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Recently, much attention has been given to a noteworthy property of some soft tissues: their ability to
grow. Many attempts have been made to model this behavior in biology, chemistry, and physics. Using the
theory of finite elasticity, Rodriguez has postulated a multiplicative decomposition of the geometric
deformation gradient into a growth-induced part and an elastic one needed to ensure compatibility of the
body. In order to fully explore the consequences of this hypothesis, the equations describing thin elastic
objects under finite growth are derived. Under appropriate scaling assumptions for the growth rates, the
proposed model is of the Foppl—von Karman type. As an illustration, the circumferential growth of a free

hyperelastic disk is studied.
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Biological tissues are conventionally classified into two
categories: hard tissues (e.g., bones or teeth) and soft
tissues (e.g., muscles, arteries, tendons, or skin), depending
on their mechanical properties. Soft tissues, which typi-
cally exhibit anisotropic, nonlinear, inhomogeneous be-
haviors, are often subject to large stresses and strains.
The theory of finite elasticity therefore forms an appropri-
ate framework to describe their properties [1-3], in the
absence of viscoelastic effects. Along these lines, much
work has been done to establish constitutive relationships
for specific biological materials such as the skin, blood
vessels, lung, brain, liver, and kidney [3,4], although com-
puting stresses and strains under applied external loads
remains a difficult task.

Observation of biological tissues has revealed the exis-
tence of internal stresses, even in the absence of external
loads. These residual stresses are induced by growth [2]
and affect the geometrical properties of tissues. Soft tissues
may undergo volumetric growth [5,6] depending on space,
orientation, and the state of stress within the body. Growth
is a complex process involving biochemical and physical
reactions at many different length and time scales that
occur through cell division, cell enlargement, secretion of
extracellular matrix, or accretion at surfaces. The removal
of mass is referred to as atrophy and occurs through cell
death, cell shrinkage, or resorption. Because of completely
different time scales between relaxation via viscoelastic
effects and the growth process itself which is assumed very
slow, the total deformation of the body is only due to both
change of mass and elastic deformations [7-12].

Before (respectively, after) the deformation, the body is
in the reference (respectively, current) configuration, and
the place of each material point is denoted by X (respec-
tively, x). We define the geometric deformation tensor by
F = 9x/0X to describe locally the overall deformation
process. In order to model the growth process, we follow
Rodriguez, Hoger, and McCulloch [13] in making the
following three assumptions: (i) There exists a zero-stress
reference state; (ii) the geometric deformation gradient F
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admits a multiplicative decomposition of the form F =
AG, where G is a growth tensor describing the change in
mass and A an elastic tensor characterizing the reorgan-
ization of the body needed to ensure compatibility (no
overlap) and integrity (no cavitation) of the body;
(iii) the response function of the material depends only
on the elastic part of the total deformation. Despite its
simplicity, the Rodriguez theory is yet to be investigated,
because of the complexity of finite elasticity although
inhomogeneous and anisotropic growth has been studied
in details in some simple geometry [14,15]. More sophis-
ticated and time-dependent approaches also based on the
Rodriguez hypothesis have been achieved for spheroids
and cylinders [16,17]. Here we focus on growing thin
samples subject to slow growth-induced finite displace-
ments, and we assume that the sample has time to relax
to its equilibrium shape. This reduction of dimensionality
allows us to derive the equilibrium equations whatever the
constitutive laws of the tissues.

