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Abstract 

In the frame of the 20th Anniversary of the Journal of Nanoparticle Research (JNR), our aim is to 

start from the historical context twenty, years ago and to give some recent results and perspectives 

concerning nanomagnets prepared from clusters preformed in the gas phase using the Low Energy 

Cluster Beam Deposition (LECBD) technique. In this paper, we focus our attention on the typical case 

of Co clusters embedded in various matrices to study interface magnetic anisotropy and magnetic 

interactions as a function of volume concentrations, and on still current and perspectives through two 

examples of binary metallic 3d-5d TM (namely CoPt and FeAu) clusters assemblies to illustrate size-

related and nanoalloy phenomena on magnetic properties in well-defined mass-selected clusters. The 

structural and magnetic properties of these cluster assemblies were investigated using various 

experimental techniques that include High Resolution Transmission Electron Microscopy (HRTEM), 

Superconducting Quantum Interference Device (SQUID) magnetometry, as well as synchrotron 

techniques such as Extended X-Ray Absorption Fine Structure (EXAFS) and X-Ray Magnetic Circular 

Dichroism (XMCD). Depending on the chemical nature of both NPs and matrix, we observe different 

magnetic responses compared to their bulk counterparts. In particular, we show how finite size effects 

(size reduction) enhance their magnetic moment and how specific relaxation in nanoalloys can impact 

their magnetic anisotropy. 

 

 

Introduction 

In the last two decades, magnetic nanoparticles have attracted much attention both for their 

fundamental interest and for their potential applications. Nowadays, it is well known that at such 

nanosize, the magnetization direction of a particle usually fluctuates at room temperature and that 

such superparamagnetic behaviour is a crucial issue in fundamental research as well as practical 

applications (Mornet et al. 2004, Carrey et al. 2006, Binns 2013). But in the end of the 90's, with the 

beginnings of the synthesis of cluster-assembled nanostructures by Low Energy Cluster Beam 

Deposition (LECBD) methods (Perez et al. 1997, Milani and Iannota 1999), it was the starting point for 

the magnetic properties study of supported transition metal (TM) clusters.  

Since 1985, first results have been reported on Stern-Gerlach magnet deflection from spatially resolved 

time-of-flight photoionization mass spectrometry measurement of small free-clusters beam (Cox et al. 

1985) where isolated iron clusters ranging in size from 2 to 17 atoms, have been observed like-

paramagnetic.  Five years later, again from Stern-Gerlach deflections of a molecular beam in an 

improved laser vaporization source (Milani 1990), (De Heer et al. 1990) measured magnetic moments 

for cold iron clusters, with number of atoms per cluster N up to 650, but claimed that the average 

clusters magnetic moments are in all cases below the bulk value and increase with a “cluster internal 

temperature”. The next year, their results conflicted with the first experimental evidence by (Bucher 



et al 1991) of the superparamagnetic model for isolated monodomain nanoparticles predicted by 

(Linderoth and Khanna 1992), where the concept of rapid orientation fluctuations of the “true 

magnetic moment” was introduced.  Then a series of intense experimental works on clusters in flight 

helped in showing that the magnetic moment of 3d-TM clusters always exceeds the bulk value up to 

N= 500 atoms and progressively decreased with N and temperature (Billas et al. 1993). Meanwhile the 

appearance of giant magnetic moment in 4d-TM clusters as Rhodium has been found for N<40 atoms 

by (Cox et al. 1993). In that regard, calculations based nowadays on an electronic spin-fluctuation 

theory and a parallel tempering Monte  Carlo approach, have confirmed the observed strong stability 

of the ferromagnetic (FM) order within small clusters and described  finite-temperature magnetic  

properties  of  Fe-clusters  as a function of  size, structure, and interatomic distances (Garibay-Alonso 

et al. 2009).  

Nevertheless, to experimentally observe such finite-size dependent magnetic effects on supported 

clusters, it has been necessary to develop alternative techniques to avoid magnetic interactions 

between deposited clusters on substrate and contamination with external environment in particular 

upon transfer in air. Then, some pioneer groups started to prepare assemblies of magnetic 

nanostructure by using the original bottom up LECBD technique which ensures the direct soft-landing 

under high vacuum conditions (HV) of very low energy clusters produced in an inert-gas condensation 

source. In the regime of low kinetic energy deposition, incident free clusters (kinetic energy Ec < 1 

eV/atom) should not fragment upon impact on the substrate (Haberland et al. 1995) leading to the 

formation of cluster-assembled dots or films which retain partial original structures and properties of 

gas-phase clusters (Paillard et al. 1993, Jensen 1999). Moreover, a co-deposition of cluster and atomic 

independent beams simultaneously on a same substrate, allow us to produce any kind of 

cluster/matrix system, even with miscible elements, in a wide range of cluster volume concentration 

(from 0.1% up to 60%) (Bansmann et al. 2005). As pioneer results, one can mention superparamagnetic 

like-behavior of cobalt clusters assemblies embedded in silver and SiOx matrix with independent 

control of the cluster size and concentration (Dupuis et al. 1997). In this case, the concentration 

dependence of giant magnetoresistance (GMR) of cobalt clusters embedded in silver matrix has been 

studied in such granular films (F. Parent et al. 1997). Optimal GMR values of more than 10 % has been 

achieved but only in highly concentrated samples close to percolation threshold, where the simple 

quadratic relation (R α (M/Msat)2) between magnetic and magnetoresistive response is indeed no 

longer observed and the model of (Allia et al. 1995) is no longer valid (Oyarzun et al. 2013).  

