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SUMMARY
Full waveform inversion (FWI) is a nonlinear waveform matching procedure, which suffers
from cycle skipping when the initial model is not kinematically-accurate enough. To mitigate
cycle skipping, wavefield reconstruction inversion (WRI) extends the inversion search space by
computing wavefields with a relaxation of the wave equation in order to fit the data from the
first iteration. Then, the subsurface parameters are updated by minimizing the source residuals
the relaxation generated. Capitalizing on the wave-equation bilinearity, performing wavefield
reconstruction and parameter estimation in alternating mode decomposes WRI into two linear
subproblems, which can solved efficiently with the alternating-direction method of multiplier
(ADMM), leading to the so-called iteratively refined wavefield reconstruction inversion (IR-
WRI). Moreover, ADMM provides a suitable framework to implement bound constraints and
different types of regularizations and their mixture in IR-WRI. Here, IR-WRI is extended to
multiparameter reconstruction for VTI acoustic media. To achieve this goal, we first propose
different forms of bilinear VTI acoustic wave equation. We develop more specifically IR-WRI
for the one that relies on a parametrisation involving vertical wavespeed and Thomsen’s param-
eters δ and ε. With a toy numerical example, we first show that the radiation patterns of the vir-
tual sources generate similar wavenumber filtering and parameter cross-talks in classical FWI
and IR-WRI. Bound constraints and TV regularization in IR-WRI fully remove these undesired
effects for an idealized piecewise constant target. We show with a more realistic long-offset case
study representative of the North Sea that anisotropic IR-WRI successfully reconstruct the ver-
tical wavespeed starting from a laterally homogeneous model and update the long-wavelengths
of the starting ε model, while a smooth δ model is used as a passive background model. VTI
acoustic IR-WRI can be alternatively performed with subsurface parametrisations involving
stiffness or compliance coefficients or normal moveout velocities and η parameter (or horizon-
tal velocity).

Key words: Waveform inversion, Inverse theory, Seismic anisotropy, Controlled source seis-
mology.

1 INTRODUCTION

Full waveform inversion (FWI) is a waveform matching procedure
which provides subsurface model with a wavelength resolution.
However, it suffers from cycle skipping when the initial model is
not accurate enough according to the lowest available frequency.
To mitigate cycle skipping, the search space of frequency-domain
FWI can be extended by wavefield reconstruction inversion (WRI)
(van Leeuwen & Herrmann 2013, 2016). In WRI, the search space
is extended with a penalty method to relax the wave-equation con-
straint at the benefit of the observation equation (i.e., the data fit)
during wavefield reconstruction. Then, the subsurface parameters

are estimated from the reconstructed wavefields by minimizing the
source residuals the relaxation generated. If these two subproblems
(wavefield reconstruction and parameter estimation) are solved in
alternating mode (van Leeuwen & Herrmann 2013) rather than by
variable projection (van Leeuwen & Herrmann 2016), WRI can
be recast as a sequence of two linear subproblems capitalizing on
the bilinearity of the scalar Helmholtz equation with respect to the
wavefield and the squared slownesses (the Helmholtz equation is
linear with respect to the wavefield for a given squared slowness
model and is linear with respect to the squared slownesses for a
given wavefield).
Aghamiry et al. (2019c) improved WRI by replacing the penalty
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method with the augmented Lagrangian method (Nocedal &
Wright 2006) and solve it using the alternating-direction method
of multipliers (ADMM) (Boyd et al. 2010), leading to iteratively-
refined WRI (IR-WRI). Although ADMM was originally devel-
oped for separable convex problems, the bilinearity of the wave
equation makes IR-WRI biconvex, which allows for the use of
ADMM as is (Boyd et al. 2010, Section 3.1.1). Moreover, a scaled
form of ADMM draws clear connection between WRI and IR-
WRI in the sense that it shows that IR-WRI reduces to a penalty
method in which the right-hand sides (RHSs) in the quadratic
objective functions associated with the observation equation and
the wave equation are iteratively updated with the running sum
of the data and source residuals in iteration (namely, the scaled
Lagrange multipliers). This RHS updating, the lacking feature in
WRI, efficiently refines the solution of the two linear subproblems
when a fixed penalty parameter is used (Aghamiry et al. 2018b,
2019c). Later, Aghamiry et al. (2018c, 2019b) interfaced bound
constraints and edge-preserving regularizations with ADMM to
manage large-contrast media. Also, to preserve the smooth com-
ponents of the subsurface when edge preserving regularizations are
used, Aghamiry et al. (2018a, 2019a) combine blocky and smooth
promoting regularization in the framework of IR-WRI by using in-
fimal convolution of Tikhonov and Total Variation (TV) regulariza-
tion functions.

IR-WRI was mainly assessed for wavespeed estimation from
the scalar Helmholtz equation. The objective of this study is to de-
velop and assess the extension of IR-WRI to multi-parameter re-
construction in VTI acoustic media. To achieve this goal, we first
need to review different formulations of the VTI acoustic wave
equation and different subsurface parametrisations for which bilin-
earity of the wave equation is fulfilled, in order to keep the param-
eter estimation subproblem linear. Since the wavefield reconstruc-
tion requires to solve a large and sparse system of linear equations,
second-order or fourth-order wave equation for pressure will be fa-
vored at the expense of first-order velocity-stress formulations to
mitigate the number of unknowns during wavefield reconstruction.
However, we stress that different forms of the wave equation can be
used to perform wavefield reconstruction and parameter estimation,
provided they provide consistent solutions (Gholami et al. 2013b,
Their Appendix A and B).
Also, we will favor subsurface parametrisation involving the verti-
cal wavespeed v0 and the Thomsen’s parameter ε and δ at the ex-
pense of that involving stiffness coefficients according to the trade-
off analysis of Gholami et al. (2013b, Their Appendix A and B).

When bilinearity of the wave equation is fulfilled, IR-WRI
can be extended to multi-parameter estimation following the pro-
cedure promoted by Aghamiry et al. (2019b), where TV regular-
ization and bound constraints are efficiently implemented in the
parameter-estimation subproblem using variable splitting schemes
(Glowinski et al. 2017). The splitting procedure allows us to break
down the non-differentiable TV regularization problem into two
easy-to-solve subproblems: a least-squares quadratic subproblem
and a proximity subproblem (Goldstein & Osher 2009).

In this study, we perform a first assessment of multi-parameter
IR-WRI for v0 and ε using a toy inclusion example and the more
realistic synthetic North Sea case study tackled by Gholami et al.
(2013b) and Gholami et al. (2013a). With the toy example, we first
show that the radiation patterns and the parameter cross-talks have
the same effects as in classical FWI when TV regularization is not
applied. Then, we show how TV regularization fully removes band-
pass filtering and cross-talk effects generated by these radiation pat-
terns for this idealized piecewise constant target. With the North

Sea example, we first show the resilience of IR-WRI against cycle
skipping when using a crude initial v0 model. The reconstruction
of the v0 model is accurate except in the deep smooth part of the
subsurface which suffers from a deficit of wide-angle illumination,
while the reconstruction of ε is more challenging and requires ad-
ditional regularization to keep its update smooth and close to the
starting model. However, we manage to update significantly the
long-to-intermediate wavelengths of ε by IR-WRI, unlike Gholami
et al. (2013a). Also, comparison between mono-parameter IR-WRI
for v0 and multi-parameter IR-WRI for v0 and ε allows us to gain
qualitative insights on the sensitivity of the IR-WRI to ε in terms of
subsurface model quality and data fit.

This paper is organized as follow. We first discuss the bilin-
earity of the acoustic VTI wave equation as well as its implication
on the gradient and the Gauss-Newton Hessian of the parameter-
estimation subproblem. From the selected bilinear formulation of
the wave equation, we develop bound-constrained TV-regularized
IR-WRI for VTI acoustic media parametrized by 1/v2

0, 1 + 2ε and√
1 + 2δ. Third, we assess IR-WRI for VTI acoustic media against

the inclusion and North Sea case studies. Finally, we discuss the
perspectives of this work.

2 THEORY

In this section, we first show that the VTI acoustic wave equa-
tions is bilinear with respect to the wavefield and model parame-
ters. Then, we rely on this bilinearity to formulate multi-parameter
IR-WRI in VTI acoustic media with bounding constraints and TV
regularization.

2.1 Bilinearity of the wave equation: preliminaries

If we write the wave equation in a generic matrix form as

A(m)u = s, (2.1)

where A ∈ C(n×nc)×(n×nc) is the wave-equation operator, u ∈
C(n×nc)×1 is the wavefield vector, s ∈ C(n×nc)×1 is the source
vector, m ∈ R(n×nm)×1 is the subsurface parameter vector, n
is the number of degrees of freedom in the spatial computational
mesh, nc is the number of wavefield components, nm is the num-
ber of parameter classes, then the wave equation is bilinear if there
exists a linear operator L(u) ∈ C(n×nm)×(n×nm) such that

L(u)m = y(u), (2.2)

where y(u) ∈ C(n×nm)×1. Bilinearity is verified when the left-
hand side of the wave equation can be decomposed as:

A(m)u = B M(m) Cu + Du, (2.3)

where M(m) is a block matrix, whose blocks of dimension n× n
are either 0 or of the form diag(mi), and matrices B, C and D
don’t depend on m. The operator diag(•) denotes a diagonal ma-
trix of coefficients • and mi is the subsurface parameter vector
of class i. By noting that diag(x)z = diag(z)x, the block diago-
nal structure of M allows one to rewrite the term B M(m) Cu as
B C′(u)m, where C′(u) is a block matrix, whose blocks of di-
mension n×n are either 0 or diagonal with coefficients depending
on u.

