simulation results for the plasma 

potential remained in strong disagreement with experimental data available in [13]. We also observe that in 

measurements [13], the shape of the plasma potential in the interior region of the cathode seems to depend on the 

operating point: whereas a plateau is observed when the discharge current is set to ܫ௘ =  a linear decrease ,ܣ 13.1

along the cathode axis is measured for a discharge current of 8.2 ܣ. Regarding this specific feature of the plasma 

potential in the ܫ௘ =  .case, both the model accuracy and experimental data may be questionable though ܣ 13.1

Indeed, Mikellides et al. noted in [37] that while a qualitative difference is observed between the simulated 

electric field deep inside the NSTAR cathode and available data, the very same model produced a good 

agreement with experimental data that includes measurements of ௘ܶ , ߶ and ݊ obtained for a similar in design but 

larger hollow cathode (the NEXIS hollow cathode). This gives credit to their cathode model and sheds some 

doubt on the interpretation of experimental data in this region. We argue below, based on our current 

understanding of the cathode, that the experimental data for the plasma potential deep inside the NSTAR cathode 

does not follow the qualitatively expected trend. We also suggest a potential source of error in our model if 

measurements are indeed correct. 

In the plume of the cathode, the simulated plasma potential profile differs as well from measurements. Both 

simulation cases display a non-monotonous evolution of the plasma potential along the centerline of the cathode, 

whereas the measured plasma potential steadily increases towards the plume. The discharge potential at the 

anode is moderately affected by the porosity of the emitter: with the discharge current set to ܫ௘ =  its value ,ܣ 13

is 11.8 ܸ in the ܭாெ = 1 (non-porous) case vs. 10 ܸ in the ܭாெ = 2 case. A drop in the discharge potential was 

expected in the ܭாெ = 2, as the larger apparent emissive surface leads to a larger emitted current (since the 

emitter temperature profile is set). A smaller fraction of the total emitted current electron needs to be extracted 

and thus, the sheath potential which limits the electron current falling back on the walls needs not to be so high 

as in the ܭாெ = 1 case: the maximum sheath potential in front of the emitter is 4.9 ܸ in the ܭாெ = 2 case vs. 

7.9 ܸ in the ܭாெ = 1 case. Hence the lower discharge potential. 
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It is certain that accounting for the applied magnetic field in the model can alter radically the plasma potential 

profile in the plume (as will be shown in our companion paper [17]), and lead to a better agreement between 

simulation results and experimental data. However, as it has been shown in past work by Mikellides et al. [3,35], 

other phenomena related to electron streaming instabilities in the plume may produce a time-averaged potential 

profile similar to the one measured for this cathode and shown in fig. 5 (b). This will be discussed below in 

section IV.  

Lastly, we compare in fig. 6 the simulated electron temperature profiles (for both ܭாெ = 1 and ܭாெ = 2) to 

measurements [8,13]:  

 

Figure 6: Comparison of the simulated electron temperature to experimental measurements for the NSTAR cathode at ܫ௘ =
and ܳ௑௘ ܣ 13 = ாெܭ) The influence of the porosity of the emitter .[8,13] ܯܥܥܵ 3.6 = 2) vs the non-porous case (ܭாெ = 1) 

is also shown. 

Inside the cathode, the order of magnitude of the simulated electron temperature matches experimental data. 

However, the electron temperature decreases too steeply towards the inlet of the cathode (decreasing abscissas) 

in the ܭாெ = 2 (porous emitter) case w.r.t. to the measured trend, while the ܭாெ = 1 case is more similar to 

measurements (we neglect here the large experimental uncertainty w.r.t. the absolute electron temperature). It 

was suggested in [8] that the effective emissive surface of the emitter (the surface of the pores contributing to the 

emission) might be inversely proportional to the Debye length, in which case the value of ܭாெ  should vary 

spatially (see the discussion below), and decrease towards the inlet of the cathode (see fig. 5 (a)). This could 

explain the better agreement between measurements and the simulated electron temperature profile in the ܭாெ =

1 case w.r.t. the ܭாெ = 2 case (once again, the experimental uncertainty on ௘ܶ  is neglected). 

In the plume, the simulated electron temperature decreases as the plasma expands into vacuum, while 

measurements show an increase of the electron temperature. When compared with the simulated plasma 

potential profile (fig. 5 (b)) in the plume, it is tempting to conclude that the model presented so far lacks a 
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mechanism that may enhance the effective resistivity in the plume and heat electrons there. We will see below in 

section IV, that the excitation of plasma instabilities may provide such a mechanism, as also postulated by 

Mikellides et al. in [3] and later confirmed experimentally by Jorns et al. in [14]. 

