Structure and Assembly of the Enterohemorrhagic Escherichia coli Type 4 Pilus

Benjamin Bardiaux, Gisele Cardoso de Amorim, Areli Luna Rico, Weili
Zheng, Ingrid Guilvout, Camille Jollivet, Michael Nilges, Edward Egelman, Nadia Izadi-Pruneyre, Olivera Francetic

To cite this version:

Benjamin Bardiaux, Gisele Cardoso de Amorim, Areli Luna Rico, Weili Zheng, Ingrid Guilvout, et al.. Structure and Assembly of the Enterohemorrhagic Escherichia coli Type 4 Pilus. Structure, 2019, 27 (7), pp.1082-1093.e5. 10.1016/j.str.2019.03.021 . hal-02326222

HAL Id: hal-02326222

https://hal.science/hal-02326222

Submitted on 5 Nov 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Structure and assembly of the Enterohemorrhagic Escherichia coli type 4 pilus

Benjamin Bardiaux ${ }^{1,4}$, Gisele Cardoso de Amorim ${ }^{2,4,6}$, Areli Luna Rico ${ }^{1,3,4}$, Weili Zheng ${ }^{5}$, Ingrid Guilvout ${ }^{3}$, Camille Jollivet ${ }^{3}$, Michael Nilges ${ }^{1}$, Edward H Egelman ${ }^{5}$, Nadia IzadiPruneyre ${ }^{1,2^{*}}$ and Olivera Francetic ${ }^{3,7^{*}}$
${ }^{1}$ Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur; CNRS UMR3528; CNRS USR3756; Paris, France,
${ }^{2}$ NMR of Biomolecules Unit, Department of Structural Biology and Chemistry, Institut
Pasteur, CNRS UMR3528, Paris, France
${ }^{3}$ Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France.
${ }^{5}$ Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22908, USA
${ }^{4}$ Equal contribution
${ }^{6}$ Present address: Núcleo Multidisciplinar de Pesquisa em Biologia - NUMPEX-BIO, Universidade Federal do Rio de Janeiro, Estrada de Xerém, RJ, Brazil.
${ }^{7}$ Lead contact: olivera.francetic@pasteur.fr
**correspondence: nadia.izadi@pasteur.fr and olivera.francetic@pasteur.fr

Key words 10: type 4 pili, EHEC, NMR, cryo-EM, pilin structure, pilus assembly, molecular modeling, hemorrhagic coli pilus (HCP)

Summary

Bacterial type 4a pili are dynamic surface filaments that promote bacterial adherence, motility and macromolecular transport. Their genes are highly conserved amongst enterobacteria and their expression in Enterohemorrhagic Escherichia coli (EHEC) promotes adhesion to
intestinal epithelia and pro-inflammatory signaling. To define the molecular basis of EHEC pilus assembly, we determined the structure of the periplasmic domain of its major subunit PpdD (PpdDp), a prototype of enterobacterial pilin subfamily containing two disulfide bonds. The structure of PpdDp, determined by NMR, was then docked into the electron density envelope of purified EHEC pili obtained by cryo-electron microscopy (cryo-EM). Cryo-EM reconstruction of EHEC pili at $\sim 8 \AA$ resolution revealed extremely high pilus flexibility correlating with a large extended region of the pilin stem. Systematic mutagenesis, functional and interaction analyses identified charged residues essential for pilus assembly. Structural information on exposed regions and interfaces between EHEC pilins is relevant for vaccine and drug discovery.

Introduction

Type 4 pili (T4P) are thin filamentous polymers that bacteria use to bind to their substrates, move across surfaces by twitching or gliding, and transport macromolecules in and out of the cell (Berry and Pelicic, 2015). T4P also promote formation of bacterial aggregates and biofilms, and mediate signaling to host cells during infection. The Enterobacteriaceae family of gamma proteobacteria comprises many commensal and environmental species, but also important human, animal and plant pathogens from the genus Klebsiella, Yersinia or Dickeya. Most enterobacteria contain gene clusters encoding pili of the T4a subclass in conserved chromosomal loci (Pelicic, 2008) and share high sequence conservation of major pilin subunits, designated PpdD in E. coli (Luna Rico et al., 2019). However, their expression and function have been described only in few species. In the plant pathogen Erwinia amylovora, PpdD pili promote biofilm formation and mutants deleted for the ppdD operon show reduced virulence (Koczan et al., 2011). In specific nutrient-limiting conditions, PpdD pili are also assembled by enterohemorrhagic E. coli
(EHEC) (Xicohtencatl-Cortes et al., 2007). EHEC is an important human pathogen causing outbreaks of severe intestinal infections, with hemolytic uremic syndrome (HUS) as a lifethreatening complication of the disease. Sera of patients recovering from HUS contain antibodies against PpdD, suggesting that T4P represent one of the virulence factors in the arsenal of this pathogen (Monteiro et al., 2016).