It follows from equation 2.3 and the above permutation be-
tween u and m that the wave equation can be re-written as

A(m)u− s = B C′(u)m + Du− s = L(u)m− y(u). (2.4)
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Moreover, in the framework of multi-parameter analysis, it is worth
noting that

∂A(m)

∂mk
u = L(u)ek, (2.5)

where the left-hand side is the so-called virtual source associated
withmk (Pratt et al. 1998) and ek ∈ C(n×nm)×1 denotes a column
vector whose kth component is one while all the others are zeros.

Accordingly, the normal operator LTL, i.e., the Gauss-
Newton Hessian of the parameter estimation subproblem in IR-
WRI, is formed by the zero-lag correlation of the virtual sources
and, hence is extremely sparse. We also point that L and its asso-
ciated normal operator LTL are block diagonals if B is diagonal.
This means that, if the model parameters are first sorted according
to their position in the mesh (fast index) and second according to
the parameter class they belong to (slow index), then the diagonal
coefficients of the off-diagonal blocks describe the inter-parameter
coupling. In the following section, we show the bilinearity of the
acoustic VTI wave equation based upon the above matrix manipu-
lations.

2.2 Bilinearity of the acoustic VTI wave equation

2.3 First-order velocity-stress wave equation

We first consider the frequency-domain first-order velocity-stress
wave equation in 2D VTI acoustic media (Duveneck et al. 2008;
Duveneck & Bakker 2011; Operto et al. 2014)

−îωvx,l = diag(b)∇xux,l,

−îωvz,l = diag(b)∇zuz,l,

−îωux,l = diag(c11)∇xvx,l + diag(c13)∇zvz,l − îωsl,

−îωuz,l = diag(c13)∇xvx,l + diag(c33)∇zvz,l − îωsl, (2.6)

where î =
√
−1, ω is the angular frequency, vx,l ∈ Cn×1 and

vz,l ∈ Cn×1 are the horizontal and vertical particle velocity wave-
fields, sl ∈ Cn×1 denote the pressure sources, and ux,l ∈ Cn×1

and uz,l ∈ Cn×1 are the so-called horizontal and vertical pressure
wavefields (Plessix & Cao 2011). The subscript l ∈ {1, 2, ..., ns}
is the source index, where ns denotes the number of sources. The
subsurface properties are parametrized by the buoyancy b ∈ Rn×1

(inverse of density) and the stiffness coefficients cij ∈ Rn×1. Op-
erators ∇x and ∇z are finite difference approximation of first order
derivative operators with absorbing perfectly matched layer (PML)
coefficients (Bérenger 1994).

Gathering equation 2.6 for all sources leads to the following
matrix equation:([

Mb 0
0 Mc

] [
0 ∇
∇ 0

]
+ îωI

)[
V
U

]
= îω

[
0
S

]
, (2.7)

where I is the identity matrix,

∇ =

[
∇x 0
0 ∇z

]
,

U =

[
Uh

Uv

]
, V =

[
Vx

Vz

]
, S =

[
Sx
Sz

]
, (2.8)

with

Vx =
[
vx,1 vx,2 ... vx,ns

]
∈ Cn×ns ,

and analogously for Vz , Uh, Uv , and

Sx = Sz =
[
s1 s2 ... sns

]
∈ Cn×ns .

Furthermore,

Mb =

[
diag(b) 0

0 diag(b)

]
,Mc =

[
diag(c11) diag(c13)
diag(c13) diag(c33)

]
.

Note that, according to the decomposition introduced in the

previous section, M =

[
Mb 0
0 Mc

]
, B = I, C = ∇ and

D = îωI. Equation 2.7 is linear in U and V when the model
parameters embedded in Mb and Mc are known. When U and V
are known, this system can be also recast as a new linear system
in which the unknowns are the model parameters, thus highlight-
ing the bilinearity of the wave equation. For the lth source, the new
equations become

L11 0 0 0
L21 0 0 0
0 L32 L33 0
0 0 L43 L44




b
c11

c13

c33

 = îω


0− vx,l
0− vz,l
sl − ux,l
sl − uz,l

 , (2.9)

where 
L11 = diag(∇xux,l),
L21 = diag(∇zuz,l),
L32 = L43 = diag(∇xvx,l),
L33 = L44 = diag(∇zvz,l).

Equations 2.7 and 2.9 are equivalent forms of the original equa-
tion 2.6. The former expresses the discretized wavefields as the un-
knowns of a linear system, whose coefficients depend on the known
subsurface parameters, while the latter expresses the model param-
eters as the unknowns of an another linear system, whose coeffi-
cients depend on the known wavefields. In the framework of WRI,
this bilinearity allows one to recast the waveform inversion problem
as two linear subproblems for wavefield reconstruction and param-
eter estimation, which can be solved efficiently in alternating mode
with ADMM (Aghamiry et al. 2019c,b). In the next section, we
show the bilinearity of the second-order frequency-domain wave
equation, which may be more convenient to solve with linear alge-
bra methods than the first-order counterpart, since it involves fewer
unknowns for a computational domain of given size.

2.4 Second-order wave equation

Following a parsimonious approach (e.g., Operto et al. 2007), we
eliminate vx,l and vz,l from equation 2.6 to derive a system of two
second-order partial differential equations as

− ω2ux,l = diag(c11)∇xdiag(b)∇xux,l
+ diag(c13)∇zdiag(b)∇zuz,l − ω2sl,

− ω2uz,l = diag(c13)∇xdiag(b)∇xux,l
+ diag(c33)∇zdiag(b)∇zuz,l − ω2sl.

(2.10)

Equation 2.10 defines a tri-linear equation with respect to buoy-
ancy, stiffness parameters and pressure wavefields. A tri-linear
function is a function of three variables which is linear in one vari-
able when the other two variables are fixed. In this study, we will as-
sume that density is constant and equal to 1 to focus on the estima-
tion of the anisotropic parameters. If heterogeneous density needs
to be considered, the second-order wave equation can be recast as
a bilinear system if the first-order wave equation is parametrized
with compliance coefficients instead of stiffness coefficients (see
Appendix A and Vigh et al. 2014; Yang et al. 2016). Alternatively,
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the parameter estimation can be performed with the bilinear first-
order wave equation, equation 2.9, while wavefield reconstruction
is performed with the second-order wave equation, equation 2.10,
or the fourth-order wave equation reviewed in Appendix C for sake
of computational efficiency.

We continue by assuming that the density is constant and
equal to 1 and parametrize the VTI equation in terms of vertical
wavespeed v0 and Thomsen’s parameters ε and δ (Thomsen 1986).
Accordingly, we rewrite equation 2.10 as

− ω2diag
(
1/v2

0

)
ux,l = diag(1 + 2ε)∇xxux,l

+ diag(
√

1 + 2δ)∇zzuz,l − diag(1/v2
0)sl,

− ω2diag
(
1/v2

0

)
uz,l = diag(

√
1 + 2δ)∇xxux,l

+∇zzuz,l − diag
(
1/v2

0

)
sl,

(2.11)

where∇xx = ∇x∇x and∇zz = ∇z∇z . We write this 2n× 2n linear
system in a more compact form as

A(m)U = S, (2.12)

where ST = ω2
[
STx STz

]
, U is defined as in equation 2.8, and

the matrix A is given by[
ω2diag(mv0) + diag(mε)∇xx diag(mδ)∇zz

diag(mδ)∇xx ω2diag(mv0) +∇zz

]
,

where the model parameters are

m =

mv0

mε

mδ

 =

 1/v2
0

1 + 2ε√
1 + 2δ

 .
Equation 2.12 is linear in wavefields U when the model parameters
m are known. When U is known, this system can be recast as a
linear system in which the unknowns are the model parameters.

L1

...
Ll
...

Lns

m =



y1

...
yl
...

yns

 , (2.13)

where Ll is given by[
ω2diag(ux,l) diag(∇xxux,l) diag(∇zzuz,l)
ω2diag(uz,l) 0 diag(∇xxux,l)

]
and

yl =

[
ω2sl

ω2sl −∇zzuz,l

]
.

