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Abstract 

0/FP-Lyon, Rond-point de l'échangeur de Solaize, BP3, 69360, Solaize, France 
b CIRIMAT, Untversité Paul Sabatier, Toulouse, 31062, France 

Fe-Mn mixed oxides have been prepared by different routes, characterized. and tested with TGA for application as oxygen 

carriers in the CLC process. These mixed oxides exhibit a lower oxygen transfer capacity than Ni based materials which is also 

dependant on synthesis method. 

In-situ XRD analysis was performed with one sample and allowed to clearly demonstrate the reaction pathway, reduction and 

oxidation reactions occurring stepwise, with little phase coexistence. SEM-EDS analysis on reduced and re-oxidized samples 

show atom migration occurs on a rather long distance, forming Feo and MnO particles during reduction which are oxidized back 

to (Fe,Mn)2O3• 

© 2009 Elsevier Ltd. Open aœess under CC BY-NC-ND license. 
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1. Introduction

Electricity production tluough chemical looping combustion (CLC) of fossil fuels is a promising technology 
which generates hot oxygen depleted air and C02/H20 streams, hence allowing C02 capture at low energy penalty 
[1). The technology relies on the circulation of metallic oxides which transfer oxygen from an air reactor to a fuel 

reactor. The oxide pa1ticles are reduced in the fuel reactor by e.g. natlu·al gas or coal, producing C02 and steam, and 
they are oxidized back in the air reactor. In order to circulate these oxides between both reactors using tlte fluidized 
bed technology, they have to be highly chemically and mechanically resistant, and their reactivity tmder oxidizing 
and reducing conditions should be high to lower the inventory of material. 
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From the many oxygen carriers that have been studied, nickel oxide seems to be the most appropriate for use in 
CLC application. However, like most oxides, the use of a ceramic, unreactive, binder is necessary to increase its 
mechanical resistance. Furthermore, toxicity and cost considerations have led many research teams around the world 
to look for alternative oxygen carriers showing performances similar to or better than nickel oxide. 

Iron and manganese oxide particles have been widely studied as single metallic oxides, in association with 
different binders [2, 3]. Both metals exhibit different oxydo-reduction couples, each one of them behaving 
differently under CLC conditions. Hence, Fe2O3/Fe3O4 is very reactive, Fe3O4/FeO has moderate activity, and 
FeO/Fe is hardly reactive. For manganese, MnO2 decomposes at 460°C and cannot be used at CLC temperatures, 
and Mn2O3 decomposes at 802°C, rendering its study rather difficult. The Mn3O4/MnO couple is rather active, and 
the reduction MnO -> Mn at CLC temperature levels is not observed, in agreement with thermodynamics. 

In this work, we studied iron-manganese mixed oxides to check for eventual cooperative effects between both 
metals. Several Fe-Mn mixed oxides have been prepared according to different synthesis schemes and characterized. 
The oxygen transfer capacity of the materials was measured on a thermobalance at 900°C using methane as fuel and 
air as oxidant, and compared with that of NiO-YSZ (Yttria Stabilized Zirconia). In situ XRD was used to follow the 
phase transformations during reduction and oxidation periods. 

2. Experimental

2.1. Mixed oxides synthesis 

NiO-YSZ (57%-43%) was prepared by co-precipitation of nickel, yttrium and zirconyle nitrate with sodium 
hydroxide. The precipitate was filtered, washed with water, dried at 120°C, and calcined at 1000°C for two hours. 

Mn-Fe mixed oxides were prepared by oxalate co-precipitation of chlorinated or sulphate precursors in water or 
in a water-ethylene glycol mixture (60-40). A solution was prepared by dissolving the iron and manganese chloride 
or sulphate precursors in water or hydro alcoholic medium solvent (60vol % water/40vol % ethylene glycol). This 
solution was mixed with an aqueous or alcoholic solution of oxalic acid and stirred for 30 minutes. The precipitate 
was then filtered and washed with water, dried overnight at 90°C and summarily crushed to obtain the oxalate 
powder. This powder was then heated in air at 1000°C for two hours (150°C.h-1 heating rate) to decompose the 
oxalates into oxides. Details of the synthesized oxides are given in Table 1. 

