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Abstract. Generation of shapes in biological tissues is a complex multiscale phenomenon.
Biochemical details of cell proliferation, death and mobility can be incorporated within
a continuum mechanical framework by specifying locally the amplitude and direction of
growth. For tissues exhibiting an elastic behavior, equilibrium shapes of growing bodies
can be evaluated through the minimization of an appropriate energy. This model is applied
to thin shells and plates, a geometry relevant to nuts and pollen grains but also leaves, petals
and algae.

1. INTRODUCTION

Morphogenesis describes the set of processes by which a living organism changes its
shape. For example, the growth of plants is governed by genetics, atmospheric conditions
such as mechanical forces (wind, gravity) or sun exposition, chemical and physical
properties of the environment, resulting in a broad and beautiful variety of shapes
and functions. All living tissues, both animals and vegetals, share this ability to grow.
Evolution of shapes takes place during healthy as well as pathological (e.g. tumors)
development. The biological development involves a causal chain of transductions from
the genome to the structural level (Green 1996). In particular, the process by which
patterns of differentiated cells appear in tissues is well understood. Morphogens are
signalling molecules that diffuse within the tissue and produce specific cell response
depending on both the concentration (Wolpert 1996; Ashe & Briscoe 2006) and the
slope of the gradient of concentration (Rogulja & Irvine 2005). They are defined through
their function rather than their chemical nature. For example, the morphogen Sonic
hedgehog homolog is a protein that controls the development of limbs and spinal cord
in mammals (Nüsslein-Volhard & Wieschaus 1980) whereas retinoic acid is thought to
be involved in embryo development of the zebra fish hindbrain (White et al. 2007).
In the Drosophila fly, the transcription factor BCD, coded by the gene Bicoïd, is a
protein that binds to the DNA of other cells and activates the expression of specific
genes (like orthodenticle or hunchback), depending on its concentration (high and low,
respectively) (Struhl et al. 1989). Since BCD is secreted locally by a source, gradients
of concentration appear and form several regions of differentiated cells, depending on
which threshold is reached in every cell by the concentration distribution, introducing
an anteroposterior polarity in Drosophila. In this line of thought, and following Turing’s
seminal work, reaction/diffusion models have been developed to explain the complex
emerging patterns of differentiated cells (Cruywagen et al. 1992, 1997; Kondo 2002). In
addition to being essential to organogenesis by inducing cellular differentiation, gradients
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80 Origins of Life

of morphogens control cell profileration (Rogulja & Irvine 2005) and thus ultimately the
shape of organs. How the growth of individual cells pushing each others results in the
observed macroscopic shape (and the associated residual stress field) is, however, less
clear and the object of an active research.

The idea that mechanics play an important role in the shape’s determination of vegetal
or animal tissues has been raised almost a century ago by the biologist D’Arcy Thompson
(1992) and has subsequently raised harsh criticism but also praises (Gould 1971; Dumais
2007). D’Arcy Thompson proposed that evolution alone could not explain macroscopic
shapes and that living organisms are subject to physical laws in the same way as inanimate
matter: “The waves of the sea, the little ripples on the shore, the sweeping curve of the
sandy bay between the headlands, the outline of the hills, the shape of the clouds, all
these are so many riddles of form, so many problems of morphology, and all of them the
physicist can more or less easily read and adequately solve: solving them by reference to
their antecedent phenomena, in the material system of mechanical forces to which they
belong, and to which we interpret them as being due .... Nor is it otherwise with the
material forms of living things. Cell and tissue, shell and bone, leaf and flower, are so
many portions of matter, and it is in obedience to the laws of physics that their particles
have been moved, moulded and conformed.”