It is interesting to compare the experimentally measured profiles for the plasma density, plasma potential and 

electron temperatures deep inside the cathode in figs. 5 and 6, close to the abscissa 2.5 ܿ݉: while the plasma 

density drops by one order of magnitude over half a ܿ݉, both the plasma potential and electron temperature stay 

almost constant. We also know from simulations (see our companion paper [17], and also simulations published 

in the literature [8]) that, in this cathode, only the first half cm (starting from the orifice) significantly contributes 

to thermionic emission. Thus, we might expect the plasma density deeper inside the cathode to approximately 

follow Boltzmann relation and yet, this is clearly not the case, as the plasma density sharply decreases. This 

suggests a reexamination of experimental measurements on that aspect. However, if the measurements inside the 

cathode are to be trusted, it is difficult to explain the observed trends without invoking a missing mechanism in 

the model. For instance, a strong coupling of the plasma to the walls even in the weakly emissive region of the 

emitter (i.e. deep inside the cathode) through a more intense than expected electron return-current to the emitter 

wall would invalidate the use of Boltzmann relation. Such a return-current could be explained by the complex 

physics of the penetration of a plasma inside a porous material [38] which might expose a larger than expected 

effective surface of the emitter to the plasma and lead to a larger electron absorption current density. In reality, 

the situation is rendered even more complex by the role of electron emission.  

In this section, we have seen that when the temperature of the emitter is set to an experimentally measured 

profile, a close agreement (close to the ± 50 % experimental error bars) between the simulated plasma density 

profile and measurements is obtained inside the cathode. In the plume, we have seen that simulation results, and 

in particular the simulated plasma potential are in strong disagreement with measurements. In the cathode 

modeling literature, an anomalous resistivity associated with streaming instabilities was first postulated in 2005 

as a mechanism to correct simulation results for these differences. [1]. Because of the success of this approach 

[3], these instabilities have since been one of the core topics of several cathode studies [3,13,35]. Only much 

later have Jorns et al. clearly shown the occurrence of such instabilities in the plume of high current hollow 

cathodes experimentally [14] and thus confirmed early simulation hypotheses. Based on this experimental 

evidence, as well as on insight from earlier numerical models, we show in section IV through an extension of our 

model how these phenomena might explain some of the discrepancies observed between our simulations results 
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and measurements. We will also present a self-consistent set of supplementary equations used in the model to 

describe these instabilities in the near plume of the cathode. 

We have seen that accounting for the porosity of the emitter (through a constant emission amplification 

coefficient) plays an important role in obtaining a correct quantitative agreement between the simulated and 

measured plasma density profiles inside the cathode. It may be argued that our approach of the porosity is 

simplistic and unphysical as the variations in the local plasma density surely affect the penetration of the plasma 

in the pores, and in the end, the exposed emissive surface. A potentially more physically accurate model of the 

porous emitter has been presented in the literature [8]: it relies on the expansion of the ion fluid in a (cylindrical) 

pore to determine its density, and under the assumption of quasi-neutrality inside the pore, the Debye length 

along the axis of the pore is obtained. Comparing the Debye length inside the pore to the diameter of the pore 

yields a maximum usable length of the pore and an effective emissive surface. An emissive sheath model is then 

applied to compute the emission current density from the lateral side of the pore and uses the simulated plasma 

properties at pore entrance as an input. This model of the porosity crucially depends on the assumption of quasi-

neutrality inside the pore and on the velocity of ions normal to the pore entry section, which is set in [8] to the 

Bohm velocity ඥ݇஻ ௘ܶ/ܯ. However ion continuity equation requires that ions lost at the laterals sides of the pore 

(at Bohm velocity, according to the sheath model) enter the pore in the first place with a higher velocity than the 

Bohm velocity. Yet, setting the correct ion velocity at the pore entry using expressions in [8] does not allow one 

to conclude on the usable length of the emitter anymore (the variation of the Debye length along the axis of the 

pore vanishes).  

In light of these difficulties we have chosen a much simpler approach and assumed that the emissive sheath 

“fills” the pore, in which case ion and electron currents collected at the wall are still given by Eqs. (25) and (26) 

while the emitted current is increased by an arbitrary factor ܭாெ = 2 due to the larger emissive surface relative 

to the pore entry surface. 

Some strong hypotheses were used to establish the fluid numerical model (section I): namely, we assumed that 

inelastic collisions between electrons and neutrals do not lead to an energy loss for electrons (because of the 

reabsorption of the emitted radiations during de-excitation in the optically thick fluid) and we considered the 

production of ions exclusively through direct electron impact ionization. We assess the importance of these 

hypotheses in the model by including an effective electron energy loss for every created ion-electron pair to 

represent radiative losses (30 ܸ݁ per ionizing collision, in addition to the true ionization energy threshold ߝ௜௢) as 
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well as an effective ionizing collision rate associated with stepwise ionization. Both phenomena (considered 

individually, with ܭாெ = 1) did not alter the simulated plasma density profiles in the interior region by more 

than 10 % relative to the plasma density profile with ܭாெ = 1 in fig. 5 (a). The simulated plasma potential 

profiles in the interior region stayed for both cases within 1 volt of the original profile (fig. 5 (b), ܭாெ = 1).  

Accounting for the azimuthal magnetic field induced by the electron current in the orifice was also considered 

but was seen to negligibly influence the plasma: due to the frequent electron collisions, the induced magnetic 

field (about 60 ܩ locally in the orifice) was insufficient to magnetize electrons and the simulated deviations from 

the plasma density and potential profiles were negligible. Therefore, we did not include these phenomena in the 

rest of this study. 

