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Prediction of visual saliency in images and video is needed for video understanding, coding and other applications. The majority of prediction models are founded only on "bottom-up" features. Nevertheless, the "top-down" component of human visual attention becomes prevalent as human observers explore the visual scene. Visual saliency which is always a mix of bottom-up and top-down cues can be predicted on the basis of seen data. In this paper, a model of prediction of visual saliency in video on the basis of Deep convolutional neural networks is proposed. A Deep CNN architecture is designed. Various input channels for a CNN architecture are studied: using the known sensitivity of human visual system to residual motion, pixel colour values are completed with residual motion map. The experiments show that the choice of the input features for the Deep CNN depends on visual task.

Introduction and related work

Prediction of visual saliency in images and video is an intensively researched topic. With the growing volumes of digital video it is of highest interest for variety of applications involving video understanding, coding, watermarking... Prediction of pixel-wise saliency means assigning to each pixel in the image 5 plane a measure characterizing the attraction of this image locus for a human observer. Several visual low-level characteristics: luminance, color, orientation and movement provoke human gaze attraction when observing visual content. This is why a very large amount of research works was devoted to prediction of visual saliency in images and video on the basis of popular "feature integration 10 theory" [START_REF] Treisman | A feature-integration theory of attention[END_REF]. These models simulate stimuli-driven, or "bottom-up" attention. [START_REF] Han | Saliency detection for panoramic landscape images of outdoor scenes[END_REF] proposed a saliency detection algorithm for panoramic landscape images of outdoor scenes. Hence, the background of a panoramic image was estimated using the characteristics of geodesic similarity on a graph and the spatial distribution of homogeneous background regions. In [START_REF] Li | Saliency ranker: A new salient object detection method[END_REF], the saliency was considered 15 as a ranking loss function which is designed to rank saliency values in the descending order of their relevance. In [START_REF] Ren | Saliency integration driven by similar images[END_REF], the similarity computed between the input image and each similar image is measured and used for computing adaptive fusion weights for multiple saliency maps fusion. [START_REF] Bruna | Invariant Scattering Convolution Networks[END_REF] For saliency detection in videos, local features and global features were extracted in [START_REF] Liu | Superpixel-based spatiotemporal saliency detection[END_REF] to create a pixel-level temporal and spatial saliency map. The authors of [START_REF] Yang | Discov-615 ering primary objects in videos by saliency fusion and iterative appearance estimation[END_REF] defined the primary salient object in a video using the integration of the local visual/motion saliency, the global appearance consistency, and spatiotemporal smoothness constraint on object trajectories. In [START_REF] Pang | Incremental learning with saliency map 620 for moving object detection[END_REF] the properties of 25 saliency, low-rank, connectivity and sparsity were integrated into an unified objective function to detect a moving object using the saliency map. Models that use motion features are reported in [START_REF] Duan | A spatiotemporal weighted dissimilarity-based method for video saliency detection[END_REF]. The model of Wang [START_REF] Wang | Consistent video saliency using local gradient flow optimization and global refinement[END_REF] computes the gradient flow field and energy optimization using intra-frame boundary information and the inter-frame information to build a consistent spatio-temporal 30 2 saliency. In [START_REF] Zhong | Video saliency detection via dynamic consistent spatio-temporal attention modelling[END_REF], a video saliency model was proposed in order to detect the attended regions. The latter correspond to both interesting objects and dominant motions. The so-called "top-down" attention is driven by observation task.

In a task-driven visual search users search for particular objects and the goal of saliency models is to predict them in the image plane such as in [START_REF] González-Díaz | Perceptual modeling in the problem of active object recognition in visual scenes[END_REF]. In a 35 free observation process of unknown video content, top-down visual attention is triggered when the observer understands the scene and selects the targets to follow. It becomes prevalent [START_REF] Pinto | Bottom-up and top-down attention are independent[END_REF] when the human subject observes visual content with progressively increasing observation time, which is the case in continuous video scenes [START_REF] Shen | Top-down influences on visual attention during listening are modulated by observer sex[END_REF], [START_REF] Borji | What stands out in a scene? A study of human explicit saliency judgment[END_REF]. Therefore, the areas of interest for the user cannot be 40 predicted sufficiently well by purely bottom-up models. Various new cues have been proposed to enhance bottom-up models from the "top-down" perspective [START_REF] Pinto | Bottom-up and top-down attention are independent[END_REF]. Boujut et al. [START_REF] Boujut | No-reference video quality assessment of h.264 video streams based on semantic saliency maps[END_REF] proposed a bottom-up spatio-temporal saliency model, enhanced by considering "face detection" as semantics in the video. The ELD [START_REF] Lee | Deep saliency with encoded low level distance map and high level features[END_REF] deep saliency model extracts high level features, using the deep network VGG-net, and low level features (Average RGB value, Gabor filter, ...). The concatenation of both encoded features, using a fully connected neural network, generates the final saliency map. The above mentioned research directly or not introduces elements of top-down visual attention prediction in model building.