Indeed, the description of the collective behavior of interacting particles is a central
question of physics. Due to the highly organized (that is strongly correlated) nature of
their numerous components, statistical physics is not much useful, and biological objects
are best described within a continuum mechanics framework. When cells and fibers are
sparse, that is when they form a suspension (as seen in the circulatory system or the
bone marrow) rather than a dense connected network, reaction/diffusion models alone
are appropriate because elastic effects can be neglected. On the other hand, for materials
that are highly packed with fibres (connective tissues) or which cells are rigid and bound
together (epithelial tissues), elasticity must be taken into account. Examination of living
tissues from a scale at which they appear continuous (that is above the characteristic length
scale of cells, microtubules and other fibers) reveals several macroscopic properties of
interest:
• Anisotropy: fibers (elastin, collagen, myofibrils) endow biological tissues with

directional properties (Ciarletta et al. 2006, 2008; Ciarletta & Ben Amar 2009).
• Non-linearity: soft tissues exhibit a typical strain-hardening behavior. An increase of

strain comes with an increase of the stiffness. This is also associated with the presence
of fibers which elasticity comes into play only when they have uncrumpled, overiding
the elasticity of the underlying matrix.

• Incompressibility: a high volume fraction of water results in a high volumetric stiffness.
Those properties, reminiscent of those of rubber (Ogden 1997; Treloar 1975; Goriely

et al. 2006; Wertheim 1847; Roy 1880), are best described using finite elasticity (Fung
1990, 1993; Skalak et al. 1973; Humphrey 2003). From a macroscopic perspective,
growth is a rather slow process (compared to typical mechanical time scales in living
tissues) with significant variations taking place in hours or days (Taber 1995). Growth
can be localised to surfaces (Skalak & Hoger 1997) (like accretion at the external surface
of a shell) or extends throughout the volume (volumetric growth). While the former
case mostly concerns hard tissues (teeth, bones) the latter is characteristic of soft tissues
(muscles, tendons, solid tumors, skin). Volumetric growth involves a variation of the
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bulk mass which may or not be compatible with the sample’s surroundings (boundary
conditions). In addition, adjacent particles of a biological body may evolve at different
growth rates (inhomogeneity) and/or in different directions (anisotropy). Thus in order to
maintain integrity, that is to prevent the body from overlaping with itself (or with external
boundaries) as well as forming holes, stresses are necessary (Ambrosi & Mollica 2002;
Ben Amar & Goriely 2005; Goriely & Ben Amar 2005). They are referred to as residual
stresses and play a fundamental role in the generation of shapes. Therefore the general
idea underlying the physical representation of growth of biological tissues is that the
general deformation is due to both growth and elasticity (Hsu 1968; Cowin & Hegedus
1976; Skalak 1981; Entov 1983; Stein 1995; Drozdov & Khanina 1997; Hoger 1999).

In all generality, the growth process itself is affected by internal and external loadings.
This fact has been known for at least a thousand years as attested by the foot binding
custom in medieval China. In the biomechanical literature, this coupling is often referred
to as Wolff’s law and states that bones develop in response to applied loadings, although
this is true for soft tissues as well. It is interesting to note that although the influence
of external forces on growth is easily observed and despite a few attempts to derive
macroscopic constitutive relationships between local growth rates and stresses (Cowin
& Hegedus 1976; Cowin 1983), the detailed biochemistry underlying this coupling, that
is Wolff’s law’s microscopical counterpart, remains obscure.

To apprehend the growth process macroscopically, it is assumed that the overall
deformation can be decomposed in two fundamental steps (Rodriguez et al. 1994): a
growth process, assumed as known and possibly incompatible, followed by an elastic
relaxation ensuring the compatibility of the body. Those two processes can be represented
as tensors, the product of the two being the gradient of the overall deformation. The
cumulative growth rates (in the present case, the components of the growth tensor) are the
control parameters from which stresses and strains can be calculated using minimization
of an appropriate energy. This energy, according to this model, only depends on the elastic
part of the forementioned decomposition. Note that this model is not incompatible with
the diffusion process. While diffusion models explain what positional information each
cell will get and therefore which program of differentiation and proliferation the cell will
start, the elastic model aims at describing how this individual program translates at a larger
scale. In this respect, several authors have attempted to couple the diffusion process with
the elasticity of the tissue in a mixture theory (Humphrey & Rajagopal 2002).

This paper is devoted to illustrate this macroscopic theory of elastic growth in two
simple geometries: a shell and a plate. We shall see that, whatever the biochemical details
governing the growth process are, the resultant shape and stresses of a simple growing
biological body can be derived from minimization of an elastic energy.

In a first part we briefly introduce the necessary tools of finite elasticity that we shall
use later on, as well as the multiplicative decomposition of the gradient deformation
tensor.

