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Abstract. Dempster-Shafer Theory (DST) generalizes Bayesian prob-
ability theory, offering useful additional information, but suffers from
a high computational burden. A lot of work has been done to reduce
the complexity of computations used in information fusion with Demp-
ster’s rule. The main approaches exploit either the structure of Boolean
lattices or the information contained in belief sources. Each has its mer-
its depending on the situation. In this paper, we propose sequences of
graphs for the computation of the zeta and Möbius transformations that
optimally exploit both the structure of distributive lattices and the in-
formation contained in belief sources. We call them the Efficient Möbius
Transformations (EMT). We show that the complexity of the EMT is
always inferior to the complexity of algorithms that consider the whole
lattice, such as the Fast Möbius Transform (FMT) for all DST trans-
formations. We then explain how to use them to fuse two belief sources.
More generally, our EMTs apply to any function in any finite distributive
lattice, focusing on a meet-closed or join-closed subset.

Keywords: zeta transform, Möbius transform, distributive lattice, meet-
closed subset, join-closed subset, Fast Möbius Transform, FMT, Dempster-
Shafer Theory, DST, belief functions, efficiency, information-based, com-
plexity reduction.

1 Introduction

Dempster-Shafer Theory (DST) [11] is an elegant formalism that generalizes
Bayesian probability theory. It is more expressive by giving the possibility for
a source to represent its belief in the state of a variable not only by assigning
credit directly to a possible state (strong evidence) but also by assigning credit to
any subset (weaker evidence) of the set Ω of all possible states. This assignment
of credit is called a mass function and provides meta-information to quantify
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the level of uncertainty about one’s believes considering the way one established
them, which is critical for decision making.

Nevertheless, this information comes with a cost: considering 2|Ω| potential
values instead of only |Ω| can lead to computationally and spatially expensive
algorithms. They can become difficult to use for more than a dozen possible states
(e.g. 20 states in Ω generate more than a million subsets), although we may need
to consider large frames of discernment (e.g. for classification or identification).
Moreover, these algorithms not being tractable anymore beyond a few dozen
states means their performances greatly degrade before that, which further limits
their application to real-time applications. To tackle this issue, a lot of work has
been done to reduce the complexity of transformations used to combine belief
sources with Dempster’s rule [6]. We distinguish between two approaches that
we call powerset-based and evidence-based.

The powerset-based approach concerns all algorithms based on the structure
of the powerset 2Ω of the frame of discernment Ω. They have a complexity
dependent on |Ω|. Early works [1, 7, 13, 12] proposed optimizations by restricting
the structure of evidence to only singletons and their negation, which greatly
restrains the expressiveness of the DST. Later, a family of optimal algorithms
working in the general case, i.e. the ones based on the Fast Möbius Transform
(FMT) [9], was discovered. Their complexity is O(|Ω|.2|Ω|) in time and O(2|Ω|)
in space. It has become the de facto standard for the computation of every
transformation in DST. Consequently, efforts were made to reduce the size of Ω
to benefit from the optimal algorithms of the FMT. More specifically, [14] refers
to the process of conditioning by the combined core (intersection of the unions of
all focal sets of each belief source) and lossless coarsening (merging of elements
of Ω which always appear together in focal sets). Also, Monte Carlo methods
[14] have been proposed but depend on a number of trials that must be large
and grows with |Ω|, in addition to not being exact.

The evidence-based approach concerns all algorithms that aim to reduce the
computations to the only subsets that contain information (evidence), called
focal sets and usually far less numerous than 2|Ω|. This approach, also refered
as the obvious one, implicitly originates from the seminal work of Shafer [11]
and is often more efficient than the powerset-based one since it only depends
on information contained in sources in a quadratic way. Doing so, it allows
for the exploitation of the full potential of DST by enabling us to choose any
frame of discernment, without concern about its size. Moreover, the evidence-
based approach benefits directly from the use of approximation methods, some
of which are very efficient [10]. Therefore, this approach seems superior to the
FMT in most use cases, above all when |Ω| is large, where an algorithm with
exponential complexity is just intractable.

It is also possible to easily find evidence-based algorithms computing all
DST transformation, except for the conjunctive and disjunctive decompositions
for which we recently proposed a method [4].

However, since these algorithms rely only on the information contained in
sources, they do not exploit the structure of the powerset to reduce the com-
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plexity, leading to situations in which the FMT can be more efficient if almost
every subset contains information, i.e. if the number of focal sets tends towards
2|Ω| [14], all the most when no approximation method is employed.

In this paper, we fuse these two approaches into one, proposing new sequences
of graphs, in the same fashion as the FMT, that are always more efficient than
the FMT and can in addition benefit from evidence-based optimizations. We
call them the Efficient Möbius Transformations (EMT). More generally, our
approach applies to any function defined on a finite distributive lattice.

Outside the scope of DST, [2] is related to our approach in the sense that
we both try to remove redundancy in the computation of the zeta and Möbius
transforms on the subset lattice 2Ω . However, they only consider the redundancy
of computing the image of a subset that is known to be null beforehand. To do
so, they only visit sets that are accessible from the focal sets of lowest rank
by successive unions with each element of Ω. Here, we demonstrate that it is
possible to avoid far more computations by reducing them to specific sets so that
each image is only computed once. These sets are the focal points described in
[4]. The study of their properties will be carried out in depth in an upcoming
article [5]. Besides, our method is more general since it applies to any finite
distributive lattice.