From methodological point of view frequent are the attempts to learn the in-50 terest of users with regard to elements of visual scenes whatever the content is when deploying supervised machine learning approaches [START_REF] Sharma | Discriminative spatial saliency for image classification[END_REF]. Using supervised learning in the field of saliency prediction generates classifiers that can predict the focus of attention on the basis of already seen data thus combining bottom-up and top-down visual cues. Here, deep learning has emerged as 55 an active research trend. It involves learning, at multiple levels of abstraction, for mining data such as images, sound, and text [START_REF] Deng | DEEP LEARNING: Methods and Applications[END_REF]. In addition to the common design of the classifier architectures on the basis of neural networks, deep learning presents a philosophy to model the complex relationships between data [START_REF] Lecun | Gradient-Based Learning Applied to Document Recognition[END_REF], [START_REF] Bruna | Invariant Scattering Convolution Networks[END_REF]. Generally, deep neural networks are multi-layer predictive networks 60 formed to maximize the probability of input data with regard to target classes 3 [START_REF] Bengio | Representation Learning: A Review and New Perspectives[END_REF]. Due to the increased computational capacities with Graphical Processing Units (GPU) deep neural networks have outperformed all previous classification models in the tasks of video understanding. Deep convolutional neural networks (CNNs) were developed in Computer Vision, first by Yann LeCun with 65 the LeNet [START_REF] Lecun | Gradient-Based Learning Applied to Document Recognition[END_REF] architecture that was used to recognize digits. Then, AlexNet [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF] network has become very popular as the architecture for visual recognition tasks. Now, deep learning architectures, which have recently been proposed for the prediction of salient areas in images, differ essentially by the quantity of convolution and pooling layers, the input data, pooling strategies, the nature 70 of the final classifiers, the loss functions to optimize and the formulation of the problem. Recently a fully convolutional network "FCN" for saliency prediction was proposed. This model estimates a dense saliency map of a given image using a set of extreme learners, each trained on an image similar to the input image [START_REF] Tavakoli | Exploiting inter-image 670 similarity and ensemble of extreme learners for fixation prediction using deep features[END_REF]. A lot of works today, are devoted to saliency prediction in still images 75 using "FCN": In [START_REF] Dodge | Visual saliency prediction using a mixture of deep neural networks[END_REF], a global scene information that was trained on diverse categories of an eye-tracking data set, was used in addition to local information. [START_REF] Monroy | Salnet360: Saliency maps for omni-directional images with CNN[END_REF] present an architectural extension to any CNN to fine-tune traditional 2D saliency prediction to Omni-directional Images. In [START_REF] Kruthiventi | Saliency 680 Unified: A Deep Architecture for simultaneous Eye Fixation Prediction and Salient Object Segmentation[END_REF], the authors proposed a deep CNN that predicts eye fixations and segments salient objects. [START_REF] Kümmerer | Deep Gaze I: Boosting Saliency Pre-685 diction with Feature Maps Trained on ImageNet[END_REF] reuses 80 an existing neural network trained on the task of object recognition to predict eye fixations. [START_REF] Pan | End-to-end Convolutional Network for Saliency Prediction[END_REF] formulated the prediction of eye fixations as a minimization of a loss function that measures the Euclidean distance of the predicted saliency map with the provided ground truth. Despite the popularity of these models, they still need a thorough study in real-life situations.
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Prediction of visual attention in images reveals the binary classification problem for areas in images as "salient" and "non-salient". It corresponds to the visual experiment in free viewing conditions, when the subjects are simply asked to look at the content without any specific visual task. In [START_REF] Shen | Learning to Predict Eye Fixations for Semantic Contents Using Multi-layer Sparse Network[END_REF], firstly, the learning of the relevant characteristics of the saliency of natural images was performed, 90 and secondly the eye fixations on objects with semantic content was predicted. In Simonyan's work [START_REF] Simonyan | Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps[END_REF], the subjects are asked to look for an object from a given taxonomy in the images. Therefore, the classification problem is multiclass, and can be expressed as a task-dependent visual experiment. In [START_REF] Vig | Large-Scale Optimization of Hierarchical Features for Saliency Prediction in Natural Images[END_REF], first, a random bank of uniform filters is used to generate multiple representations of 95 input images. The second phase provides the combination of different localized representations. While a significant effort has been already made for building saliency prediction models from still images with deep learning approach, very few have been built for video content with it [START_REF] Han | Spatial and temporal visual attention prediction in videos using eye movement data[END_REF]. Video has a supplementary dimension: the temporality that is expressed by apparent motion in the image 100 plane. In such early works several combinations of primary features (input) such as color values and residual motion [START_REF] Chaabouni | Transfer learning with deep networks for saliency prediction in natural video[END_REF] are used to feed a CNN. In the present paper we are interested in the prediction of saliency maps, which means the degree of interest for the observer in each pixel position. We 110 do not consider the problem of a "scanpath" prediction [START_REF] Coutrot | Visual attention saccadic models: taking into 705 account global scene context and temporal aspects of gaze behaviour[END_REF], that is dynamics of gaze saccades across image plane. Hence, the Deep CNNs turn to be a right tool for such a map prediction. In this study, an approach with Deep CNN that ensures learning salient areas in order to predict pixel-wise saliency maps in video is proposed. We systematize our early works [START_REF] Han | Spatial and temporal visual attention prediction in videos using eye movement data[END_REF] and go further in 115 studying our network architecture for the saliency detection problem. A specific attention is payed to the input layer of the proposed architecture, i.e. the data we extract form video to feed the network.

The intelligent application of

We stress that we remain with relatively "light" deep architecture, comparable to AlexNet. This is why it is benchmarked against known "light" ar-transfer learning in Deep CNNs classifiers, where the majority of researches use the pre-rained models on ImageNet whatever the target domain and classifica-125 tion problem is accordingly to the method first proposed in [START_REF] Bengio | Representation Learning: A Review and New Perspectives[END_REF]. The method is benchmarked with Bengio's method [START_REF] Bengio | Representation Learning: A Review and New Perspectives[END_REF].

Despite the appearance of fully-convolutional (FC) deep networks for saliency prediction [START_REF] Cornia | Multi-level net: A visual saliency prediction model[END_REF] which allow prediction of dense saliency maps, our method remains "sparse". This means that we i)predict saliency of regularly sampled 130 patches in video frames with a classical Convolutional Network architecture, ii)and then densify the map by interpolation. Both FC-nets and our scheme require interpolation. Nevertheless, we consider that in our case, it is easier to select training data which will not be corrupted by distractors and changes of the focus-of-attention along the time in video. We explain this choice in section 135 2.

The paper is organized as follows. In section 2 data selection method is described, in section 3 the designed CNN architecture is presented, section 4 is devoted to the proposed transfer-learning scheme. Pixel-wise computation of predicted visual attention/saliency maps is then introduced in section 5. In 140 section 6, results and comparison with classical saliency prediction methods are presented. Section 7 concludes the paper and outlines its perspectives.

Policy of data set creation: salient and non-salient patches

To train any CNN model selection of a training data set which would contain as less noise as possible is the must. At the first step of our method : prediction 145 of saliency of patches in the video frames, classification problem is two-class.

The training set has to comprise salient and Non-salient regions in video frames.

The ground-truth for saliency here are the Gaze Fixation Density Maps (GFDM) [START_REF] Wooding | Eye movements of large populations: II. Deriving regions of interest, coverage, and similarity using fixation maps[END_REF]. They are built upon gaze fixations of a cohort of subjects recorded during a psycho-visual experiment. We thus proposed a strategy based on video production rules which will 165 allows to reduce the noise in Non-salient training data. The method of patch selection was explained in detail in [START_REF] Chaabouni | Prediction of visual saliency in 720 video with deep cnns[END_REF].Here we shortly remind it. It should not be situated in the area-of-interest in a video frame, and must not be already selected as salient. According to the rule of thirds in produced and post-produced content, the most interesting details of the image or of a 175 video frame have to cover the frame center and the intersections of the three horizontal and vertical lines that divide the image into nine equal parts [START_REF] Mai | Rule of thirds detection from photograph[END_REF].

Hence, we exclude the area -of-interest defined in the rule of thirds and selected salient patches when randomly selecting Non-salient patches in each video frame of training set. 

Deep Convolutional Neural Network for visual saliency: ChaboNet

In this section, the proposed architecture ChaboNet for the visual saliency prediction is presented. This is a relatively "light" deep architecture compared to the popular GoogleNet [START_REF] Szegedy | Going Deeper with Convolutions[END_REF], VGG [START_REF] Simonyan | Very deep convolutional networks for largescale image recognition[END_REF] or variants of ResNet [START_REF] He | Deep residual learning for image recognition[END_REF]. As the purpose is in predicting visual saliency in video and not in static images, specific 185 features which are added to conventional RGB pixel values are described first.