IV. STREAMING INSTABILITIES 

A. MODELING 

Downstream of the orifice, the plasma density quickly drops as the plasma expands in the plume (see fig. 5 (a)). 

Electron current conservation leads to an increase of the electron velocity in the plume, and eventually to the 

onset of electron drift-instabilities as the electron drift velocity relative to ions exceeds the ion acoustic velocity. 

Experimentally, the occurrence of ion acoustic instabilities in the plume of discharge hollow cathodes has been 

linked to plasma potential oscillations, to an enhanced resistivity in the plume region [13,35] and to the 

generation of energetic ions which ultimately erode the orifice plate and the keeper electrode [3,13].  

Ion acoustic instabilities cannot be readily described by the quasi-neutral plasma model presented in section II. 

Previous attempts at including the effects of ion acoustic instabilities in numerical cathode models through an 

effective electron collision frequency ߥ஺ே have been presented in the literature [3–5]. Most of these models use 

an expression akin to: [5] 

௘஺ேߥ = ௘ܯ௣௜߱ ߙ = ௣௜߱ ߙ ௘/ܿ௦,௜ (41)ݑ 

In Eq. (41), ߙ is an adjustable coefficient, ߱௣௜  the ion plasma frequency and ܯ௘ =  ௘/ܿ௦,௜ the electron Machݑ

number, where ܿ௦,௜ = ඥ݇஻ ௘ܶ/ܯ is the ion acoustic velocity. This expression was originally derived by Sagdeev 

and Galeev back in 1969 (see for instance [39]). 

Accounting for the enhanced resistivity in the plume region is important in simulating the experimentally 

measured discharge potential at the anode, and the factor ߙ in Eq. (41) was adjusted accordingly in [5] (values 
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suggested for ߙ range from 1 to 15). Even if this expression has had success reproducing the experimentally 

measured plasma potential profile in the plume [3], it also describes the anomalous resistivity only in the 

saturated regime (i.e. once the amplitude of ion acoustic waves is limited by Landau damping [40]) and thus it is 

only able to represent a time-independent averaged resistivity profile in the plasma. 

Experimentally, plasma potential fluctuations in the 50−  range appear when the discharge current is ݖܪ݇ 500

set to ܫ௘ =  It is speculated [13,14] that these low frequency oscillations are associated not with ion .[13] ܣ 13.1

acoustic instability induced turbulence but with ionization instabilities. However, we note that we did not 

observe such instabilities in our (fully time-dependent) numerical simulations of the cathode, both with and 

without the inclusion of the anomalous resistivity given by Eq. (41). Here, we refine our description of the ion 

acoustic instability and include an effective description of its growth, transport and decay in our model so as to 

avoid the simplifying assumption of a continuously saturated instability. Thus, such a description also enables us 

to determine whether ion acoustic instabilities are susceptible to a long term low frequency evolution (w.r.t the 

ion acoustic frequency) due to the coupling with the plasma model described above. 

The model of the ion acoustic instability in the plume of the cathode that we present here is based on the works 

of Davidson & Krall [40] and we refer the reader to the literature for further details. The ion acoustic instability 

is described by the energy density contained in the electric field fluctuations ߝி. We focus here solely on the 

fastest growing unstable mode. Growth and transport of ߝி  for this mode is described by the following 

conservation equation: 

ிߝ߲
ݐ߲ + સ ⋅ ൬

ࢊࢂ
|ࢊࢂ| ܿ௦,௜ߝி൰ = ிߝெߛ2  (42)

where ࢊࢂ = ࢋ࢛ ெߛ is the electron drift velocity and ࢏࢛−  the maximum growth rate. The convective term in this 

equation was not originally included in [40] and was added here heuristically to model the transport towards the 

plume of fluctuations originally born close to the orifice, where the electron current density is its highest. The 

fastest growing mode propagates collinearly with the electron drift velocity, in agreement with [40]. 

The growth rate ߛெ  for the fastest growing mode is expressed as: [14,40] 

ெߛ =
ߨ√
9  ߱௣௜ ቐට

݉
ܯ
ቌඨ

3
௘ܯ2 − 1ቍ − ൬ ௘ܶ

௜ܶ
൰
ଷ
ଶ

exp ൬− ௘ܶ

3 ௜ܶ
൰ቑ −

1
2 ௜௡ߥ  (43)
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The first term describes the growth of the ion acoustic instability when the electron Mach number exceeds the 

unity. The analogy between this term and the simple anomalous collision frequency mentioned in Eq. (41) is 

clear. The second term in Eq. (43) corresponds to the Landau damping of ion acoustic waves and the third term 

to the dissipative effect of ion-neutral collisions on ion-acoustic waves [14]. We set ߥ௜௡ = ௜௦௢ߥ̅ +  .௕ (see Eqߥ̅

(9)). 