Furthermore, an important result of our work resides in the optimal compu-
tation of the zeta and Möbius transforms in any intersection-closed family F of
sets from 2Ω , i.e. with a complexity O(|Ω|.|F |). Indeed, in the work of [3] on
the optimal computation of these transforms in any finite lattice L, they embed-
ded L into the Boolean lattice 2Ω , obtaining an intersection-closed family F as
its equivalent, and found a meta-procedure building a circuit of size O(|Ω|.|F |)
computing the zeta and Möbius transforms. However, they did not managed to
build this circuit in less than O(|Ω|.2|Ω|). Given F , our Theorem 2 in this paper
directly computes this circuit in O(|Ω|.|F |), while being much simpler.

This paper is organized as follows: Section 2 will present the elements on
which our method is built. Section 3 will present our EMT. Section 4 will discuss
their complexity and their usage in DST. Finally, we will conclude this article
with section 5.

2 Background of our method

Let (P,≤) be a finite1 set partially ordered by ≤.

Zeta transform The zeta transform g : P → R of a function f : P → R is
defined as follows:

∀y ∈ P, g(y) =
∑
x≤y

f(x)

1 The following definitions hold for lower semifinite partially ordered sets as well, i.e.
partially ordered sets such that the number of elements of P lower in the sense of ≤
than another element of P is finite. But for the sake of simplicity, we will only talk
of finite partially ordered sets.
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For example, the commonality function q (resp. the implicability function b) in
DST is the zeta transform of the mass function m for (2Ω ,⊇) (resp. (2Ω ,⊆)).

Möbius transform The Möbius transform of g is f . It is defined as follows:

∀y ∈ P, f(y) =
∑
x≤y

g(x).µ(x, y) (1)

where µ is the Möbius function of P .

There is also a multiplicative version with the same properties in which the
sum is replaced by a product. An example of this version would be the inverse
of the conjunctive (resp. disjunctive) weight function in DST which is the mul-
tiplicative Möbius transform of the commonality (resp. implicability) function.

2.1 Sequence of graphs and computation of the zeta transform

Consider a procedure A : (RP ,GP,≤, {+,−, ·, /}) → RP , where RP is the set

of functions of domain P and range R, and GP,≤ is the set of acyclic directed

graphs in which every node is in P and every arrow is a pair (x, y) ∈ P 2 such that
x ≤ y. For any such function m and graph G, the procedure A(m,G,+) outputs
a function z such that, for every y ∈ P , z(y) is the sum of every m(x) where (x, y)
is an arrow of G. We define its reverse procedure as A(z,G,−), which outputs
the function m′ such that, for every y ∈ P , m′(y) is the sum, for every arrow
(x, y) of G, of z(x) if x = y, and −z(x) otherwise. If the arrows of G represent all
pairs of P ordered by ≤, then A(m,G,+) computes the zeta transform z of m.
Note however that A(z,G,−) does not output the Möbius transform m of z. For
that, G has to be broken down into a sequence of subgraphs (e.g. one subgraph
per rank of y, in order of increasing rank).

Moreover, the upper bound complexity of these procedures, if G represent
all pairs of P ordered by ≤, is O(|P |2). Yet, it is known that the optimal upper
bound complexity of the computation of the zeta and Möbius transforms if P
is a finite lattice is O(|∨I(P )|.|P |) (see [3]). Thus, a decomposition of these
procedures should lead to a lower complexity at least in this case.

For this, Theorem 3 of [9] defines a necessary and sufficient condition to verify
that A(A(. . . (A(m,H1,+), . . . ), Hk−1,+), Hk,+) = A(m,G≤,+), where Hi is the
i-th directed acyclic graph of a sequenceH of size k, andG≤ = {(x, y) ∈ P 2 / x ≤
y}. For short, it is said in [9] that H computes the Möbius transformation of G≤.
Here, in order to dissipate any confusion, we will say instead that H computes
the zeta transformation of G≤.

It is stated in our terms as follows: H computes the zeta transformation of
G≤ if and only if every arrow from each Hi is in G≤ and every arrow g from G≤
can be decomposed as a unique path (g1, g2, . . . , g|H|) ∈ H1 ×H2 × · · · ×H|H|,
i.e. such that the tail of g is the one of g1, the head of g is the one of g|H|, and
∀i ∈ {1, . . . , |H| − 1}, the head of gi is the tail of gi+1.
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∅ {a} {b} {a, b} {c} {a, c} {b, c} Ω

• • • • • • • •
x ∪ {a} → H1

• • • • • • • •
x ∪ {b} → H2

• • • • • • • •
x ∪ {c} → H3

• • • • • • • •

Fig. 1. Illustration representing the arrows contained in the sequence H computing
the zeta transformation of G⊆ = {(X,Y ) ∈ 2Ω × 2Ω / X ⊆ Y }, where Ω = {a, b, c}.
For the sake of clarity, identity arrows are not displayed. This representation is derived
from the one used in [9].