In parallel, progress in spectroscopy experiments under synchrotron radiation (SR) facilities of 3rd 

generation (Mülhaup 1995),  such as X-ray magnetic circular dichroism (XMCD) started to provide a 

more detailed description of the magnetic properties of clusters deposited on surface or embedded in 

a matrix. The crucial advantage of XMCD is to be able to separate the spin (s) and orbital (L) 

contributions of the total cluster magnetic moment (N) with the chemical selectivity of the SR. Thus, 

the quantitative s enhancement by reducing N, has been confirmed in supported 3d TM-clusters (see 

references in Bansmann et al. 2005, Ohresser et al. 2013, Binns 2013).  Furthermore, the direct access 

to the average L started to give a clear insight of the role of spin-orbit interactions in small supported 

clusters (Edmonds et al. 1999) on the origin of magnetic anisotropy energy (MAE). Note that the MAE 

defined as the energy involved in the spontaneous magnetic moment reversal from an easy axis to the 

opposite one, determine the Blocking temperature above which superparamagnetic behavior sets.  

Thus energy barrier has been accurately quantitatively determined later from high sensitivity 

magnetometry measurements on single nanomagnet or well-separated clusters assemblies (Jamet et 

al. 2001, Tamion et al. 2009, Pierron-Bohnes et al. 2012).  



Nowadays, a huge progress in synthesis such as mass-selected LECBD synthesis techniques under Ultra-

High Vacuum (UHV) (Tournus et al. 2011) and in characterization as aberration-corrected transmission 

electron microscopy in combination with spectroscopic methods, enables atomic resolution structural 

characterization (Pohl et al. 2014). In this paper, we give an overview of experimental results obtained 

on Co clusters embedded in various matrices to study interface magnetic anisotropy and interactions, 

and open questions and perspectives through two examples of binary metallic 3d-5d (namely CoPt and 

FeAu) clusters assemblies to illustrate size-related and nanoalloy phenomena on magnetic properties 

in well-defined mass-selected clusters.  

I- Pure Co Clusters embedded in various matrices and concentrations 

Clusters are produced in a laser vaporization–gas condensation source similar to that developed by 

Smalley and improved by (Milani and de Heer 1990). Briefly, a plasma created by the impact of a 

frequency doubled Nd:YAG (Yttrium Aluminium Garnet) laser beam focused on a rod, is thermalized 

by injection of a continuous flow of helium at low pressure (typically 30 mbar) inducing cluster growth. 

Clusters are subsequently stabilized and cooled down in the supersonic expansion taking place at the 

exit nozzle of the source. A low energy cluster beam is then obtained, with clusters in the nanosize 

range (1.5-8 nm) which are codeposited under ultrahigh vacuum (UHV) conditions (10−10 mbar in base 

pressure condition) simultaneously with the independent atomic beam of the matrix.  

When decreasing the size of magnetic particles down to the nanometric range, the Magnetic 

Anisotropy Energy (MAE) which acts to fix the magnetization along an easy axis, is counterbalanced by 

the thermal energy kBT resulting in magnetization fluctuations between opposite directions. Generally, 

diluted assemblies of magnetic nanoclusters are expected to present two different magnetic states, as 

a function of temperature. The transition from the ferromagnetic blocked regime to the 

superparamagnetic one, above the so-called blocking temperature (TB), can be evidenced as a lack of 

hysteresis in the magnetic loops and a peak in the Zero Field Cooled (ZFC) curves. TB is defined as the 

temperature where the relaxation time: 𝜏(𝑇) = 𝜏0exp⁡(∆𝐸 𝑘𝐵𝑇)⁄ for magnetization reversal (with kBT 

the thermal energy and 0
-1

 the attempt frequency - typically in the range of 109-1012 Hz) is 

comparable to the measuring time mes. In this case, ∆𝑬corresponds to the energy barrier to 

overcome in order to reverse the particle magnetization i.e. to the MAE in zero magnetic field. 

Nevertheless, whereas the magnetic moment is proportional to the cluster magnetic volume, the 

cluster size dependence of ∆𝑬⁡is more complex. Because our nanoparticles present a high surface-to-

volume ratio, a careful analysis is essential to distinguish the interfacial and the volume contributions. 

Assemblies of Co-clusters in C, Cu and Au matrices  

Very recently, we have reported on the magnetic properties of Co clusters embedded in different 

matrices (C, Cu and Au) (Hillion et al. 2017). The samples are formed by Co nanoparticles around 2.5 

nm in diameter determined by transmission electron microscopy (TEM), and their diameter probability 

density function (PDF) closely follows a lognormal distribution. In order to measure the clusters 

magnetic intrinsic properties from Superconducting Quantum Interference Device (SQUID) 

magnetometry, we have prepared highly diluted samples. By using Isothermal Remanent 

Magnetization (IRM) and Direct current Demagnetization (DcD) curves at 2 K (described in Hillion et al. 