The implementation of ChaboNet is realized on the basis of Caffe framework [START_REF] Jia | Caffe: Convolutional Architecture for Fast Fea-735 ture Embedding[END_REF].

A specific input data layer

When addressing visual attention prediction in video, the sensitivity of HVS to motion has to be taken into account [START_REF] Borji | State-of-the-art in Visual Attention Modeling[END_REF]. The sensitivity of HSV to mo-1 available at http://www.di.ens.fr/∼laptev/actions/hollywood2/ with the "smooth pursuit" or visual tracking [46] keeping focus-of-attention on it. Local motion, of the target is expressed by residual motion relatively to the global camera motion [START_REF] Marat | Modelling spatiotemporal saliency to predict gaze direction for short videos[END_REF]. To compute residual motion, the approach described in detail in [START_REF] Chaabouni | Prediction of visual saliency in 720 video with deep cnns[END_REF] was followed. Here a pixel-wise motion field is computed by an optical flow method first. Using the dense motion field vectors as raw measures,

200
the affine linear model of global motion is estimated by least square estimator and RANSAC algorithm [START_REF] Fischler | Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartogra-750 phy[END_REF]. Finally, the residual motion is the vector -difference between the initial motion vector and the one generated by the estimated affine model. As motion features, the squared L2 norm of residual motion vectors in each pixel in a video frame, normalized by its maximum in the frame, is 

The ChaboNet network architecture design

ChaboNet architecture was designed for the two-class classification problem:

prediction of category of a patch in a given video frame as salient or non-salient.

We aimed i) to preserve a reasonable deepness and ii) to remain comparable in 215 the number of layers with a quite efficient network Alexnet [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF]. The proposed ChaboNet architecture is summarized in figure 4. As in Deep CNN architectures designed for image classification tasks [START_REF] Jia | Caffe: Convolutional Architecture for Fast Fea-735 ture Embedding[END_REF],

ChaboNet is composed of a hierarchy of patterns. Each pattern consists of a cascade of operations, followed by a normalization operation in some cases.
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The result of normalization operation is denoted as N orm. The cascading of linear and nonlinear operations successively produces high-level features. They are transmitted via a fully connected layer to the deepest layer which is a softmax classifier. It assigns the confidence for each patch to be salient or not.

Due to quite a limited size of input patches three patterns are proposed in 225 this architecture. The pattern P 1 below is a usual combination of convolution, pooling and non-linear layers, P 2 and P 3 have the same structure. The whole network can be detailed as follows.

P attern P 1 :

Input convolution --------→ Conv 1 pooling -----→ P ool 1 ReLU ----→ R 1 P attern P p : with p ∈ {2, 3} N orm p-1 convolution --------→ Conv p ReLU ----→ R p convolution --------→ Conv pp ReLU ----→ R pp pooling -----→ P ool p
The normalization operation that leads to the output N orm, is added after the patterns P 1 and P 2 only, as after the pattern P 3 the features are quite 230 sparse. The architecture of ChaboNet is depicted in figure 4. The features after convolution layers are presented for the example image from figure 3. It can be seen that the first layer of the network performs more as low-pass filters and deeper the convolution layer is more "high-pass" effect is observable.

Convolutional layers 235

In order to extract the most important information for further analysis or exploitation of image patches, the convolution with a fixed number of filters is needed. It is performed accordingly to the equation ( 1):

x l j = k∈Ωj x l-1 k w l k + b l j (1)
with Ω j -is the kernel support, i.e. the receptive field of j-th neuron;

l-is the network layer; 240 x l j -is the input of j-th neuron at layer l, that is feature-map vector; w l k -is the weight of k-th neuron in the receptive field Ω j ; b l j -is the bias of j-th neuron at the layer l.

is Hadamard product which is a coordinate-wise operation.

Inspired by literature as [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF], [START_REF] Shen | Learning to Predict Eye Fixations for Semantic Contents Using Multi-layer Sparse Network[END_REF] where the size of convolution kernels is ei-245 ther maintained constant or is decreasing with the depth of layers, in ChaboNet network, 32 kernels were used with the size of 12 × 12 for the convolution layer of the first pattern P 1 . In the second pattern P 2 , 128 kernels for each convolutional layer were used. In P 2 the size of the kernels for the first convolutional layer was chosen as 6 × 6 and for the second convolution layer, a kernel of 3 × 3 250 was used. Finally, 288 kernels with the size of 3 × 3 were used for each convolution layer of the last pattern P 3 . This allows a progressive reduction of highly dimensional data before conveying them to the fully connected layers.

The number of filters in the convolutional layers is growing, on the contrary, to explore the richness of the original data and to highlight structural patterns.
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For the filter size, several tests were made with the same values as in AlexNet [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF], Shen's network [START_REF] Shen | Learning to Predict Eye Fixations for Semantic Contents Using Multi-layer Sparse Network[END_REF], LeNet [START_REF] Lecun | Gradient-Based Learning Applied to Document Recognition[END_REF], Cifar [START_REF] Krizhevsky | Learning multiple layers of features from tiny images[END_REF] and finally, the size of 12 × 12 was retained in the first layer of the pattern P 1 as it yielded the best accuracy in saliency prediction problem. The bias term was chosen as a null term.

Pooling layers 260

Pooling reduces the computational complexity for the upper layers and summarizes the outputs of neighboring groups of neurons from the same kernel map.

It reduces the size of each input feature map by the acquisition of a value for each receptive field of neurons of the next layer. In our architecture max-pooling was used. For each channel of data at the l-th network layer it is expressed by 265 equation (2):

y l (x, y) = max x ,y ∈N x l-1 (x , y ) (2) 
Here N denotes the neighborhood of (x, y). max operation is performed coordinatewise. The kernel size of the pooling operation for the both patterns P 1 and P 2

was set to 3 × 3. The pooling of the third pattern P 3 was done with a size of 1 × 1, which means the full connection to the inner product layer. 

Non Linear Response Layer

The non-linear transformation layer simulates the response of a neuron on excitement. In previous works on image classification the rectified linear unit (ReLU) function has been shown efficient [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF]. The ReLU operation is expressed as ( 3)

275 z = max(0, x) (3) 
It is also applied in a coordinate-wise manner Compared to usual for neural networks sigmoid function, ReLU does not suppress high frequency features. This is a good property for saliency prediction task. Indeed, HVS is sensitive to contrasts. The first pattern P 1 is designed in the manner that the ReLU operation is introduced after the pooling 280 one. As the operations of pooling and ReLU compute the maximum, they are commutative. Cascading pooling before ReLU can reduce the execution time as pooling step reduces the number of neurons or nodes. In the two last patterns, stacking two convolutional layers before the destructive pooling layer ensures the computation of more complex features that will be more "expressive". ψ(z(x, y))

= z(x,y) (1+ α N 2 min(S,x-[N/2]+N ) x =max(0,x-[N/2]) min(S,y-[N/2]+N ) y =max(0,y-[N/2]) (z(x ,y )) 2 ) β (4)
Here z(x, y) represents the value of the feature map after ReLU operation at (x, y) coordinates and the sums are taken in the neighborhood of (x, y) of size N × N , α and β regulate normalization strength. Normalization is also a coordinate-wise operation. Figure 5 summarizes the parameters used for each 295 layer of the three patterns. 