Application to the Boolean lattice 2Ω (FMT) Let Ω = {ω1, ω2, . . . , ωn}.
The sequence H of graphs Hi computes the zeta transformation of G⊆ =
{(X,Y ) ∈ 2Ω × 2Ω / X ⊆ Y } if:

Hi = {(X,Y ) ∈ 2Ω × 2Ω/ Y = X or Y = X ∪ {ωi}},

where i ∈ {1, . . . , n}. Fig. 1 illustrates the sequence H.
Dually, the sequence H of graphs Hi computes the zeta transformation of

G⊇ = {(X,Y ) ∈ 2Ω × 2Ω / X ⊇ Y } if:

Hi = {(X,Y ) ∈ 2Ω × 2Ω/X = Y or X = Y ∪ {ωi}}.

The sequences of graphs H and H are the foundation of the FMT algorithms.
Their execution is O(n.2n) in time and O(2n) in space.

2.2 Sequence of graphs and computation of the Möbius transform

Now, consider that we have a sequence H computing the zeta transformation of
G≤. It easy to see that the procedure A(. . . (A(A(z,Hk,−), Hk−1,−), . . . ), H1,−)
deconstructs z = A(A(. . . (A(m,H1,+), . . . ), Hk−1,+), Hk,+), revisiting every
arrow in H, as required to compute the Möbius transformation. But, to actually
compute the Möbius transformation and get m back with H and A, we have to
make sure that the images of z that we add through A do not bear redundancies
(e.g. if H is the sequence that only contains G≤, then H does compute the
Möbius transformation of G≤ with Eq. 1, but not with A). For this, we only
have to check that for each arrow (x, y) in G≤, there exists at most one path
(g1, . . . , gp) ∈ Hi1 × · · · × Hip where p ∈ N∗ and ∀j ∈ {1, . . . , p − 1}, 1 ≤ ij ≤
ij+1 ≤ ij + 1 ≤ |H| and either tail(gj) 6= head(gj) or ij−1 < ij < ij+1 (i.e. which
moves right or down in Fig. 1). With this, we know that we do not subtract two
images z1 and z2 to a same z3 if one of z1 and z2 is supposed to be subtracted
from the other beforehand. In the end, it is easy to see that, if for each graph
Hi, all element y ∈ P such that (x, y) ∈ Hi and (y, y′) ∈ Hi where x 6= y verifies
y′ = y (i.e. no “horizontal” path of more than one arrow in each Hi), then the
condition is already satisfied by the one of section 2.1. So, if this condition is
satisfied, we will say that H computes the Möbius transformation of G≤.
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Application to the Boolean lattice 2Ω (FMT) Resuming the application of
section 2.1, for all X ∈ 2Ω , if ωi 6∈ X, then there is an arrow (X,Y ) in Hi where
Y = X ∪ {ωi} and X 6= Y , but then for any set Y ′ such that (Y, Y ′) ∈ Hi, we
have Y ′ = Y ∪ {ωi} = Y . Conversely, if ωi ∈ X, then the arrow (X,X ∪ {ωi})
is in Hi, but its head and tail are equal. Thus, H also computes the Möbius
transformation of G⊆.

2.3 Order theory

Irreducible elements We note ∨I(P ) the set of join-irreducible elements of P ,
i.e. the elements i such that i 6=

∧
P for which it holds that ∀x, y ∈ P , if x < i

and y < i, then x ∨ y < i. Dually, we note ∧I(P ) the set of meet-irreducible
elements of P , i.e. the elements i such that i 6=

∨
P for which it holds that

∀x, y ∈ P , if x > i and y > i, then x∧ y > i. For example, in the Boolean lattice
2Ω , the join-irreducible elements are the singletons {ω}, where ω ∈ Ω.

If P is a finite lattice, then every element of P is the join of join-irreducible
elements and the meet of meet-irreducible elements.

Support of a function in P The support supp(f) of a function f : P → R is
defined as supp(f) = {x ∈ P / f(x) 6= 0}.

For example, in DST, the set of focal elements of a mass function m is
supp(m).

2.4 Focal points

For any function f : P → R, we note ∧supp(f) (resp. ∨supp(f)) the smallest
meet-closed (resp. join-closed) subset of P containing supp(f), i.e.:

∧supp(f) = {x / ∃S ⊆ supp(f), S 6= ∅, x =
∧
s∈S

s}

∨supp(f) = {x / ∃S ⊆ supp(f), S 6= ∅, x =
∨
s∈S

s}

The set of focal points F̊ of a mass function m from [4] for the conjunctive weight
function is ∧supp(m). For the disjunctive one, it is ∨supp(m).