2013) and from the following equation: m = DcD(H)-(IRM(∞)-2IRM(H), we have verified that magnetic 

interactions are negligible as the m parameter is found equal to 0 whatever the applied magnetic 

field for volume concentration lower than 1%.  

Then we extended the already powerful “triple” fit approach, where the Zero field Cooled/Field Cooled 

(ZFC/FC) susceptibility curves and a superparamagnetic magnetization loop are simultaneously fitted 



with a semi-analytical model (Tamion et al. 2009), to the low-temperature hysteresis loop and IRM 

curve which bear distinct signatures of the particles magnetic properties (Tamion et al. 2012). Briefly, 

because at the cluster surface, the cubic symmetry is broken, the anisotropy function of a macro-spin 

involves second-order dominating terms, and can be expressed as:  

𝑮(𝜽,𝝋) = 𝑲𝟏𝒎𝒛
𝟐 + 𝑲𝟐𝒎𝒚

𝟐⁡, 

with z the easy axis, y the hard axis and K1<0<K2. Here K1 and K2 represent the second order anisotropy 

constants, mz the normalized magnetization projection on the easy axis. Finally θ and  represent the 

magnetization angles in a spherical basis. In a case of a biaxial anisotropy we use the geometric 

approach to build the astroid which represents, in the field space, the magnetic switching field (Hsw). 

To take into account the thermal fluctuations which can bring the magnetization over the energy 

barrier; we use the Néel’s relaxation model (Néel 1949).  When two stable positions exist the relaxation 

time between these states is given by the previous defined equation:⁡𝜏(𝑇) = 𝜏0exp⁡(∆𝐸 𝑘𝐵𝑇)⁄ . It is 

therefore possible to simulate hysteresis loops of an assembly of nanoparticles taking into account the 

temperature, the size distribution and clusters’ biaxial anisotropy (see Fig. 1).  

a)                                                b)                                          c)                                           d) 

 

 

 

 

Fig. 1: ZFC/FC susceptibility curves taken at 5 mT and magnetization curves at 300 K in insert (a), IRM curves (b) and Hysteresis 

loops (c) at 2 K for Co nanoparticles embedded in Au matrix (0.5 % vol.). The solid lines correspond to the adjustments using 

the same set of parameters. The corresponding 3D astroid associated to the biaxial fit is shown at the right (d).  

For each Co sample with C, Cu and Au matrix, we have reached a reliable determination of the ZFC 

peak temperature (Tmax), the low-temperature coercivity (Hc), the median magnetic diameter (Dm) 

and its dispersion parameter (ω) as a log-normal NPs size distribution and the MAE normal distribution 

(characterized by the median values K1, K2 and the standard deviation K1), all reported in Table I. First 

of all, we can notice that the smallest magnetic diameter (Dm) is obtained for carbon matrix while the 

largest (Dm) is found for Co@Au samples.  In one hand in as-prepared Co@C samples, a magnetically 

dead shell layer has been already attributed to a metastable carbide formation at the interface 

between Co-fcc core cluster and carbon matrix (leading to a s decrease at Co environment from XMCD 

measurements) but which can be removed by HV annealing at 750 K without deteriorating the PDF or 

changing the magnetic anisotropy constant (Tamion et al. 2011). 

 Co@C Co@Cu Co@Au 

Dm (nm) 2.1 ± 0.2 2.5 ± 0.2 2.8 ± 0.2 

Tmax (K) 6.5 12 17 

Hc (mT) 25 40 85 

ω 31% ± 5% 27% ± 5% 26% ± 5% 

K1 (kJ.m-3) 115 ± 10 155 ± 10 190 ± 10 

 K1 (kJ.m-3) 40 ± 10 62 ± 7 90 ± 10 

K2/K1 1.2 ± 0.1 1.2 ± 0.1 1.3 ± 0.1 



 

Table I: Magnetic characteristics of Co clusters diluted in C, Cu and Au matrix with 2.5 nm in diameter from (Hillion et al. 

2017).  

  

Fig. 2: Fourier Transform of the EXAFS signal for Co clusters embedded in C (as-prepared and annealed) and in Au matrix with 

2.5 nm in diameter (left). Comparison between the experimental EXAFS signal (dots, contribution of the nearest neighbours 

(NN) peak only) and simulated curves (solid lines) at the Co-K edge for Co@Au sample. 

  

This interpretation is confirmed by experiments at the Co-K edge (7713 eV) performed at room 

temperature on the CRG-BM30b-FAME beam line of the ESRF (Proux et al. 2006) where a significant 

increase in the amplitude of the Fourier Transform of the extended x-ray absorption edge fine 

structure (EXAFS) oscillations is observed for Co@C sample upon annealing (see figure 2, left).  On the 

other hand, the FT EXAFS oscillations is very well defined up to 6Å with a metallic bulk like-profile for 

Co@Au sample. For this sample, from a quantitative EXAFS analysis using the Artemis software, the 

best fit for the nearest neighbours (NN) peak has been obtained by considering only two first-shell 

environments, namely Co-Co and Co-Au with coordination numbers NN equal to 8.5 and 1.9 and 

average interatomic distances R equal to 2.48 Å and 2.66 Å, respectively. As comparison, R is equal to 

2.507 Å in Co-bulk and to 2.68 Å for CoAu speculative alloys from a Vegard law. Due to finite size 

effects, the total coordination number NN equal to 10.4 is reduced (compared to 12 in Co-bulk) 

because 45 % of Co atoms for 2.5 nm Co-cluster are located in the first surface-monolayer. 