Training and validation of the model

At a training step, the coefficients of convolution filters are repeatedly optimized in a forward-backward loop in the Caffe framework [START_REF] Jia | Caffe: Convolutional Architecture for Fast Fea-735 ture Embedding[END_REF]. The optimization method used is the stochastic gradient descent 'SGD' with momentum. The ini-300 tialization of convolution coefficients is realized randomly according to Gaussian law as proposed in [START_REF] Jia | Caffe: Convolutional Architecture for Fast Fea-735 ture Embedding[END_REF]. The setting of the solver requires the definition of the number of iterations. It is defined accordingly to the equation ( 5 

Domain-dependent transfer learning for small databases

The generalization power of Deep CNN classifiers strongly depends on the quantity of data and on the coverage of data space in the training data set. In 310 real-life applications, e.g. prediction of benchmark models for studies of visual attention of specific populations [START_REF] Chaabouni | Prediction of visual attention with deep CNN for studies of neurodegenerative diseases[END_REF] or saliency prediction for visual quality assessment [START_REF] Boulos | Region-of-Interest Intra Prediction for H.264/AVC Error Resilience[END_REF] the database volumes are small. In order to predict saliency in these small collections of videos, transfer learning approach was needed. It presents a technique used in the field of machine learning that increases the 315 accuracy of learning either by using it in different tasks, or in the same task [START_REF] Yosinski | How transferable are features in deep neural networks?[END_REF]. Several studies have proven the power of this technique [START_REF] Zeiler | Visualizing and Understanding Convolutional Networks[END_REF], [START_REF] Mesnil | Unsupervised and Transfer Learning Challenge: a Deep Learning approach[END_REF]. In terms of optimization method which is SGD, transfer learning means that the network parameters are not initialized randomly, but their initialization corresponds to a local minimum of loss function for a large data set. A small database can 320 be considered as slightly different data and starting from pre-trained parameter values can bring improvement in optimization.

In saliency prediction problem, one could have supposed that as HVS is sensitive to the singularities such as e.g. contrasts, the same trained saliency model can be applied whatever the database is. In [START_REF] Chaabouni | Prediction of visual attention with deep CNN for studies of neurodegenerative diseases[END_REF] we have shown that it is 325 not the case. Parameters trained on a large database for the same classification task are not efficient when directly applied to another database, we observe the so-called "over-fitting". Hence, the transfer learning or fine-tuning of the parameters from a large database to a small database is necessary.

Transfer learning scheme consists of two steps: i) learning the whole classifi- 
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In our case, saliency prediction task differs from object recognition task.

Thus the proposal is to initialize all parameters in all layers of the network to train on a small data set, by the best model trained on a large data set. Equation ( 6) expresses the transfer of the convolutional weights, W l = {w k } l for layer l, obtained from the larger database to the new smaller database. Here the 350 Stochastic Gradient Descent with momentum is used as in [START_REF] Jia | Caffe: Convolutional Architecture for Fast Fea-735 ture Embedding[END_REF]. In the following equation we omit any indexes except iteration number i for simplicity:

     V i+1 = m • V i -γ • • W i -• ∂L ∂W |W i Di W i+1 = W i + V i+1 | W 0 = W (6) 
With = 0.001-a fixed learning rate, m = 0.9 -momentum coefficient; γ = 0.00004 -weight decay and W presents the best learned model parameters pretrained on the large data set. The initial value of the velocity V 0 was set to 355 zero. These parameter values are inspired by the values used in [START_REF] Jia | Caffe: Convolutional Architecture for Fast Fea-735 ture Embedding[END_REF] with the same fixed learning rate and show the best performances on a large training data set. Hence in this section, the network for classification of patches in video frames as salient or non has been presented. In the next section, the method for generation of pixel-wise saliency maps on the basis of predicted salient patches 360 is introduced.

Generation of saliency map

The saliency map of each frame I of the video is computed using the output value of the trained deep CNN model. Here we use the method from previous works [START_REF] Chaabouni | Transfer learning with deep networks for saliency prediction in natural video[END_REF], [START_REF] Chaabouni | Prediction of visual saliency in 720 video with deep cnns[END_REF]. The soft-max classifier gives the probability for a patch of 365 belonging to the "salient" class accordingly to the equation 7.

φ(u) q = e uq r e ur , r = 1, ..., d

To build a dense predicted saliency map we classify patches of the input video frames first. The patches of the same size s ( s = 100 in our experiments) are sampled with a stride of 5 pixels. The output value of the soft-max classifier with regard to the salient class on each patch defines its degree of saliency. If 370 the score is assigned to the center of each patch (x 0 , y 0 ), a sparse saliency map is obtained M (x, y). Then, to densify the map, score values are interpolated with Gaussian filters: in the center of each patch, a Gaussian G(x, y) is applied with a peak value of A * M (x0,y0) 2πσ2 

. The A-parameter value was experimentally chosen as 10. The spread parameter σ was fixed as a half-size of the patch. For 375 each pixel in the image plane, the Gaussian are summed-up. Finally the map is normalized by saliency peak as in Wooding method for GFDM (see section 2).

Experiments and results

Data sets

To learn the model, three data sets were used, HOLLYWOOD [START_REF] Marsza Lek | Actions in Context[END_REF] [54], the 380 well-known CRCNS [START_REF] Itti | CRCNS Data Sharing: Eye movements during free-viewing of natural videos[END_REF] and IRCCyN [START_REF] Boulos | Region-of-Interest Intra Prediction for H.264/AVC Error Resilience[END_REF].

The 

Evaluation of the interest of residual motion

To evaluate the interest of residual motion in saliency prediction, we have 410 computed the AUC metric [START_REF] Coutrot | Visual attention saccadic models: taking into 705 account global scene context and temporal aspects of gaze behaviour[END_REF] between gaze fixations and the energy-of-residualmotion map. Here, we used popular data sets CRCNS [START_REF] Itti | CRCNS Data Sharing: Eye movements during free-viewing of natural videos[END_REF] and IRCCyN [START_REF] Boulos | Region-of-Interest Intra Prediction for H.264/AVC Error Resilience[END_REF] that have been created and benchmarked for the task of saliency prediction in natural videos.

Results summarized in table 2 and 4 show a correspondence between gaze 415 fixations and residual motion map especially for the "gamecube02" video of CRCNS database with 0.56 value of AUC metric, and for the "SRC23" video of IRCCyN database where we obtain a very interesting result (AU C = 0.68). In table 4, 8 videos from 12 tested videos give an AUC value higher than 0.55. In remaining sequences "SRC02", "SRC07" and "SRC13' moving objects are not 420 significant for their understanding. This experience can just encourage us to go for the integration of residual motion as an input to ChaboNet architecture. 