Under appropriate scaling assumptions, the resulting
equations are found to be an extension of the well-known
Foppl-von Karman (FvK) model, a powerful theory for
buckling instabilities, that are widely diffused in nature
(Fig. 2), but which is also able to explain complex post-
buckling phenomena such as crumpling. Experimentally, it
has been shown that growth may affect curvature in various
systems. In growing gels, both homogeneous growth under
constraints [18] and free inhomogeneous growth [19] have
been investigated. Thermal expansion [Fig. 1(a)], as well
as desiccation, can also bend an elastic body and cause it to
crumple as seen in dead leaves [Fig. 1(c)]. In living tissues,
viruses such as the cotton leaf crumple virus (CLCrV)
modify the growth process, and infected plants exhibit
curled or crumpled leaves [Fig. 1(d)], but buckling can
also occur during normal development. Some mushrooms’
or algae’s caps [Fig. 1(b)] may undergo symmetry breaking
and adopt an oscillatory or cup shape. At the cellular level,
a new milestone was reached with the discovery of the
CINCINNATA gene whose local expression affects growth
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FIG. 1 (color online). A few examples of buckling in nature.
(a) A potato chip adopts a saddle shape during frying. (b) Aceta-
bularia schenckii: a green algae. (c) A dead leaf. (d) A leaf
infected by the CLCrV, known to affect growth and induce
curling and the appearance of blisters at the surface of the leaf.

and curvatures of the Antirrhinum (snapdragon) leaf [20].
Complementary to the inhomogeneity of growth, anisot-
ropy has been shown to be crucial in the generation of
shape. Indeed ““‘a key aspect of shape—petal asymmetry —
in the petal lobe of Antirrhinum depends on the direction of
growth rather than regional differences in growth rate”
[21]. To investigate the effects of anisotropy, for which
our formalism is well suited, we study the problem of a free
elastic disk subject to homogeneous anisotropic growth.
The model.—Since biological soft tissues have a high
volume fraction of water, they are elastically incompress-
ible; in our notation detA = 1. Furthermore, we assume
isotropy of the material for simplicity, and we define a
strain  energy function: W = 3% _ ¢, (I} —3)" X
(I, —3)%, I, and I, being the principal invariants of the
tensor A’A. Any of the common constitutive relationships
can be described by a series of this form [22], at least
locally. After the deformation process, the sheet, of lateral
size L and thickness H, is described by the displacement
field: u = x — X, and we define (X, Y) = u,(X, Y, 0) as
the displacement of the middle surface that we assume
smaller than L. When the growth rates g;; = G;; — 0;;
are in the range of or less than ({/L) when one of the
indices is 3 and (//L)*> otherwise, the scaling of the
induced strains falls inside the domain of validity of the
FvK model. Since H < L, we also apply the membrane
assumption that states oy; = oyz; = 077 = 0. Then, us-
ing this assumption and to leading orders, we find that all
materials behave according to the constitutive equation
o ~ (2Y/3)(E — pI), p being the hydrostatic pressure
associated with the incompressibility constraint and E
the in-plane Green tensor. Y, the instantaneous Young
modulus, is equal to: ¥ = 6(cq; + ¢;o). Thus all thin elas-

tic samples undergoing small (but finite) deflections follow
a generalized Hooke’s law whatever the constitutive rela-
tionship is, as previously noted in Ref. [23]. The pressure is
given by the assumptions o, = 0, which implies that p =
Ez;. Once these results are established, we derive the
equilibrium equations using the principle of minimal en-
ergy. They can be written in terms of the off-plane dis-
placement and stresses:

D(AZZ—A(ﬁ)—Haxﬂ(oaﬁéxa{)=P, (1a)
axﬂ()’aﬁ = O, (lb)

where the Einstein summation convention is used, indices
run from 1 to 2, D = YH?/9 is the bending rigidity of the
plate, and ¢ is a source of mean curvature linked to the
growth tensor via ¢ = Div(GG’) - e;. A and A? mean,
respectively, the Laplacian and the bi-Laplacian operator,
and P is a possible external loading pressure acting on the
plate. At this stage, except from the induced average
curvature ¢, we recover the FvK equations [24], and we
can transform this system (1a) and (1b) with the help of the
Airy potential defined by: 0,5 = €*°€#79?y/0X;50X,
(e%? being the Levi-Civita tensor). With y, we derive

D(A*¢ — A¢) — 2H[x, {]= P, (2a)
A+ E(S -9 =0, (2b)

where the [.,.] operator is defined in Refs. [24,25] and the
function ¢ appearing in (2) is a source of Gaussian curva-
ture. It is the Gaussian curvature of the distorted surface
whose first fundamental form is given by dx?> =
G 3G aydXgdX, [26]. Calculated to leading orders using
Brioschi’s formula and the Gauss-Bonnet theorem [26], its
value in the Cartesian coordinate system is given explicitly
in Ref. [25] for an arbitrary nondiagonal growth tensor G.
The fact that ¢ is a Gaussian curvature while ¢ is the z
component of the divergence of a tensor proves that both
quantities are intrinsic quantities associated to the growth
tensor and are independent of the choice of coordinate
systems as it is the case for all operators in the Foppl—
von Karman equations.