Note that each block of Ll is diagonal. In the next section, we
develop multi-parameter acoustic VTI IR-WRI with bound con-
straints and TV regularization. We give the most general formula-
tion in which all the tree parameter classes mv0 , mε, mδ are opti-
mization parameters (updated by the inversion). However, one may
process some of them as passive parameters or update the param-
eter classes in sequence rather than jointly. In this case, the linear
system associated with the parameter estimation subproblem, equa-
tion 2.13, will change. Table 1 presents this system for the different
possible configurations.

2.5 ADMM-based acoustic VTI wavefield reconstruction
inversion

We consider the following bound-constrained TV-regularized mul-
tivariate optimization problem associated with the wave equation

described by equation 2.12:

min
U,m∈C

∑√
|∂xm|2 + |∂zm|2,

subject to

{
PU = D,

A(m)U = S,

(2.14)

where ∂x and ∂z are, respectively, first-order finite-difference op-
erators in the horizontal and vertical directions with appropriate
boundary conditions, C = {x ∈ R3n×1 |ml ≤ x ≤ mu} is the
set of all feasible models bounded by a priori lower bound ml and
upper bound mu,

D =
[
d1 d2 ... dns

]
∈ Cnr×ns

with dl denoting the recorded data for the lth source, each includ-
ing nr samples (the number of receivers), P ∈ Rnr×2n is a linear
observation operator which samples the wavefields at the receiver
positions. Here, we assume that the sampling operator is identi-
cal across all sources (stationary-recording acquisitions). However,
one may used a specific operator for each source.

We solve this constrained optimization problem with ADMM
(Boyd et al. 2010; Aghamiry et al. 2019b), an augmented La-
grangian method with operator splitting, leading to the following
saddle point problem

min
U,m∈C

max
D̄,S̄

∑√
|∂xm|2 + |∂zm|2

+
〈
D̄,PU−D

〉
+ λ0‖PU−D‖2F

+
〈
S̄,A(m)U− S

〉
+ λ1‖A(m)U− S‖2F ,

(2.15)

where ‖ • ‖2F denotes the Frobenius norm of •, λ0, λ1 > 0 are
penalty parameters and D̄ ∈ Cnr×ns and S̄ ∈ Cn×ns are the
Lagrange multipliers (dual variables).

The last two lines of Equation 2.15 shows that the augmented
Lagrangian function combines a Lagrangian function (left terms)
and a penalty function (right terms). Also, scaling the Lagrange
multipliers by the penalty parameters, D̃ = −D̄/λ0 and S̃ =
−S̄/λ1, allows us to recast the augmented Lagrangian function in
a more convenient form (Boyd et al. 2010, Section 3.1.1)

min
U,m∈C

max
D̄,S̄

∑√
|∂xm|2 + |∂zm|2

+ λ0‖PU−D− D̃‖2F − ‖D̃‖2F
+ λ1‖A(m)U− S− S̃‖2F − ‖S̃‖2F ,

(2.16)

where the scaled dual variables have been injected in the penalty
functions.

In the WRI framework, the augmented Lagrangian method
provides an efficient and easy-to-tune optimization scheme that ex-
tends the parameter search space by introducing a significant relax-
ation of the wave equation at the benefit of the observation equation
during the early iterations, while satisfying the two equations at the
convergence point. We solve the saddle point problem, equation
2.16, with the method of multiplier, in which the primal variables,
U and m, and the dual variables, D̃ and S̃, are updated in alternat-
ing mode. The dual problem is iteratively solved with basic gradi-
ent ascent steps. Accordingly, we immediately deduce from equa-
tion 2.16 that the scaled dual variables D̃ and S̃ are formed by the
running sum of the constraint violations (the data and source resid-
uals) in iterations. They update the RHSs (the data and the sources)
of the quadratic penalty functions in equation 2.16 to refine the pri-
mal variables U and m at a given iteration from the residual source
and data errors (this RHS updating is a well known procedure to it-
eratively refine solutions of ill-posed linear inverse problems). The
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Table 1. The linear systems corresponding to the update of mv0 , mε and mδ when they are active or passive during the inversion. In the first three columns,
“a.” denotes an active parameter and “p.” denotes a passive parameter.

mv0 mε mδ The corresponding linear system for updating the model

a. p. p.
[
ω2diag(ux,l)
ω2diag(uz,l)

]
︸ ︷︷ ︸

Ll∈C2n×n

[
mv0

]︸ ︷︷ ︸
m∈Rn×1

=

[
ω2sl − diag(mε)∇xxux,l − diag(mδ)∇zzuz,l

ω2sl −∇zzuz,l − diag(mδ)∇xxux,l

]
︸ ︷︷ ︸

yl∈C2n×1

p. a. p.
[
diag(∇xxux,l)

]︸ ︷︷ ︸
Ll∈Cn×n

[
mε
]︸ ︷︷ ︸

m∈Rn×1

=
[
ω2sl − ω2diag(mv0 )ux,l − diag(mδ)∇zzuz,l

]︸ ︷︷ ︸
yl∈Cn×1

p. p. a.
[

diag(∇zzuz,l)
diag(∇xxux,l)

]
︸ ︷︷ ︸

Ll∈C2n×n

[
mδ

]︸ ︷︷ ︸
m∈Rn×1

=

[
ω2sl − ω2diag(mv0 )ux,l − diag(mε)∇xxux,l

ω2sl −∇zzuz,l − ω2diag(mv0 )uz,l

]
︸ ︷︷ ︸

yl∈C2n×1

p. a. a.
[

diag(∇xxux,l) diag(∇zzuz,l)
0 diag(∇xxux,l)

]
︸ ︷︷ ︸

Ll∈C2n×2n

[
mε

mδ

]
︸ ︷︷ ︸

m∈R2n×1

=

[
ω2sl − ω2diag(mv0 )ux,l

ω2sl −∇zzuz,l − ω2diag(mv0 )uz,l

]
︸ ︷︷ ︸

yl∈C2n×1

a. a. p.
[
ω2diag(ux,l) diag(∇xxux,l)
ω2diag(uz,l) 0

]
︸ ︷︷ ︸

Ll∈C2n×2n

[
mv0

mε

]
︸ ︷︷ ︸

m∈R2n×1

=

[
ω2sl − diag(mδ)∇zzuz,l

ω2sl −∇zzuz,l − diag(mδ)∇xxux,l

]
︸ ︷︷ ︸

yl∈C2n×1

a. p. a.
[
ω2diag(ux,l) diag(∇zzuz,l)
ω2diag(uz,l) diag(∇xxux,l)

]
︸ ︷︷ ︸

Ll∈C2n×2n

[
mv0

mδ

]
︸ ︷︷ ︸

m∈R2n×1

=

[
ω2sl − diag(mε)∇xxux,l

ω2sl −∇zzuz,l

]
︸ ︷︷ ︸

yl∈C2n×1

bi-variate primal problem, equation 2.14, is biconvex due to the bi-
linearity of the wave equation highlighted in the previous section.
Therefore, it can be broken down into two linear subproblems for
U and m, which can be solved efficiently in alternating mode with
ADMM after noting that the TV regularizer is convex (Aghamiry
et al. 2019b).

As pointed out by Aghamiry et al. (2019c), a key advantage
of augmented Lagrangian methods compared to penalty methods
is that fixed penalty parameters λ0 and λ1 can be used in iterations,
because the Lagrange multipliers progressively correct for the
constraint violations generated by the penalty terms through the
above mentioned RHS updating.

Starting from an initial model m and zero-valued dual vari-
ables, the kth ADMM iteration embeds the following steps (see
Appendix B for the complete development):

2.5.1 Step 1: The primal wavefield reconstructions.

Build regularized wavefields by solving the following multi-RHS
system of linear equations with direct or iterative methods suitable

for sparse matrices:

[
λ0P

TP + λ1A(mk)TA(mk)
]
U =[

λ0P
T [D + D̃k] + λ1A(mk)T [S + S̃k]

]
.

(2.17)

By choosing a small value of λ0/λ1, the reconstructed wavefields
closely fit the observations during the early iterations, while only
weakly satisfying the wave equation. Problem 2.17 can be also in-
terpreted as an extrapolation problem to reconstruct U, when the
observation equation (i.e. PU = D) is augmented with the wave
equation.

To mitigate the computational burden of the wavefield recon-
struction, we solve equation 2.17 with a fourth-order wave equa-
tion operator following the parsimonious approach of Operto et al.
(2014), while the subsequent model estimation subproblem relies
on the bilinear wave equation provided in equation 2.11. The elim-
ination procedure allowing to transform the system of two second-
order wave equations for ux and uz , equation 2.11, into a fourth-
order wave equation for ux coupled with the closed-form expres-
sion of uz as a function of ux is reviewed in Appendix C.
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2.5.2 Step 2: The primal model estimation.

The reconstructed wavefields, equation 2.17, are injected in the lin-
earized equation 2.13 to update the subsurface parameters by solv-
ing the following system of linear equations:[

λ1

ns∑
l=1

LTl Ll +∇TΓ∇+ ZI

]
m = λ1

ns∑
l=1

LTl (ykl + s̃kl )

+∇TΓ(pk + p̃k) + Z(qk + q̃k),

(2.18)

where

∇ =

[
∂x
∂z

]
. (2.19)

In equation 2.18, p and q are auxiliary primal variables, which have
been introduced to solve the bound-constrained TV-regularized pa-
rameter estimation subproblem with the split Bregman method
(Appendix B). The vectors p̃ and q̃ are the corresponding dual vari-
ables. These auxiliary primal and dual variables are initialized to 0
during the first ADMM iteration.