The simulated fluctuation energy density ߝி  then enables us to obtain an anomalous collision frequency for 

electrons: [40] 

௘஺ேߥ = ௣௘߱ߨ√2  
ிߝ

݊݇஻ ௘ܶ
 (44)

where ߱௣௘  is the electron plasma frequency. This expression is an asymptotic form of a more general expression 

[40] and is valid assuming that ܯ௘ ≫ 1 and that ߛெ ≪ ߱௣௘  (which is true since ߛெ  is proportional to ߱௣௜ , see 

Eq. (43)). The anomalous collision frequency ߥ௘஺ே  is added to the total electron collision frequency in the 

expression of the electron mobility, Eq. (15). 

In addition to the increased resistivity in the plume, the ion acoustic instability also leads to electron ܳ௘஺ே  and 

ion ܳ௜஺ே  heating terms. In the limit ܿ௦,௜ ≪ ௗܸ ≪ ௘ݒ  (where ݒ௘ = ඥ݇஻ ௘ܶ/݉ is the electron thermal velocity), 

these are given by the following expressions: [40] 

ܳ௘஺ே =
ிߝ߲
ݐ߲

൫3√6 ܯ௘ − 4൯ (45)

ܳ௜஺ே = 3 
ிߝ߲
ݐ߲  (46)

These heating terms are added to the RHS of electron and ion energy conservation equation, Eqs. (24) and (23). 

In the limiting case where fluctuations transport is unimportant, we have ߲ߝி/߲ݐ = ிߝெߛ2  (see Eq. (42)). It is 

then interesting to note that the following energy balance is verified in the asymptotic limit ܯ௘ ≫ 1: 

ிߝ߲
ݐ߲ + ܳ௘஺ே + ܳ௜஺ே = −

߲
ݐ߲
൬

1
2݊݉ ௗܸ

ଶ൰ = ݊݉ ௗܸ
ଶߥ௘஺ே (47)

The fact that this energy balance is verified is a sanity check for the expressions used here as it is well known 

that, overall, energy is conserved between instability growth (at the expense of electron drift energy) and 

dissipation as ion and electron heating. 
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Eqs. (42) and (43) describe the growth of the instability in the quasi-linear regime assuming the electron and ion 

distribution functions remain almost maxwellian. Therefore, it cannot describe the inherently kinetic instability 

saturation mechanisms [40]. As suggested in [40], we introduce a maximum value for ߝி proportional to the 

electron fluid internal energy: 

ெ஺௑[ிߝ] = ௡ߙ ೐்݊݇஻ ௘ܶ, with ߙ௡ ೐் ∈ [10ିଷ, 10ିଶ]  (48)

The parameter ߙ௡ ೐் corresponds to the maximum fluctuation energy threshold due to kinetic effects and the 

range suggested here corresponds to physically plausible values based on Particle-In-Cell simulations of the ion 

acoustic instability [40]. Since the growth of the instability is exponential (Eq. (42)), it is necessary to assign a 

minimum non-null value to ߝி. We take [ߝி]ெூே = 10ିଷ ×  ெ஺௑. This value is sufficiently small to cancel[ிߝ]

any effect of the ion acoustic instability where the conditions are not met for its growth. 

It is important to note that this instability model does not force any non-stationary behavior into the simulations: 

if plasma conditions are adequate (i.e. the instability grows faster than it is dissipated or convected out of its 

region of growth close to the orifice), ߝி  may very well continuously reach the saturation threshold (48), in 

which case the electron anomalous collision frequency (44) becomes proportional to √݊ , as in the time-

independent anomalous collision frequency (41). The missing dependence to ܯ௘ in Eq. (44) (w.r.t the anomalous 

collision frequency. (41)) is contained in the growth rate of the instability (Eq. (43)). 

We will determine in the next section the value of ߙ௡ ೐் which leads to best match between fluid simulations and 

experimental measurements in the NSTAR cathode for a discharge current of ܫ௘ = ௡ߙ The value of .ܣ 13 ೐் will 

then remain unchanged for the rest of this study. 

B. INFLUENCE ON SIMULATION RESULTS 

We now show the influence of ion acoustic instabilities depending on the value of the parameter ߙ௡ ೐்  on 

simulation results. The simulations shown here are carried out under the same conditions as the ones in section 

III. No external magnetic field was applied in simulations, on the contrary to the experimental setup in [13].  

Simulated plasma density and plasma potential profiles along the cathode axis for various values of ߙ௡ ೐் are 

shown in fig. 7. Once ion acoustic instabilities are taken into account, the plasma simulation becomes non-

stationary (mostly in the plume), and thus profiles shown below are temporal averages of the plasma density and 

potential.  
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 (a) (b) 
Figure 7: Influence of ion acoustic instabilities on the simulated plasma density (a) and plasma potential (b) along the axis of 
the NSTAR cathode. The profiles shown here are temporally averaged. The discharge current is set to ܫ௘ =  and the flow ܣ 13

rate to ܳ௑௘ =  .Experimental measurements are taken from [13] .ܯܥܥܵ 3.6

We see immediately in fig. 7 that including the ion acoustic instability inside the numerical model strongly 

affects the simulated quantities in the plume region. Inside the cathode, the plasma conditions are not favorable 

to the growth of the instability (both because of Landau damping and ion-neutral collisions), and the model 

correctly reproduces this behavior. Even a small value of ߙ௡ ೐் causes a strong rise of the plasma potential (and of 

the resistivity) in the plume (see fig.7 (b)) compared to simulations not taking into account the ion acoustic 

instability (ߙ௡ ೐் = 0 in fig. 7). When instabilities are taken into account, the simulated plasma potential profile 

in the plume becomes monotonous, and much more similar in shape to experimental measurements (fig.7 (b)). 