Nevertheless, the NN ratio of 17% between both environments Co-Au and Co-Co obtained from the 

best EXAFS simulations (see figure 2, right), evidences a sharp Co/Au interface with no interdiffusion 

in such immiscible couple.  

Getting back to Table 1, despite a significant progressive increase in the ZFC peak temperature (Tmax) 

and in the coercitive field (Hc) from Co@C, Co@Cu and Co@Au, we found that the effective MAE 

distribution, sensitive to the interface hybridization, does not increase in the same proportion. 

Moreover, there is no modification (within the error bars) of the constant ratio (K2/K1) close to 1.2 

whatever the matrix nature. One can conclude that the magnetic anisotropy of such nanoparticle 

assemblies seems to be dominated by the shape and crystal structure of the particle surface (i.e. 

additional or incomplete facets) rather than by volume or environment as described in (Jamet et al. 

2001), (Oyarzun et al. 2015) and (Xie et Blackman 2004). 

Then, by increasing the volume concentrations in such cluster assemblies, one can modulate the mean 
distance between NPs and thus investigate remaining open questions concerning the long range 
effects of interactions between nanomagnets versus matrix nature (Hillion et al. 2017). Indeed, for an 



assembly of randomly oriented independent macrospins with 1% volume concentration, the edge-to-
edge mean clusters distance is greater than 7nm and no magnetic interaction are expected in 

agreement with m found around zero. But with 3% volume concentration, the edge-to-edge mean 
clusters distance is as little as 2nm and one can then expect significant interactions between 
neighboring NPs. As an example, on Co@Au samples with 3% volume concentration, SQUID 
magnetometry measurements samples revealed an increase of the peak temperature (Tmax) of ZFC 

curves up to 30 K and a negative peak m up to 10%, related to demagnetizaing interactions. By 

increasing concentrations up to 4%, we observed that Tmax and m continue to increase, while the 

coercitive field (Hc) remain almost unchanged compared to the previous 3%-concentration. 
Moreover, as the magnetization at high temperature is essentially sensitive to the magnetic size 
distribution, m(H) curves above (TB) have been found clearly concentration dependent. From the best 
fit to reproduce the ZFC/FC and m(H) at 300K, we have estimated that the magnetic dimers proportion 
represent 15% (resp. 20%) in 3% (resp. 4%)-Co@Au sample. Thus, we have proposed a simple model 
where magnetic dimers are formed for distances lower than a given magnetic interaction length l*.  
This distance l* has been found equal to 1.2 ± 0.2 nm in Au matrix, much smaller for non-metallic Ge 
and C matrix but similar for Co@Cu samples, probably because Ruderman-Kittel-Kasuya-Yosida (RKKY) 
Interactions are the major ingredient of superferromagnetic dimerization through the conduction 
electrons of metallic matrix. Note that such RKKY interactions are previously evidenced from giant 
magnetoresistance (GMR) in granular Co@Cu samples (Oyarzun et al. 2013).  

As a conclusion, this approach where the very same Co nanoparticles are diluted in different matrices 

with independent control of size and concentration, provides an original and quite unique way to 

experimentally probe interface magnetic anisotropies but also interparticle interactions between 

nanomagnets from phenomenological methods. Nevertheless, for higher concentrations, long-range 

dipolar interactions may play a major role and collective effects can occur so that much more complex 

models are needed. 

 

Assemblies of Co-clusters in MgO matrix  

On the contrary, when Co clusters are embedded in MgO matrix even for low dilution, atypical 

magnetic behaviour is revealed with high ZFC peak temperature (Tmax=71 K) and high coercitive field 

(Hc=400 mT) (see figure 3). Indeed from a “triple fit”, K1 reaches 620 kJ.m-3 for 1% Co@MgO as-

prepared sample and is some 4-5 times higher than the MAE obtained for previous matrices. And in 

this case the biaxial fit does not apply for magnetization curve at low temperature (see Fig. 3.b).  

 

Fig. 3: ZFC/FC susceptibility and magnetization curves at 300 K (in insert) (a) and hysteresis loops at 4 K (b) for Co nanoparticles 

embedded in MgO matrix. The red solid line is a tentative fit using the same set of parameters with biaxial fit as for previous 

samples while the blue solid is the fit by taking into account volume and surface contributions.  



To go further, we analyse SQUID measurements by taking into account non-negligible interface effects 

and write the cluster MAE as the summation of volume and surface terms as ∆𝑬 = KvV+KsS.  

In order to give a quantitative evaluation of the matrix influence on the MAE, the ZFC response of a 

clusters assembly with a random orientation of the anisotropy axis, can be further described as a 

function of temperature by (Anderson at al. 1997):  
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where  is the cluster magnetic moment and t is the time measurement (about 60 s in our case). Using 

the convolution of this equation with the magnetic size distribution, the fits for Co@MgO sample 

(presented in blue in Fig. 3) allow us the determination of KV and KS compared to ones for Co@Nb 

sample, as reported in Table 1.  