Evaluation of patches' saliency prediction with ChaboNet

The network was implemented using a graphic card Tesla K40m and processor (2 × 14 cores). A sufficiently large amount of patches, 256, was used per 425 iteration (see the batch size parameter in equation ( 5)). After a fixed number of training iterations, a model validation step was implemented: here the accuracy of the model at the current iteration was computed on the validation data set.

It is denoted as "Test accuracy" in the figures 6, 7, 8.

To evaluate the deep network and to prove the importance of the addition show that the best trained model reached 80% of accuracy with the smallest 20 loss (at the iteration #8690 see table 5). Thus, it does not present an over-fitting situation. Figures 6 (c So, the model obtained after 8690 iterations is used to predict saliency on the validation set of this database, and to initialize the parameters when learning 450 with transfer on other used data sets. Mean accuracy is also slightly higher.

Indeed, 1.53% of mean accuracy increase is observed with merely the same stability of training which expressed by the standard deviation in the table 5. 6 summarizes 460 obtained results. The gain of using 4k-against 3k-data as input layer to the deep CNNs is about 1.12% in terms of mean accuracy. avg -Accuracy ± std 89.77% ± 2.085 89.81% ± 2.035

Validation of the ChaboNet architecture

To evaluate the ChaboNet architecture designed for saliency prediction, an experiment was conducted with the HOLLYWOOD data set. The popular AlexNet [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF] and the original LeNet [START_REF] Lecun | Gradient-Based Learning Applied to Document Recognition[END_REF] network architectures were used as a base-line with data patches extracted from HOLLYWOOD data.

470

For AlexNet, the network settings were taken exactly as in [START_REF] Krizhevsky | ImageNet Classification with Deep Convolutional Neural Networks[END_REF], that means the same number and size of filters at all layers and the same learning parameter such as the number of iterations (450.000). To better visualize, in figure 9 the iterations of AlexNet were limited to 70.000. Similarly, the original settings of LeNet were preserved from [START_REF] Lecun | Gradient-Based Learning Applied to Document Recognition[END_REF]. Here the number of iterations was 10.000.

475

ChaboNet Network training was performed with 17.400 iterations.

Obtained results summarized in figure 9 showed that the ChaboNet network outperformed the AlexNet and LeNet architectures (see table 8). In fact, with 

Validation of the proposed method of transfer learning

The previous work [START_REF] Chaabouni | Transfer learning with deep networks for saliency prediction in natural video[END_REF] already showed that training on a small database To evaluate the method of saliency prediction by interpolation of classifier outputs as presented in section 5, performances were compared with the most popular saliency models from the literature. Several spatial saliency models were chosen: Itti and Koch spatial model [START_REF] Itti | A Model of Saliency-Based Visual Attention for Rapid Scene Analysis[END_REF], Signature Sal [START_REF] Hou | Image Signature: Highlighting Sparse Salient Regions[END_REF] (a simple image 525 descriptor is introduced here referred to as the "image signature". The authors show that it performs better than Itti and Koch model) and GBVS (regularized spatial saliency model of Harel [START_REF] Harel | Graph-based visual saliency[END_REF]). We also benchmarked our model against spatio-temporal models for saliency prediction in videos like the model proposed by Seo [START_REF] Seo | Static and space-time visual saliency detection by 790 self-resemblance[END_REF] which is built upon optical flow and the model of Wang [START_REF] Wang | Consistent video saliency using local gradient flow optimization and global refinement[END_REF] which Table 13: The comparison of AUC metric of gaze fixations 'Gaze-fix' vs predicted saliency 'GBVS', 'SignatureSal' , 'Seo' ,'Wang' and 'ELD') and the ChaboNet3k and ChaboNet4k for the videos from IRCCyN-MVT.

VideoName T otF rame = 1227 Gaze-fix vs GBVS Gaze-fix vs SignatureSal Gaze-fix vs Seo Gaze-fix vs Wang Gaze-fix vs ELD Gaze-fix vs ChaboNet3k Gaze-fix vs ChaboNet4k src02 

  Deep NNs to the well-studied problem of prediction of visual saliency in images and video requires deep understanding of their inherent weaknesses. The first one is the need of a very large amount of 105 training data for building a well-generalizing model. Next, they are sensitive to the noise in training data. The noise is quite common when automatic and manual annotation of a large amount of data is required.

150

  For salient patches extraction the intuition is clear: we need to extract patches in the video frames where the GFDM has strong values. For Non-salient patches extraction,the situation is more complex. First, due to the distractors and visual fatigue, the areas in a given video frame which are salient can become Non-salient in the next frame. Next, in the bottom-up saliency mechanisms of 155 human visual attention, local contrasts can invoke human gaze. But if the observers are attracted by a semantic object in a different locus of a video frame, contrasted areas can have low values of GFDM. They thus become Non-salient. Hence, if the selection of Non-salient patches is based only on low GFDM values, then the resulting training data in Non-salient class of patches would contain 160 noise. We illustrate such a phenomena in figure 1 (c). The focus of attention of subjects changes and Non-salient patches are selected even on the moving object (red ball). (a "Non-saillent" patch in figure 1 (b) is selected on a contrasted background).

  (a) heat map of frame #0013 (b) selected patches on frame #0013 (c) heat map of frame #0014 (d) selected patches on frame #0014

Figure 1 :

 1 Figure 1: Extraction of Non-salient patches by random selection in the Non-salient area of a video frame (SRC07 video IRCCyN [37]).

Figure 2

 2 Figure 2 summarizes different steps to select salient patches. Firstly, the GFDMs are computed, then morphological erosion is applied. The illustration is given at a frame from HOLLYWOOD 1 data set. Patches centered on local 170

  180

  190

Figure 2 :

 2 Figure 2: Policy of patch selection : example and steps, HOLLYWOOD data set

  the input layer of the CNN is illustrated in figure3.Here for each patch the input layer is composed of three color channel values and the residual motion feature map. Due to this configuration, the model is called "4K-model" in contrast to "3K-model", where only color channel values 210 are used.

Figure 3 :

 3 Figure 3: Input data layer : different features joined to the network.

Figure 4 :

 4 Figure 4: Architecture of video saliency convolution network 'ChaboNet'.
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 324 Local response normalization layersA local Response Normalization (LRN) layer normalizes values of feature maps which are calculated through the neurons having unbounded (due to ReLU) activation. This operation is used to detect the high-frequency characteristics with a high response of the neuron, and to scale down answers that 290 are uniformly greater in a local area (see equation (4)).