It has been proven in [4] that the image of 2Ω through the conjunctive weight
function can be computed without redundancies by only considering the focal
points ∧supp(m) in the definition of the multiplicative Möbius transform of
the commonality function. The image of all set in 2Ω\∧supp(m) through the
conjunctive weight function is 1. The same can be stated for the disjunctive
weight function regarding the implicability function and ∨supp(m). In the same
way, the image of any set in 2Ω\∧supp(m) through the commonality function
is only a duplicate of the image of a set in ∧supp(m) and can be recovered by
searching for its smallest superset in ∧supp(m). In fact, as generalized in an
upcoming article [5], for any function f : P → R, ∧supp(f) is sufficient to define
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its zeta and Möbius transforms based on the partial order ≥, and ∨supp(f) is
sufficient to define its zeta and Möbius transforms based on the partial order ≤.

However, considering the case where P is a finite lattice, naive algorithms
that only consider ∧supp(f) or ∨supp(f) have upper bound complexities in
O(|∧supp(f)|2) or O(|∨supp(f)|2), which may be worse than the optimal com-
plexity O(|∨I(P )|.|P |) for a procedure that considers the whole lattice P . In this
paper, we propose algorithms with complexities always less than O(|∨I(P )|.|P |)
computing the image of a meet-closed (e.g. ∧supp(f)) or join-closed (e.g.
∨supp(f)) subset of P through the zeta or Möbius transform, provided that P
is a finite distributive lattice.

3 Our Efficient Möbius Transformations

In this section, we consider a function f : P → R where P is a finite distribu-
tive lattice (e.g. the Boolean lattice 2Ω). We present here our Efficient Möbius
Transformations as Theorems 1 and 2. The first one describes a way of com-
puting the zeta and Möbius transforms of a function based on the smallest sub-
lattice Lsupp(f) of P containing both ∧supp(f) and ∨supp(f), which is defined
in Proposition 2. The second one goes beyond this optimization by computing
these transforms based only on ∧supp(f) or ∨supp(f). Nevertheless, this second
approach requires the direct computation of ∧supp(f) or ∨supp(f), which has an
upper bound complexity of O(|supp(f)|.|∧supp(f)|) or O(|supp(f)|.|∨supp(f)|),
which may be more than O(|∨I(P )|.|P |) if |supp(f)| � |∨I(P )|.

Lemma 1 (Safe join). Let us consider a finite distributive lattice L. For all
i ∈ ∨I(L) and for all x, y ∈ L such that i 6≤ x and i 6≤ y, we have i 6≤ x ∨ y.

Proof. By definition of a join-irreducible element, we know that ∀i ∈ ∨I(L) and
for all a, b ∈ L, if a < i and b < i, then a∨ b < i. Moreover, for all x, y ∈ L such
that i 6≤ x and i 6≤ y, we have equivalently i ∧ x < i and i ∧ y < i. Thus, we get
that (i ∧ x) ∨ (i ∧ y) < i. Since L satisfies the distributive law, this implies that
(i ∧ x) ∨ (i ∧ y) = i ∧ (x ∨ y) < i, which means that i 6≤ x ∨ y.

Proposition 1 (Iota elements of subsets of P ). For any S ⊆ P , the join-
irreducible elements of the smallest sublattice LS of P containing S are:

ι(S) =
{∧
{s ∈ S / s ≥ i} / i ∈ ∨I(P ) and ∃s ∈ S, s ≥ i

}
.

Proof. First, it can be easily shown that the meet of any two elements of ι(S)
is either

∧
S or in ι(S). Then, suppose that we generate LS with the join of

elements of ι(S), to which we add the element
∧
S. Then, since P is distributive,

we have that for all x, y ∈ LS, their meet x∧ y is either
∧
S or equal to the join

of every meet of pairs (iS,x, iS,y) ∈ ι(S)2, where iS,x ≤ x and iS,y ≤ y. Thus,
x ∧ y ∈ LS, which implies that LS is a sublattice of P . In addition, notice that
for each nonzero element s ∈ S and for all i ∈ ∨I(P ) such that s ≥ i, we also
have by construction s ≥ iS ≥ i, where iS =

∧
{s ∈ S / s ≥ i}. Therefore, we
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have s =
∨
{i ∈ ∨I(P ) / s ≥ i} =

∨
{i ∈ ι(S) / s ≥ i}, i.e. s ∈ LS. Besides,

if
∧
P ∈ S, then it is equal to

∧
S, which is also in LS by construction. So,

S ⊆ LS. It follows that the meet or join of every nonempty subset of S is in
LS, i.e. MS ⊆ LS and JS ⊆ LS, where MS is the smallest meet-closed subset
of P containing S and JS is the smallest join-closed subset of P containing S.
Furthermore, ι(S) ⊆MS which means that we cannot build a smaller sublattice
of P containing S. Therefore, LS is the smallest sublattice of P containing S.

Finally, for any i ∈ ∨I(P ) such that ∃s ∈ S, s ≥ i, we note iS =
∧
{s ∈

S / s ≥ i}. For all x, y ∈ LS, if iS > x and iS > y, then by construction of
ι(S), we have i 6≤ x and i 6≤ y (otherwise, iS would be less than x or y), which
implies by Lemma 1 that i 6≤ x∨ y. Since i ≤ iS, we have necessarily iS > x∨ y.
Therefore, iS is a join-irreducible element of LS.