 

Sample Tmax Dmag K V  K S,i  K S,inter 

Co@Nb 12  2.27 60 45 0 

Co@MgO 100  2.30 30 45 265 

 

Table 1: Blocking Temperature (Tmax (K)), mean magnetic Diameter (Dmag(nm)), Volume-anisotropy 

energy (KV  (kJ/m3)), Surface (KS,i (J/m2)) and Interface (KS, inter (J/m2)) anisotropy energy for Co@Nb 

and Co@MgO sample, determined from the ZFC curves simulations (Rohart et al. 2006).  

 

To discuss the surface anisotropy variation, KS can be seen as the summation of both intrinsic surface 

cluster Ks,i and the specific cluster/matrix interface KS,inter contributions. As a rough approximation, we 

assume that the interface anisotropy is negligible in Nb matrix (Rohart et al. 2006). So in Co@Nb 

samples, the surface anisotropy is only limited to the intrinsic cluster surface contribution as evidenced 

by micro-SQUID measurement on single NP (Jamet et al. 2001). The important KS,inter observed for the 

clusters embedded in the MgO matrix (see table 1), originates from a partial oxidation of the cluster 

surface. This leads to the formation of an antiferromagnetic (AFM) shell around the cluster which 

causes an exchange anisotropy (Dobrynin et al. 2005) as in Co/Co1-xMgxO bilayers (Hong et al. 2006).  

Even if such huge MAE has been proposed to be used to beat the superparamagnetic limit by exchange 

bias between a metallic Co core and CoO anti-ferromagnetic shell (Skumryev et al. 2003) (Le Roy et al. 

2011), it may be noted that after a few months by ageing in air, oxidation probably extend with severe 

evolution of the magnetic signal (see figure 4). In particular, the coercitive field decrease and an 

exchange bias of 20 mT have been observed one year later by measuring Field-Cooled m(H) curves at 

low temperature (see Fig. 4b). 



 

Fig. 4: Comparison of ZFC/FC susceptibility and magnetization curves at 300 K (in insert) (a) and hysteresis loops at 4 K for as-

prepared (black dashed) and aged sample (with ZFC in red and FC in blue m(H) solid curve) Co nanoparticles embedded in 

MgO matrix (b). 

In order to distinguish intrinsic and extrinsic parameters influence on the cobalt magnetic moment, X-

ray circular magnetic dichroism (XMCD) measurements at the L2,3 cobalt edges have been performed 

less than one month later on such Co@MgO sample. One can mention that the L2,3 cobalt edge is 

essentially metallic with a shoulder corresponding to small oxide part and that the hysteretic loop 

measured at 300 K is very closed to the one measured by SQUID after ageing (see Fig.4 and 5). By 

applying the nowadays well-known sum rules (Carra et al. 1993, Thole et al. 1992), we determine a 

spin magnetic moment equal to 1.28 B per atom to compare to 1.62B per atom for the Co-bulk phase 

while the orbital contribution is very low 0.056 B/at to compare to the 0.15B per atom for the Co-

bulk phase. We can claim that this moment reduction of 20 % comes from a partial cluster oxidation 

which induces lower than one non-magnetic monolayer in the case of Co clusters embedded in MgO.  
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Fig. 5: XMCD measurements on the Co/MgO sample at the cobalt L2, 3 threshold (a) and magnetization curve measured at 300 

K following the normalized Co L3 edge absorption intensity as a function of applied magnetic field (b). 

 

It must be noted that XMCD measurements also revealed that Co atoms are partially oxidized for CoPt 

alloy clusters embedded in MgO matrix, with a s decrease but a L /S enhancement (Tournus et al. 

2008). Thus, the MgO environment appears to have a strong effect on the magnetic properties also for 

bimetallic particles such as CoPt or CoAu (see Fig. 6). The cluster/oxide interface can in this case induce 

a different chemical arrangement in the particles, compared to other matrices, in addition to a 

decrease of the particle magnetic size (dead layer) and an enhancement of the magnetic anisotropy. 

The ZFC susceptibility measurements shown in Fig. 6, for the same particles (CoPt or CoAu) diluted in 



C and MgO illustrate this strong interface effect of MgO, which results in a significant enhancement of 

the peak temperature (Tmax, which is related to the blocking temperature). 

 

Fig. 6: ZFC susceptibility measurements for CoPt nanoparticles (a) and CoAu nanoparticles (b) diluted either in an amorphous 

carbon matrix or a MgO matrix. The particles appear to be blocked up to a higher temperature in the case of a MgO matrix. 

 

II- Order/Segregation in 3d-5d TM nanoparticles 

Over the last decade, bimetallic magnetic nanoparticles (NPs) have attracted considerable attention 

as potential candidates for various applications from catalysis, magnetism, optics, to nanomedicine 

(Calvo et al. 2013). From a fundamental point of view, due to intricate size and hybridization effects 

between two different TM-species, the magnetic properties of nanoalloys have been intensively 

studied both theoretically and experimentally by varying the composition, degree of chemical ordering 

and morphology. We will focus our attention on 3d-5d TM bi-metallic NPs with two opposite 

tendencies in bulk-phase, namely to form alloyed phase (as in CoPt or FePt) or phase-separation (as in 

CoAu or FeAu). At nanosize, as the phase stability becomes more complex, we can mention that 

reversely to equilibrium thermodynamics predictions, high fraction of surfaces in NPs can promote 

partial segregation as in FePt NPs (Pohl et al. 2017) or ordering tendency as L10 superstructure in heat-

treated FeAu NPs (Mukherjee et al. 2012). In these part, we report on experimental studies of such 

bimetallic NPs prepared by LECBD and embedded in amorphous carbon matrix.    