Mn-Fe mixed oxides were also prepared by hydrothermal synthesis using nitrate precursors. A solution was 
prepared by dissolving the iron and manganese precursors in water. The pH of this solution was raised above 12 by 
KOH (1,5M) addition under continuous stirring. The hydroxide mixture obtained was poured into a 120 mL Teflon-
lined stainless-steel autoclave. The autoclave was placed inside an oven maintained at 150°C for 18 hours. The 
autoclave was then cooled at room temperature, and the powder product was filtered and washed with distilled 
water. It was oven dried at 90°C overnight and then crushed with a mortar. The powder was then calcined at 1000°C 
for two hours. 

2.2. Characterization 

ICP analyses were performed on an ICP-AES - JOBIN YVON spectrometer. 

BET surface area measurements were performed on a Micromeritics ASAP2410 apparatus, using N2 as a probe. 

XRD analysis of the prepared oxides was performed using a Brucker D4 Endeavor Diffractometer in Bragg-
Brentano configuration (CuK  radiation). 

SEM-EDS analysis of oxidized and reduced AQ60-40 was performed on a CARL ZEISS SUPRA 40 microscope 
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Table 1 :  syntheses parameters for oxalate co-precipitation

Method Media Precursors Samples (Xmol% Mn-Ymol% Fe) 

hydro alcoholic chlorides ALC0-100; ALC20-80; ALC60-40 

chlorides AQ0-100; AQ10-90: AQ20-80; AQ40-60; AQ90-10; 
AQ100-0 

Oxalate
coprecipitation aqueous 

sulphates AQSULF25-75; AQSULF50-50; AQSULF75-25

hydrothermal 
synthesis aqueous nitrates SH25-75; SH50-50; SH75-25 

In-situ XRD analysis was performed on  the AQ60-40 sample, using hydrogen as reducing gas, at 700°C, and air 
as oxidising gas, with PANalytical's X'Pert PRO diffractometer equipped with Anton Paar's XRK900 reactor 
chamber. The sample was initially heated under air up to 700°C, a nitrogen purge was then performed before 
switching to hydrogen gas. Diffraction patterns were recorded every three minutes for one hour, then the cell was 
purged with nitrogen and the gas was switched back to air. Diffraction patterns were again recorded every three 
minutes for one hour. 

2.3. Chemical looping combustion behavior simulation 

A Setaram thermobalance was used to measure the oxygen transfer capacity (OTC) of the samples. The tests 
were performed at 900°C, using 65 ± 2 mg sample (sieved between 30 and 40 μm) placed in a platinum crucible. 
Gas flows of 80 ml/min were used. The reduction gas was composed of 10% CH4, 25% CO2 and 65% N2, and dry 
air was used as oxidation gas. Nitrogen flushing was systematically performed for 5 minutes between the oxidizing 
and reducing periods. For each sample, five consecutive reduction(20 min)/oxidation(20min) cycles were 
performed. 

3. Results and discussion

ICP analysis of the various samples shows that iron and manganese are present in the initial ratio for the
hydrothermal syntheses. A slight deviation to initial stoechiometry is observed for the oxalate coprecipitated 
samples, with more Mn detected than iron.  

Regardless of preparation mode, the measured BET surface area of the Mn-Fe mixed oxides was systematically 
lower than 5 m2/g, due to the high calcination temperature. Also independent of preparation mode, XRD analysis 
shows that samples containing 10 to 25mol % Mn exhibit two phases: a bixbyite type phase (Mn2O3) with iron 
inclusion, and a hematite type phase (Fe2O3) with Mn inclusion. For samples with 40mol% Mn or more, only the 
iron containing bixbyite phase is observed. 