The EHEC pili, also named HCP for hemorrhagic coli pili, promote adhesion to intestinal epithelia in bovines, the main reservoir of this pathogen (Xicohtencatl-Cortes et al., 2007) and induce pro-inflammatory signaling (Ledesma et al., 2010). Expression of pilin genes in a laboratory E. coli strain HB101 promotes biofilm formation and twitching motility (Xicohtencatl-Cortes et al., 2009), phenotypes typically associated with T4P dynamics. Transcriptional studies in E. coli K-12 revealed that PpdD pilus assembly genes are coregulated with DNA uptake genes via Sxy (TfoX) competence activator (Sinha et al., 2009), suggesting a role of these pili in natural transformation and horizontal gene transfer. PpdD pilus assembly was achieved in a heterologous type 2 secretion system (T2SS) from Klebsiella oxytoca (Sauvonnet et al., 2000; Cisneros et al., 2012), and more recently in the reconstituted EHEC pilus assembly system in E. coli K-12 (Luna Rico et al., 2019). The highly similar symmetry parameters of T4aP assembled in these different systems indicate the key role of major pilins as determinants of pilus structure (Luna Rico et al., 2019).

EHEC pili are polymers of the major subunit PpdD, which is a prototype of the enterobacterial class of pilins, present in many important human, animal and plant pathogens (Luna Rico et al., 2019). In order to understand the molecular and structural basis of assembly of these major subunits into a pilus, we determined the solution NMR structure of the periplasmic domain of the EHEC PpdD (PpdDp). We then combined this structure with the sub-nanometer resolution cryo-EM reconstruction of EHEC pilus to build an atomic model of the assembled fiber. In addition, site-directed mutagenesis, functional assays and interaction studies identified PpdD residues crucial for pilus assembly and stability.

Results

Solution structure of the periplasmic PpdD domain

In addition to the well-conserved N -terminal hydrophobic segments ($\alpha 1$ helix), PpdD homologues share similar periplasmic domains stabilized by two disulfide bonds at conserved positions (de Amorim et al., 2014; Luna Rico et al., 2019). To gain molecular insight into this group of pilins, we solved the structure of the soluble periplasmic domain of EHEC PpdD (hereafter designated PpdDp) comprising residues 26 to 140 of the mature protein. To this end we used solution-state NMR, which is particularly adapted for determination of structure and dynamics of pilin proteins by providing structural insights into loops and flexible regions, potentially involved in protein-protein and protein-ligand interactions. The PpdDp structure is very well defined from 2219 NOE-derived distance, 216 dihedral angle and 45 RDC (residual dipolar coupling) restraints as well as 30 hydrogen bonds. The details of restraints and structural statistics of the 20 lowest energy conformers representing the solution structure of PpdDp are summarized in Table 1. The structures show high convergence with a mean pairwise root mean square deviation (RMSD) of 0.55 and $1.06 \AA$ for the backbone and the heavy atoms of ordered regions, respectively. The 3-D structure of PpdDp displays a canonical alpha-beta pilin fold with two disulfide bonds (Figure 1A,B), largely supported by the dense network of NOE-derived restraints (Figure S1). It is composed of two α-helices at both extremities ($\alpha 1 \mathrm{C}$ as the C-terminal part of $\alpha 1$: N26-H54 and $\alpha 3$: D123-F134) that are separated by a long α / β loop and a tilted 4 -stranded antiparallel β sheet (strands $\beta 1-\beta 2-\beta 3-\beta 4$) facing the $\alpha 1 \mathrm{C}$ helix. The structure is highly stabilized by two disulfide bridges (Figure 1A,D); one is conserved in type 4 pilins (C118-C130) and connects $\alpha 3$ with $\beta 4$. The second (C50-C60) is characteristic for enterobacterial pilins and connects $\alpha 1 C$ to the beginning of the α / β loop leading into a short 3_{10} helix ($\alpha 2$: G56-C60). This loop is enriched in His, Gly and Asp residues conserved in the PpdD family.