Assemblies of Pt-based magnetic clusters in matrix  

First of all, alloys made of iron or cobalt (Fe or Co) and platinum (Pt) are always of particular interest 

because they can yield to one of the magnetically ‘hardest’ materials (magnetization is retained for a 

long time) as necessary for high density media storage applications (Andreazza et al. 2015). As their 

equilibrium phase diagram in bulk-alloy is very rich, mass-selected equiatomic CoPt nanoparticles 

(Blanc et al. 2013) and FePt nanoparticles (Dupuis et al. 2015) has been produced by laser vaporization 

cluster source and annealed under vacuum in order to promote chemical ordering. The atomic 

structure of CoPt and FePt NPs with a diameter between 2 and 5 nm, has been studied by advanced 

transmission electron microscopy (Tournus et al. 2013). In addition to particles corresponding to a 

single L10 bulk-like ordered domain, we put into evidence that even small particles can display multiply 

twinned particles with decahedral or icosahedral shapes but that the chemical order can be preserved 

across twin boundaries.  By combining high photon flux and chemical selectivity of SR facilities, XMCD 

have been used to study magnetic moment of CoPt and FePt clusters assemblies before and after 

transition to the chemically L10–like phase. As the enhanced proportion of low coordinated atoms at 

the surface (which corresponds to around 40 % in the 3nm size–range) causes a narrowing of the 



valence d band inversely proportional to the density of state at the Fermi level, we found significant 

increase compared to the bulk, both for the spin and orbital moments of Fe, Co and Pt atoms in such 

nanoalloys. We have also studied size effect on the local structure and MAE in diluted assemblies of 

CoPt clusters embedded in a carbon matrix upon annealing in the 2–4 nm diameter range. From Co-K 

and Pt-L edges EXAFS experiments and simulations, we evidenced an element-specific dependence of 

the local atomic relaxations in CoPt clusters leading to a strong distortion in pure Co planes since pure 

Co layers do not match the underlying Pt layer in chemically ordered L10-like clusters, in agreement 

with ab-initio VASP simulation calculations (Blanc et al. 2013). We claimed that such structural 

distortions added to the statistical chemical distribution and exotic structures (with five-fold 

symmetry) in annealed CoPt NPs, could explain the low effective MAE normal distribution increase of 

only 35 % compared to the one of as-prepared sample measured by advanced SQUID magnetometry 

(Dupuis et al. 2013). This value has been found one order of magnitude smaller to what is expected for 

the L10 bulk CoPt phase. Only recently, (Yang et al. 2017) quantitatively demonstrate correlated local 

defects (in chemical order, composition…) and surface-relaxation effects to magnetic anisotropy 

energy (MAE) decrease by a state-of-the-art approach at the single-atom level combining atomic 

electron tomography correlated to advanced DFT calculations on FePt nanoparticles embedded in 

carbon. 

 

Assemblies of Au-based magnetic clusters in matrix  

Multifunctional applications exploiting magneto-plasmonic properties are expected by combining 3d 

TM (Fe or Co) and noble metal (Ag and Au) (Maksymov 2016). But, in the CoAu and FeAu case, due to 

limited solubility and positive heat of mixing (HOM), phase separation for a wide range of composition 

is reflected in equilibrium bulk-phase diagram. Thus such 3d-5d TM NPs could present core-shell 

morphologies. Notice that iron NPs passivated by   gold   coating favored for its specific surface 

functionality to fix chemical or bio-medical agents, are expected to play an important role in  the wide  

range of sophisticated  bio-medical applications such as targeted drug delivery, biochemical sensing, 

and ultra-sensitive disease detection (Ban et al. 2005). Nevertheless at nanosize, (Mukherjee et al. 

2014) claimed that the stabilization of compounds or phases, arise from a competition between both 

size-dependent HOM and total surface energy (SE) of the NP and the interphase interfaces created. So 

by decreasing the size, as the HOM decreases more rapidly than SE, the miscibility can increase. They 

argue that the L10 ordered FeAu is stable below 10 nm even if the stability factor (F = SE – HOM) is 

near-zero at such nanosize.  

So we have synthesized Au-based NPs from LECBD in the size range 2 to 5 nm in diameter to study the 
structure and morphology from high resolution transmission electron microscopy (HRTEM) 
experiments (Dupuis et al. 2015 b). On CoAu NPs coated by amorphous carbon, we experimentally 
evidenced a thermal transition, as illustrated in figure 7 with HAADF images and associated STEM-EELS 
core-loss chemical mapping of CoAu NPs before and after annealing (recent observations performed 

on the NION USTEM 200 at the LPS, Orsay in collaboration with K. March and M. Kociak). The final 
core/shell structure with off-center Co core is in remarkable agreement with theoretical calculations 
(Palomares-Baez et al. 2017). The structure is segregated in both case (respectively (Co shell) for as-
prepared and (off-center Co core) for annealed CoAu NPs, no alloyed phase has ever been observed. 