Proposition 2 (Lattice support). The smallest sublattice of P containing
both ∧supp(f) and ∨supp(f), noted Lsupp(f), can be defined as:

Lsupp(f) =
{∨

X / X ⊆ ι(supp(f)), X 6= ∅
}
∪
{∧

supp(f)
}
.

More specifically, ∨supp(f) is contained in the upper closure L,↑supp(f) of
supp(f) in Lsupp(f):

L,↑supp(f) = {x ∈ Lsupp(f) / ∃s ∈ supp(f), s ≤ x},

and ∧supp(f) is contained in the lower closure L,↓supp(f) of supp(f) in Lsupp(f):

L,↓supp(f) = {x ∈ Lsupp(f) / ∃s ∈ supp(f), s ≥ x}.

These sets can be computed in less than respectively O(|ι(supp(f))|.|L,↑supp(f)|)
and O(|ι(supp(f))|.|L,↓supp(f)|), which is at most O(|∨I(P )|.|P |).

Proof. The proof is immediate here, considering Proposition 1 and its proof.
In addition, since ∧supp(f) only contains the meet of elements of supp(f), all
element of ∧supp(f) is less than at least one element of supp(f). Similarly, since
∨supp(f) only contains the join of elements of supp(f), all element of ∨supp(f)
is greater than at least one element of supp(f). Hence L,↓supp(f) and L,↑supp(f).

As pointed out in [8], a special ordering of the join-irreducible elements of a
lattice when using the Fast Zeta Transform [3] leads to the optimal computation
of its zeta and Möbius transforms. Here, we use this ordering to build our EMT
for finite distributive lattices in a way similar to [8] but without the need to check
the equality of the decompositions into the first j join-irreducible elements at
each step.

Corollary 1 (Join-irreducible ordering). Let us consider a finite distribu-
tive lattice L and let its join-irreducible elements ∨I(L) be ordered such that
∀ik, il ∈ ∨I(L), k < l⇒ ik 6≥ il. We note ∨I(L)k = {i1, . . . , ik−1, ik}.

For all element ik ∈ ∨I(L), we have ik 6≤
∨ ∨I(L)k−1.

If L is a graded lattice (i.e. a lattice equipped with a rank function ρ : L→ N),
then ρ(i1) ≤ ρ(i2) ≤ · · · ≤ ρ(i|∨I(L)|) implies this ordering. For example, in DST,
P = 2Ω, so for all A ∈ P , ρ(A) = |A|.
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∅ {a} {d} {a,d} {c,d,f} {a,c,d,f} Ω

• • • • • • •
x ∪Ω → H1

• • • • • • •
x ∪ {c, d, f} → H2

• • • • • • •
x ∪ {d} → H3

• • • • • • •
x ∪ {a} → H4

• • • • • • •

Fig. 2. Illustration representing the arrows contained in the sequence H when com-
puting the zeta transformation of G⊆ = {(x, y) ∈ L2 / x ⊆ y}, where L =
{∅, {a}, {d}, {a, d}, {c, d, f}, {a, c, d, f}, Ω} with Ω = {a, b, c, d, e, f} and ∨I(L) =
{{a}, {d}, {c, d, f}, Ω}. For the sake of clarity, identity arrows are not displayed.

Proof. Since the join-irreducible elements are ordered such that ∀ik, il ∈ ∨I(L),
k < l ⇒ ik 6≥ il, it is trivial to see that for any il ∈ ∨I(L) and ik ∈ ∨I(L)l−1,
we have ik 6≥ il. Then, using Lemma 1 by recurrence, it is easy to get that
il 6≤

∨ ∨I(L)l−1.

Theorem 1 (Efficient Möbius Transformation in a distributive lat-
tice). Let us consider a finite distributive lattice L (such as Lsupp(f)) and
let its join-irreducible elements ∨I(L) be ordered such that ∀ik, il ∈ ∨I(L),
k < l⇒ ik 6≥ il. We note n = |∨I(L)|.

The sequence H of graphs Hk computes the zeta and Möbius transformations
of G≤ = {(x, y) ∈ L2 / x ≤ y} if:

Hk =
{

(x, y) ∈ L2 / y = x or y = x ∨ ik
}
,

where k = n + 1 − k. This sequence is illustrated in Fig. 2. Its execution is
O(n.|L|).

Dually, the sequence H of graphs Hk computes the zeta and Möbius trans-
formations of G≥ = {(x, y) ∈ L2 / x ≥ y} if:

Hk =
{

(x, y) ∈ L2 / x = y or x = y ∨ ik
}
.

Proof. By definition, for all k and ∀(x, y) ∈ Hk, we have x, y ∈ L and x ≤ y, i.e.
(x, y) ∈ G≤. Reciprocally, ∀(x, y) ∈ G≤, we have x ≤ y, which can be decomposed
as a unique path (g1, g2, . . . , gn) ∈ H1 ×H2 × · · · ×Hn:

Similarly to the FMT, the sequence H builds unique paths simply by gen-
erating the whole lattice step by step with each join-irreducible element of L.
However, unlike the FMT, the join-irreducible elements of L are not necessarily
atoms. Doing so, pairs of join-irreducible elements may be ordered, causing the
sequence H to skip or double some elements. And even if all the join-irreducible
elements of L are atoms, since L is not necessarily a Boolean lattice, the join of
two atoms may be greater than a third atom (e.g. if L is the diamond lattice),
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leading to the same issue. Indeed, to build a unique path between two elements
x, y of L such that x ≤ y, we start from x. Then at step 1, we get to the join x∨in
if in ≤ y (we stay at x otherwise, i.e. identity arrow), then we get to x∨in∨in−1
if in−1 ≤ y, and so on until we get to y. However, if we have in ≤ x∨ in−1, with
in 6≤ x, then there are at least two paths from x to y: one passing by the join
with in at step 1 and one passing by the identity arrow instead.