Ions, which follow mostly the time-averaged electric field are confined close to the orifice by the electric field, 

hence the increase of the plasma density in the plume region (fig.7 (a)) with non-zero values of ߙ௡ ೐். It should be 

noted that similar time-independent potential profiles may be obtained using the anomalous resistivity (41), as 

shown in the literature [3]. Yet, describing the growth of the instability introduces a more complex coupling 

between the fluid plasma model and the development of the instability which leads to an interesting fluctuating 

behavior in simulations that is further described below and in our companion paper [17]. 

Surprisingly, we observe that the simulation carried out with the lowest non-zero value of ߙ௡ ೐்(10ିଷ) leads to 

the strongest increase of the plasma potential in the plume, whereas the opposite might have been expected for a 

small fluctuation energy density. A closer examination of simulations shows that while results with ߙ௡ ೐் > 10ିଷ 

are non-stationary, results obtained with ߙ௡ ೐் = 10ିଷ are stationary and the fluctuation energy in the plume, ߝி, 

is continuously saturated to its maximum value (which depends on ߙ௡ ೐், see Eq. (48)), and so is the resistivity 

(Eq. (44)). On the contrary, for larger values of ߙ௡ ೐், the instability quenches itself temporarily because of ion 

and electron heating which modify the plasma conditions (Eqs. (45) and (46)). Actually, simulations show that 
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oscillations of the plasma potential in the plume become increasingly intense as ߙ௡ ೐் is set to higher values (see 

fig. 8). For large values of ߙ௡ ೐், successive oscillations of the plasma potential cancel themselves when averaged 

temporally and this leads to the profiles shown in fig.7 (b).  

 

Figure 8: Standard deviation of the simulated plasma potential oscillations in the plume of the cathode for various values of 
the ion acoustic instability threshold ߙ௡ ೐். The simulated cathode is the NSTAR cathode, the discharge current is set to ܫ௘ =

and the flow rate to ܳ௑೐ ܣ 13 =  .ܯܥܥܵ 3.6

It is also interesting to observe that plasma potential oscillations are born immediately downstream of the orifice, 

are the most intense close to the keeper exit plane and then decay in the plume (see fig. 8). The localization of 

plasma oscillations seems to match at least qualitatively the localization of experimentally observed plasma 

potential oscillations [13], even though a magnetic field was applied in the experimental configuration, which 

might modify the growth rate of the instability (both because of electron magnetization and of the higher plasma 

density). 

Once time averaged, the simulated electron temperature profile for the simulation case ߙ௡ ೐் = 3 × 10ିଷ does not 

differ much from simulation not taking into account the ion acoustic instability (fig. 6). However, the electron 

temperature becomes oscillating in the plume as well, and reaches periodically 5.5 ܸ݁ (when ߙ௡ ೐் = 3 × 10ିଷ) 

in a sharply localized region (half a cm long) in the keeper exit plane. Thus, is then tempting to associate this 

simulated localized electron heating with the experimentally observed luminous emission in the plume of hollow 

cathodes (the so-called cathode spot or cathode plume, depending on the discharge current) [13]. 

Choosing the value of ߙ௡ ೐் that best matches experimental results from these simulations alone is somewhat 

arbitrary, and even more so since most of experimental data for the NSTAR cathode are obtained with an applied 

magnetic field. However, we see in fig 7 that the mean plasma potential and plasma density profiles simulated 

for ߙ௡ ೐் ≥ 3 × 10ିଷ do not evolve much even when ߙ௡ ೐் is increased, while potential oscillations continue to 
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intensify (fig. 8) with increasing values of ߙ௡ ೐். Therefore, we choose for the rest of this study in our companion 

paper [17] the value ߙ௡ ೐் = 3 × 10ିଷ , as it leads to the most physically reasonable (monotonous) plasma 

potential in the plume. Smaller values would produce a larger averaged resistivity in the plume, and lead to an 

unphysically large plasma potential, while on the other hand, larger values of ߙ௡ ೐் could lead to an unrealistic 

oscillation of the electric parameters of the cathode . We also note that the value ߙ௡ ೐் = 3 × 10ିଷ is well inside 

the range deemed physically plausible in the literature [40]. 

A more in-depth analysis of the plasma instability and of its consequences on the cathode behavior for the case 

௡ߙ ೐் = 3 × 10ିଷ  will be carried out in our companion paper [17]. This value of ߙ௡ ೐்  is kept for all further 

simulation cases. 