 

 

 



 

 

 

 

 

Fig. 7:  HAADF images of CoAu Nps with associated EELS core-loss chemical mapping (on gold M and cobalt L ionization edges): 

a) and b) as prepared CoAu nanoparticle, c) and d) annealed CoAu.  

On the contrary on as-prepared FeAu NPs, fcc-phases have been observed from HRTEM with lattice 

parameters varying between 3.7 to 4.08 Å (see Fig.8a and 8b).  While, a Fe core/Au Shell has been 

revealed from Z-contrast imaging, generated by high angle annular dark field (HAADF) scanning 

transmission electron microscopy (STEM), as the first clear evidence of possible segregation in a so 

small FeAu NP seen in (Fig. 8c). But upon annealing, contrary to CoAu NPs, we systematically obtained 

fcc alloyed phases for FeAu NPs and anomalous chemically L10 ordered on one heat-treated FeAu NP 

as Mukherjee et al. 2012 (see Fig. 9). In their theoretical paper, (Zhuravlev et al. 2017) predicted that 

L10 FeAu, L12 FeAu3 and L12 FeAu3 are unstable in density functional theory (DFT) calculations. They 

assume that an indirect influence of compressing effects at the surface which lead to concentration 

waves at the corresponding [001] ordering, with enrichment of Fe in the core and segregation of Au to 

the surface, could explain the ordering tendencies in 5nm-FeAu nanoparticles. They also evaluate the 

possible role of different type of magnetic order in FeAu clusters, where the specific different patent 

lattices (as bcc in Fe and fcc in Au) compete with each other and the ordering of alloys containing such 

5d metals may also be affected by the Spin-orbit coupling (Zhuravlev et al. 2017).  

 

Fig. 8: HRTEM observations on as prepared FeAu NPs showing single fcc phase with a=3.7 Å a) and with a=4.08 Å b) as lattice 

parameter and STEM-HAADF observations with fcc and Fe Core/ Au Shell c) cohabitation.  



 

Fig. 9: HRTEM observations on annealed FeAu NPs with single fcc phase (left) and L10 FeAu (right) nanoalloys with 3D 

representation of the chemical ordered Wulff truncated octahedron in inset (a), the typical (001) sur-structure peak in the 

fast FT of the HRTEM (b) and the corresponding chemical order stacking (c) 

To go a step further experimentally, we prepared assemblies of FeAu embedded in carbon to 

statistically study their structure from EXAFS measurement at both edges (K-Fe and L-Au as-previously 

for pure clusters at the CRG-BM30b-FAME beam line of the ESRF) and their magnetic behavior (both 

from Squid magnetometry and XMCD at L-Fe edge on X-Treme of the SLS and at L-Au edge on the ID12 

beam line of the ESRF) before and after annealing.  

At the Fe-K edge, the FT EXAFS obtained for FeAu@C sample before and after annealing signal is 

completely different from the bcc-bulk Fe phase but very similar to the signal obtained on previous 

fcc-Co NPs embedded in Au and C matrix in Fig. 2. Upon annealing, we observe no significant 

differences from the shape and amplitude of the FT EXAFS signature at the K-Fe edge. On the contrary 

at the L-Au edge, both the NN amplitude and distance increase while the Au-C bonding and the Debye-

Weller disorder decrease after thermal treatment. Moreover, the average lattice parameter in 

annealed FeAu samples tends to the Vegard law value of 3.85 Å (between afcc-Au=4.07 Å and afcc-Fe= 3.66 

Å), in agreement with 59% at. (±5%) Fe concentration found from Rutherford Back Scattering (RBS) 

measurements (see Fig. 10). From SQUID magnetometry measurements (see Figure 11) and 

simulations, we observe no significant thermal evolution of the global magnetic behaviour where the 

magnetic diameter is the TEM one with constant Tmax and Hc respectively equal to 12 K and 45 mT 

with moderate anisotropy kept constant around 100 kJ/m3. From XMCD measurements at both edges, 

the high-Spin fcc iron state and the induced magnetic moment in gold slightly evolve after annealing 

up to a total magnetic moment of 2.12 per Fe atom and 0.09 per Au atom, respectively (see Fig. 

12 and Table II). Our accurate experimental results are in very good agreement with first-principle 

calculations where the ferromagnetic order is energetically to be the most favorable configuration with 

induced magnetic moment for Au atoms of the order of 0.05 (Mukherjee et al. 2012) as measured at 

the Au-L edge (Dupuis et al. 2015 b).  Notice that no signature of antiferromagnetic ordering has been 

observed on our annealed FeAu@C samples, reversely to the very low global magnetization and low 

coercivity values measured on FeAu NPs with a smaller lattice parameter of the order of 3.7 Å by 

(Mukherjee et al. 2012).  

As a conclusion, due to finite size effects, we have demonstrated that as-prepared nanoparticles by 

LECBD can sustain metastable compound structure at the interface between pure cluster and matrix 

(as in Co@C sample) but also inside alloyed clusters (as in FeAu nanoparticles). We have shown that 

heating treatments allow to reach stable solid phase up to non-equilibrium chemically ordered phase 

in nanoalloy, probably to relate to specific atomic relaxation (Blanc et al. 2013). Such distortions can 

strongly modify the MAE (as in L10-CoPt) but energetically promote FM order at nanosize leading to an 

increase of the intrinsic magnetic moment in supported 3d TM clusters and to an induced spin moment 

when alloyed with 5d but also with 4d TM as previously shown in B2-FeRh Nanoparticles (Hillion et al. 