In a second part, we study the growth of shells under external pressure. This is relevant
to spherical connective solid tumors for example. In those cases, growth takes place at the
outer shell of the tumor, leaving a core of necrosed cells inside. In the botanic realm,
several examples of shells are also observed : pollen grains possess an external hard
spherical shell (exine) enclosing a few soft cells while nuts also present a hard nutshell
enclosing the fruit. This geometry allows us to investigate how the material non-linearity
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and geometry can influence the stability of growing shells. The large homogeneous
anisotropic growth rates lead to an increase in the thickness on one hand and emergence
of residual stresses that pile up on the other hand. The competition between those
geometrical and mechanical effects can either stabilize or destabilize the shell depending
on its thickness. Moreover, this stability depends on the constitutive equation describing
the material. A rather counterintuitive result is the fact that strain-hardening effect can
decrease the stability of shells.

In a third part, we focus on thin hyperelastic plates. This geometry is widely
encountered in nature, since petals or leaves are flat tissues and have been the subject
of several studies (Coen et al. 2004; Rolland-lagan et al. 2003; Green 1996; Newell &
Shipman 2005). Furthermore, a variety of cancers originate from the stem cells of the
epithelial tissue, usually a thin layer of cells linked to a thick soft connective tissue, so
this geometry is relevant to tumor growth. In the limit of small thickness (compared to the
lateral dimensions of the plate) and moderate deflections (in a sense to be precised later),
the equilibrium equations are dominated by geometrical effects and are independent of
the constitutive equation. Growth acts as a source of curvature and can induce non-trivial
shapes. When those shapes are not available physically (they may exist mathematically),
buckling occurs to release the residual stresses, leading to morphogenesis (Dervaux &
Ben Amar 2008; Dervaux et al. 2009; Müller et al. 2008).

2. ELEMENTS OF FORMALISM AND NOTATIONS

Referring to the classical formulation of nonlinear elasticity, we consider an elastic body
B ∈ �3 in the reference configuration �0. The deformation can be defined as an objective
mapping ���: �0 → � that transforms the material point X ∈ �0 to a position x = ���(X, t)
in the current configuration �. Defining the geometric deformation tensor by F = �x/�X,
a multiplicative, also called Kröner-Lee, decomposition has been proposed to incorporate
the growth process (Rodriguez et al. 1994):

F = AG (2.1)

where G is referred to as the growth tensor, and A as the elastic deformation tensor, that
represents the purely elastic contribution needed to maintain the overall compatibility of
the mapping. Since the material is elastically incompressible, then we have det A = 1
and J = det F = det G describes the local change in volume due to growth. The model
states: (i) that there exists a zero-stress reference state, (ii) that the geometric deformation
gradient F admits a multiplicative decomposition in the form of Eq. (2.1), and (iii)
that the response function of the material only depends on the elastic part of the total
deformation. Some subtle aspects of this formulation have been discussed (Lubarda 2004;
Goriely & Ben Amar 2007) but we shall point out that this theory of finite elastic growth
treats the main features of the growth process: large changes of volume, anisotropy of
growth, emergence of residual stresses and even time-dependent processes. Since growth
is mathematically represented by a tensor, this formalism incorporates easily the spatial
inhomogeneities as well as the anisotropy of growth, which is essential for plants (Coen
et al. 2004). Moreover, as we consider very slow growth phenomena compared to elastic
or viscoelastic relaxation, the system will be at the elastic equilibrium even if the tensors
are time-dependent. Consider a free homogeneous elastic body with zero stress in its
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reference configuration and let it undergo a homogeneous isotropic growth (that is space-
independent). In that case, there exists an affine mapping describing the shape change,
i.e. it is a well defined deformation which does not introduce any overlap or cavitation
and there is no need for an elastic accommodation of the body. This situation is atypical
and only arises when the growth tensor defines a deformation and therefore a current,
stress-free, configuration. In the general case, the growth tensor is not the gradient of
a deformation and an elastic process is needed (which is not a deformation either),
consequently inducing residual stresses within the material even in the absence of external
loading. In that case the grown “state” cannot be physically achieved (it is why we do not
use the word configuration). However, the third point states that if the stress happens to
be zero at a material point of the body, then the value of the growth tensor at that point
is equal to the geometric deformation tensor. This provides the conceptual tool to build
the grown “state”: by applying external loads to the body in the current configuration, one
can locally reduce the stress to zero at a material point (but not in the whole body), the
growth tensor is then equal to the value of the geometric deformation tensor at that point.
That is there is locally a deformation that describes the grown “state”, which is therefore
a collection of configurations. For that reason, the growth tensor G and the elastic tensor
A are sometimes referred to as local deformation tensors.

