Estimations uniformes à l'explosion pour les équations de la chaleur non linéaires et applications
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On s'intéresse à l'équation de la chaleur non linéaire

u t = ∆u + u p u(0) = u 0 ≥ 0, (1) 
où u est définie pour (x, t) ∈ R N × [0, T ), 1 < p et (N -2)p < N + 2. Différentes généralisations de cette équation peuvent être considérées (voir [START_REF] Merle | Optimal estimates for blow-up rate and behavior for nonlinear heat equations[END_REF] pour plus de détails):

u t = ∇.(a(x)∇u) + b(x)u p u(0) = u 0 ≥ 0, (2) 
où u est définie pour (x, t) ∈ Ω×[0, T ), 1 < p et (N -2)p < N +2, Ω = R N ou Ω est un ouvert convexe borné et régulier, a(x) est une matrice symétrique et uniformément elliptique, a(x) et b(x) sont C 2 et bornées.

Plus précisément, on s'intéresse au phénomène d'explosion en temps fini. Une littérature importante est considérée à ce sujet. On pourra citer les travaux de Ball [START_REF] Ball | Remarks on blow-up and nonexistence theorems for nonlinear evolution equations[END_REF], Bricmont et Kupiainen et Lin [START_REF] Bricmont | Universality in blow-up for nonlinear heat equations[END_REF] [2], Chen et Matano [START_REF] Chen | Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations[END_REF], Galaktionov et Vazquez [START_REF] Galaktionov | Geometrical properties of the solutions of one-dimensional nonlinear parabolic equations[END_REF], Giga et Kohn [START_REF] Giga | Nondegeneracy of blow-up for semilinear heat equations[END_REF] [8] [9], Herrero et Velazquez [START_REF] Herrero | Blow-up behavior of onedimensional semilinear parabolic equations[END_REF] [START_REF] Herrero | Flat blow-up in one-dimensional semilinear heat equations[END_REF] (voir [START_REF] Merle | Optimal estimates for blow-up rate and behavior for nonlinear heat equations[END_REF] et [START_REF] Merle | Refined uniform estimates at blow-up and applications for nonlinear heat equations[END_REF] pour les références). Dans la suite, on note T le temps d'explosion de u(t), une solution explosive de [START_REF] Ball | Remarks on blow-up and nonexistence theorems for nonlinear evolution equations[END_REF].

Le problème qui nous intéresse est celui d'obtenir des estimations uniformes optimales et de donner des applications de telles estimations.

1 Pour de telles estimations, on est amené à considérer l'équation (1) dans sa forme auto-similaire: pour tout a ∈ R N , on pose

y = x-a √ T -t s = -log(T -t) w a (y, s) = (T -t) 1 p-1 u(x, t). (3) 
On a alors que w a = w satisfait ∀s ≥ -log T , ∀y ∈ R N :

∂w ∂s = ∆w - 1 2 y.∇w - w p -1 + w p . (4) 
Le problème est d'estimer w a (s) quand s → +∞, que a soit un point régulier ou un point d'explosion (a est dit point d'explosion lorsqu'il existe (a n , t n ) → (a, T ) tel que u(a n , t n ) → +∞) de façon uniforme.

Giga et Kohn ont démontré qu'en fait les variables auto-similaires sont les bonnes variables pour mesurer les solutions explosives dans les sens suivant: il existe 0 > 0 tel que ∀s ≥ s * 0 ,

0 ≤ |w(s)| L ∞ ≤ 1 0 .
On se propose dans un premier temps d'affiner ce résultat pour obtenir de la compacité dans le problème.

1 Un théorème de Liouville pour l'équation [START_REF] Chen | Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations[END_REF] Pour ceci, on s'intéresse à un problème de classification de solutions globales. On a le résultat suivant: Théorème 1 (Théorème de Liouville pour (4)) Soit w une solution de (4) définie pour (y, s)

∈ R N × R telle que ∀(y, s) ∈ R N × R, 0 ≤ w(y, s) ≤ C. Alors, on est nécessairement dans l'un des cas suivants: i) w ≡ 0, ii) w ≡ κ où κ = (p -1) -1 p-1 , iii) ∃s 0 ∈ R tel que w(y, s) = ϕ(s -s 0 ) où ϕ(s) = κ(1 + e s ) -1 p-1 .
Remarque: Remarquons que ϕ est une connexion dans L ∞ des deux points critiques de (4):

0 et κ. En effet, φ = - ϕ p -1 + ϕ p , ϕ(-∞) = κ, ϕ(+∞) = 0.
Remarque: Il suffit d'avoir une solution de (4) définie sur (-∞, s * ) pour avoir un théorème de classification (voir [START_REF] Merle | Optimal estimates for blow-up rate and behavior for nonlinear heat equations[END_REF]).