The operator Z is a diagonal weighting matrix defined as

Z =

ζv0I 0 0
0 ζεI 0
0 0 ζδI

 ∈ R3n×3n
+ , (2.20)

where ζv0 , ζε, ζδ > 0 control the relative weights assigned to the
bound constraints applied on the three parameter classes. Note that
the bound constraints introduce also a damping (DMP) or zero-
order Tikhonov regularization in the Hessian of equation 2.18.

In the same way, Γ is a diagonal matrix defined as

Γ =

[
Γ11 0
0 Γ22

]
, (2.21)

where

Γ11 = Γ22 =

γv0I 0 0
0 γεI 0
0 0 γδI

 ∈ R3n×3n
+ ,

and γv0 , γε, γδ > 0 control the soft thresholding that is performed
by the TV regularizer, equation 2.23. We remind that augmented
Lagrangian methods seek to strictly satisfy the constraints at
the convergence point only, not at each iteration. Therefore, the
relative values of these penalty parameters have a significant
impact upon the path followed by the inversion to converge toward
this convergence point.

2.5.3 Step 3: The TV primal update.

Update the TV primal variable p via a TV proximity operator. Set

z← ∇mk+1 − p̃k =

[
zx
zz

]
,

then

pk+1 ← proxΓ−1(z) =

[
ξ ◦ zx
ξ ◦ zz

]
, (2.22)

where

ξ = max(1− 1

Γ
√

z2
x + z2

z

, 0) (2.23)

and x ◦ y denotes the Hadamard (component-wise) product of x
and y. Also, the power of 2 indicates the Hadamard product of x
with itself, i.e. x2 = x ◦ x.

2.5.4 Step 4: The bounding constraint primal update.

Update the primal variable q via a projection operator, which has
the following component-wise form

qk+1 ← projC(m
k+1 − q̃k), (2.24)

where the projection operator is given by

projC(x) = min(max(x,ml),mu).

2.5.5 Step 5: Dual updates.

Update the scaled dual variables with gradient ascent steps
S̃k+1 ← S̃k + S−A(mk+1)Uk+1,

D̃k+1 ← D̃k + D−PUk+1,

p̃k+1 ← p̃k + pk+1 −∇mk+1,

q̃k+1 ← q̃k + qk+1 −mk+1,

(2.25)

2.5.6 Step 6: Check the stopping condition.

Exit if the preset stopping conditions are satisfied else go to step 1.
We will describe the stopping criteria of iterations in the following
”Numerical example” section for each numerical example

2.6 Hyperparameter tuning

We tune the different penalty parameters by extending the proce-
dure reviewed by Aghamiry et al. (2019b,a) to multiparameter re-
construction.

We start from the last subproblem of the splitting procedure
and set the penalty parameters contained in Γ. These hyper-
parameters control the soft thresholding performed by the TV

regularization, equation 2.22. We set γi = 2% max
√

z2
ix

+ z2
iz

,

where the subscript i ∈ {v0, ε, δ} denotes the parameter class
(mv0 , mε, mδ). This tuning can be refined by using a different
thresholding percentage for each parameter class adaptively during
iterations or according to prior knowledge of the geological
structure, coming from well logs for example. Also, we use the
same weight for the damping regularization associated with the
bound constraints and the TV regularization: ζi = γi.
Then, we select λ1 as a percentage of the mean absolute value
of the diagonal coefficients of

∑ns
l=1 LTl Ll during the param-

eter estimation subproblem, equation 2.18. This percentage is
set according to the weight that we want to assign to the TV
regularization and the bound constraints relative to the wave
equation constraint during the parameter estimation. Parameter
λ1 may be increased during iterations to reduce the weight of
TV regularization and bound constraints near the convergence
point. We found this adaptation useful when we start from very
crude initial models. Finally, we set λ0 such that λ = λ1/λ0 is a
small fraction of the highest eigenvalue ξ of the normal operator
A(m)−TPTPA(m)−1 during the wavefield reconstruction
subproblem, equation 2.17, according to the criterion proposed by
van Leeuwen & Herrmann (2016). In all the numerical tests, we
use λ = 1e-2ξ and λ = 1e-0ξ for noiseless and noisy data, respec-
tively. This tuning of λ is indeed important because it controls the
extension of the search space. A too high value of λ reduces the
weight of ‖PU−D‖22 during the wavefield reconstruction and
makes IR-WRI behave like a reduced approach. Conversely, using
a small value for λ fosters data fitting and expends the search space
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accordingly. However, a too small value can lead to a prohibitively
high number of iterations of the augmented Lagrangian method
before the wave equation constraint is fulfilled with sufficient
accuracy. Moreover, when data are contaminated by noise, a too
small value for λ will make the wavefield reconstruction over-fit
the data and drive the algorithm to be a poor minimizer. We always
use λ as a fixed percentage of ξ in iterations.

3 NUMERICAL EXAMPLES

3.1 Inclusion test

We first assess multi-parameter IR-WRI with a simple inclusion ex-
ample for noiseless data. The experimental setup in terms of model,
acquisition geometry and frequency selection is identical to that
used by Gholami et al. (2013b). The vertical velocity v0 and the
Thomsen’s parameters δ and ε are 3 km/s, 0.05 and 0.05, respec-
tively, in the homogeneous background model and 3.3 km/s, 0.1
and 0.2, respectively, in the inclusion of radius 100 m. Nine fre-
quencies between 4.8 Hz and 19.5 Hz are processed simultaneously
during IR-WRI and a maximum of 25 iterations is used as stopping
criterion for iterations. An ideal fixed-spread acquisition is used,
where 64 sources and 320 receivers surround the inclusion, hence
providing a complete angular illumination of the target.

Although we use (1/v2
0,
√

1 + 2δ, 1+2ε) as optimization pa-
rameters during our inversions, we show the reconstructed mod-
els under the form of v0, δ and ε for comparison with the re-
sults of Gholami et al. (2013b). Note that the radiation patterns of
the (1/v2

0,
√

1 + 2δ, 1 + 2ε) parametrisation are scaled versions
of those of the (v0, δ, ε) parametrisation: namely, they exhibit the
same amplitude variation with scattering angle, with however dif-
ferent amplitudes. This means that, for an equivalent regularization
and parameter scaling, we expect similar resolution and trade-off
effects with these two parametrisations. Note that v0 is provided in
km/s in our inversion such that the order of magnitude of 1/v2

0 is
of the order of δ and ε.

We start with bound-constrained IR-WRI with damping
(DMP) regularization only (γi = 0, i ∈ {v0, ε, δ} in equation
2.18) and perform three independent mono-parameter reconstruc-
tions for mv0 , mδ and mε, respectively. For each mono-parameter
inversion, the true model associated with the optimization parame-
ter contains the inclusion, while the true models associated with the
two passive parameters are homogeneous (Fig. 1). For all three in-
versions, the starting models are the true homogeneous background
models. In other words, the data residuals contain only the foot-
print of the mono-parameter inclusion to be reconstructed. This
test is used to assess the intrinsic resolution of IR-WRI for each
parameter reconstruction, independently from the cross-talk issue
(Gholami et al. 2013b). It is reminded that this intrinsic resolution
is controlled by the frequency bandwidth, the angular illumination
provided by the acquisition geometry and the radiation pattern of
the optimization parameter in the chosen subsurface parametrisa-
tion. As this test fits the linear regime of classical FWI, we obtain
results (Fig. 1) very similar to those obtained by Gholami et al.
(2013b, Their Fig. 9), where the shape of the reconstructed inclu-
sions is controlled by the radiation pattern of the associated param-
eter. The reader is referred to Gholami et al. (2013b) for a detailed
analysis of these radiation patterns.
Then, we perform the joint reconstruction of mv0 , mδ and mε,
when the true model contains an inclusion for each parameter class

0  0.5 1  1.5 2  

0  

0.5

1  

1.5

2  

Figure 1. Inclusion test: Mono-parameter IR-WRI results. For v0 (first col-
umn), δ (second column), and ε (third column). The initial models are the
true homogeneous background models. The vertical and horizontal profiles
in the true model (blue) and estimated model (red) are extracted across the
center of the inclusions.

(Fig. 2). With our parameter scaling and subsurface parametrisa-
tion, v0, ε and δ are reconstructed with well balanced amplitudes
compared to the results of Gholami et al. (2013b, Their Fig. 10),
where v0 has a dominant imprint in the inversion. Comparing the
models reconstructed by the mono-parameter and multi-parameter
inversions highlights however the wavenumber leakage generated
by parameter cross-talks (Figs. 1 and 2).