Oxygen transfer capacities (OTC) measured by TGA are shown in figure 1. No clear trend as to which method 
and compositions give the best oxygen transfer capacity can be obtained from TGA tests. All the prepared samples 
show a lower OTC than the reference NiO/YSZ sample. 

Unfortunately, reduction and oxidation rates, which can also be extracted from TGA traces, are not significant as 
it was realized that diffusional limitations occur under our test conditions. However, the shape of the weight 
variations observed under cyclic conditions depends both on preparation mode and on materials’ composition. In 
materials containing between 50 and 100% Mn (figure 2), while reduction by methane is rather fast and 
monotonous, oxidation by air occurs in two successive steps: at first, fast oxidation is observed, followed by a 
second oxidation stage which is much slower and incomplete in the time imparted to the oxidation period. 
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Interestingly, when no iron is present, this second oxidation step is not observed at ail. Materials with less than 50% 
Mn are oxidized back to their initial weight in a single step. 
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Figure 2 : TGA traces of samples containing between 50 and 100 mol % Mn 

X-ray diffraction diagrams obtained dwing the in-situ reduction of AQ60-40 are shown in figtu·e 3. During the
first six minutes under hydrogen, only the initial iron containing bixbyite phase is observed. Part of the delay 
observed here can be attributed to the time necessary to renew the atmosphere in the reactor chamber. After 9 
minutes, peaks co!l'esponding to (Mn,Fe)O and (Mn,Fe)3Ü4 phases are observed. 12 minutes into reduction, 
(Mn,Fe)3Ü4 diffraction peaks have akeady disappeared, and only peaks from the (Mn,Fe)O phase are present. From 
15 minutes onwards to 60 minutes reduction time, the (Mn,Fe)O phase is still present, and a metallic phase 
gradually appears. In that period of time, the position of the (Mn,Fe)O peaks moves progressively towards smaller 
angles, indicating that the cell parameter of the phase is growing. Since the ionic radius of Fe2+ (0,61 A) is smaller
than that of Mn2+ (0,83 Â), it is likely that the (Mn,Fe)O stmctlu·e is belching out irnn atoms, which fonu metallic
iron particles big enough to be detected by XRD. TI1is implies rather long distance migration of iron atoms. Such 
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nugration was confümed by SEM-EDX characterization of the as-prepared and the reduced sample. In the as
prepared ( oxidized) sample, iron and manganese are homogeneously distributed, as shown in figtu·e 4. In contrast, 
the SEM-EDS ca1tography (figure 5) of the sample reduced at 700°C with H2 in the TGA clearly shows that iron
and manganese are forming distinct clusters. ~200 mu wide iron particles are clearly formed at the reduction 
temperature of 700°C. The metallic iron pa1ticles are nested within a manganese oxide framework, which still
contains iron. This is probably due to the fact that the reduction of the sample analysed by SEM was not complete, 
and the ptu·e MnO phase observed by in-situ XRD after an hotu·s' reduction could not fo1m in the twenty minutes 
reduction time used in the ATG reduction. Indeed, the MnO cell parameter only stabilizes after about 35 minutes 
reduction. Furthenuore, the sample analyzed by SEM had lost only 17.6wt % when TGA reduction was stopped, 
whereas full reduction to MnO + Fe0 would co1Tespond to an 18.2% weight loss.

The fact that the (Mn,Fe)3O4 phase is only observed dtuing the third XRD acquisition under H2 implies that it is 
quickly reduced to the (Mn,Fe)O phase, while the later reduces much slower to MnO + Fe0.

(Fe,Mn)O mebl 

' ' 

2-Thtta • Scale 

Figm-e 3 : diffractograms recorded in-situ dtuing the reduction of AQ60-40by H2 at 700°C.