Figure 5 :

 5 Figure 5: Detailed setting of each layer of 'ChaboNet' network.

  ): iterations numbers = epochs × T otal images number batch size (5) here batch size represents the number of images for each network switching, epochs is the number of times the totality of the data set is switched by the 305 network. The accuracy and loss are recorded with the interval of 2000 iterations both on training and validation sets.

330

  cation model on a large data set, ii) transfer on small data set. The latter means initialization of parameters' values in learning process by the optimal parameter values obtained on a large data set. In the present work, step i) -learning on a large data set was performed from a scratch, i.e. with random initialization of parameters at all layers. For the step ii) two initialization schemes were tested: 335 that one proposed by Bengio et al.[START_REF] Yosinski | How transferable are features in deep neural networks?[END_REF] and ours[START_REF] Chaabouni | Transfer learning with deep networks for saliency prediction in natural video[END_REF] explained in the following. For both steps i) and ii) the classification problem was the same : binary classification of patches into salient and non-salient.In the research of Bengio et al.[START_REF] Yosinski | How transferable are features in deep neural networks?[END_REF] addressing object recognition problem, the authors show that the first layers of a Deep CNN learn characteristics sim-340 ilar to the responses of Gabor filters regardless of the data set or classification task. Hence, in their transfer learning scheme just the three first convolutional layers pre-trained on a large database are used for the other database as the initialization of parameters. The coefficients on deeper layers are left free for optimization, that is initialized randomly.

430 435 Figure 6

 4356 Figure 6 illustrates the variations of the accuracy along iterations of all the models tested for the database HOLLYWOOD. Peak and mean accuracy values are presented in table 5). The results of learning experiments on HOLLYWOOD data set yield the following conclusions: i) when adding residual motion as an input feature to RGB values, the accuracy is improved by almost 2%. ii) the 440

  ) and (d) show a better performance of the ChaboN et4k model in terms of speed for training and validation. Hence, the loss curve 445 (Figure 6 (c)) of the ChaboN et4k model still decreasing during training. But since the 10000 iterations, the test loss curve (6 (d)) starts increasing which reflects the beginning of an over-fitting situation.

Figure 6 :

 6 Figure 6: Training the network -Accuracy and loss vs time of ChaboN et3k and ChaboN et4k for HOLLYWOOD database : (a) Accuracy vs iterations, (b) Loss on validation data set vs iterations, (c) Train loss vs seconds, (d) Loss on validation data set vs seconds.

Figure 7

 7 Figure 7 illustrates the variations of the accuracy along iterations of all models tested on IRCCyN-MVT data set. To overcome the lack of data for 455

Figure 7 :

 7 Figure 7: Accuracy and loss vs time of 3k and 4k for videos with motion from IRCCyN-MVT database : (a) Accuracy vs iterations, (b) Loss on validation data set vs iterations, (c) Train loss vs seconds, (d) Loss on validation data set vs seconds.

Figure 8

 8 Figure 8 illustrates the variations of the accuracy and loss along the time expressed in number of iterations and seconds for CRCNS data set. The best model is obtained at the iteration #32500 with an accuracy of 91.66%.465

Figure 8 :

 8 Figure 8: Accuracy and loss vs iterations of 3k and 4k for CRCNS database : a) Accuracy vs iterations, (b) Loss on validation data set vs iterations, (c) Train loss vs seconds, (d) Loss on validation data set vs seconds.

17 .

 17 400 iterations, ChaboNet outperformed by 2% in mean accuracy the AlexNet architecture which needs 450.000 iterations. When comparing the 10.000 first 480 iterations of ChaboNet and LeNet, mean accuracy was discovered to be better by more than 20%. Furthermore, the stability of training expressed by small standard deviation is much stronger, see line 4 of the table 8.

Figure 9 :

 9 Figure 9: ChaboNet 4k architecture vs AlexNet and LeNet on HOLLYWOOD data set.

Figure 10 :

 10 Figure 10: Training the network -Accuracy and loss vs time of ChaboN et4k for HOLLY-WOOD database using local response normalization (LRN) and batch normalization (BN) : (a) Accuracy vs iterations, (b) Loss on validation data set vs iterations, (c) Train loss vs seconds, (d) Loss on validation data set vs seconds.

495(

  IRCCyN) with transfer learning increases the accuracy by 4% in average and makes training process more stable (up to 50% of decrease of standard deviation of accuracy along iterations). In the present work, the proposed transfer learning scheme is benchmarked with that one proposed by Bengio. Two experiments were conducted with the same small data set IRCCyN-MVT and 500 CRCNS, and the same definition of network ChaboNet: i) Our method: start training of all ChaboNet layers from the best model already trained on the large HOLLYWOOD data set (see section 4). ii) Bengio's method: the three first convolutional layers are trained on the HOLLYWOOD data set and then fine-tuned on the target data set, other layers are trained on target data set 505 with random initialization.

Figure 11

 11 Figure 11 illustrates the variations of the accuracy along iterations of the two experiments performed with the two small data sets. One can see less stable behavior when the transfer method of Bengio et al. is applied. The proposed method of transfer learning outperformed the Bengio's method by almost 3.6%510

  .

Figure 11 :

 11 Figure 11: Evaluation and comparison of the proposed method of transfer learning : (a)Comparison on IRCCyN-MVT, (b) Comparison on CRCNS.

530

  is based on the gradient flow field and energy optimization. Finally, the last benchmark is with the ELD[START_REF] Lee | Deep saliency with encoded low level distance map and high level features[END_REF] deep saliency model which used both high level and low level features for saliency detection under an unified deep learning framework. In tables 12, 13, 11 below, the comparison of Deep CNN prediction of pixel-535 wise saliency maps with the Gaze Fixations Density Maps (Gaze-fix) is shown. The quality of predicted maps is compared with prediction by classical saliency models (Signature Sal, GBVS, Seo) also compared to the same reference: GFDM and the recent state-of-the-art methods of Wang and ELD. The

Table 14 :Table 15 ,

 1415 Visual evaluation of different saliency models for video taken from Hollywood data set 'N ameV ideo#f rameN umber' presents the time needed for testing one patch and the creation of the saliency map across one frame with a stride of 5 pixels. We used machines with Xeon E5 processor. The computation time for one patch is quite reasonable, the overall time for one full HD video frame remains high despite 565 parallelization of computations. This is explained by a large quantity of scanning windows, more GPU processors are need for faster computation.

7 .