Then, we complement DMP regularization with TV regular-
ization during bound-constrained IR-WRI for the above mono-
parameter and multi-parameter experiments (Figs. 3 and 4). The
results show how TV regularization contributes to remove the
wavenumber filtering performed by radiation patterns (compare for
example Figs. 1 and 3) as well as the cross-talk artifacts during the
multi-parameter inversion (compare Figs. 2 and 4). Although this
toy example has been designed with a piecewise constant model
which is well suited for TV regularization, yet it highlights the po-
tential role of TV regularization to mitigate the ill-posedness of
FWI resulting from incomplete wavenumber coverage and param-
eter trade-off.

3.2 Synthetic North Sea case study

3.2.1 Experimental setup

We consider now a more realistic 16 km × 5.2 km shallow-water
model representative of the North Sea (Munns 1985). The reader
is also referred to Gholami et al. (2013a) for an application of
acoustic VTI FWI on this model. The true model and the initial
(starting) models for v0, δ and ε are shown in Fig. 5. The subsur-
face model is formed by soft sediments in the upper part, a pile of
low-velocity gas layers above a chalk reservoir, the top of which
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Figure 2. Inclusion test: Multiparameter IR-WRI results for joint update
of v (first column), δ (second column), and ε (third column). The initial
models are the homogeneous background models.

is indicated by a sharp positive velocity contrast at around 2.5 km
depth, and a flat reflector at 5 km depth (Fig. 5a). The initial v0

model is laterally homogeneous with velocity linearly increasing
with depth between 1.5 to 3.2 km/s (Fig. 5b), while the δ and ε ini-
tial models are Gaussian filtered version of the true models. Note
that our initial/background v0, δ and εmodels are cruder than those
used by Gholami et al. (2013a). The fixed-spread surface acqui-
sition consists of 80 (reciprocal) explosive sources spaced 200 m
apart at 75 m depth on the sea bottom and 320 (reciprocal) hy-
drophone receivers spaced 50 m apart at 25 m depth. Accordingly,
the pressure wavefield is considered for the acoustic VTI inversion.
A free-surface boundary condition is used on top of the grid and
the source signature is a Ricker wavelet with a 10 Hz dominant
frequency. We compute the recorded data in the true models (Figs.
5a,c,e) with the forward modelling engine described in Appendix
C. During IR-WRI, we use the same forward engine to compute the
modelled data according to an inverse crime procedure. Common-
shot gathers computed in the true model and in the initial model
for a shot located at 14 km are shown in Fig. 6. The seismograms
computed in the true model are dominated by the direct wave, the
diving waves from the sedimentary overburden, complex packages
of pre- and post-critical reflections from the gas layers, the top of
the reservoir and the deep reflector. The refracted wave from the
deep reflector is recorded at a secondary arrival between -14km
and -10km offset in Fig. 6a. Also, energetic reverberating P-wave
reflections are generated by the wave guide formed by the shallow
water layer and the weathering layer. They take the form of leak-
ing modes with phase velocities higher than the water wave speed
(Operto & Miniussi 2018). The seismograms computed in the start-
ing model mainly show the direct wave and the diving waves, these
latter being highly cycle skipped relative to those computed in the
true model.

We perform both mono-parameter IR-WRI for mv0 and multi-

0  0.5 1  1.5 2  
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1.5

2  

Figure 3. Inclusion test: Same as Fig. 1, but with TV regularization.

parameter IR-WRI for mv0 and mε. In both cases, we compare the
results that are obtained when bound-constrained IR-WRI is per-
formed with DMP regularization only (γi = 0) and with DMP
+ TV regularization. When mε is involved as an optimization
parameter, we had to introduce an additional regularization term
‖m−m0

ε‖ in the parameter-estimation subproblem, equation B.4a,
in order to force the updates of ε to be smooth and close to ε0.

0  0.5 1  1.5 2  

0  

0.5

1  

1.5

2  

Figure 4. Inclusion test: Same as Fig. 2, but with TV regularization.
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Figure 5. North Sea case study. (a) True v0 model. (b) Initial v0 model. (c) True δ model. (d) Smoothed δ model, which is used as passive background model
during inversion tests. (e) True ε model. (f) Smoothed ε model, which is used as a passive background model during the mono-parameter inversion and as an
initial model during the joint reconstruction of v0 and ε. The vertical dashed lines in (b) and (f) indicate the location of vertical logs.
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Figure 6. North Sea case study. Time domain seismograms computed in (a)
the true model (Fig. 5a,c,e) and in (b) the initial model (Fig. 5b,d,f). The
seismograms are plotted with a reduction velocity of 2.5 km/s.

The background models used for the passive anisotropic parame-
ters (either ε and δ or δ alone) are the smooth models (Fig. 5d,f),
which means that the IR-WRI results will be impacted upon by the
smoothness of the passive parameters.

We perform IR-WRI with small batches of two frequencies
with one frequency overlap between two consecutive batches, mov-
ing from the low frequencies to the higher ones according to a
classical frequency continuation strategy. The starting and final fre-
quencies are 3 Hz and 15 Hz and the sampling interval in one batch
is 0.5 Hz. The stopping criterion for iterations and for each batch is
given by kmax = 15 or

‖A(mk+1)Uk+1 − S‖F ≤ εb & ‖PUk+1 −D‖F ≤ εd, (3.1)

where kmax denotes the maximum iteration count. For noiseless
data, εb and εd are set to 1e-3 and 1e-5, respectively. For noisy data,
they are set to 1e-3 and the noise level of the batch, respectively.

We perform three paths through the frequency batches to im-
prove the IR-WRI results, using the final model of one path as the
initial model of the next one (these cycles can be viewed as outer
iterations of IR-WRI). The starting and finishing frequencies of the

paths are [3, 6], [4, 8.5], [6, 15] Hz respectively, where the first ele-
ment of each pair shows the starting frequency and the second one
is the finishing frequency.

3.2.2 Convexity and sensitivity analysis

Before discussing the IR-WRI results, we illustrate how WRI ex-
tends the search space of FWI for the North Sea case study. For
this purpose, we compare the shape of the FWI misfit function with
that of the parameter-estimation WRI subproblem for the 3 Hz fre-
quency and for a series of v0 and ε models that are generated ac-
cording to

v0(α) = v0true + |α|[v0init − v0true ], (3.2a)

ε(β) = εtrue + |β|[εinit − εtrue], (3.2b)

where v0true and v0init denote the true and the initial v0 models,
respectively (Fig. 5a,b) and−1 ≤ α ≤ 1. Similarly, εtrue and εinit
are the true and the initial ε models, respectively (Fig. 5e,f) and
−1 ≤ β ≤ 1. Finally, we use the true δ model (Fig. 5c) to generate
the recorded data and the smoothed version (Fig. 5d) as a passive
parameter to evaluate the misfit function. The misfit functions of the
classical reduced-approach FWI as well as that of WRI are shown
in Fig. 7. The WRI misfit function is convex, while that of FWI
exhibits spurious local minima along both the α and β dimensions.
Also, the sensitivity of the misfit function to v0 is much higher than
that of ε for the considered range of models as already pointed out
by Gholami et al. (2013b), Gholami et al. (2013a) and Cheng et al.
(2016, Their Fig. 2). The weaker sensitivity of the misfit function
to ε makes the joint update of v0 and ε challenging.
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Figure 7. North Sea case study. 3-Hz misfit function for the first iteration
when v0 and ε are active parameters and δ is kept fixed to the smooth
background model (Fig. 5f). (a) Classical reduced approach, (b) WRI. The
variables α and β parametrize the v0 and ε models, respectively, for which
the misfit function is computed (see text for details).

3.2.3 Mono-parameter IR-WRI

We start with mono-parameter bound-constrained IR-WRI when
v0 is the optimization parameter and δ and ε are passive parame-
ters. We first consider noiseless data.
The final v0 models inferred from bound-constrained IR-WRI with
DMP regularization only and DMP+TV regularizations are shown
in Fig. 8. Also, direct comparisons between the logs extracted
from the true model, the initial model, and the IR-WRI models at
x = 3.5 km, x = 8.0 km and x = 12.5 km are shown in Fig. 9.
Although the crude initial v0 model and the smooth δ and ε passive
models, the shallow sedimentary part and the gas layers are fairly
well reconstructed with the two regularization settings. The main
differences are shown at the reservoir level and below. Without TV
regularization, the reconstruction at the reservoir level is quite noisy
and the inversion fails to reconstruct the smoothly-decreasing ve-
locity below the reservoir due to the lack of diving wave illumina-
tion at these depths. This in turn prevents the focusing of the deep
reflector at 5 km depth by migration of the associated short-spread
reflections. When TV regularization is used, IR-WRI provides a
more accurate and cleaner image of the reservoir and better recon-
structs the sharp contrast on top of it. It also reconstructs the deep
reflector at the correct depth in the central part of the model, while
the TV regularization has replaced the smoothly-decreasing veloc-
ities below the reservoir by a piecewise constant layer with a mean
velocity (Fig. 9).