More generally, this kind of issue may only appear if there is a k where
ik ≤ x ∨

∨ ∨I(L)k−1 with ik 6≤ x, where ∨I(L)k−1 = {ik−1, ik−2, . . . , i1}.
But, since L is a finite distributive lattice, and since its join-irreducible elements
are ordered such that ∀ij , il ∈ ∨I(L), j < l ⇒ ij 6≥ il, we have by Corollary
1 that ik 6≤

∨ ∨I(L)k−1. So, if ik 6≤ x, then by Lemma 1, we also have ik 6≤
x ∨

∨ ∨I(L)k−1. Thereby, there is a unique path from x to y, meaning that the
condition of section 2.1 is satisfied. H computes the zeta transformation of G≤.

Also, ∀x ∈ L, if ik 6≤ x, then there is an arrow (x, y) in Hk where y = x∨ ik
and x 6= y, but then for any element y′ such that (y, y′) ∈ Hk, we have y′ =
y ∨ ik = y. Conversely, if ik ≤ x, then the arrow (x, x ∨ ik) is in Hk, but its
head and tail are equal. Thus, the condition of section 2.2 is satisfied. H also
computes the Möbius transformation of G≤.

Finally, to obtain H, we only need to reverse the paths of H, i.e. reverse the
arrows in each Hk and reverse the sequence of join-irreducible elements.

The procedure described in Theorem 1 to compute the zeta and Möbius
transforms of a function on P is always less than O(|∨I(P )|.|P |). Its upper
bound complexity for the distributive lattice L = Lsupp(f) is O(|∨I(L)|.|L|),
which is actually the optimal one for a lattice.

Yet, we can reduce this complexity even further if we have ∧supp(f) or
∨supp(f). This is the motivation behind the procedure decribed in the follow-
ing Theorem 2. As a matter of fact, [3] proposed a meta-procedure producing
an algorithm that computes the zeta and Möbius transforms in an arbitrary
intersection-closed family F of sets of 2Ω with a circuit of size O(|Ω|.|F |). How-
ever, this meta-procedure is O(|Ω|.2|Ω|). Here, Theorem 2 provides a procedure
that directly computes the zeta and Möbius transforms with the optimal com-
plexity O(|Ω|.|F |), while being much simpler. Besides, our method is far more
general since it has the potential (depending on data structure) to reach this
complexity in any meet-closed subset of a finite distributive lattice.

Theorem 2 (Efficient Möbius Transformation in a join-closed or meet-
closed subset of P ). Let us consider a meet-closed subset M of P (such
as ∧supp(f)). Also, let the join-irreducible elements ι(M) be ordered such that
∀ik, il ∈ ι(M), k < l⇒ ik 6≥ il.

The sequence HM of graphs HM
k computes the zeta and Möbius transforma-

tions of GM≥ = {(x, y) ∈M2 / x ≥ y} if:

HM
k =

{
(x, y) ∈M2 / x = y

or

(
x =

∧
{s ∈M / s ≥ y ∨ ik} and y ∨

∨
ι(M)k ≥ x

)}
,
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∅ {a} {b} {a,b} {c} {d} {b,c,d} Ω

• • • • • • • •
y ∪ {a} → HM

1

• • • • • • • •
y ∪ {b} → HM

2

• • • • • • • •
y ∪ {c} → HM

3

• • • • • • • •
y ∪ {d} → HM

4

• • • • • • • •

Fig. 3. Illustration representing the arrows contained in the sequence HM when
computing the zeta transformation of GM⊇ = {(x, y) ∈ M2 / x ⊇ y}, where
M = {∅, {a}, {b}, {a, b}, {c}, {d}, {b, c, d}, Ω} with Ω = {a, b, c, d} and ι(M) =
{{a}, {b}, {c}, {d}}. For the sake of clarity, identity arrows are not displayed.

where ι(M)k = {i1, i2, . . . , ik}. This sequence is illustrated in Fig. 3. Its execution
is O(|ι(M)|.|M |.ε), where ε represents the number of operations required to obtain
the proxy element

∧
{s ∈M / s ≥ y ∨ ik} of x. It can be as low as 1 operation2.

Dually, the expression of HM follows the same pattern, simply reversing the
paths of HM by reversing the arrows in each HM

k and reversing the sequence of
join-irreducible elements.