The ${ }^{1} \mathrm{H}-{ }^{-15} \mathrm{~N}$ heteronuclear NOE data for the backbone confirm an overall well-ordered structure (Figure S2A). Besides the C-terminal tag, which is highly flexible and without any
stable interaction with the rest of the protein, two regions with low ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ NOE value are present, including the $\beta 3 / \beta 4$ (G104-G113) and $\beta 4 / \alpha 3$ (I120-S122) loops. The former includes the two residues whose signals were not observed in the NMR spectra (D106 and V111) indicating the presence of intermediate exchange on the chemical shift time scale ($\mu \mathrm{s}-\mathrm{ms}$) between different conformations. Consequently, very few long-range NOEs could be assigned in the $\beta 3 / \beta 4$ loop, consistent with the high variability of this region in the PpdDp structure ensemble (Figure S1, S2B,C). Surprisingly, residues of the long α / β loop display ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ NOE values representative of a well-ordered region with low flexibility and slow internal motions, confirmed by chemical shifts analysis (Figure S2D,E). Numerous short- and long-range NOE restraints are found within the α / β loop and between the loop and the $\beta 1$ strand. The loop is anchored at both ends by polar interactions to the extremities of the $\beta 1$ and $\beta 2$ strands, while short-range backbone hydrogen bonds stabilize the turns at the N - and C-terminal parts of the α / β loop (Figure S1C).

Structure of the PpdD pilus filament

We determined that T4PS PpdD pili and T2SS PpdD pili have the same morphology and indistinguishable helical parameters (Luna Rico et al., 2019). We therefore combined the segments extracted from cryo-EM images of PpdD pili assembled by T4PS and T2SS for helical reconstruction. The variability in the helical parameters was evident (Figure S3A,B) from a reference-based classification for sorting the 99,678 segments in terms of variable twist and rise. The mode of this distribution corresponded to an axial rise of $10.8 \AA$ and twist of 96°, accounting for $\sim 25 \%$ of the whole dataset, and this group was used for the helical reconstruction. After multiple cycles of IHRSR (Egelman, 2000), the symmetry of this reconstruction converged to a rise of $11.2 \AA$ and a rotation of $\sim 96^{\circ}$ per subunit. The overall resolution of the reconstruction was $\sim 8 \AA$ according to the half-map FSC criterion (Figure S3C,D), allowing us to identify the location of the well-separated globular pilin domains forming the outer shell of the filament (Figure 2A). However, the inner core of the pilus has less density. At high contour level ($\sim 5 \sigma$), small rod-shaped densities are observed along the
filament axis, but remain disconnected from the main densities of the globular pilin heads (Figure 2B). At lower contour level, weaker densities appear, connecting the outer globular heads to the inner rods (Figure 2C). Since the PpdDp NMR structure fitted very nicely into the cryo-EM density at the expected location but did not explain the inner rod-shape densities, we inferred that they actually correspond to the N -terminal transmembrane segments (TMS). We thus built an atomic model of the PpdD pilus by docking a homology model of the helical TMS, connected by an extended linker to the fitted PpdDp structure. After symmetrization and refinement in real-space, the structure of the PpdDp was conserved with a Ca RMSD of $2.3 \AA$ between the NMR structure and the structure in the pilus (Figure 2D,E). Upon refinement, most, if not all, structural changes are limited to loops. The largest conformational change is the quasi-rigid displacement of the α / β loop towards the pilin core. In the context of the pilus, the N-terminal part of $\alpha 1$ ($\alpha 1 N$) stops at G11 and is followed by an unstructured region until around P22, where the a1C helix begins (Figure 2D).

The PpdD pilus has a diameter of $\sim 60 \AA$ with somewhat loosely packed pilin subunits forming a right-handed 1 -start helix (Figure 3A). Each PpdD subunit P has contacts with six neighbors, forming three different interfaces with subunits $P_{ \pm 1}, P_{ \pm 3}$ and $P_{ \pm 4}$ (Figure 3), with respective buried surface areas of $569 \AA^{2}, 943 \AA^{2}$ and $1529 \AA^{2}$. Potential salt-bridges are present in the $P-P_{+1}$ and $P-P_{+3}$ interfaces, while the $P-P_{+4}$ interface mostly involves hydrophobic contacts via $\alpha 1 \mathrm{~N}$ (Figure 3C). The $\beta 3 / \beta 4$ loop, well visible and ordered in the cryo-EM density, folds as an elongated extension of the β-sheet, making inter-subunit contacts with the D-region and with the N-terminal region at the $\mathrm{P}-\mathrm{P}_{+4}$ interface (Figure 3C).