The sets of equilibrium equations (1) and (2) are a
generalization of the well-known FvK theory of thin plates,
to which they reduce in absence of growth, i.e., G =1
(¢ = ¥ = 0). For large deformations ({ > H), the prob-
lem can be simplified. Indeed, the bending term D(A%/ —
A ) can be neglected, and a solution that cancels the in-
plane stresses is a solution of [£, {] = ¢, called a Monge-
Ampere equation. Once this equation is solved, the pa-
rameters appearing in this solution can be selected through
minimization of the bending energy. For moderate deflec-
tions, i.e., { ~ H, both bending and stretching terms are of
the same order, and the solution of zero energy is a surface
with prescribed curvatures, which does not always exist;
for example, there is no surface that has positive Gaussian
curvature and zero mean curvature. It is known that in-
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homogeneous growth can lead to sophisticated surface
geometries [19], so we focus the research on anisotropic
growth, which has been much less studied.

The free disk.—Consider a disk, of initial radius R;,
subject to anisotropic homogeneous growth, with free
boundaries and no external loading. Referring to a cylin-
drical system of coordinates (R, ©, Z), the growth tensor is
diagonal and homogeneous: G = diag(1 + g;, 1 + g5, 1)
neglecting the thickening of the plate. If g, and g,, respec-
tively, the radial and circumferential components of the
growth process, are equal, then growth is homogeneous
and isotropic, and no residual stress appears: The disk
remains flat. The relevant control parameter is k = g, —
g1- The first case to consider is for k < H?/R? that induces
an off-plane displacement { much smaller than H and is
thus outside the scope of the present theory. When £ is of
order H*/R?, which leads to { ~ H, all of the contributions
are of the same order, and a linear stability analysis is
performed. We look for a solution in which the in-plane
fields (displacements Uy and Ug and stresses 0ggr, Ore,
and ogg) are independent of ®. The off-plane displace-
ment, however, can depend on ©. Since the disk is free, the
boundary conditions imply that there is no tension or
torque at the free edge and reads ozr(R;) = ore(R;) =
0. The only convergent solution of (1b) that fulfills these
boundary conditions is ogp = ope = 0 leading to
Ur(R) = (2R/3)(g2/2 + g1), Ug(R) = 0, and a nonzero
hoop stress ogg = (—2kY)/3. Assuming a solution with
discrete axial symmetry: {(p, @) = &(p) cos(m®) (with
p = R/R;), Eq. (1a) reduces to

p*é@ +2p3E) — (14 2m?)p? €
+(1+2m*+ ap?)péW + (m* —4m? — m*ap®) =0, (3)

where a = (6kR?)/H? is a control parameter and ¢ is the
ith derivative of ¢ with respect to p. At the free edge (p =
1), the zero-torque conditions are not affected by the
growth process and are described in Ref. [24]. To avoid
singularities at p = 0, we impose £(0) = 0 and &'(0) = 0.
These boundary conditions, together with Eq. (3), form an
eigenvalue problem for the threshold «. Using Frobenius’s
method [27], we find the four eigenfunctions correspond-
ing to each m. The most unstable mode, occurring when
growth is mainly circumferential (« > 0), is characterized
by m = 2—a saddle shape—with a threshold value of
a = 3.08. An axially symmetric solution, i.e., m = 0,
appears when radial growth dominates (a <0), at the
threshold value @ = —7.82. This simple model explains
surprisingly well the changes of cap shape that the algae
Acetabularia acetabulum undergoes during its develop-
ment. Experiments performed in Ref. [28] show that radial
growth occurs in the earliest stage of the development,
which leads to a symmetric conical shape. At a later stage,
however, circumferential growth predominates to produce
the saddle shape (see Fig. 2).