These assumptions allow to define an hyperelastic strain energy function W for the
material body, as a function of the tensor A = F G−1. In the following we focus on
incompressible homogeneous isotropic materials, so that the strain energy function will
only depend on the two first invariants I1 and I2 of the right Cauchy-Green elastic
deformation tensor C = AtA. Furthermore, under the regularity assumption that W is
continuously differentiable infinitely many times with respect to I1, I2, we can write
W as:

W(I1, I2) =
∞∑

k,l=0

ckl(I1 − 3)k(I2 − 3)l . (2.2)

So that the strain-energy function is entirely determined by the values of the coefficients
ckl . Note that several strain-energy functions commonly used in the literature only involve
the first coefficients of this development, c01 and c10. This is the case of the Mooney-Rivlin
and Neo-Hookean models for example. Since we consider elastically incompressible
materials we have to consider the scalar relationship C(A) = det A − 1 = 0, so that the
nominal stress tensor S (also called first Piola-Kirchhoff tensor) can be written as:

S = J
�W
�F

− pJ
�C(A)

�F
= J G−1 �W

�A
− pJ G−1A−1, (2.3)

The second Piola-Kirchhoff tensor �, which is the force mapped to the undeformed
configuration on undeformed area, is defined as � = (F−1)tS. Note that the nominal
stress tensor is not symmetric, while the second Piola-Kirchhoff tensor is symmetric,
being � = J�W/�(C) − pJ C−1. The Cauchy stress tensor T, which gives the stress after
deformation in the current configuration, is found through the geometric connection:

Tt = J −1FS = A
(

�W
�A

− p
�C(A)

�A

)
. (2.4)
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In order to express the stress tensors in terms of the invariants I1 and I2, let us consider
the following relations:

�I1

�A
= 2At and

�I2

�A
= 2

(I1I − AtA
)

At. (2.5)

The Cauchy stress, from Eqs. (2.4, 2.5), can be rewritten as:

T = 2
�W
�I1

AAt + 2
�W
�I2

(I1AAt − AAtAAt) − pI. (2.6)

so that Tt = T, which is the local form of Cauchy’s second law of motion for the balance
of rotational momentum. We also define the Green tensor E as E = (1/2)(AtA − I).

3. SHELLS

Consider a growing hyperelastic incompressible shell under applied loads. We work with
spherical coordinates denoted by (R, �, �) in the reference configuration. Let us denote
the inner and outer radii of the spherical shell by R = A and R = B in the reference
configuration. After deformation, the shell is now descibed by its radius r = r(R).
Assume the growth process is axially symmetric, the tensor G can be written:

G = diag(�1, �2, �2). (3.1)

Isotropic growth is achieved when �1 = �2. When �2 > �1, growth is circumferential
whereas �1 > �2 is referred to as radial growth. The relevant growth parameter is therefore
� = �1/�2. Accordingly, the geometric deformation tensor is given by:

F = diag(r ′, r/R, r/R). (3.2)

According to the multiplicative decomposition, the elastic strain tensor reads:

A = diag(�1, �2, �2). (3.3)

Incompressibility condition yields the following consequences: �2 = �, �1 = �−2 and,
using F = A.G, we get that r ′ = �−2�1 and r/R = ��2. Combining the last two relations
and integrating in the radial direction gives:

r3 − a3 = 3
∫ R

A

�1�
2
2R2dR. (3.4)

Assuming the growth process is homogeneous, this relation can be integrated:

�3 = �

(
1 − A3

R3

)
+ a3

�3
2R3

(3.5)