To generate more realistic test, we add random noise with
Gaussian distribution to the data with SNR=10 db and re-run the
mono-parameter bound-constrained IR-WRI with DMP and TV
regularizations (Fig. 10). The direct comparison between the true
model, the initial model and the IR-WRI models of Fig. 10 at dis-
tances x = 3.5 km, x = 8.0 km and x = 12.5 km are shown
in Fig. 11. The noise degrades the reconstruction of the gas layers
both in terms of velocity amplitudes and positioning in depth when
only DMP regularization is used. Also, the sharp reflector on top of
the reservoir is now unfocused and mis-positioned in depth accord-
ingly (Fig. 11). The TV regularization significantly reduces these
amplitude and mis-positioning errors (Figs. 10b and 11) and hence
produces v0 models which are much more consistent with those
obtained for noiseless data (Figs. 8b and 9).

To assess how the differences between the velocity models
shown in Fig. 8 impact waveform match, we compute time-domain
seismograms in these models as well as the differences with those
computed in the true model (Figs. 12 and 13). The time-domain
seismograms and the residuals shown in Fig. 12 give an overall vi-

Figure 8. North Sea case study with noiseless data. Mono-parameter IR-
WRI. Vertical wavespeed v0 models inferred from IR-WRI with (a) DMP
regularization, (b) TV regularization.

sion of the achieved data fit, while the direct comparison between
the recorded and modelled seismograms shown in Fig. 13 allow for
a more detailed assessment of the waveform match for a specific
arrival.

A first conclusion is that, for all of the models shown in Fig. 8,
the main arrivals, namely those which have a leading role in the re-
construction of the subsurface model (diving waves, pre- and post-
critical reflections), are not cycle skipped relative to those com-
puted in the true model. We note however more significant resid-
uals for the reverberating guided waves when TV regularization is
used. These mismatches were generated by small wavespeed errors
generated in the shallow part of the model by the TV regulariza-
tion. These artifacts can be probably corrected by deactivating or
decreasing the weight of the TV regularization locally. For noise-
less data, the direct comparison between the seismograms com-
puted in the true model and in the reconstructed ones show how
the DMP+TV regularization improves the waveform match both at

Figure 9. North Sea case study with noiseless data. Direct comparison
along the logs at x = 3.5 (left), x = 8.0 (center) and x = 12.5 km
(right) between the true velocity model (black), the initial model (dashed
line) and the bound constrained IR-WRI models shown in Fig. 8. The logs
of the IR-WRI models obtained with DMP regularization and DMP+TV
regularization are the green lines and the red lines, respectively.
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Figure 10. North Sea case study with noisy data (SNR=10 db). Mono-
parameter bound constrained IR-WRI with (a) DMP (b) TV regularization.

pre- and post-critical incidences relative to the DMP regularization
alone (Fig. 13a,b). For noisy data, the data fit is slightly degraded by
noise when DMP regularization is used, while the TV regulariza-
tion produces a data fit which is more consistent with that obtained
with noiseless data (Compare Figs. 13a and 13c for DMP regular-
ization, and Figs. 13b and 13d for DMP+TV regularization). It is
striking to see the strong impact of noise on the quality of the v0

reconstruction when DMP regularization is used (compare Figs. 8a
and 10a, and Figs. 9 and 11, green curves), compared to its more
moderate impact on the data fit (Compare Figs. 13a and 13c). This
highlights the ill-posedness of the FWI, which is nicely mitigated
by the prior injected by the TV regularization as illustrated by the
consistency of the v0 models inferred from noiseless and noisy data
(Compare Figs. 13b and 13b).

3.2.4 Multi-parameter IR-WRI

We continue with multi-parameter bound-constrained IR-WRI
when v0 and ε are optimization parameters and δ is a passive

Figure 11. North Sea case study with noisy data (SNR=10 db). Direct com-
parison along the logs at x = 3.5 (left), x = 8.0 (center) and x = 12.5 km

(right) between the true velocity model (black), the initial model (dashed
line) and the bound constrained IR-WRI estimated models with DMP, Fig.
8a, (green) and TV regularization, Fig. 8b, (red).
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Figure 12. North Sea case study. Time-domain seismograms computed in
the subsurface models obtained by (v0) mono-parameter IR-WRI. (a-b)
Noiseless data: (a) DMP regularization, (b) DMP+TV regularization. (c-
d) Same as (a-b) for noisy data. (e-h) Residuals between the seismograms
computed in the true model (Fig. 6a) and those shown in (a-d). The seismo-
grams are plotted with a reduction velocity of 2.5 km/s.

parameter. As for the mono-parameter inversion, we start with
noiseless data. The final v0 and ε models inferred from bound-
constrained IR-WRI with DMP and DMP+TV regularizations are
shown in Fig. 14. The direct comparisons between the logs ex-
tracted from the true v0 model, the initial model, the bound con-
strained IR-WRI models with DMP and DMP+TV regularization
at x = 3.5 km, x = 8.0 km and x = 12.5 km are shown in Fig.
15a, and the same comparisons for ε are depicted in Fig. 15b. Com-
pared to the mono-parameter inversion results, involving ε as an
optimization parameter clearly improves the reconstruction at the
reservoir level down to around 3 km depth (compare Figs. 8 and
14a,b). The long to intermediate wavelengths of the ε model are
primarily updated according to the radiation pattern of this param-
eter in the (v0, ε, δ) parametrisation. The main effect of TV regular-
ization relative to DMP regularization is to remove high-frequency
noise from the ε model (Fig. 15b).

The time-domain seismograms computed in the multi-
parameter models inferred from bound-constrained IR-WRI when
DMP and DMP+TV regularizations are used are shown in Fig. 18.
The direct comparison between the recorded and modelled seis-
mograms is shown in Fig. 19a,b. Clearly, using both v0 and ε as
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Figure 13. North Sea case study. Mono-parameter bound-constrained IR-WRI results. Direct comparison between seismograms computed in the true model
(black) and in the IR-WRI models (red). (a-b) Noiseless data (IR-WRI models of Fig. 8). (a) DMP regularization. (b) DMP+TV regularization. (c-d) Same
as (a-b) for noisy data (IR-WRI models of Fig. 10). The seismograms are plotted with a reduction velocity of 2.5 km/s. True amplitudes are shown after a
gain with offset and time for amplitude balancing. The solid box delineates post-critical reflections from the reservoir and the refracted wave from the deep
interface, while the dot boxes delineate pre-critical reflections from the reservoir and the deep reflector. The amplitudes of the reverberating guided waves at
long offsets are clipped for sake of clarity.

optimization parameters allows us to better conciliate the fit of the
pre- and post-critical reflections (Compare Figs. 13a and 19a for
DMP regularization, and Figs. 13b and 19b for DMP+TV regu-
larization). With noiseless data, DMP regularization is enough to
achieve a high-fidelity data fit, which looks better than that obtained
with DMP+TV regularization (Compare Figs. 19a and 19b).

We repeat now the joint inversion when data are contaminated
by Gaussian random noise with a SNR=10 db. The final v0 and
ε models inferred from bound-constrained IR-WRI with DMP and
DMP+TV regularization are shown in Fig. 16. Direct comparisons
along logs extracted from the true models, the initial models, and
the models inferred from the bound constrained multi-parameter
IR-WRI with DMP and DMP+TV regularization at x = 3.5 km,
x = 8.0 km and x = 12.5 km are shown in Fig. 17. For the v0 re-
construction, a trend similar to that shown for the mono-parameter
inversion is shown, with a more significant impact of the noise on
the velocity model reconstructed with DMP regularization com-
pared to the one reconstructed with DMP+TV regularization (Com-
pare Figs. 14 and 16). As expected, the impact of noise is more sig-
nificant on the second-order ε model, even when TV regularization
is used, in the sense that the estimated perturbations of the initial

model have smaller amplitudes compared to the noiseless case (Fig.
17b).

The time-domain seismograms are shown in Figs. 18 and
19c,d. The data fit obtained with DMP regularization has been
significantly degraded compared to that obtained with noiseless
data (compare Figs. 19a and 19c), while the data fit obtained
with DMP+TV regularization is more consistent with noiseless and
noisy data (compare Figs. 19b and 19d). This is consistent with the
previous conclusions drawn from the mono-parameter inversion.

4 DISCUSSION

We have extended the ADMM-based wavefield reconstruction
inversion method (IR-WRI), originally developed for mono-
parameter wavespeed reconstruction (Aghamiry et al. 2019c,b), to
multi-parameter inversion in VTI acoustic media. We have first
discussed which formulations of the VTI acoustic wave equation
are bilinear in wavefield and subsurface parameters. First-order ve-
locity stress form is often more convenient than the second-order
counterpart to fulfill bilinearity, in particular if density (or buoy-
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Figure 14. North Sea case study with noiseless data. Multi-parameter IR-
WRI results. (a-b) v0 models obtained with (a) DMP (a) and (b) DMP+TV
regularizations. (c-d) Same as (a-b) for ε.

ancy) is an optimization parameter. However, it may be not the most
convenient one for frequency-domain wavefield reconstruction as
the size of the linear system to be solved scales to the number of
wavefield components. To bypass this issue, wavefield reconstruc-
tion and parameter estimation can be performed with different wave
equations, provided they give consistent solutions (Gholami et al.
(2013a) and this study).