2013 b). 



 

Fig. 10: Fourier Transform of the EXAFS signal for FeAu clusters embedded in C (as-prepared and annealed) at the L-Au edge 

(left). Comparison between the experimental EXAFS signal (dots, contribution of the nearest neighbours (NN) peak only) and 

simulated curves (solid lines) at the L-Au edge for FeAu sample before and after annealing (right). 

 

Fig. 11: ZFC/FC susceptibility and magnetization curves at 200 K (in insert) (a) and hysteresis loops at 4 K (b) for FeAu 

nanoparticles embedded in C matrix. The red solid line is the best triple fit adjustment. 

  

Fig. 12: Comparison between the XMCD signal at the Fe-L edge and at the Au-L edge obtained on annealed mass- selected 

FeAu clusters embedded in carbon matrix with 3 nm in diameter.  

 



Table II: Spin and orbital moment of Fe and Au from XMCD measurements at both edges on FeAu clusters assemblies 

embedded in C matrix with 2.9 nm in diameter. 

 

 

 

III- Prospective for the next years. 

Today, the state-of-the-art progress at the single-atom level combining for example atomic electron 

tomography correlated to advanced DFT calculations, allow to accurately describe the intrinsic 

properties of more and more complex magnetic clusters assemblies (Yang et al. 2017). In operando 

experiments are also allowing to describe extrinsic properties of clusters assemblies near real-life 

conditions or in reactive atmosphere taking into account their physico-chemical surface affinities (as 

Ramade et al. 2017) which is in particular interest to optimize their use as catalyzers. Looking forward, 

the ability to determine crystal defects with high precision in nanoalloys and to functionalize hybrid 

magnets at the nanoscale opens up the possibility for revolutionary new applications in many fields of 

science and industry.  

Nowadays, there are high hopes for nanomedicine applications by exploiting the ability to functionalize 

magnetic NPs with biomolecules, as well as to manipulate them by applying external magnetic fields 

(Sandhu et al. 2010). Progresses for the health are expected from theranostic magnetic biocompatible 

nanoparticles (Gobbo et al. 2015). From medical imaging, drug nanovector delivery and tumor 

destruction by hyperthermia to magnetic cell separation, magnetofection, and even magnetic control 

of cell signaling pathways, magnetic micro- and nanoparticles are finding ever increasing use in 

biomedicine and biomedical research (Gleich and J. Weizenecker 2005), (Gijs et al. 2010)  and (Connord 

et al. 2015). 

There is also a growing demand for high performance magnets, notably for green energy such as 

electric motors and generators. Until now, the breakthroughs in magnet research have been based on 

NdFeB but the monopoly of such compound causes a problem of heavy rare earth (RE) resources. One 

solution could be the use of RE nanoscopic objects (Schmidt et al. 2015). Another promising route 

could be to fabricate nanocomposite materials made of fine mixture of a hard and a high magnetization 

phase in strong magnetic coupling. Theoretical models on hard-soft permanent-magnet 

nanocomposites, predict superior performances than the current permanent magnets (Skomski et al. 

2014).  

Technological improvements for ultra-high density magnetic storage applications always still require 

the understanding of magnetic anisotropy energy at the nanometer range and of dynamical 

magnetization reversal processes at the nanosecond time scales of benchmark nanomagnets.  

In a next future, we propose to explore alternative magnetic nanoparticles prepared by MS-LECBD in 

interaction with their environment, to study size effects, strain on monocrystalline template or in 

matrix confinement to tune their extrinsic magnetic properties.  

 As an example (Linas et al. 2015) has pointed out the possibility to self-organize Pt nanoclusters by 

MS-LECBD on a moiré pattern from the epitaxy of graphene on Ir(111), similar studies are in progress 

with network of hard L10 FePt NPs to study charge transfer effects and electronic structure 

modifications on their magnetic properties.   



Controlling nanomagnetism by means of an electric field is a key issue for the future development of 

low-power spintronic (Chappert et al. 2007). Recently, a ferroelectric BaTiO3 crystal has been used to 

electrically drive the metamagnetic transition temperature of epitaxially grown FeRh films with only a 

few volts, with potential media applications for Thermally Assisted magnetic Recording (Cherifi et al 

2014). By increasing the materials confinement at the ultimate nanoscale, we propose to try to 

modulate in real time, (AFM-FM) order transition in CsCl B2-FeRh nanoparticles with adjustable 

nanosize, using an electric field by combining effects of screening charges accumulation and epitaxial 

strains at the interface with a ferroelectric and piezoelectric BaTiO3 crystal. Once demonstrated, the 

same principle and device could be used to modify interface magnetic exchange coupling existing 

between a FM nanoparticle and a surrounding dielectric, AF material, like CoO and heavy Pt metal via 

spin−orbit torque as in magnetic skyrmions of new spin configuration which are anticipated 

significantly more energetically stable (per unit volume) than their single-domain counterparts (Schott 

et al. 2017) (Romming et al. 2015). With the ultimate goal of characterizing single nanomagnets it will 

be a first step towards the development of nanodevice for electronic transport through a nanocontact 

(Misiorny et al. 2015). 
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