 7 Conclusion and perspectives This study addressed the problem of prediction of visual attention in video content with Deep CNNs. In this paper we have further extended experiments 570 and confirmed partial results we obtained in our previous works. We hypothesized that the model could capture gaze attraction by moving objects due to the residual motion maps added to primary color pixel values. First of all, we measured the correspondence of residual motion maps with gaze fixations of observes which confirmed the interest of their incorporation into input layer 575 of proposed Deep architecture. The performances of prediction when different kinds of features are ingested by the network -color pixel values only, color values with residual motion-were compared. As far as dynamic content is concerned, the saliency is better predicted with spatio-temporal features (RGB and residual motion) when scenes do not contain distracting contrasts. The proposed 580 relatively shallow architecture ChaboNet was compared to similar architectures AlexNet and LeNet and showed better prediction power in terms of mean accuracy and stability of training phase. The transfer learning scheme applied to the prediction of saliency on small data sets by fine-tuning parameters pre-trained on

Table 1 :

 1 Distribution of learning data: total number of salient and non-salient patches selected from each database.

	The CRCNS 2 data set [55] is one of the oldest and the most known data sets for
	saliency prediction benchmarking. It contains 50 videos of 640 × 480 resolution
	Gaze recordings of up to eight different subjects are available. To create the
	training, validation and testing set, each video of CRCNS was split according to

HOLLYWOOD database contains 823 training videos and 884 videos for the validation step. The number of subjects with recorded gaze fixations varies according to each video with up to 19 subjects. The spatial resolution of videos varies as well. Despite the discrepancy of these parameters, we use it for model 385 building as it is the only large-scale video database with recorded gaze fixations.

This data set is referenced in the following as IRCCyN-MVT. For each chosen video of IRCCyN-MVT, the same selection scheme as for CRCNS data set was 405 used: one frame is taken for the testing step, one frame for the validation step and four frames for the training step. The distribution of selected data between salient and non-salient classes is presented in table 1.

Table 2 :

 2 The comparison of AUC metric of gaze fixations 'GFM' vs the energy of residual motion map 'ResidualMotion' for 890 frames of CRCNS videos.

	VideoName	T otF rame = 890 GFM vs ResidualMotion
	beverly03	80	0.54 ± 0.119
	gamecube02	303	0.56 ± 0.152
	monica05	102	0.52 ± 0.110
	standard02	86	0.499 ± 0.06
	tv-announce01	73	0.472 ± 0.181
	tv-news04	82	0.535 ± 0.186
	tv-sports04	164	0.500 ± 0.147

Table 3 :

 3 Frames of CRCNS videos.

	beverly03	gamecube02	monica05	standard02	tv-announce01	tv-news04	tv-sports04

Table 4 :

 4 The comparison of AUC metric of gaze fixations 'GFM' vs Residual Motion map for 456 frames of IRCCyN videos.

	VideoName T otF rame = 456 GFM vs ResidualMotion
	SRC02	37	0.46 ± 0.025
	SRC03	28	0.55 ± 0.112
	SRC04	35	0.55 ± 0.191
	SRC05	35	0.57 ± 0.148
	SRC06	36	0.603 ± 0.156
	SRC07	36	0.48 ± 0.028
	SRC10	33	0.55 ± 0.086
	SRC13	35	0.59 ± 0.147
	SRC17	42	0.48 ± 0.071
	SRC19	33	0.64 ± 0.078
	SRC23	40	0.68 ± 0.094
	SRC24	33	0.51 ± 0.045
	SRC27	33	0.53 ± 0.074

Table 5 :

 5 The accuracy results on HOLLYWOOD data set

		ChaboN et3k	ChaboN et4k
	training -time	7h47m33s	6h27m2s
	min -Accuracy (#iter)	50.11% (#0)	65.73% (#0)
	max -Accuracy (#iter)	77.98% (#5214)	80.05% (#8690)
	avg -Accuracy ± std	77.30% ± 0.864 78.73% ± 0.930

Table 6 :

 6 The accuracy results on IRCCyN-MVT data set.

		ChaboN et3k	ChaboN et4k
	training -time	0h4m6s	0h4m25s
	min -Accuracy (#iter)	70.80% (#5216)	77.83% (#8848)
	max -Accuracy (#iter)	92.67% (#6544)	92.77% (#9664)
	avg -Accuracy ± std	89.96 ± 4.159	91.08% ± 3.107

Table 7 :

 7 The accuracy results on CRCNS data set

		ChaboN et3k	ChaboN et4k
	training -time	1h3min42s	1h7min58s
	min -Accuracy (#iter)	75.71% (#5250)	77.95% (#8750)
	max -Accuracy (#iter)	91.45% (#28500)	91.66% (#32500)

Table 8 :

 8 Accuracy results : validation of ChaboNet 4k architecture vs AlexNet and LeNet networks on HOLLYWOOD data set.

			ChaboN et4k	AlexN et4k	LeN et4k
		min (#iter)	65.73% (#0)	49, 84% (#0)	49, 2% (#5500)
		max (#iter)	80.05% (#8690)	80, 27% (#3000)	51, 56% (#8500)
		avg ± std	78.73% ± 0, 930 76, 77% ± 6, 633	50, 17% ± 0, 575
		6.5. BN or LRN normalization for ChaboNet4k architecture
	485	Recently, batch normalization 'BN' [56] which allows normalizing layer in-
		puts, have shown its efficiency in designed architectures for image classification
		tasks. We compare and evaluate the use of batch normalization and the local
		response normalization for saliency prediction task. Figure 10 illustrates the
		variations of the accuracy and loss along the time expressed in number of iter-
	490	ations and seconds for the ChaboNet4k architecture using batch normalization
		'BN' and local response normalization 'LRN'. Obtained results summarized in
		table 9, showed that the use of LRN layer outperforms the BN layer with 7%
		for saliency prediction tasks.	

Table 9 :

 9 The accuracy results on HOLLYWOOD data set

		ChaboN et4k -LRN ChaboN et4k -BN
	min -Accuracy (#iter)	65.73% (#0)	45.71% (#0)
	max -Accuracy (#iter)	80.05% (#8690)	76.82% (#15642)
	avg -Accuracy ± std	78.73% ± 0.930	70.78% ± 7.034

Table 10 :

 10 The accuracy results on IRCCyN-MVT and CRCNS data set. This model was used to predict the probability of a patch to be salient. For the CRCNS data set, the model obtained at the iteration #32500 with the accuracy of 91.66% is used to predict saliency. In the same manner, the model with the accuracy of 92.77% obtained at the iteration #9664

			Our transf er method	BEN GIO transf er method
			IRCCyN-MVT	CRCNS	IRCCyN-MVT	CRCNS
		max (#iter)	92.77% (#9664)	91.66% (#32500)	92.08% (#9680)	91.55% (#31250)
		avg ± std	91.08% ± 3.107 89.81% ± 2.035	87.48% ± 7.243 89.37% ± 3.099
		6.7. Evaluation of predicted visual saliency maps	
	515	After training and validation of the model on HOLLYWOOD data set, the
		model obtained at the iteration #8690 having the maximum value of accuracy
		80.05% was chosen.		

520

is used for the IRCCyN-MVT data set.