When ߙ௡ ೐் = 3 × 10ିଷ, the simulated plasma density inside the cathode agrees with measurements within the 

experimental error margin, while in the plume, the simulated density profile only matches qualitatively 

measurements. Even if taking into account plasma instabilities improves the situation, it is obvious that the 

experimentally applied magnetic field plays a large role there, and we will see in our companion paper [17] that 

accounting for the magnetic field in the model enhances the agreement in the plume between plasma potential 

measurements. However, inside the cathode the simulated plasma potential remains very different from 

measurements, as in earlier attempts at simulating the plasma inside the NSTAR cathode [8]. 

We stress that the non-inclusion of magnetic field in simulations does not reduce the applicability of the model 

though, as our main interest concerns HTs cathodes, for which the ambient magnetic field is often negligible. We 

also mention that evidence for the occurrence of anomalous transport and plasma potential oscillations in the 

plume of hollow cathodes was reported even in the absence of an applied magnetic field for various cathode 

designs [14,35,41]. We also observe that the temporally averaged experimental potential profile shown in [35] 

for a 25 ܣ hollow cathode tested with a cylindrical anode and no applied magnetic field is similar in shape to 

simulation results shown in fig. 7 (b). At last, as will be shown in our companion paper [17], the instability 

model also enables our numerical model to represent self-consistently the non-stationary behavior and discharge 

potential oscillations observed for hollow cathodes at high discharge current [13] which might restrict the useful 

operation envelope of high current hollow cathodes. 

CONCLUSION 
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We have presented a generic model of a hollow cathode which describes consistently both the plasma discharge 

of the cathode and the temperature profile of the electron emitter. We first listed the main hypotheses of the 

model and then detailed the transient quasi neutral two dimensional fluid model of the plasma discharge which 

includes neutral xenon, single charge ions and electrons. An exhaustive description of the boundary conditions 

was provided and we laid a particular emphasis on the thermionic emission model as its capability to describe 

both the space charge and thermionic emission limited regime is quite new to the hollow cathode literature. We 

also described the thermal model of the cathode which enables computing the emissive insert temperature when 

coupled with the heat fluxes resulting from plasma bombardment. The thermal properties of the materials used in 

this model were explicitly enumerated.  

We then set the emitter temperature to an experimentally measured profile and compared the plasma model 

simulation results to measurements for the NASA NSTAR BaO hollow cathode. A good agreement of the 

simulation to the experience is obtained, and in particular in the interior region of the cathode where the 

simulated plasma density is close to experimental error bars. We shortly analyzed the source of the discrepancies 

we observe. We also presented a self-consistent numerical model of the ion acoustic instabilities which are 

observed in the plume of hollow cathodes and illustrated their influence on simulation results. For this last 

simulation case, the simulated plasma density inside the cathode agrees with experimental measurements within 

the experimental uncertainty. In the cathode plume, the comparison between the measured and simulated plasma 

density and potential profiles remains qualitative though.  

In our companion paper [17], we will couple the thermal model of the cathode to the plasma model and present 

an exhaustive physical analysis of one operating point. The consequences of the plasma instability model in the 

plume will also be further analyzed. Finally, we will present the results of a parametric study of the operating 

point and design of the NSTAR hollow cathode carried out with the coupled numerical model. 
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APPENDIX: NUMERICAL EMISSIVE SHEATH MODEL 

Depending on the local properties of the plasma in front of the emitter (plasma density and electron temperature) 

and on the potential drop across the sheath, electron emission may happen either in space charge limited or 

thermionic emission limited regime. As a result, the emitted current density differs radically in these two cases 

and to the authors’ knowledge, no general law is known to fit accurately both regimes. Thus it is important to 

continuously model the transition region in between where no analytical asymptotic description fits. The need 

for a numerical approach of the following collisionless emissive sheath model will appear clearly in the next 

paragraphs. 

1. HYPOTHESES 
The approach used here is largely based on an existing model by Lin and Eng[42] with the addition of ions and 

of electrons coming from the plasma bulk. 

The sheath is modelled here as a 1D planar non-collisional region, spanning from the grounded emissive material 

to the boundary of the quasi-neutral region (i.e. the point where the electric field becomes negligible). 3 

populations are accounted for: cold ܺ݁ା ions which fall toward the wall, electrons coming from the plasma bulk 

at temperature ௘ܶ  and a relatively cold beam of electrons emitted at the insert surface at wall temperature ௪ܶ. 

Both electron populations are maxwellian when entering the sheath. Two distinct populations have been taken 

into account since emitted electrons do not have sufficient time to thermalize with electrons from the bulk 

through collisions over the sheath thickness[19]. Secondary emission under charged particle impacts is 

neglected. 

 

Figure A-1: Schematic of the emissive sheath region showing a potentiel barrier due to image charges 

Page 40 of 48AUTHOR SUBMITTED MANUSCRIPT - PSST-101445.R2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



41 
 

Inputs to the sheath model are listed in fig. A-1: given the dependence of the work function of an emissive 

material on its temperature ௪ܶ, along with the plasma density at sheath entrance ݊଴, electron temperature ௘ܶ  and 

sheath height ߶଴ , we may compute the emitted current density ݆௘௘௠ . The potential barrier ߶௕  as well as its 

position are determined during calculation. Physically, this barrier results from induced image charges appearing 

inside the emissive material because of the presence of a non-null charge density in front of the wall. It stands 

typically a few tenths of a Debye length away from the wall. 