Co-evolutionary analysis performed on the PpdD pilin sequence family provided intra- and inter-pilin contact predictions that support the atomic model of PpdD pilus (Table S1; Figure S4).

The mature PpdD, N-terminally processed by the prepilin peptidase has 7 positively and 13 negatively charged residues. The surface of the EHEC pilus is highly negatively charged (Figure 4A). To assess the role of electrostatic interactions in assembly and stabilization of PpdD pili, we introduced charged residue substitutions that create electrostatic repulsion between PpdD subunits or between PpdD and its assembly components. We examined pilus assembly in an E. coli strain producing the K. oxytoca T2SS but lacking its cognate major pseudopilin PuIG (Figure 4D,E). The mean piliation efficiency, expressed as a fraction of total PpdD detected on the bacterial surface, was determined for each of these variants from four independent experiments. About 50% of native PpdD (PpdD ${ }^{\mathrm{WT}}$) was assembled into pili in this system, a fraction comparable to the assembly efficiency for the cognate T2SS substrate, the major pseudopilin PulG assembled into pili under the same conditions (Campos et al., 2010). As expected, piliation was abolished for the PpdD ${ }^{\text {E5A }}$ variant lacking the conserved E5 residue, as in P. aeruginosa (Strom and Lory, 1991) and Neisseria gonorrhoeae (Aas et al., 2007). The E5 residue has been implicated in an early step of subunit recruitment to the assembly machinery (Nivaskumar et al., 2016), as well as in inter-subunit contacts in assembled pili (Kolappan et al., 2016; Wang et al., 2017). Similar to the behavior of PulG ${ }^{\text {E5A }}$, which is arrested in the membrane-embedded preassembly state, (Nivaskumar et al., 2014; Santos-Moreno et al., 2017) cellular PpdDE5A levels were consistently higher compared to PpdD ${ }^{W T}$. On the other hand, several PpdD variants showed reduced stability, including $\operatorname{PpdD}^{R 29 E}$ and, more dramatically, $\operatorname{PpdD}^{\text {R44D }}$, consistent with the intra-protomer interaction of R44 with E48 identified by NMR. Charge inversion of residues mapping onto the fiber surface had little effect on pilus assembly (Figure 4B,C,D,E). With the exception of the surface-exposed residue K83, all positively charged residues were essential for piliation (Figure 4C,D,E). Several charge inversions localized at the interfaces with other subunits abolished pilus assembly, including K30E, E48K, D61R, R74D, R116D and R135E. Nearly all residues in the periplasmic part of the alpha helical PpdD stem appear to be very important for piliation (Figure 4D,E).

Among the inter-protomer contacts detected in the cryo-EM structure of the EHEC pilus, $\mathrm{R}^{2} 4_{\mathrm{P}+1}$ is in close proximity to both D137p and D138p (Figure 3D). Whereas the charge inversion of residue R74 (R74E/D) abolished piliation, the double charge inversion D137RD138K did not. However, piliation of $P_{p d D}{ }^{\text {R74E }}$ and $P_{p d D}{ }^{\text {R74D }}$ variants was restored in the presence of the D137R-D138K substitution, supporting the proximity of these residues and their importance at the $\mathrm{P}-\mathrm{P}_{+1}$ interface (Figure 3E). Similarly, in a non-piliated PpdD variant R135E, pilus assembly could be partially rescued by an additional charge inversion of a nonessential residue E92 ${ }_{\mathrm{P}+1}$, facing the $\mathrm{R} 135_{\mathrm{P}}$ (Figure 3F). This effect was specific since piliation was not restored in another double mutant variant, $\mathrm{PpdD}^{\mathrm{D} 35 \mathrm{~K} \text {-R135E }}$ and it is consistent with the relative proximity of R135 and E92 in the pilus structure (Figure 3F).