On peut obtenir comme corollaire

Corollaire 1 Soit u une solution de (1) définie pour

(x, t) ∈ R N × (-∞, 0) telle que ∀(x, t) ∈ R N × (-∞, 0), 0 ≤ u(x, t) ≤ C(T -t) -1 p-1 . Alors, soit u ≡ 0, soit ∃T * ≥ 0 tel que u(x, t) = κ(T * -t) -1 p-1 .
Pour les démonstrations, voir [START_REF] Merle | Optimal estimates for blow-up rate and behavior for nonlinear heat equations[END_REF]. Les outils clefs de la démonstration sont:

i) une classification des comportements linéaires de w(s

) quand s → -∞ dans L 2 ρ (R N ) (L ∞ loc (R N )) où ρ(y) = e -|y| 2 4 (4π) N/2 , ii) les transformations géométriques w(y, s) → w a,b (y, s) = w(y + ae s 2 , s + b) pour a ∈ R N et b ∈ R,
iii) un critère d'explosion en temps fini dans les variables auto-similaires: si pour un certain s 0 ∈ R, w(y, s 0 )ρ(y)dy > κρ(y)dy, alors w(s) explose en temps fini.

Estimations optimales à l'explosion

Par un argument de compacité, on obtient les estimations uniformes suivantes sur la solution w(s) de (4):

Théorème 2 (Estimations optimales à l'ordre zéro sur w(s)) Si w(s

0 ) ∈ H 1 (R N ), alors w(s) L ∞ (R N ) → κ et ∇w(s) L ∞ (R N ) + ∆w(s) L ∞ (R N ) → 0 quand s → +∞.
Remarque: Cette estimation est aussi valable pour un ensemble de solutions (voir [START_REF] Merle | Optimal estimates for blow-up rate and behavior for nonlinear heat equations[END_REF]).

Cette estimation est très importante car elle donne pour une solution la convergence de w a (s) vers un ensemble limite dans L ∞ loc uniformément par rapport à a ∈ R N . Ceci nous permet ensuite par linéarisation autour de cet ensemble de démontrer le Théorème 3 (Estimation optimale à l'ordre un sur w(s)) Sous les hypothèses du Théorème 2, ∀ 0 > 0, il existe s( 0 ) tel que ∀s ≥ s( 0 ),

∃C 1 , C 2 > 0 tels que w(s) L ∞ ≤ κ + ( N κ 2p + 0 ) 1 s ∇w(s) L ∞ ≤ C 1 √ s ∇ 2 w(s) L ∞ ≤ C 2 s .
Remarque 

Localisation à l'explosion

Le Théorème 2 implique que dans la zone singulière du type {y | w(y, s) ≥ κ 2 }, ∆w est petit devant w p (ou de façon équivalente, ∆u est petit devant u p ). Un phénomène de localisation sous critique introduit par Zaag [START_REF] Zaag | Blow-up results for vector valued nonlinear heat equations with no gradient structure[END_REF] (sous le seuil de la constante) nous permet de propager ces estimations dans les zones singulières : "u(x, t) grand". Il en découle le théorème suivant:

Théorème 4 (Comparaison avec l'équation différentielle ordinaire) Si u 0 ∈ H 1 (R N ), alors ∀ > 0, ∃C > 0 tel que ∀t ∈ [ T 2 , T ), ∀x ∈ R N , |u t -u p | ≤ u p + C .
Remarque: Ainsi, on démontre que la solution de l'équation aux dérivées partielles est comparable uniformément et globalement en espace-temps à une équation différentielle ordinaire (localisée par définition).

On peut noter que le résultat reste vrai pour une suite de solutions sous certaines conditions. Remarque: De multiples corollaires découlent de ce théorème. Par exemple,

∀ 0 > 0, il existe t 0 ( 0 ) < T tel que pour tout a ∈ R N , t ∈ [t 0 , T ), si u(a, t) ≤ (1 -0 )κ(T -t) -1 p-1
, alors, a n'est pas point d'explosion. (Ceci précise un résultat de Giga et Kohn où t 0 = t 0 ( 0 , a).

Notion de Profil au voisinage d'un point d'explosion

On considère maintenant a ∈ R N un point d'explosion de u(t) solution de [START_REF] Ball | Remarks on blow-up and nonexistence theorems for nonlinear evolution equations[END_REF]. Par invariance par translation, on se ramène à a = 0. La question est de savoir si u(t) (ou w 0 (s) définie en (3)) a un comportement universel ou pas quand t → T (ou s → +∞).