Bilinearity allows us to recast the parameter estimation sub-
problem as a linear subproblem and hence the waveform inversion
as a biconvex problem. Although ADMM has been originally de-
veloped to solve distributed convex problems, it can be used as is
to solve biconvex problem (Boyd et al. 2010). From the mathe-
matical viewpoint, biconvex problems should have superior con-
vergence properties compared to fully nonconvex problem (this
discussion is out of the scope of this study but we refer the in-
terested reader to Benning et al. 2015). Alternatively, ADMM-
like optimization can be used to perform IR-WRI heuristically
without bilinear wave equation, hence keeping the parameter es-
timation subproblem, equation B.4a, nonlinear. Accordingly, equa-
tion B.4a would be solved with a Newton algorithm rather than
with a Gauss-Newton one. This nonlinear updating of the param-
eters may however require several inner Newton iterations per IR-
WRI cycle, while Aghamiry et al. (2019c) showed that one inner
Gauss-Newton iteration without any line search was providing the
most efficient convergence of IR-WRI when bilinearity is fulfilled.

Indeed, the bilinearity specification limits the choice of sub-
surface parametrisation for parameter estimation. In the general
case of triclinic elastodynamic equations, a subsurface parametri-

Figure 15. North Sea case study with noiseless data. Multi-parameter
bound-constrained IR-WRI results. Direct comparison along logs at x =

3.5 (left), x = 8.0 (center) and x = 12.5 km (right) between the true
model (black), the initial model (dashed line) and the models inferred from
IR-WRI with DMP (green) and DMP+TV regularization (red) for (a) v0

and (b) ε (Fig. 14).

sation involving buoyancy and stiffness or compliance coefficients
will be the most natural ones, as they correspond to the coeffi-
cients of the equation of motion and the Hooke’s law. In the par-
ticular case of the VTI acoustic wave equation, we have developed
a bilinear wave equation whose coefficients depend on the vertical
wavespeed v0 and the Thomsen’s parameters δ and ε. Although v0

and ε are coupled at wide scattering angles, the (v0, ε, δ) parametri-
sation was promoted by Gholami et al. (2013b) and Gholami et al.
(2013a) because the dominant parameter v0 has a radiation pattern
which doesn’t depend on the scattering angle, and hence can be re-
constructed with a high resolution from wide-azimuth long-offset
data. The counterpart is that updating the long wavelengths of the
secondary parameter ε is challenging and requires so far a crude
initial guess of its long wavelengths (Fig. 5e,f), which can be used
as prior to regularize the ε update. Comparing the results of IR-
WRI when ε is used as a passive parameter and as an optimization
parameter shows that the sensitivity of the inversion to ε remains
small provided that a reasonable guess of its long wavelengths are
provided in the starting model (for the models, compare Figs. 8-10
and Figs. 14-16; for the data fit, compare Fig. 13 and Fig. 19). This
limited sensitivity of FWI to the short-to-intermediate wavelengths
of ε in the (v0, ε, δ) prompted for example Debens et al. (2015) to
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Figure 16. North Sea case study with noisy data (SNR=10 db). Multi-
parameter bound-constrained IR-WRI results. (a-b) v0 models obtained
with (a) DMP (a) and (b) DMP+TV regularizations. (c-d) Same as (a-b)
for ε.

estimate a crude ε background model with a coarse parametrisation
by global optimization.

Among the alternative parametrisations proposed for VTI
acoustic FWI, Plessix & Cao (2011) proposed the (vn,vh, δ) or
the (vn, η, δ) parametrisations for long-offset acquisition, while
Alkhalifah & Plessix (2014) promoted the (vh, η, ε) parametrisa-
tion, where vn = v0

√
1 + 2δ is the so-called NMO velocity, vh =

v0

√
1 + 2ε is the horizontal velocity and η = (ε−δ)/(1+2δ) rep-

resents the anellipticity of the anisotropy. For the parametrisation
promoted by Plessix & Cao (2011), the VTI equation developed by
Zhou H. (2006) given by

ω2diag
(

1

v2
n

)
uq + 2diag(η)∇xx(up + uq) = sq,

ω2diag
(

1

v2
n

)
up +∇xx(up + uq) +

diag
(

1√
1 + 2δ

)
∇zzdiag

(
1√

1 + 2δ

)
up = sp, (4.1)

is bilinear in wavefields and parameters (1/v2
n, η), where up =√

1 + 2δuz and uq = ux −
√

1 + 2δuz . Note that if δ is assumed

Figure 17. North Sea case study with noisy data. Multi-parameter bound-
constrained IR-WRI results. Direct comparison along logs at x = 3.5 (left),
x = 8.0 (center) and x = 12.5 km (right) between the true model (black),
the initial model (dashed line) and the models inferred from IR-WRI with
DMP (green) and DMP+TV regularization (red) for (a) v0 and (b) ε (Fig.
16).

to be smooth, the above equation can be approximated as

ω2diag
(

1

v2
n

)
uq + 2diag(η)∇xx(up + uq) = sq,

ω2diag
(

1

v2
n

)
up +∇xx(up + uq) +

diag
(

1

1 + 2δ

)
∇zzup = sp (4.2)

which is bilinear in wavefields and parameters (1/v2
n, η, 1/(1 +

2δ). This implies that δ can be involved as an optimization param-
eter if necessary. Note that, if this smoothness approximation is
used to update the parameters during the primal problem, the mod-
elled data and the source residuals can be solved with the exact
equation to update the dual variables with more accuracy. For the
(vh, η, ε) parametrisations (Alkhalifah & Plessix 2014), according
to Zhou H. (2006) the VTI equations with smooth δ can be written
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Figure 18. North Sea case study. Same as Fig. 12 for (v0,ε) multi-parameter
IR-WRI.

as

ω2diag
(

1

v2
h

)
uq +∇xx(up + uq)− diag

(
1

1 + 2η

)
∇xx(up + uq) = sq,

ω2diag
(

1

v2
h

)
up + diag

(
1

1 + 2η

)
∇xx(up + uq) +

diag
(

1

1 + 2ε

)
∇zzup = sp,

(4.3)

which is bilinear in wavefields and parameters (1/v2
h, 1/(1 +

2η), 1/(1 + 2ε)).

5 CONCLUSION

We have shown that ADMM-based IR-WRI can be extended to
multi-parameter reconstruction for VTI acoustic media. The gradi-
ent of the misfit function for the parameter estimation subproblem
involves the so-called virtual sources, which carry out the effect of
the parameter-dependent radiation patterns. This suggests that, al-
though IR-WRI extends the search-space of FWI to mitigate cycle
skipping, it is impacted by ill-posedness associated with parameter
cross-talk and incomplete angular illumination as classical FWI.
We have verified this statement with a toy numerical example for

which we have reproduced the same pathologies in terms of res-
olution and parameter cross-talks as those produced by classical
FWI during a former study. We have illustrated how equipping IR-
WRI with bound constraints and TV regularization fully remove
the ill-posedness effects for this idealized numerical example. We
have provided some guidelines to design bilinear wave equation of
different order for different subsurface parametrisations. Although
bilinearity puts some limitations on the choice of the subsurface
parametrisation, it recasts the parameter estimation subproblem as
a quadratic optimization problem, which can be solved efficiently
with Gauss-Newton algorithm. Application on the long-offset syn-
thetic case study representative of the North Sea has shown how
IR-WRI can be started from a crude laterally-homogeneous verti-
cal velocity model without impacting the inversion with cycle skip-
ping, when a smooth δ parameter is used as a passive background
model. However, a smooth initial ε model, albeit quite crude, is
necessary to guarantee the convergence of the method to a good
solution, either when ε is used as a passive or as an optimization
parameter. For this case study where the low velocity gas layers
and the smooth medium below the reservoir suffer from a deficit il-
lumination of diving waves, the TV regularization plays a key role
to mitigate the ill-posedness.
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APPENDIX A: FIRST AND SECOND-ORDER WAVE
EQUATION WITH COMPLIANCE NOTATION

We consider the frequency-domain first-order velocity-stress equa-
tion in 2D VTI acoustic media with compliance notation as

−îωvx,l = diag(b)∇xux,l,

−îωvz,l = diag(b)∇zuz,l,

−îω[diag(∫11)ux,l + diag(∫13)uz,l] = ∇xvx,l − îωsl,

−îω[diag(∫13)ux,l + diag(∫33)uz,l] = ∇zvz,l − îωsl, (A.1)

where ∫ij ∈ Rn×1 are the compliance coefficients, and the other
notations are defined after equation 2.6. Gathering equation A.1 for
all sources results in the following matrix equation:[

îωI B∇
∇ îωS

] [
V
U

]
= îω

[
0
S

]
, (A.2)

where

S =

[
diag(∫11) diag(∫13)
diag(∫13) diag(∫33)

]
,

and the other notations are defined in equation 2.7. Equation A.2
is linear in U and V when the model parameters embedded in B
and S are known. When U and V are known, this system can be
recast as a new linear system in which the unknowns are the model
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Figure 19. North Sea case study. Same as Fig. 13 for (v0,ε) multi-parameter IR-WRI.

parameters, and hence the bilinearity of the wave equation. For the
lth source, the new equation becomes

L11 0 0 0
L21 0 0 0
0 L32 L33 0
0 0 L43 L44




b
∫11

∫13

∫33

 =


0− îωvx,l
0− îωvz,l
îωsl −∇xvx,l
îωsl −∇zvz,l

 , (A.3)

where 
L11 = diag(∇xux,l),
L21 = diag(∇zuz,l),
L32 = L43 = îωdiag(ux,l),

L33 = L44 = îωdiag(uz,l).