Role of PpdD interactions with fiber assembly factors

Recent functional reconstitution of the EHEC T4P system (T4PS) (Luna Rico et al., 2019) allowed us to compare assembly of PpdD and its variants via the T2SS (Figure 5A, top panel) with assembly via its cognate T4PS machinery (Figure 5A, bottom panel). The majority of PpdD variants with residue substitutions in the N -terminal stem region were defective for assembly in both systems. Charge inversions at these positions affected homotypic interactions with PpdD subunits in the membrane, prior to pilus assembly, as indicated by the bacterial two-hybrid (BACTH) analysis (Figure 5B). A notable exception was the $\operatorname{PpdD}{ }^{\text {E5A }}$ variant, whose ability to form dimers was indistinguishable from wild type (Figure 5B). While fully assembly-defective in T2SS, PpdD ${ }^{\text {E5A }}$ was still assembled in the cognate T4PS, albeit less efficiently than native PpdD. Several other variants, including PpdD ${ }^{\text {R74D }}$ and $\mathrm{PpdD}^{\text {R16D }}$, produced pili with T4PS but not with T2SS, indicating that assembly via the cognate system was more robust and less sensitive to mutations.

In addition to their effect on docking to the pilus or dimerization of pilins in the membrane, PpdD residue substitutions might differentially affect its interactions with specific assembly factors in the two systems. Heterologous assembly of PpdD via the T2SS is likely a result of its ability to interact with several T2SS components, including the assembly
protein PulM (Luna Rico et al., 2019). The PulM equivalent HofN is the major PpdD interacting partner in the EHEC T4PS (Luna Rico et al., 2019). To test this possibility, we examined the effect of charged residue substitutions in PpdD on its interactions with HofN and PuIM in the BACTH assay (Karimova et al., 1998). Although PpdD ${ }^{\text {E5A }}$ retained the ability to interact with the assembly factor HofN, this interaction was significantly reduced compared to PpdD ${ }^{\text {WT }}$ (Figure 5C). The charge inversion R74D, which abolished piliation in the T2SS had a limited effect in T4PS; this differential effect apparently correlated with the ability of PpdD ${ }^{\text {R74D }}$ variant to interact with HofN, but not with PulM in the BACTH assay (Figure 5C). The assembly-defective PpdD ${ }^{\mathrm{D} 35 \mathrm{~K}}$ variant, which interacted very poorly with $\mathrm{PpdD}^{\mathrm{WT}}$ (Figure 5B) was also affected for interaction with the assembly factors HofN and PulM. Another assembly-defective variant PpdD ${ }^{D 135 \mathrm{~K}}$ showed reduced interaction with HofN and PulM, while retaining the ability to interact with $\mathrm{PpdD}^{\mathrm{WT}}$ (Figure 5B,C). Together, these data highlight an important role of electrostatic contacts in interactions with other protomers and with the inner membrane assembly factors.

Dynamic behavior of different T4aP

We used normal mode analysis to obtain information on the dynamic behavior of EHEC, N. meningitidis $(\mathrm{Nm}), N$. gonorrhoeae (Ng) and P. aeruginosa strain PAK T4aP. For each T4aP structure, the first 3 non-trivial modes reveal similar dynamic behavior. Modes 1 and 2 correspond to the bending of the filaments in two orthogonal directions, while movements along mode 3 represent twisting of the filament around the helical axis (Figure 6). For each of the 3 modes, the EHEC T4P structure displays the largest mean square fluctuations of the pilin head per subunit, while Nm, Ng and PAK T4P display similar behaviors of lower fluctuations (Figure 6). As expected, the largest fluctuations are observed at the extremities of the filaments, and in the central region for the bending modes. In the twisting mode (mode 3), the fluctuation pattern along the pilus axis oscillates, with a periodicity of 3 subunits correlating with the left-handed 3 -start helix present in all T4aP structures. This observation may indicate the importance of the $P-P_{+3}$ interface in the
plasticity of T4aP filaments. Interestingly, the EHEC T4P structure displays a significantly smaller $\mathrm{P}_{-\mathrm{P}+3}$ interface compared to Nm, Ng and PAK (Figure S 5).

Discussion

The fold of the periplasmic domain of EHEC PpdD is very similar to known structures of T4a pilins with RMSD for $\mathrm{C} \alpha$ atoms ranging from 2.7 to $3.2 \AA$ (Figures 1 and S 8 and Table S2). Major structural differences are restricted to the characteristic hypervariable regions in T4a pilins: the α / β loop, the $\beta 3 / \beta 4$ loop and the D-region, encompassed by the two cysteines forming the C-terminal disulfide bridge (Figure S6). Variable regions confer different surface shape and charge properties to assembled pili, presumably adapted to their specific binding properties and biological function. The most notable variation of the D region reflects the selection pressure in the face of the immune system (Cehovin et al., 2010).