Filippas, Kohn, Liu, Herrero et Velazquez ont démontré que w évoluait suivant l'une des deux possibilités suivantes:

-∀R > 0, sup |y|≤R w(y, s) -κ + κ 2ps trA k - 1 2 y T A k y = O 1 s 1+δ quand s → +∞ pour un certain δ > 0 avec A k = Q I N -k 0 0 0 Q -1 , k ∈ {0, 1, ..., N -1}, Q une matrice N × N orthogonale et I N -k l'identité des matrices (N -k) × (N -k).
-∀R > 0, sup |y|≤R |w(y, s) -κ| ≤ C(R)e -0 s pour un certain 0 > 0.

Dans un certain sens, ces résultats démarquent mal d'un point de vue physique la transition entre les zones singulière (w ≥ α où α > 0) et régulière (w 0). En utilisant la théorie de la renormalisation, Bricmont et Kupiainen ont démontré dans [START_REF] Bricmont | Universality in blow-up for nonlinear heat equations[END_REF] l'existence d'une solution de (4) telle que

∀s ≥ s 0 , ∀y ∈ R N , |w(y, s) -f 0 ( y √ s )| ≤ C √ s où f 0 (z) = (p -1 + (p-1) 2 4p |z| 2 ) -1
p-1 . Merle et Zaag ont démontré dans [START_REF] Merle | Stability of blow-up profile for equation of the type u t = ∆u + |u| p-1 u[END_REF] le même résultat grâce à des techniques de réduction en dimension finie. Ils y démontrent aussi la stabilité par rapport aux données initiales de telles comportements.

Dans [START_REF] Zaag | Blow-up results for vector valued nonlinear heat equations with no gradient structure[END_REF], Zaag montre que dans ce cas, u(x, t) → u * (x) quand t → T

uniformément sur R N \{0} et que u * (x) ∼ 8p| log |x| (p-1) 2 |x| 2 1 p-1 quand x → 0.
Dans un premier temps, on est en mesure de démontrer grâce aux estimations du Théorème 4, un théorème de classification des profils dans la variable y √ s (qui sépare partie singulière et régulière dans le cas non dégénéré).

Théorème 5 (Classification des profils à l'explosion)

Il existe k ∈ {0, 1, ..., N -1} et une matrice N × N orthogonale Q tels que w(Q(z) √ s, s) → f k (z) uniformément sur tout compact |z| ≤ C, où f k (z) = (p-1+ (p-1) 2 4p N -k i=1 |z i | 2 ) -1 p-1 si k ≤ N -1 et f N (z) = κ = (p-1) -1 p-1 .
Un des problèmes intéressants qui en découle est de relier toutes les notions de profils connues: profil pour |y| borné, |y| √ s borné ou x 0. On démontre que ces notions sont équivalentes dans le cas d'une solution qui explose en un point de façon non dégénérée (cas générique), ce qui répond à de nombreuses questions posées dans des travaux précédents.

Théorème 6 ( Équivalence des comportements explosifs en un point)

Soit a un point d'explosion isolé de u(t) solution de [START_REF] Ball | Remarks on blow-up and nonexistence theorems for nonlinear evolution equations[END_REF]. On a l'équivalence des trois comportements suivants de u(t) et de w a (s) (définie en 

1 p- 1

 11 (3)): i) ∀R > 0, sup |y|≤R w(y, s)κ + κ 2ps (N -1 2 |y| 2 ) = o 1 s quand s → +∞, ii) ∀R > 0, sup |z|≤R w(z √ s, s)f 0 (z) → 0 quand s → +∞ avec f 0 (z) = (p -1 + (p-1) 2 4p |z| 2 ) -1 p-1 , iii) ∃ 0 > 0 tel que pour tout |x -a| ≤ 0 , u(x, t) → u * (x) quand t → T et u * (x) ∼ 8p| log |x-a| (p-1) 2 |x-a| 2 quand x → a.Remarque: . Dans le cas N = 1, certaines implications étaient déjà démontrées.

:

  Dans le cas N = 1, en utilisant une propriété de Sturme Développée par Chen et Matano (qui affirme que le nombre d'oscillations en espace de la solution est une fonction décroissante du temps), Herrero et Velazquez (et Filippas et Kohn) ont montré des estimations de ce type. Remarque: La constante N κ 2p est optimale (voir Herrero et Velazquez, Bricmont et Kupiainen, Merle et Zaag).