To develop the second-order wave equation, we eliminate vx,l and
vz,l from equation A.1. We obtain the following equation

1

ω2
∇xdiag(b)∇xux,l + diag(∫11)ux,l + diag(∫13)uz,l = sl,

1

ω2
∇zdiag(b)∇zuz,l + diag(∫13)ux,l + diag(∫33)uz,l = sl,

(A.4)

which is bilinear with respect to buoyancy, compliance parameters
and pressure wavefields. With known buoyancy and compliance pa-
rameters, we get the following 2n × 2n linear system to estimate

wavefields for all sources

A(m)U = S, (A.5)

where A is given by[
1
ω2∇xdiag(b)∇x + diag(∫11) diag(∫13)

diag(∫13) 1
ω2∇zdiag(b)∇z + diag(∫33)

]
.

and

m =


b
∫11

∫13

∫33

 ,
and S is defined in equation 2.8. When U is known, this system
can also be recast as a new linear system in which the unknowns
are the model parameters as

L1

...
Ll
...

Lns

m =



y1

...
yl
...

yns

 , (A.6)

where Ll is given by[
1
ω2∇xdiag(∇xux,l) diag(ux,l) diag(uz,l) 0
1
ω2∇zdiag(∇zuz,l) 0 diag(ux,l) diag(uz,l)

]
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and

yl =

[
sl
sl

]
.

APPENDIX B: SOLVING THE OPTIMIZATION
PROBLEM, EQUATION 2.16, WITH ADMM

Starting from an initial model m0, and setting the dual variables D̃
and S̃ equal to zero, the kth ADMM iteration for solving equation
2.16 reads as (see Aghamiry et al. 2019c,b,d, for more details)

Uk+1 ← arg min
U

Cmk,D̃k,S̃k (U), (B.1a)

mk+1 ← arg min
m∈C

CUk+1,S̃k (m), (B.1b)

S̃k+1 ← S̃k + S−A(mk+1)Uk+1, (B.1c)

D̃k+1 ← D̃k + D−PUk+1, (B.1d)

where

Cmk,D̃k,S̃k (U) = λ0‖PU−D− D̃k‖2F
+ λ1‖A(mk)U− S− S̃k‖2F

(B.2)

and

CUk+1,S̃k (m) =
∑√

|∂xm|2 + |∂zm|2

+ λ1‖A(m)Uk+1 − S− S̃k‖2F .
(B.3)

The regularized wavefields U are the minimizers of the quadratic
cost functionCmk,D̃k,S̃k (U), equation B.2, where mk, D̃k and S̃k

are kept fixed. Zeroing the derivative of Cmk,D̃k,S̃k (U) gives the
wavefields as the solution of a linear system of equations defined
by equation 2.17 (step 1 of the algorithm). The regularized wave-
fields are then introduced as passive quantities in the cost func-
tion CUk+1,S̃k (m), equation B.3, which is minimized to estimate
m over the desired set C. We solve this minimization subproblem
with the splitting techniques. Accordingly, we introduce the auxil-
iary primal variables p and q to decouple the `1 and `2 terms and
split the parameter estimation subproblem into three sub-steps for
m, p and q (Goldstein & Osher 2009; Aghamiry et al. 2019b):

mk+1 ← arg min
m

λ1‖A(m)Uk+1 − S− S̃k‖2F , (B.4a)

+ ‖∇m− pk − p̃k‖2Γ + ‖m− qk − q̃k‖2Z ,

pk+1 ← arg min
p

∑√
|px|2 + |pz|2 (B.4b)

+ ‖∇mk+1 − p− p̃k‖2Γ,

qk+1 ← arg min
q∈C

‖mk+1 − q− q̃k‖2Z , (B.4c)

where∇ is defined in equation 2.19,

p =

[
px
pz

]
, (B.5)

‖x‖2• = xT •x, Z and Γ are diagonal matrices defined in equation
2.20 and 2.21, respectively.

From the linearized equation 2.13, the subproblem for m,
equation B.4a, can be written as

mk+1 ← arg min
m

∥∥∥∥∥


L1

...
Lns
∇
I

m−


yk1 + s̃k1

...
ykns + s̃kns
pk + p̃k

qk + q̃k


∥∥∥∥∥

2

Ξ

, (B.6)

where the diagonal weighting matrix Ξ is defined as

Ξ =

λ1I 0 0
0 Γ 0
0 0 Z

 ∈ R[3+ns]n×[3+ns]n.

Equation B.6 is now quadratic and admits a closed form solution as
given in equation 2.18 (step 2 of the algorithm).

The only remaining tasks consist in determining the auxiliary
primal variables (p,q), equations B.4b,c, and the auxiliary dual
variables (p̃, q̃). They are initialized to 0 and are updated as fol-
lows: The primal variables p is updated through a TV proximity
operator, which admits a closed form solution given by equation
2.22 (see Combettes & Pesquet 2011) (step 3 of the algorithm).
The primal variable q is updated by a projection operator, which
also admits a closed form solution given by equation 2.24 (step 4
of the algorithm). Finally, the duals are updated according to gradi-
ent ascend steps (step 5 of the algorithm){

p̃k+1 = p̃k + pk+1 −∇mk+1

q̃k+1 = q̃k + qk+1 −mk+1.
(B.7)

APPENDIX C: USING FOURTH-ORDER EQUATION FOR
WAVEFIELD RECONSTRUCTION (STEP 1 OF THE
ALGORITHM)

The wavefield reconstruction subproblem, equation 2.17, can be
written as the following over-determined systemω2diag(mv0) + diag(mε)∇xx diag(mδ)∇zz

diag(mδ)∇xx ω2diag(mv0) +∇zz
1
2
P̃ 1

2
P̃

[Ux

Uz

]

=

Sx
Sz
D

 , (C.1)

where P̃ is the sampling operator of each component of the wave-
field at receiver positions and P = [ 1

2
P̃ 1

2
P̃] (the coefficient 1

2

results because the (isotropic) pressure wavefield u recorded in the
water is given by u = 1

2
(ux + uz)). We can eliminate Uz from

the equation C.1 to develop a fourth-order partial-differential equa-
tion for Ux and then update Uz from its explicit expression as a
function of Ux without any computational burden.
By multiplying the second row of equation C.1 by diag(mδ) and
taking the difference with the first row, we find ω2diag(mv0) + diag(mε)∇xx diag(mδ)∇zz
ω2diag(mv0) + diag(mε −m2

δ)∇xx −ω2diag(mδ ◦mv0)
1
2
P̃ 1

2
P̃


[
Ux

Uz

]
=

 Sx
Sx − diag(mδ)Sz

D

 . (C.2)

where m2
δ = mδ ◦mδ . The second equation of C.2 provides us

the closed-form expression of Uz as a function of Ux

Uz = AzUx + Bz, (C.3)

where Az =
diag(mε−m2

δ)∇xx+ω2diag(mv0
)

ω2diag(mv0
◦mδ)

,

Bz = diag(mδ)Sz−Sx
ω2diag(mv0◦mδ)

.
(C.4)
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Injecting equation C.4 into the first equation of C.2 leads to the
over-determined system satisfied by Ux[

ω2diag(mv0) + diag(mε)∇xx + diag(mδ)∇zzAz
1
2
P̃ + 1

2
P̃Az

]
Ux

=

[
Sx − diag(mδ)∇zzBz

D− 1
2
P̃Bz

]
. (C.5)

So, instead of solving the (nr + 2n)× 2n linear system C.1 to up-
date U, Ux is updated by solving the (nr + n) × n linear system
C.5 and then Uz is updated using C.4 without significant compu-
tational overhead. The wave equation operator in equation C.4 has
been broken down into an elliptic wave equation operator and anel-
liptic correction term (the term of Az related to diag(mε −m2

δ),
equation C.4). The former can be accurately discretized with the
9-point finite-difference method of Chen et al. (2013), while the
anelliptic term can be discretized with a basic second-order accu-
rate 5-point stencil without generating significant inaccuracies in
the modelling (Operto et al. 2014).
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