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2D visual servoing for a long range navigation in a cluttered
environment

A. Durand Petiteville, S. Hutchinson, V. Cadenat and M. Courdesses

Abstract— In this paper, we consider the problem of realizing
a vision-based long range navigation in a cluttered environment.
To this aim, we couple a topological environment representation
and a supervision algorithm. The latter organizes several
elementary tasks which allow to perform image based visual
servoing, obstacle avoidance and to estimate on line several
required parameters. Well known and new methods based on
the tasks function approach are introduced.The dynamical se-
quencing formalism is used to guarantee the global control law
smoothness. Finally, simulation results validate our approach.

I. INTRODUCTION

We address the problem of the navigation of a nonholo-
nomic mobile robot based on visual informations. In the
survey [Bonin-Font et al., 2008], there exists two main ap-
proaches: map-based navigation and mapless navigation. The
first method is subdivided into: metric map-using navigation
systems (MMUNS), metric map-building navigation systems
(MMBNS) and topological map-based systems (TMBS).
MMUNS require a complete map of the environment before
the navigation starts. MMBNS build the map by them-
selves then use it during the navigation. Finally, TMBS
build and/or use topological maps which consist of nodes
linked by lines where each node represents the most char-
acteristic places of the environment [Gaspar et al., 2000].
Mapless navigation mostly include reactive techniques that
use visual clues derived from the segmentation of an
image [Chaumette and Hutchinson, 2006] or optical flow
[Santos-Victor and Sandini, 1995].

We aim to realize a long range navigation in a cluttered
environment using the minimal a priori and a posteri-
ori knowledges. The MMUNS and MMBNS need and/or
provide a too rich information to be considered in our
case. Several appropriate approaches based on reactive tech-
niques coupled with a topological map have been pro-
posed. In [Blanc et al., 2005], an indoor teleoperated pre-
navigation is realized in order to record the image stream.
Then, a visual route, comparable to a topological map, is
built thanks to the key frames extracted from the stream.
The key frames correspond to robot close configurations
to ensure the local visual servoing stability. Finally, to
reach the goal the robot has to navigate with the suc-
cessive key frames. Thus, the path followed during the
pre-navigation step is replayed thanks to the images. A
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similar approach is proposed in [Kralnı̀k and Přeučil, 2008]
in an outdoor environment. Nevertheless, the obstacle avoid-
ance is not taken into account in these methods. In
[Cherubini and Chaumette, 2010], a controller allowing the
robot to perform an obstacle avoidance is proposed. The pre-
vious methods involve two main drawbacks. First, numerous
key frames compose the image data base to perform a long
range navigation. Second, the navigation method requires
to develop new necessary controllers, such as the obstacle
avoidance in [Cherubini and Chaumette, 2010], to perform
a safe navigation.

The image based visual servoing presented in
[Chaumette and Hutchinson, 2006] is a well known
and studied technique. It consists in controlling the robot to
make the image features converge to the desired ones. These
latter, which correspond to a robot configuration with respect
to a landmark, can be obtained either during a pre-navigation
work or estimated on-line [Durand Petiteville et al., 2010].
In addition to the controller realizing the navigation, several
methods have been developed to avoid obstacles and to
handle occlusions [Folio and Cadenat, 2008]. Nevertheless,
image based visual servoing is usually used to perform short
range navigation. Indeed, it requires to see the considered
target to compute the control law during all the navigation
and especially at the beginning. This condition can be
unsatisfied because of the presence of occulting obstacles. If
the target to reach cannot be seen at the inital robot position,
a solution consists in dividing the global navigation mission
into elementary navigation tasks with respect to a set of
landmarks. Each intermediate target can be seen from the
neighborhood of the previous one. So, in order to extend
the navigation range, we propose to add a topological map
whose each node corresponds to a landmark. Moreover,
a supervision algorithm is developed to organize the
tasks. Finally, each task is performed using the task
function approach [Samson et al., 1991] and the transition
between them are managed using the dynamical sequencing
formalism proposed in [Souères and Cadenat, 2003].