Figm-e 4: SEM-EDX analysis of as-prepared AQ60-40. a: chenucal contrast; b: Fe distribution; c: Mn distribution 
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Figure 5: SEM-EDX analysis of reduced AQ60-40. a: chemical contrast; b: Fe distribution; c: Mn distribution 
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2-rhetci - Sea le 

Figure 6 : diffractograms recorded in-situ during the oxidation of reduced AQ60-40 by air at 700°C 

Upon re-oxidation of the sample (figure 6), the metallic iron peak disappears slowly at 700°C under air, with 

concomitant apparition of a (Mn,Fe)O solid solution which incorporates more and more iron with time. When the 
metallic phase disappears (after about 20 minutes oxidation), the (Mn,Fe)O phase is fail'ly quickly oxidized back to 
(Mn,Fe)3Ü4 (the (Mn,Fe)O peaks disappear within 10 minutes). The (Mn,Fe)3Ü4 phase is stable for about 20 
minutes, after which it oxidizes back to the initial (Mn,Fe)2O3 structure. The reason for such a delay in oxidation of 
the (Mn,Fe)3Ü4 is net clear. It could be due to the need for the Mn and Fe ions to reach a ce1tain distribution within 
the spinel stmcture of (Mn,Fe)3Ü4, which requires time at high temperatm-e to occur. 

Complete reduction of the AQ60-40 sample according to reactions 1 to 3 below coll'esponds to a theoretical 
oxygen transfer capacity of 18.2% 

Reaction 1 

Reaction 2 
Reaction 3 

(Mn,Fe)2O3 
(Mn,Fe)3Ü4 

(Mn,Fe)O 

(Mn,Fe)3O4 

(Mn,Fe)O 
MnO +Fe0 

(3.33 %) 
(6.78 %) 
(8.05 %) 



         

AQ60-40 shows a first weight loss of 10% upon TGA reduction by methane at 900°C, which could be due to 
partial reduction of the sample from (Mn,Fe)2O3 to (Mn,Fe)O (3.33% + 6.78% = 10.1% weight loss). This is 
supported by the fact that the first re-oxidation step in TGA is rather fast, in this way corresponding to what was 
observed by in-situ XRD oxidation (fast oxidation of (Mn,Fe)O to (Mn,Fe)3O4). Also, the first re-oxidation step 
observed by ATG corresponds to a 6.6wt % increase, matching roughly the weight increase between (Mn,Fe)O and 
(Mn,Fe)3O4).  

The second, slow oxidation step is incomplete in the first four TGA cycles, probably due to the fact they are too 
short, but at the end of the fifth cycle, the sample is left under air for a longer period of time and regains its initial 
weight, hence completing oxidation of (Mn,Fe)3O4 to (Mn,Fe)2O3.

Further supporting the assumption that methane does not reduce the (Mn,Fe)O phase to Fe0 + MnO at 900 °C is 
the fact that when submitted to TGA conditions at 700°C under H2 and under methane, AQ60-40 shows a 17.6 % 
weight loss and 4.6 % weight loss, respectively. Hydrogen is hence confirmed as a much better reducer than 
methane.

4. Conclusions 

Several Mn-Fe mixed oxides were synthesized and characterized. Materials with the same Mn/Fe ratio prepared 
by the different methods show no structural differences as analyzed by XRD. Such materials however behave 
differently when cycled between methane and air in a TGA test at 900°C. Their oxygen transfer capacity is always 
lower than that of nickel oxide based particles.  

(Mn,Fe)2O3 samples containing between 50 and 100 mol % manganese are reduced by methane at 900°C via an 
intermediate (Mn,Fe)3O4 spinel phase which reduces very fast to (Mn,Fe)O. Further reduction to manganese oxide 
(MnO) and metallic iron can be observed when hydrogen is used as a reducer.  

Upon re-oxidation, the inverse pathway occurs. Starting from a deeply reduced sample (MnO + Fe0), the metallic 
phase is inserted in the MnO phase to form a solid solution. The latter then fairly quickly oxidises back to 
(Mn,Fe)3O4. An induction time is then observed before the spinel phase oxidises back to (Mn,Fe)2O3. The origin of 
the induction period in not fully understood. 
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