Similarly, if P is a Boolean lattice, then the dual HJ of this sequence HM

of graphs computes the zeta and Möbius transformations of GJ≤ = {(x, y) ∈
J2 / x ≤ y}, where J is a join-closed subset of P (such as ∨supp(f)). Let the
meet-irreducible elements ι(J) of the smallest sublattice of P containing J be
ordered such that ∀ik, il ∈ ι(J), k < l⇒ ik 6≤ il. We have:

HJ
k =

{
(x, y) ∈ J2 / x = y

or

(
x =

∨{
s ∈ J / s ≤ y ∧ ik

}
and y ∧

∧
ι(J)k ≤ x

)}
,

where ι(J)k = {i1, i2, . . . , ik}.
Dually, the expression of HJ follows the same pattern, simply reversing the

paths of HJ by reversing the arrows in each HJ
k and reversing the sequence of

meet-irreducible elements.

Proof. By definition, for all k and ∀(x, y) ∈ HM
k , we have x, y ∈M and x ≥ y,

i.e. (x, y) ∈ GM≥ . Reciprocally, ∀(x, y) ∈ GM≥ , we have x ≥ y, which can be

decomposed as a unique path (g1, g2, . . . , g|ι(M)|) ∈ HM
1 ×HM

2 × · · · ×HM
|ι(M)|:

The idea is that we use the same procedure as in Theorem 1 that builds unique
paths simply by generating all elements of a finite distributive lattice L based on

2 This unit cost can be obtained when P = 2Ω using a dynamic binary tree as data
structure for the representation of M . With it, finding the proxy element only takes
the reading of a binary string, considered as one operation. Further details will soon
be available in an extended version of this work [5].
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the join of its join-irreducible elements step by step, as if we had M ⊆ L, except
that we remove all elements that are not in M . Doing so, the only difference
is that the join y ∨ ik of an element y of M with a join-irreducible ik ∈ ι(M)
of this hypothetical lattice L is not necessary in M . However, thanks to the
meet-closure of M and to the synchronizing condition y ∨

∨
ι(M)k ≥ p, we can

“jump the gap” between two elements y and p of M separated by elements of
L\M and maintain the unicity of the path between any two elements x and y
of M . Indeed, for all join-irreducible element ik ∈ ι(M), if x ≥ y ∨ ik, then
since M is meet-closed, we have an element p of M that we call proxy such that
p =

∧
{s ∈ M / s ≥ y ∨ ik}. Yet, we have to make sure that (1) p can only be

obtained from y with exactly one particular ik if p 6= y, and (2) that the sequence
of these particular join-irreducible elements forming the arrows of the path from
x to y are in the correct order. This is the purpose of the synchronizing condition
y ∨

∨
ι(M)k ≥ p.

For (1), we will show that for a same proxy p, it holds that ∃!k ∈ [1, |ι(M)|]
such that p 6= y, y∨

∨
ι(M)k ≥ p and y 6≥ ik. Recall that we ordered the elements

ι(M) such that ∀ij , il ∈ ι(M), j < l ⇒ ij 6≥ il. Let us note k the greatest
index among [1, |ι(M)|] such that p ≥ ik and y 6≥ ik. It is easy to see that the
synchonizing condition is statisfied for ik. Then, for all j ∈ [1, k − 1], Corollary
1 and Lemma 1 give us that y ∨

∨
ι(M)j 6≥ ik, meaning that y ∨

∨
ι(M)j 6≥ p.

For all j ∈ [k + 1, |ι(M)|], either y ≥ ij (i.e. p = y ∨ ij = y) or p 6≥ ij. Either
way, it is impossible to reach p from y∨ ij. Therefore, there exists a unique path
from y to p that takes the arrow (p, y) from HM

k .

Concerning (2), for all (x, y) ∈ GM≥ , x 6= y, let us note the proxy element
p1 =

∧
{s ∈ M / s ≥ y ∨ ik1} where k1 is the greatest index among [1, |ι(M)|]

such that p1 ≥ ik1 and y 6≥ ik1 . We have (p1, y) ∈ HM
k1

. Let us suppose that
there exists another proxy element p2 such that p2 6= p1, x ≥ p2 and p2 =

∧
{s ∈

M / s ≥ p1 ∨ ik2} where k2 is the greatest index among [1, |ι(M)|] such that
p2 ≥ ik2 and p1 6≥ ik2 . We have (p2, p1) ∈ HM

k2
. Since p2 > p1 and p1 ≥ ik1 , we

have that p2 ≥ ik1 , i.e. k2 6= k1. So, two cases are possible: either k1 > k2 or
k1 < k2. If k1 > k2, then there is a path ((p2, p1), (p1, p1), . . . , (p1, p1), (p1, y))
from p2 to y. Moreover, we know that at step k1, we get p1 from y and that we
have p2 ≥ ik1 and y 6≥ ik1 , meaning that there could only exist an arrow (p2, y)
in HM

k3
if k3 > k1 > k2. Suppose this k3 exists. Then, since k3 > k1 > k2, we

have that p2 ≥ ik3 and y 6≥ ik3 , but also p1 6≥ ik3 since we would have k1 = k3
otherwise. This implies that k2 = k3, which is impossible. Therefore, there is no
k3 such that (p2, y) ∈ HM

k3
, i.e. there is a unique path from p2 to y. Otherwise, if

k1 < k2, then the latter path between p2 and y does not exist. But, since p1 6≥ ik2
and p1 ≥ y, we have y 6≥ ik2 , meaning that there exists an arrow (p2, y) ∈ HM

k2
,

which forms a unique path from p2 to y. The recurrence of this reasoning enables
us to conclude that there is a unique path from x to y.