The paper is organized as follows. Section 2 is dedicated
to the topological map and supervision algorithm description.
Section 3 details the several controllers computation. Finally,
simulation results validate the proposed approach.

II. CONTROL STRATEGY

In this paper, we propose to realize a long range navigation
based on a visual reactive controller and a topological map.
The considered robot is a cart-like vehicle equipped with a



camera mounted on a pan-platform and a laser. The system
is detailed in III-A.

A. The topological map

We propose to model the environment by a set TG =
(T1,T2, ...,Tn) of n landmarks. For an indoor navigation
different kinds of landmarks can be used : corridors, doors
or wall edges [Vassalo et al., 2000]. Now, we define a graph
G (Fig 1) where each node corresponds to a landmark Ti
(for i ∈ [1, ...,n]). A node Ti is linked to a node Ti+1 if Ti+1
can be seen from the neighborhood of Ti. If the target to
reach cannot be seen from the initial robot configuration,
the graph G is used to provide a set TP of successive targets
allowing to perform the whole navigation. TP only contains
m ≤ n elements of TG. To compute the set TP, we propose
to use the Dijkstra’s algorithm. For example, in figure 1, the
environment is depicted by the whole graph. The computed
path allowing to reach T7 from T1 is represented in grey.
In this case TP = [TP1,TP2,TP3,TP4,TP5] = [T1,T2,T4,T6,T7].
Thanks to the topological map, the set of landmarks to reach
in order to perform a long range navigation is known.

Fig. 1. The topological map

B. The global strategy

To perform a long range navigation in a cluttered envi-
ronment guaranteeing the robot safety, several tools, such as
visual servoing, obstacle avoidance and visual features esti-
mation, are available. These tools are coupled to define a set
of useful tasks, such as the visual servoing using estimated
visual features to handle occlusion during the navigation.
The tasks are placed in an supervision algorithm (Fig 2) in
which the events involving a transition between two tasks
are described. Thus the task to perform is defined using the
robot perception of the environment and the knowledge of
the previous task.

The different tasks have to be defined in order to allow the
robot to reach successively the targets included in TP while
preserving the system and navigation integrity. The main
task [B] is the visual servoing which is performed thanks
to a reactive controller allowing the current image data,
denoted by s j, to converge towards the reference ones, noted
s∗j (for j ∈ [1, ...,m]). The latter corresponds to the sensor
data values at the desired system configuration with respect
to TP j. During the navigation, if an obstacle is detected
in the robot neighbourhood, the algorithm switches to the

Fig. 2. Supervision algorithm

obstacle avoidance task [C]. This task is performed until the
obstacle is no more considered as dangerous. In the same
way, the supervisor switches to the tasks with estimated
visual features ([D],[E]) if the target is no more perceived.

The desired visual features can be obtained during a pre-
navigation step or computed on-line. If the second option
is chosen, the estimation process is done during the tasks
[A], [F] or [G]. For the first visual servoing s∗1 is estimated
during the initialization task [A]. In this case the robot turns
on itself to avoid collisions, and to obtain different visual
informations used to estimate s∗1. Once the value of s∗1 has
converged, the visual servoing can be started.

For the following visual servoing, the next target TP j+1 to
reach needs to be found by the camera during the navigation
wrt TP j. To this aim, during the tasks [F] and [G], the mobile
base is controlled to perform a visual servoing or an obstacle
avoidance, based on the estimated visual data as in [D] and
[E], whereas the camera is looking for the next target by
scanning the environment from one of its mechanical bound
to the another one. If the target TP j+1 is not found at the
end of the scan, the visual servoing wrt the current target
TP j or the obstacle avoidance restarts. Otherwise the camera
is controlled to keep the target TP j+1 in its field on view.
Then, the obtained visual data are used to estimate s∗j+1. If
the target is not found at the end of the visual servoing task,
the map is updated and the planning task is restarted.