Concave 17.6% Flat 87.1% Saddle
-3.13 days post -13.19 days post >-19 days post
cap initiation cap initiation cap initiation

FIG. 2 (color online). Top: The two first destabilized modes.
(a) On the left k > 0, and the disk adopts a saddle shape, with
m = 2, at the threshold a = 3.08. (b) On the right k¥ < 0, and the
disk adopts an axially symmetric shape characterized by m = 0,
at the threshold a = —7.82. Bottom: Shape changes in the
Acetabularia algae; the figures indicate the fraction of algae
that undergo the shape transition from an initial population of
85 plants. Picture drawn from Ref. [28].

We now consider large deformations: 1 > k > H*/R2,
for which H << /. Since the stretching contribution is
much bigger than the bending energy, we first solve the
Monge-Ampere equation [¢, {] = ¢ in which ¢ is given by
¢ = k&(p)/p in our case. The general solution is a cone
that has zero Gaussian curvature except at the tip of the
cone, where the effect of bending becomes important and
which would require a more precise treatment [29,30]. We
focus only on the outer solution. The equation of the cone
is simply {(p, ®) = pg(®). Using this expression, the
condition that the Airy potential vanishes everywhere [so
(2a) and (2b) are satisfied] gives for the in-plane displace-
ment field:

U, =~ 530,
p (© 4)
Ug = 5 f [g(®)? — g'(©)% + 2k]dO.

Periodicity in the orthoradial displacement implies that
Ug(p,0) = Ug(p, 27). Let g(®) be represented by its
Fourier series: g(0) = S (a,e™® + afe™™®). The pe-
riodicity condition leads to 2Y% [a,a}(n®> — 1)] =
(ap + a})? + 2k. A cone of revolution (for which ay is
the only nonzero coefficient of the Fourier series) can
satisfy the periodicity condition only if k <O, that is,
when radial growth dominates. Infinitely many solutions
satisfy the periodicity condition, but the selected shape
must have minimal bending energy [29-31]. The bending
contribution reads &, < {23%_ [a,a}(n* — 1)*] + (ag +
ay)?}. For negative k values, the solution of minimal outer
bending energy is given by (R, ®) = R./2|k| and for
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@ (b) [3] Y.C. Fung, Biomechanics: Material Properties of Living

FIG. 3 (color online). Top: The two modes of minimal energy,
far from the tip. (a) k>0, and the shape is a cone with two
oscillations. (b) £ <0, and the cone of revolution is a solution.
Bottom: The resultant shapes built out of paper (k = 0.25) are in
agreement with the prediction.

positive values by (R, ®) = R\/4k/3 cos2®. For large
deformations, those predictions can be easily checked by
constructing a cone from a disk of paper in which a sector
defined by two radii is withdrawn and then either replaced
by a bigger one or just glued to close it (see Fig. 3). This
simple demonstration illustrates the fact that singularities
can arise from growth as observed in dead leaves or in the
leaves infected by the CLCrV.

Conclusion.—Using the formalism introduced by
Rodriguez, Hoger, and McCulloch, we have developed a
theory describing the behavior of thin elastic bodies sub-
ject to growth. By explicating the sheet’s small thickness,
we showed that all materials behave according to a gener-
alized Hooke’s law and the equilibrium equations general-
ize the FvK equations with growth. This extension
describes a broad range of physical phenomena involving
mass reorganization, from biological growth to thermal
dilatation, as well as desiccation. Once observed in experi-
ments, shape instabilities with a well-defined wavelength
may give relevant information on the growth process itself.
The treatment presented in this Letter also includes growth
anisotropic effects. We have shown that anisotropic growth
induces rich structures such as curling and crumpling.

We thank A. Boudaoud, P. Ciarletta, and E. Sharon for
many enlightening discussions.
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