Without loss of generality, we can take the internal radial stress TR(A) = 0 and TR(B) =
−P . If P > 0 the shell is subject to an external pressure otherwise the shell is inflated
with an internal pressure −P . This boundary condition yields:

− P = �
∫ �b

�a

��W
(� − �3)

d� (3.6)

whereW is the strain energy function. The last two relations allow one to find the inner
strain �a and thus the overall deformation r(R).
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Figure 1. When the growth parameter is high enough (meaning the growth process is largely
anisotropic), an inflation jump can occur. Here are shown the stress-strain curves for different values
of �. Left: for � = 1, the curve is strictly concave and the inner strain �a increases monotically with
increased pressure. Right: for � = 8, an increase in pressure yields a discontinuous increase of �a .

3.1. Inflation jump

An interesting effect that can be induced by growth is an inflation jump. This hysteresis
effect arises when the stress TR(B) as a function of the inner stretch �a loses its
monoticity and present both a local minimum and a local maximum at finite stretch. In
the case of a Mooney-Rivlin material, the strain-energy function can be written W =
�1

(
�2

1 + �2
2 + �2

3 − 3
) + �2

(
�−2

1 + �−2
2 + �−2

3 − 3
)
. As represented in figure 1, when the

pressure is increased and reached the value P2, the inner strain ‘ “jumps” ’ from �2 to �4.
Conversely, when the pressure is reduced to P1, the strain goes from �3 to �1.

3.2. Bifurcation

We now consider the stability of a shell with respect to infinitesimal deformations. The
general procedure for solving the equilibrium equations around the grown state obtained
previously involves the expansion of the solution in spherical harmonics and resolution
for each mode. Two simplifications arise: firstly, the displacement in the direction u�

decouples from the two other directions and does not play a role in the determination of
the bifurcation value. In addition, the equations of mechanical equilibrium are identical
for each mode of the spherical harmonics so the analysis can be restricted to the order 0
(no dependance on �). Consequently, we focus on axisymmetric perturbation that can be
written:

�(1) = [u(r , �), v(r , �), 0] (3.7)

Upon separation of variables into a function of r alone and a Legendre polynomial in
cos(�), the linear stability analysis yields a fourth order linear differential equation in r .
In the Neo-Hookean case, its coeficients are function of r and of the growth parameter
�. We do not present the details of the calculation but rather summarize the main results.
In the absence of growth, note that internally pressurized shells (P < 0) made of neo-
Hookean material are always stable whereas external pressure (P > 0) may destabilize
the shell above a critical value. As a consequence, emphasis has been put on externally
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Figure 2. Left: some destabilized modes. Note that the amplitude and the sign of the perturbation
is arbitrary and not given by the perturbation analysis. Right: peanut and hazelnut (photography by
Elsa Bayart).

pressurized shells. When constant growth is taken into account, destabilized modes are
not ordered, and the selection of the first destabilized mode depends on both the geometry
and �. Figure 2 illustrates the aspect of a few selected modes.

In particular, there is a competition between the increase in thickness induced by
growth which stabilize the shell and the buid-up of compressive residual stress that tends
to destabilize it. For thick shells, the increase in thickness (radial growth: � > 1) does
not affect by a large extent the value of the critical strain needed for the instability to
appear. Piling up of residual stresses is the leading effect and thick shells are more prone
to become unstable. On the other hand thin shells are strenghtened by an increase of the
thickness which drastically increases the threshold of the instability, making them harder
to destabilize.

The result that geometric effects prevail over the behavior of thin shells brings up the
possibility of some simplifications of the equilibrium equations for thin objects. Indeed,
the critical pressure for axisymetric instability depends weakly on the specific strain-
energy function used for the calculation in the limit of thin shells (see figure 3). This
means that, in this limit, material nonlinearity is a mechanical effect of a lesser magnitude
than geometrical effect for large deformations. This suggests that a theory of plates (for
simplicity, although a similar theory of shells can be considered) can be formulated in
which the material nonlinearity appears as a second-order effect if the deformations are
“not too large”. Starting from three dimensional nonlinear elasticity, several models of
thin plates can be derived, depending on the scaling of the strain field. Using the Föppl-von
Kármán (FvK) scalings, we found that the specific constitutive relationship (generalized
Hooke’s law), which is assumed in the usual derivation of the FvK model, is in fact valid
for all materials and follows from the small thickness hypothesis, thus greatly extending
the range of validity of the FvK model. The FvK model was derived independently by
Föppl (1907) and von Kármán (1907) and is now a classical topic in Hookean elasticity
(Landau 1990; Ciarlet 1980). The behavior of such a plate thus involves the geometry, the
instantaneous elastic response of the plate (the elastic coefficient for infinitesimal strain)
and, in our model, the growth process. Neglecting the material nonlinearity allows an
in-depth analysis of the effect of growth.