Once the convergence of s∗j+1 is detected, TP j+1 becomes
the task to realized and task [H] is launched. This task is
defined in section III and allows to guarantee the continuity
of the control law when switching between two visual
servoing with respect to two different targets.

By applying this algorithm for the m targets included in
TP, the robot is able to reach the final target which cannot be
seen by the camera at the initial position. Moreover, the robot



safety and the navigation success are guaranteed thanks to
the use of several tasks allowing the system to overcome the
problems of occlusion and collision. However, the continuity
problems between each task have to be addressed during the
controllers definition.

III. CONTROL ASPECTS
In this section, a set of controllers allowing to perform

each task of the supervision algorithm are presented. We
choose to compute them thanks to the task function approach
in order to use the dynamical sequencing formalism. Thus,
the continuity between two tasks is guaranteed. Moreover
the different estimation processes are introduced.

A. System modelling

The considered system is a cart-like robot equipped with
a camera mounted on a pan-platform. Moreover a laser has
been added. Fig 3(a) introduces the robot model, which
requires to define the successive frames : FO attached to the
world, FM linked to the robot, FP attached to the platform,
and FC linked to the camera. Let θ be the direction of the
robot wrt. ~xO, ϑ the direction of the pan-platform wrt. ~xM , P
the pan-platform centre of rotation, Cx and Cy the coordinates
of C in FP, and Dx the distance between the robot reference
point M and P. Defining vector q = (l,θ ,ϑ)T where l is
the robot curvilinear abscissa, the control input is given by
q̇=(υ ,ω,ϖ)T , where υ and ω are the cart linear and angular
velocities, and ϖ is the pan-platform angular velocity wrt.
FM .

(a) The robot model (b) The camera pinhole model

Fig. 3. The robotic system

The pinhole model is used to represent the camera (Fig
3(b)). In this case, a point P, with coordinates (X ,Y ) in the
image plane, is the projection of a point p, with coordinates
(x,y,z) in FO. Moreover we define z as the depth in FC of
the projected point p and f as the camera focal.

A landmark, which can be characterized by a number k of
points Pi (for i ∈ [1, ...,k]) in the world frame, is represented
by a 2k-dimensional vector s made of the coordinates (Xi,Yi)
in the image plane. For such a robot and visual features, the
relation between ṡ and the control inputs q̇ is given by :

ṡ = L(s,z)Jrq̇ (1)

where Jr is the robot jacobian [Folio and Cadenat, 2008]

Jr =

 −sin(ϑ(t)) Dx cos(ϑ(t))+Cx Cx
cos(ϑ(t)) Dx sin(ϑ(t))−Cy −Cy

0 −1 −1

 (2)

and L(s,z) = [LT
(P1)

, ...,LT
(Pk)

]T the interaction matrix. L(Pi) is
classically given by [Espiau et al., 1992]:

L(Pi) =

(
Lx(si,zi)
Ly(si,zi)

)
=

(
0 Xi

zi

XiYi
f

− f
zi

Yi
zi

f + Y 2
i
f

)
(3)

B. Controller sequencing using the task function approach

In this section we propose to define the various tasks
necessary for the long range navigation, using the task
function approach [Samson et al., 1991]. With this method,
each task is defined by a vector e, called task function, to
vanish. To ensure the continuity between ei the current task
and ei+1 the next one, we suggest to use the dynamical
sequencing formalism [Souères and Cadenat, 2003]. To en-
sure the continuity, the tasks have to be admissible at the
switching time ts. A task is admissible if its jacobian can
be invertible. For a transition, the control law expresses as
follows:

q̇(t) =
[

q̇i(t) ∀t ≤ ts
q̇i+1(t) ∀t ≥ ts

(4)

where q̇i(t) and q̇i+1(t) are respectively the control in-
puts allowing to make ei and ei+1 vanish. To guaran-
tee the control law smoothness between these controllers,
[Souères and Cadenat, 2003] propose to use the dynamical
sequencing formalism. The control law is defined as:

q̇i+1(t) = J−1
i+1ė∗i+1(t) (5)

where ė∗i+1(t) is computed to ensure the global control input
continuity at the first order. We have chosen the dynamic
presented in [Mansard and Chaumette, 2007], which allows
to set independently the error decreasing speed and the
transition time duration. So we obtain :