2. POISSON’S EQUATION IN THE SHEATH 
Applying Boltzmann’s relation over a sheath potential such as the one described in fig. A-1 would result in an 

increasing plasma bulk electron density in the vicinity of the wall. This is clearly an unphysical result and thus 

we instead opted for a kinetic description of electrons. 

We first express the density of an initially maxwellian population of electrons at wall temperature ௪ܶ having to 

cross a potential barrier. Following the derivation presented by Lin and Eng[42], the following expression is 

obtained (see Eq. 8a in their article): 

݊௘௘௠(߶) =
݆௘௘௠

݁ ඨ
௘݉ߨ

2݇஻ ௪ܶ
ቌ1 + ݂௘௠ ⋅ erfቌඨ

݁߶
݇஻ ௪ܶ

ቍቍexp ൬
݁߶
݇஻ ௪ܶ

൰ 

with ݂௘௠ = ൜ ݔ ݂݅  1   ∈ [௕ݔ,0]
ݔ ݂݅ 1−  ௕ݔ[ ∋   [଴ݔ,

(A1)

We see on Eq. (A1) that ݊௘௘௠ indeed decreases starting from ݔ = 0 to ݔ଴, which is the expected behaviour. 

An analogous treatment can be applied to plasma bulk electrons (initially maxwellian at temperature ௘ܶ ) to 

obtain their density ݊௘
௣(߶): 

݊௘
௣(߶) =

݊௘
௣
଴

ܭ
ቌ1 + ݂௣ ⋅ erfቌඨ

݁߶
݇஻ ௘ܶ

ቍቍexp ൬
݁߶
݇஻ ௘ܶ

൰ 

with ݂௣ = ൜−1  ݂݅ ݔ ∈ [௕ݔ,0]
ݔ ݂݅ 1  ௕ݔ[ ∋   [଴ݔ,

(A2)

Here ݊௘଴
௣ is the plasma bulk electron density at ݔ = a normalization constant ensuring that ݊௘ ܭ ଴ andݔ

௣(߶଴) =

݊௘
௣
଴. Note that the sign of ݂௣ is opposed w.r.t. that of ݂௘௠ in Eq. (A1). Physically, this comes from the density 

gradient of ݊௘
௣ which has to decrease toward the wall. 
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We then express the density of the mono-energetic population of ions. Using ion current and energy conservation 

and assuming ions enter the sheath at velocity ݑ௜బ, ion density in the sheath may be expressed as : 

݊௜(߶) = ݊௜଴ ቆ1 +
2݁(߶଴ −߶)
݉௜ݑ௜଴

ଶ ቇ
ିଵ/ଶ

 (A3)

where ݊௜ and ݊௜଴ are respectively the densities of ions at a specific point of the sheath and at sheath entrance. 

Under normal working conditions, it is reasonable to consider that the cathode plasma density is much higher 

than that of emitted electrons in the sheath. Thus, we will assume that ions enter the sheath with the usual Bohm 

velocity for a sheath in front of a non-emissive material, ݑ௜଴ =  ට௞ಳ ೐்
௠೔

 . 

Quasi-neutrality is enforced at sheath edge; consequently we obtain the electron density coming from the plasma 

bulk ݊௘
௣
଴ using: 

݊଴ = ݊௜(߶଴) = ݊௘
௣(߶଴) + ݊௘௘௠(߶଴) = ݊௘

௣
଴ + ݊௘௘௠(߶଴) (A4)

Lastly, the charges in the sheath induce image charges inside the emissive material. This contribution yields a 

singular term (at a position slightly inside the emissive material) to Poisson’s equation  with the dimension of a 

potential, named the Schottky potential ܳௌு [42]: 

∇ଶܳௌு =
2݁

ݔ)଴߳ߨ16 + ௗ)ଷݔ , where ݔௗ  is defined by ݁ܳ(ݔ = 0) = ߶ௐி  (A5)

Here ݔௗ is an offset ensuring that a single electron at ݔ = 0 has a potential energy of ߶ௐி , the work function of 

the material (see Eq. (29) for a BaO-W emitter). We note that the dependence of the work function toward the 

emissive material temperature is introduced here. 

Plugging equations (A1)-(A3) and (A5) into Poisson’s equation, the following differential equation is obtained: 

߳଴
݁  
݀ଶ߶
ଶݔ݀ = ݊௘௘௠(߶) + ݊௘

௣(߶) − ݊௜(߶) +
2

ݔ)ߨ16 + ௗ)ଷ (A6)ݔ

Because of the last term on the right hand side, this equation cannot be solved analytically and we resort to a 

numerical approach. 