In the next section, we outline the derivation of the model and, as an illustration,
we present an example of a growing biological system: the thin cap of a green algae:
acetabularia acetabulum.
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Figure 3. For each mode, the critical value of the stretch �a at which the instability occurs is
plotted for a Fung material. The strain-energy function for such a material is given by: W =
1

2�

(
exp�(�2

1+�2
2+�2

3−3) −1
)

. In the limit � → 0, the material is Neo-Hookean. The parameter � is

a measure of the strain-hardening effect. For thick shells (A/B � 1), a change in the thickness
does not affect the critical strain by a large extent whereas thin shells are greatly stabilized by an
increase in the thickness. In addition it can be seen on those curves that the critical strains for each
mode weakly depend on the parameter � in the limit of thin shells, by contrast with thick shells.

4. PLATES

4.1. The model

We consider an initially rectangular plate of width (LX, LY ), both of same order L and
of thickness H � L. We use Cartesian coordinates in which the place of each material
point is given by X = XeX + Y eY + ZeZ with the convention that (0, 0, 0) is the center
of the middle surface of the sample. The deformation of the sample is described by a
displacement field:

u = U (X, Y , Z)eX + V (X, Y , Z)eY + (W (X, Y , Z) + �(X, Y ))eZ , (4.1)

�(X, Y ) being the displacement of the middle surface compared to which W is small.
We assume that the components of the displacement fields are small compared to the
characteristic lateral size of the sample L but may be large compared to the thickness H .
The boundary condition at the border of an elastic body states that the Cauchy stress
T is equal to the applied external pressure P . The in-plane stresses inside the plate
being typically much larger than the applied pressure and the curvature of the surface
being small, we consider that T.eZ = 0. In addition this relation is assumed to be valid
throughout the sample. This assumption is referred to as the membrane assumption
and is also applied in the description of stretched tissues for which the bending is
neglected (membrane theories) (Haughton 2001). Assuming the cumulative growth rates
are independent of Z, to the leading order in the sheet’s thickness, we get for the in plane
displacement:

U = −Z

(
��

�X
− g13 − g31

)
+ U0(X, Y ), (4.2)
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V = −Z

(
��

�Y
− g23 − g32

)
+ V0(X, Y ), (4.3)

the third relation giving the internal pressure p. The FvK scalings require U0 and V0,
the in-plane displacements of the middle surface, to be of order �2/L. For consistency,
the components g3� and g�3 are of order �/L whereas the other components scale
like �2/L2. Moreover, the increase in thickness g33 is neglected in our model since,
being independent of Z, it does not introduce any incompatible displacement. The
incompressibility assumption allows to eliminate the function W (X, Y , Z) by expressing
it in terms of �, U0 and V0, which are function of X and Y only. The problem is therefore
reduced to the study of a two dimensional surface. On this surface, the stress field is
related to the strain through the constitutive relationship:

	�
 = 4

(
�W
�I1

+ �W
�I2

)
(E�
 − EZZ��
) = 2EYoung

3
(E�
 − ESS��
), (4.4)

where ��
 is the Kronecker delta symbol. This relationship is a generalized Hooke’s law.
Furthermore, the Green tensor can be written:

E�
 = 1

2

(
�U�

�X

+ �U


�X�
+ ��

�X�

��

�X

− g�
 − g
� − g3�g3


)
. (4.5)

Let us outline the meaning of those two expressions. The relation (4.4) is valid whatever
the strain-energy function. Under the range of displacement considered, all materials
behave in the same way (up to an elastic coefficient) (Erbay 1997). Therefore the
determination of the particular strain-energy function describing a material, which is not
a simple experimental procedure for biological samples, is not necessary. Furthermore, it
follows from (4.5) that the multiplicative decomposition (2.1) reduces to an additive one
for the Green tensor. Such an additive decomposition has been widely used in growth
problem of thin samples (Audoly 1999; Audoly & Boudaoud 2003), albeit with no
theoretical justification. In particular, this makes the concept of target metric (Sharon
et al. 2002; Marder & Papanicolaou 2006; Marder et al. 2007; Klein et al. 2007; Efrati
et al. 2008) compatible with the present model.