ė∗i+1(t) =−λei+1(t)+ρ(t) (6)

where

ρ(t) = [Ji+1J−1
i ėi(ts)+λei+1(ts)]exp−τ(t−ts) (7)

with λ > 0 and τ > 0. Choosing ėi(ts) = Jiq̇i(ts) ensures the
control law smoothness at t = ts, as the dynamics of the task
function ei+1 at t = ts depends on the control law q̇i(t).

C. The controllers

In this section, the necessary controllers to perform the
different previously introduced tasks are presented. The
visual servoing and obstacle avoidance controllers come from
former works, whereas the reorientation one is developed for
the first time.

1) Visual servoing: The vision-based navigation task con-
sists in positioning the camera with respect to a given static
landmark using visual data. The value of the visual features
s depends on the relative camera position with respect to the
landmark. So the goal of the image based visual servoing
is to make the current visual signals s converge to their
reference values s∗. s∗ then corresponds to the value of s
obtained at the desired camera pose with respect to the target.

To perform the desired vision-based task, we apply the
visual servoing technique given in [Espiau et al., 1992] to



mobile robots as in [Pissard-Gibollet and Rives, 1995]. The
proposed approach consists in expressing the visual servoing
task by the following task function to be regulated to zero:

evs =C(s− s∗) (8)

where matrix C, called combination matrix, allows to take
into account more visual features than available degrees of
freedom. For C = L+

(s∗,z∗), the task jacobian is equal to JV S =

CL(s∗,z∗)Jr = Jr. The task is admissible as det(Jr) = Dx 6= 0.
By imposing an exponential decrease on e, a controller

making e vanish is obtained in [Folio and Cadenat, 2008] :

q̇vs =−(CL(s,z)Jr)
−1

λvsC(s− s∗) (9)

where λvs is a positive scalar or a positive definite matrix.
2) Obstacles avoidance: To perform a vision based navi-

gation task in a cluttered environment, we have to deal with
the problems of collision. In this section we first present the
mobile base controller allowing to avoid obstacles, then the
pan-platform one to perform the target tracking.

Fig. 4. Collision detection

The chosen strategy consists in making the vehicle avoid
the obstacle by following the security envelope ξ0 as shown
in Fig. 4. With this method, only the mobile base (i.e
υ and ω) is taken into account. To design the desired
controller, the following task function has been defined
[Folio and Cadenat, 2005]:

emb = (l− vrt δ + kα)T (10)

where l is the curvilinear abscissa of point M (Fig 4), k a
positive gain to be fixed and vr the desired linear velocity.
The first component of this task function allows to regulate
the linear velocity to vr. The second component can be seen
as a sliding variable whose regulation to zero makes both δ

and α vanish (Fig 4).
Thanks to the task (10), only the mobile base is controlled.

To keep the target in the camera field of view during the
avoidance phase, we have to define a specific task function
for the pan-platform :

epp = Y0 (11)

where Y0 is the abscissa of the visual pattern gravity cen-
ter. We can now obtain a task function eoa = (emb epp)

T

for the obstacle avoidance. Using classical visual servoing
techniques, a controller making eoa vanish is obtained :

q̇oa = J−1
oa (−λoaeoa−Aoa) (12)

where λoa is a positive scalar, Aoa = ( −vr 0 0 )T and:

Joa =

 1 0 0
sin(α)− kχ cos(α) k 0

LY0Jr

 (13)

We define χ =
1
R

1+ σ
R δ

, with R the curvature radius of
the obstacle and σ = {−1,0,1} depending on the sense
of the robot motion around the obstacle. Moreover, LY0 =