3. SOLUTION METHOD 
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The sheath model assumes a set value of the net emitted current ܬ଴ for which we want to compute the sheath 

potential drop ߶଴  

To ensure the potential assumes the variation shown in fig. A-1, we require the following conditions: ߶(ݔ௕) =

ௗథ
ௗ௫

(௕ݔ) = 0. It remains to determine the height of the potential barrier ߶௕. Richardson-Dushman equation links 

߶௕ to the emission current density ݆௘௘௠ : 

݆௘௘௠ = ଴ܣ ௪ܶ
ଶ exp ൬−

݁߶௕
݇஻ ௪ܶ

൰ (A7)

where ܣ଴ = .ܣ 119.58 ܿ݉ିଶ.ିܭଶ is Richardson’s constant. Physically, this equation represents the current 

density of electrons initially inside the emissive material having enough energy to overcome the potential barrier 

and enter the plasma. 

Given the emission current ݆௘௘௠  and assuming an initial guess for ߶଴ , we first obtain the potential barrier 

߶௕(݆௘௘௠). We then have to compute the position of the barrier ݔ௕. This is done by solving iteratively equation 

(A6) over [0,ݔ௕] using a Newton’s iteration on ݔ௕ until ߶(ݔ = 0) = ߶௕(݆௘௘௠). The solution of Eq. (A6) itself is 

computed implicitly using a second Newton’s iteration. Upon convergence on ݔ௕ , Eq. (A6) is then solved 

explicitly over [ݔ௕  ଴ is not known beforehand but is rather determined duringݔ ଴]. It is important to note thatݔ,

integration using a stopping criterion for the end of the sheath: ௗథ
ௗ௫

= 0. These two steps are iterated until 

convergence on ߶଴ . As this process causes some numerical difficulties, for each Newton step we ensured that the 

variation of the solved parameter remained relatively small with respect to its value, thereby trading 

computational efficiency for reliability. 

4. INTEGRATION INTO THE 2D-CODE 
Because of the relative inefficiency of the solution method employed here, it is not practical to compute emission 

current density on-the-fly during 2D simulation. Instead, given an emissive material, we tabulated ݆௘௘௠ for a large 

range of input parameters (߶଴, ݊଴, ௘ܶ , ௪ܶ). We note that while it is more natural to use ݆௘௘௠ as an input to the 

emissive sheath and to obtain ߶଴ as a result, in the 2D-code, the opposite is true. We used a bisection method to 

obtain for every given value of ߶଴  a current density ݆௘௘௠. For the BaO-W (411) emitter used in the NSTAR 

cathode, we precomputed ݆௘௘௠ across the following ranges of input parameters: ݊଴ ∈ [10ଵ଻݉ିଷ, 10ଶଵ݉ିଷ], ௘ܶ ∈

[0.5 ܸ݁, 2.5 ܸ݁], ߶଴ ∈ [0 ܸ, 60 ܸ], ௪ܶ ∈ ,ܭ 1200]  .[ܭ 1700
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Emission current density data is then obtained from the table using a simple multi-linear interpolation. Since our 

2D model uses the electric ground of the cathode as plasma potential reference, a second emission table ݆௘௘௠(ߜ߶) 

is deduced as a function of the following potential difference: 

߶ߜ = ߶଴ − ߶௕ (A8)

where ߶௕ is the emission current dependant work-function and may be obtained using Eq. (A7). Both ݆௘௘௠ and 

߶௕ are tabulated to reduce numerical error at runtime (since computing ߶௕ using Richardson-Dushman equation 

(A7) from an interpolated value of ݆௘௘௠ introduces accuracy issues). 

5. VALIDATION 
The preceding model sheath may be validated in two asymptotic regimes, namely space charge saturated and 

thermionic emission limited regimes. The results of the sheath model shown in figure A-2 are obtained for a 

BaO-W (411) emitter. In the space charge limited regime, direct validation is difficult: since our sheath thickness 

is varied to reach quasi-neutral region and because of the three charged-species taken into account, current 

density versus sheath potential characteristic significantly departs from Child’s Law. Nevertheless we may verify 

qualitatively that current density is indeed drastically reduced in space charge saturated regime (i.e. at low 

plasma density).  

 

Figure A-2: Emission current density versus sheath potential and plasma density. ( ௘ܶ = 1 ܸ݁ and ௪ܶ =  (ܭ 1500

At very low plasma densities (݊଴ ≈ 10ଵ଻݉ିଷ), electron emission is practically “turned-off” regardless of the 

plasma potential applied (for ߶ ≤ 100 ܸ).  

A single current density vs. sheath potential characteristic is drawn in fig. A-3: 
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Figure A-3: Emission current versus sheath potential characteristic (݊଴ = 1 × 10ଵ଼  ݉ିଷ, ௘ܶ = 2 ܸ݁ and ௪ܶ =  (ܭ 1460

We underline the main features of this sheath model mentioned earlier: at low sheath potential emission current 

density is limited by the lack of enough charge carriers while at higher potential we recover the well-known 

Richardson Dushman equation with the emission amplification at high sheath potential correction due to the 

Schottky effect (see Eq. (28)). In between we obtain a smooth transition from the space charge limited to the 

thermionic emission limited regime. This feature is particularly useful in the frame of a hollow cathode model as 

it allows accounting for the transition region between the emissive and non-emissive regions of the emissive 

insert (see our companion paper [17] for an analysis of a cathode discharge clearly showing this phenomenon).  
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