In a second step, the energy density is expanded in powers of Z. After integration
in the Z direction, the first two terms of this expansion are kept, yielding a term in H ,
called the stretching contribution and a contribution in H 3 representing the bending part
of the energy. The first term of this surface energy density is of order EYoungH�4/L4

while the bending contribution is of order EYoungH 3�2/L4. The two contributions are of
the same order when the out-of-plane displacement � is of order H . Equilibrium equations
are obtained by equating to zero the variational derivative of the energy with respect to
the three components of the displacement field and read:

D(�2� − �CM ) − H
�

�X


(
	�


��

�X�

)
= P (4.6)

�	�


�X

= 0 (4.7)
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where CM = �
�X

(g31 + g13) + �
�Y

(g32 + g23) is an induced mean curvature and P is

the external pressure D = EYoungH 3

9 . The first equation of the previous system is the
balance of rotational momentum while the next two are the equilibrium of in-plane forces.
This system of equations can also be reformulated using the Airy potential function �
which is the elastic analog of the current function in hydrodynamics. The Airy potential
is defined by:

	XX = �2�

�Y 2
, 	XY = − �2�

�Y�X
, 	YY = �2�

�X2
. (4.8)

This function fulfills the in-plane equilibrium equations and thus a specific equation for �
must be derived. This is achieved by using the constitutive relationship (4.4). In this case,
the system of equations can be written:

D(�2� − �CM ) − 2H [�, �] = P (4.9)

�2� + EYoung([�, �] − CG) = 0 (4.10)

where the bracket [., .] is defined through:

[a, b] = 1

2

�2a

�X2

�2b

�Y 2
+ 1

2

�2a

�Y 2

�2b

�X2
− �2a

�X�Y

�2b

�X�Y
, (4.11)

and the function CG is given by the following expression:

CG = − �2

�Y 2

(
g11 + g2

31

) − �2

�X2

(
g22 + g2

32

) + �2

�X�Y
(g12 + g21 + g31g32) . (4.12)

The function CG corresponds to the Gaussian curvature of a surface whose metric is
given by dx2 = G�
G��dX
dX� (to leading order). Those equations are a generalization
of the FvK system to which they reduce in the absence of growth (CG = CM = 0). Since
CG is a Gaussian curvature and CM the Z component of the divergence of a tensor,
they are independent of the choice of coordinates. In general, growth induces a mean
and a Gaussian curvatures. When there exists a physical surface with such curvatures
(compatible with the boudary conditions), it is a stress-free (� = 0) minimum of the
elastic energy. However this is highly unlikely and most of the time residual stresses
appear (� �= 0). The physical surface is therefore ‘ “close” ’ to the prescribed surface and
buckling may occur to realease the residual stress. Also of interest is the limiting case of
large deformations (� 	 H ), for which it is possible to discard the bending contribution.
In this case, the equilibrium surface is a surface of prescribed Gaussian curvature, that is, a
Monge-Ampère problem ([�, �] = CG) for which a vast literature exists. In the abscence of
growth (CG = 0), the problem reduces to the study of surfaces of zero Gaussian curvature
(developable surfaces) and has led to the elegant folds theory (Ben Amar & Pomeau 1997;
Cerda & Mahadevan 1998; Guven & Müller 2008). Once a family of solution to the
Monge-Ampère solution is found, the physical solution is selected through minimization
of the bending energy.