(− f
z0
, Y0

z0
, f + Y 2

0
f ), and z0 is the depth of the visual pattern

gravity center. It should be noticed that the obstacle avoid-
ance task is admissible as the task function jacobian Joa is
invertible:

det(Joa) =−κ

(
Cx

z0
+

CyY0

z0
+1+Y 2

0

)
6= 0 (14)

3) The reorientation phase: The classical image based
visual servoing presented in III-C.1 allows to compute the
camera kinematic screw. Some of the approaches proposed
in [Chaumette and Hutchinson, 2006] allow to decouple the
camera velocities. Thus, if the camera trajectory appears to
be correct, it is not necessary the case of the one of the
mobile base. For example, as shown in figure 5, where qinit =
[ 0 −2π

3
5π

6 ]T , the system performs the task whereas this
global behaviour is incongruous.

Fig. 5. Example of incongruous behaviour during a visual servoing

To overcome this problem we propose to define a con-
troller allowing to turn toward the mobile base toward
the next target without performing a reverse movement.
Moreover, the camera has to be controlled to keep the target
in its field of view. To this aim, we define the following task
function :

etr = (ltr− vtrt θtr−ωtrt Y0)
T (15)

where vtr and ωtr are the reference linear and angular
velocities, ltr is the curvilinear abscissa of point M and
θtr the robot heading. vtr is chosen > 0 to preserve the
robot of a reverse movement while ωtr is the same sign
as ϑ(ts), the pan-platform orientation in the robot frame at
the switching time. Indeed, before the transition phase, the
camera is controlled to preserve the target visibility. So, the
pan-platform orientation at ts informs us about the suitable



mobile base heading. Controlling the mobile base to regulate
to zero the camera orientation means directing the former
towards the new target.

Making etr vanish implies that the robot linear and angular
velocities are the right ones, while the camera is looking to
the landmark. We propose to impose an exponential decrease:

ėtr =−λtretr (16)

The expression of ė is now required:

ėtr = (v− vtr ω−ωtr Ẏ0)
T = Jtrq̇tr +Atr (17)

where

Jtr =

 1 0 0
0 1 0

LY0Jr

 Atr =

 −vtr
−ωtr

0

 (18)

where LY0 is given in III-C.2. It shoud be noted that:

det(Jtr) =
− f (Dx cos(ϑ)−Cx)+Y0(Dx sin(ϑ)−Cy)

z0
− f −

Y 2
0
f
6= 0

(19)

Now, thanks to (15), (16) and (17), we obtain the controller
to realize a transition:

q̇tr = J−1
tr (−λtretr−Atr) (20)

The transition phase is considered to be finished when ϑ = 0.
At this moment the mobile base is oriented toward the target.

D. Parameters estimation for visual servoing

Several parameters are needed to be able to compute the
control inputs (9) : the current visual features s, the desired
visual features s∗ and the depth zi of each point pi which
characterizes the landmark. In the following sections, the
estimation process for each parameter is presented.

1) The current visual features: The controller (9) can only
be used if the visual data are available. If they are not the
task cannot be realized anymore. To remedy this critical
situation, [Folio and Cadenat, 2008] has recently proposed
to compute the visual data evolution for any t ∈ [tk−1, tk],
with tk = tk−1 +Ts and Ts the sampling period. To this aim,
the values of Xi(k),Yi(k) and zi(k) are computed using Xi(k−
1),Yi(k− 1),zi(k− 1) and q̇(k− 1). This method requires
the initial values of Xi(tocc),Yi(tocc) and zi(tocc), where tocc
correspond to the occlusion time. The two first ones can be
easily obtained thanks to the last image before occlusion,
while the depth has to be estimated.

This method is used to realize the visual servoing [D] or
the obstacle avoidance [E] tasks using the estimated visual
features.

2) The visual feature depth: To provide the nec-
essary depths for III-D.1, the estimator proposed in
[Durand Petiteville et al., 2010] is used. The estimation pro-
cess is based on a predictor/corrector pair using a number m
of previous images. In the proposed algorithm, a high number
of data is used to improve the depth estimation. Thus, the
estimation process is robust to the errors due to the image
process and odometry.