Table 11 :

 11 The comparison of AUC metric of gaze fixations 'Gaze-fix' vs predicted saliency 'GBVS', 'IttiKoch' , 'Seo' ,'Wang' and 'ELD') and the ChaboNet4k for 890 frames of CRCNS videos.The best AUC metric values are underscored. It can be stated that in general spatial models (Signature Sal, GBVS or Itti) performed better in half of the tested videos. This is due to the fact that these videos contain very contrasted 550 areas in the video frames, which attract human gaze. They do not contain areas having an interesting residual motion. Nevertheless, the ChaboN et4K model systematically outperforms Seo's and Wang's model which use motion features. Our proposed deep network still remains competitive with the ELD deep saliency method. This shows definitively that the use of a Deep CNN is a 555 way for prediction of visual saliency in video scenes. However, for IRCCyN-MVT data set, see table13, despite videos without any motion were left aside, the gain in performance of the proposed model is not very clear due to the complexity of these visual scenes, such as presence of strong contrasts and faces. Using high level features in ELD method ensures an interesting results on IRCCyN-MVT

	T otF rame = 890 Gaze-fix vs GBVS Gaze-fix vs IttiKoch Gaze-fix vs Seo Gaze-fix vs Wang Gaze-fix vs ELD Gaze-fix vs ChaboNet4k	80 0.78 ± 0.151 0.77 ± 0.124 0.66 ± 0.172 0.73 ± 0.155 0.59 ± 0.118 0.79 ± 0.118	303 0.73 ± 0.165 0.74 ± 0.180 0.61 ± 0.179 0.76 ± 0.126 0.78 ± 0.145 0.82 ± 0.126	102 0.75 ± 0.183 0.73 ± 0.158 0.54 ± 0.156 0.73 ± 0.162 0.67 ± 0.162 0.79 ± 0.133	86 0.78 ± 0.132 0.72 ± 0.141 0.61 ± 0.169 0.78 ± 0.094 0.60 ± 0.159 0.71 ± 0.181	73 0.60 ± 0.217 0.64 ± 0.203 0.52 ± 0.206 0.00 ± 0.00 0.64 ± 0.209 0.63 ± 0.215	82 0.78 ± 0.169 0.79 ± 0.154 0.61 ± 0.162 0.00 ± 0.00 0.85 ± 0.091 0.72 ± 0.145	164 0.68 ± 0.182 0.69 ± 0.162 0.56 ± 0.193 0.00 ± 0.00 0.64 ± 0.179 0.78 ± 0.172
	VideoName	beverly03	gamecube02	monica05	standard02	tv-announce01	tv-news04	tv-sports04

560

data set.

Table 12 :

 12 The comparison of AUC metric of gaze fixations 'Gaze-fix' vs predicted saliency 'GBVS', 'SignatureSal' , 'Seo' ,'Wang' and 'ELD') and the ChaboNet4k for the videos from HOLLYWOOD.

	VideoName T otF rame = 2248 Gaze-fix vs GBVS Gaze-fix vs SignatureSal Gaze-fix vs Seo Gaze-fix vs Wang Gaze-fix vs ELD Gaze-fix vs ChaboNet4k	clipTest56 137 0.76 ± 0.115 0.75 ± 0.086 0.64 ± 0.116 0.68 ± 0.105 0.66 ± 0.105 0.77 ± 0.118	clipTest105 154 0.63 ± 0.169 0.57 ± 0.139 0.54 ± 0.123 0.77 ± 0.069 0.77 ± 0.103 0.69 ± 0.186	clipTest147 154 0.86 ± 0.093 0.90 ± 0.065 0.70 ± 0.103 0.84 ± 0.063 0.76 ± 0.063 0.81 ± 0.146	clipTest250 160 0.74 ± 0.099 0.69 ± 0.110 0.47 ± 0.101 0.81 ± 0.073 0.75 ± 0.116 0.71 ± 0.180	clipTest350 66 0.65 ± 0.166 0.68 ± 0.249 0.57 ± 0.124 0.74 ± 0.177 0.82 ± 0.083 0.72 ± 0.177	clipTest400 200 0.75 ± 0.127 0.67 ± 0.110 0.60 ± 0.106 0.74 ± 0.133 0.74 ± 0.119 0.71 ± 0.146	clipTest451 132 0.70 ± 0.104 0.59 ± 0.074 0.57 ± 0.068 0.67 ± 0.096 0.68 ± 0.070 0.63 ± 0.151	clipTest500 166 0.82 ± 0.138 0.84 ± 0.150 0.75 ± 0.152 0.88 ± 0.076 0.89 ± 0.052 0.84 ± 0.156	clipTest600 200 0.75 ± 0.131 0.678 ± 0.149 0.53 ± 0.108 0.81 ± 0.091 0.72 ± 0.136 0.71 ± 0.180	clipTest650 201 0.72±, 106 0.74 ± 0.087 0.61 ± 0.092 0.65 ± 0.086 0.58 ± 0.090 0.70 ± 0.078	ClipTest700 262 0.74 ± 0.128 0.76 ± 0.099 0.50 ± 0.059 0.87 ± 0.058 0.70 ± 0.107 0.78 ± 0.092	clipTest800 200 0.70 ± 0.096 0.75 ± 0.071 0.53 ± 0.097 0.56 ± 0.118 0.71 ± 0.128 0.66 ± 0.141	ClipTest803 102 0.86 ± 0.106 0.87 ± 0.068 0.73 ± 0.148 0.85 ± 0.070 0.77 ± 0.088 0.88 ± 0.078	ClipTest849 114 0.75 ± 0.155 0.91 ± 0.070 0.55 ± 0.122 0.92 ± 0.024 0.86 ± 0.033 0.74 ± 0.132

Table 15 :

 15 Time for testing one patch and one frame of video.

		machine 8µp machine 20µp machine 2 × 14coresµp
	patch 100 × 100	0.015s	0.028s	0.011s
	frame 720 × 576	42.31s	18.49s	8.56s

The authors claim that their first contribution is that the architecture is benchmarked against

chitectures AlexNet and LeNet. This is our first contribution. The second contribution consists in the design of a transfer learning scheme to avoid overfitting on real-life small saliency data sets. It differs from usual approaches of

available at https://crcns.org/data-sets/eye/eye-1
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comparison is given in terms of the widely used AUC metric [START_REF] Le Meur | Methods for comparing scanpaths and saliency maps: strengths and weaknesses[END_REF]. Mean value 540 of the metric for each saliency model compared to the GFDM is given together with standard deviation for a sample of videos. In i.e. Bengio's method. Finally, a method for building pixel-wise saliency maps, using the probability of patches to be salient, was extensively tested against reference spatial, spatio-temporal and a deppe learning-based prediction models.

We come to the conclusion that the interpolation of classification results is not a definite way to build dense predicted saliency maps. Indeed, accuracy in patch 590 classification are high, but the AUC metric values with reference GFDMs are not systematically better than reference classical models. We hypothesize that this is partly a distractor problem, but still the way to predict a dense map can be further developed with FC-networks. Last but not least, Deep NNs supply an interesting framework for use of temporal continuity of saliency maps in the 595 absence of distractors. This is the future of the present research.