4.2. Buckling instability

In order to investigate the effect of growth anisotropy, the circular geometry is especially
well suited. Indeed, in polar coordinates (R, �), an anisotropic diagonal growth tensor
represents an incompatible growth process. For this purpose, consider a disk of initial
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Figure 4. Plot of the solution of the Föppl-von Kármán equations in the limit of large deformations.
It is interesting to note that far above the threshold, the selected modes are characterized by the same
wavelength as the modes obtained at the threshold of instability.

radius Ri and a growth tensor of the form G = diag(1 + g1, 1 + g2, 1). Within the range
of deformations we consider, the relevant growth parameter is k = g2 − g1. As previously
mentionned, the growth in the direction transverse to the disk is irrelevant. If k �= 0,
residual stresses appear. Assuming stress-free boundary conditions, there exists a solution
of the equilibrium equations in which the only non-zero component of the stress tensor
	 is 	�� = −2kEYoung/3. Thus the stress is uniform and the only non-zero component
of the deformation field is UR(R) = (2R/3)(g2/2 + g1). When circumferential growth is
prevailing, the residual stress is compressive, whereas a tensile stress arise when growth
is mainly radial. Linear stability analysis yields the critical anisotropy ratio necessary
for buckling to occur. Of course the value of this critical ratio differs depending on
the sign of k. For circumferential growth (or equivalently radial resorption), the critical
value is found to be kc = 3.08H 2/(6R2), leading to a saddle shape. Alternatively, radial
growth induces a conical shape above a threshold of kc = −7.82H 2/(6R2). At large
deformations, solutions can also be found using the procedure outlined in the previous
paragraph. Neglecting the bending term, the general solution of the Monge-Ampère
equation is a cone. Minimization of its bending energy leads to a cone of revolution for
negative k and a cone with two oscillations for positive k. Those solutions are represented
in the figure 4.

This simple model turns out to describe quite accurately the morphological changes
undergone by the cap of the acetabularia acetabulum algae. Experiments on a population
of this very simple unicellular organism show that radial growth dominates in the early
stage of their development while circumferential growth prevails later (Serikawa &
Mandoli 1998). Indeed, their caps evolve from a conical to a flat (a short transition of
isotropic growth) to a saddle shape.

At much larger deformations, this plates theory is not valid anymore. However,
minimization of the bending energy of conical surfaces leads in a first time to larger folds,
and secondly to the apparition of a larger number of folds in order to prevent self contact,
energetically costly (Müller et al. 2008). The resulting shapes are strongly reminiscent of
the oscillatory shape of black mushrooms as seen in figure 5.

5. CONCLUSION

Even though simplistic from a biological standpoint, the elastic theory of growth allows
the detailed investigation of the morphological changes induced by a given simple
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Figure 5. Black mushroom (photography by Elsa Bayart). Note the presence of a secondary
buckling instability at the edge of the mushroom. This instability is also observed at the margin
of flowers and other plants (see Audoly & Boudaoud (2003) for example).

growth distribution. Indeed, in the footsteps of D’Arcy Thompson, our purpose is “to
correlate with mathematical statement and physical law certain of the simpler outward
phenomena of organic growth and structure or form”. Relevency of the model proceeds
from the fact that only simple growth laws are needed to induce non-trivial shapes. As a
consequence, only simple organisms, like plants, algae, mushrooms and maybe jellyfish
can be compared to our predictions. In the two examples treated in this paper, only the
anisotropic property of the growth process is necessary for instabilities to occur and
there is no need for complex spatial distributions of the cumulative growth rates. This is
consistent with the large fluctuations characteristic of biological systems. However, this
theory has several drawbacks. In all generality, the time dependence of the growth process
can be included. Indeed, the adiabatic approximation allows us to treat the elastic response
as instantaneous since mechanical time scales are much smaller than the characteristic
time scale associated to growth. However the relation between the cumulative growth
tensor (that is over a finite period of time) and the incremental growth tensor (describing
an infinitesimal growth process) is still unclear. This is associated with the process of
iteration of the multiplicative decomposition which is a complex mathematical operation.
Cumulative growth requires to compute the stress tensor at each step and (virtually)
destressing the sample before applying another growth increment (which is only defined
on a stress-free state). Due to the complexity of three-dimensional elasticity however,
resolution using this procedure is unpracticable. Fortunately, when the growth tensor is
diagonal, the elastic and growth processes commute and the cumulative growth and elastic
tensor are the product of their incremental couterparts.
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