3) The desired visual features: In
[Durand Petiteville et al., 2010], a method is proposed
to automatically compute the desired visual features. Thanks
to the estimated depth of the visual data and the images, the
landmark dimensions are computed. Then a desired camera
position with respect to the landmark is defined. Thus, using
the camera pinhole model, the desired visual features can
be obtained.

IV. SIMULATIONS

We have simulated a long range navigation in a clut-
tered environment using the software MatlabTM. The scene
is composed of four occulting obstacles, a non-occulting
one and a set of nine landmarks (see figure 6 ). The
landmarks are made of four circles, whose centers Ck are
extracted by an image processing. So, for a target Tj,
s j = [X1,Y1,X2,Y2,X3,Y3,X4,Y4]

T where Xk and Yk are the
centers Ck coordinates. The topological map described in
figure 1 is used to model the navigation environment. In
this simulation the robot has to reach the target T7 from
its initial configuration qinit = [1,1,1.81,0]T . As T7 cannot
be seen from qinit because of an occulting obstacle, the
set TP = [T1,T2,T4,T6,T7] is computed using the Dijkstra’s
algorithm, as shown in figure 1. In order to be closer of
the real conditions, a one pixel noise has been added to the
visual data whereas a 3% error has been introduced in the
odometry process. Finally the sampling time is Ts = 0.1s

As shown in figure 6, the long range navigation (about 20
meters) has been successfully performed. The robot safety is
guaranteed and the different targets are sequenced until the
goal is reached. It should be noticed that each task shown
in the supervision algorithm has been realized at least one
time. Indeed, in addition to the classical [B] and [C] tasks,
the reorientation task [H] is executed when the considered
target changes, unless an obstacle avoidance is performed.
Thus, the robot behaviour presented in III-C.3 is not found
during the navigation.

Fig. 6. The robot trajectory



The depth estimation allows to compute the reference
visual features s∗j (Fig. 7) during the tasks [A], [B], [C] and
[H], and to estimate the visual features when no image is
available (Fig. 8). Thus during tasks [D], [E], [F] and [G]
the robot can perform the navigation wrt the current target
without using the visual data obtained by the camera.

From a global point of view, the long range navigation is
successfully and automatically performed using the unique
topological map knowledge. Indeed at the end of the nav-
igation, the camera has reached the desired final position
q f inal = [3.9,7,π]T . However, the trajectory made by the
robot is not the shortest one. As the path is realized using
only local and reactive techniques, the global trajectory is
not improved. Moreover, it should be noticed that the system
does not switch to the next landmark when it can be seen but
only when it has been detected by the camera. The search
task cannot be improved because the topological map does
not contain any informations about the landmarks positions.
Thus, it is impossible to privilege any direction of research
for the next target.

Fig. 7. Estimated and real reference visual data with respect to T7

Fig. 8. The visual data with respect to T6

V. CONCLUSION AND FUTURE WORKS

In this paper we have proposed a method allowing to per-
form a vision based long range navigation. The latter relies
on a supervision algorithm organizing a set of elementary
tasks coupled to a topological map. This map is made of a

small number of landmarks, which is the only knowledge
available about the environment. The environment is then
represented using a reduced database contrary to the other
approaches of the literature. The supervision algorithm al-
lows to select the right elementary task at the right instant.
Each of these tasks is performed thanks to a local controller,
based either on real or estimated sensory data. In this way, it
becomes possible to perform long range navigation mission
using well-known reactive techniques.

We will validate the proposed approach using artificial
landmarks on our robot Pekee II, developed by Wany
Robotics. Finally, it will be also necessary to consider the
topological map construction. The use of advanced pattern
recognition and image processing techniques will allow to
take into account a wider variety of landmarks. In this way,
it will become possible to perform a vision based long range
navigation in a natural indoor environment.
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