Thus, the condition of section 2.1 is satisfied. HM computes the zeta trans-
formation of GM≥ . Also, for the same reasons as with Theorem 1, we have that

HM computes the Möbius transformation of GM≥ . The proof for HJ and GJ≤ is
analog if P is a Boolean lattice.
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4 Discussions for Dempster-Shafer Theory

In DST, we work with P = 2Ω , in which the singletons are its join-irreducible
elements. If |supp(f)| is of same order of magnitude as n or lower, where n = |Ω|,
then we can compute the focal points ∧supp(f) or ∨supp(f) and use our Effi-
cient Möbius Transformation of Theorem 2 to compute any DST transforma-
tion (e.g. the commonality/implicability function, the conjunctive/disjunctive
weight function, etc, i.e. wherever the FMT applies) in at most O(n.|supp(f)|+
|ι(supp(f))|.|Rsupp(f)|) operations, where R ∈ {∧,∨}, which is at most O(n.2n).

Otherwise, we can compute L,↑supp(f) or L,↓supp(f) of Proposition 2, and
then use the Efficient Möbius Transformation of Theorem 1 to compute the same
DST transformations in O(n.|supp(f)| + |ι(supp(f))|.|L,Asupp(f)|) operations,
where A ∈ {↑, ↓}, which is at most O(n.2n).

Therefore, we can always compute DST transformations more efficiently than
the FMT with the EMT if supp(f) is given.

Moreover, L,↓supp(f) can be optimized if Ω ∈ supp(f) (which causes the
equality L,↓supp(f) = Lsupp(f)). Indeed, one can equivalently compute the
lattice L,↓(supp(f)\{Ω}), execute the EMT of Theorem 1, and then add the
value on Ω to the value on all sets of L,↓(supp(f)\{Ω}). Dually, the same can
be done with L,↑(supp(f)\{∅}). This trick can be particularly useful in the case
of the conjunctive or disjunctive weight function, which requires that supp(f)
contains respectively Ω or ∅.

Also, optimizations built for the FMT, such as the reduction of Ω to the
core C or its optimal coarsened version Ω′, are already encoded in the use of
the function ι (see Example 1), but optimizations built for the evidence-based
approach, such as approximations by reduction of the number of focal sets, i.e.
reducing the size of supp(f), can still greatly enhance the EMT.

Finally, while it was proposed in [9] to fuse two mass functions m1 and
m2 using Dempster’s rule by computing the corresponding commonality func-
tions q1 and q2 in O(n.2n), then q12 = q1.q2 in O(2n) and finally comput-
ing back the fused mass function m12 from q12 in O(n.2n), here we propose
an even greater detour that has a lower complexity. Indeed, by computing q1
and q2 on ∧supp(m1) and ∧supp(m2), then the conjunctive weight functions
w1 and w2 on these same elements, we get w12 = w1.w2 in O(|∧supp(m1) ∪
∧supp(m2)|) (all other set has a weight equal to 1). Consequently, we obtain
the set supp(1− w12) ⊆ ∧supp(m1) ∪ ∧supp(m2) which can be used to com-
pute ∧supp(1− w12) or L,↓supp(1− w12). From this, we simply compute q12
and then m12 in O(n.|supp(1 − w12)| + |ι(supp(1 − w12))|.|∧supp(1− w12)|) or
O(n.|supp(1− w12)|+ |ι(supp(1− w12))|.|L,↓supp(1− w12)|).

Example 1 (Consonant case). If supp(f) = {F1, F2, . . . , FK} such that F1 ⊂
F2 ⊂ · · · ⊂ FK , then the coarsening Ω′ of Ω will have an element for each
element of supp(f), while ι(supp(f)) will have a set of elements for each element
of supp(f). So, we get |Ω′| = |ι(supp(f))| = K. But, Ω′ is then used to generate
the Boolean lattice 2Ω

′
, of size 2K , where ι(supp(f)) is used to generate an

arbitrary lattice Lsupp(f), of size K in this particular case (K+1 if ∅ ∈ supp(f)).
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5 Conclusion

In this paper, we proposed the Efficient Möbius Transformations (EMT), which
are general procedures to compute the zeta and Möbius transforms of any func-
tion defined on any finite distributive lattice with optimal complexity. They are
based on our reformulation of the Möbius inversion theorem with focal points
only, featured in an upcoming detailed article [5] currently in preparation. The
EMT optimally exploit the information contained in both the support of this
function and the structure of distributive lattices. Doing so, the EMT always
perform better than the optimal complexity for an algorithm considering the
whole lattice, such as the FMT for all DST transformations, given the support
of this function. In [5], we will see that our approach is still more efficient when
this support is not given. This forthcoming article will also feature examples of
application in DST, algorithms and implementation details.
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