Among the pilins, the major pilin PilE from F. tularensis $\left(\right.$ Pil $\left._{F \mathrm{Ft}}\right)$ is the closest structural homologue to PpdDp despite sharing the lowest sequence identity (only 16% for the periplasmic domain) (Table S2), indicating the high sequence variability in the structurally conserved T4a pilins. The PilE $_{\text {Ft }}$ X-ray structure shows two molecules in the asymmetric unit (Hartung et al., 2011) with secondary structure features quite similar to that of PpdDp (Figure 1C). The most pronounced structural difference is an extra strand present in PilE ${ }_{F t}$ in the α / β loop involved in the crystallographic dimer interface (Hartung et al., 2011). When the two molecules of PilE $_{F t}$ in the crystallographic dimer are superimposed (Figure 1C), the slightly different conformation in the $\beta 3 / \beta 4$ loop between the two molecules suggests some flexibility. For PpdDp, the flexibility in this region is evidenced by the lower heteronuclear NOE values (Figure S2). It was shown recently that a short segment in the α / β loop of the N-terminally truncated PilA pilin of P. aeruginosa PA14 is highly dynamic in solution while essential for piliation (Nguyen et al., 2018). Interestingly, increased backbone dynamics of both the α / β and $\beta 3 / \beta 4$ loops was also observed in monomeric P. aeruginosa K122-4 pilin (Suh et al.,
2001). In PpdD, a charge inversion at position D106 within the dynamic $\beta 3 / \beta 4$ loop affected pilus assembly specifically in the T2SS, presumably by altering contacts with another PpdD protomer (Figure 5) or with an assembly factor.

Flexible regions might be involved in overall pilus dynamics and in the switching between assembly and retraction modes, required for twitching motility (Clausen et al., 2009). Identifying all interacting partners of the dynamic loops may shed light on the fine tuning of these modes, which are driven by two strong and antagonistic ATPase motors at the base of the system (McCallum et al., 2017). The IM assembly factors PilN and PilO likely participate in this modulation, although their precise role and mechanism remain unclear (Leighton et al., 2015).

So far, detailed cryo-EM reconstructions of bacterial T4aP have been achieved for N. meningitidis (Kolappan et al., 2016), N. gonorrhoeae and P. aeruginosa (Wang et al., 2017). In all cases, pilin subunits show a similar axial rise of approximately $10 \AA$, whereas the twist angle is more variable and reflects specific packing of pilin globular domains. The new cryoEM reconstruction of EHEC pili shows very similar subunit organization and helical parameters to that of other T4aP (Figure 7). As observed for the other T4aP and the related T2SS pseudopilus structures recently solved, the $\alpha 1$ helix of PpdD is interrupted by a melted and extended region. However, this extended region is longer in PpdD, going from G11 to P22, whereas in Ng , Nm and PAK pilins and in K. oxytoca pseudopilin, it starts at G 14 , a residue which is not conserved in PpdD. We note that the interruption of the $\alpha 1$ helix correlates well with the T4a pilin-specific sequence-based secondary structure predictions (Figure S7). This extended region at the $\alpha 1$ helix seems to be a structural feature of T4aP. It has been proposed that the interruption of the helical part may have a role in the ability of T4P to extend under force, and relax back to a native state when the force is removed (Wang et al., 2017). This flexibility, while crucial for pili functions, is an impediment for their structure determination at high resolution. The long, extended region of PpdD can explain the limited resolution of the pilus structure. The enhanced flexibility of EHEC pilus towards bending and twisting from normal mode analysis also indicates the crucial role of the $P-P_{+3}$ interface in
pilus rigidity. In EHEC, this reduced interface mainly involves the extended region of the pilin stem, thus supporting its implication in plasticity of pili.

Interestingly, when mapped onto the PpdD pilus structure, the location of hypervariable pilin regions forms a triangular junction between neighboring pilins at the filament surface (Figure 4F,G). Their exposed residues can define the specificity of interactions with different partners.

Overall, our mutagenesis and functional analyses show that the majority of charged PpdD residues required for pilus assembly mapped onto the side of the protein facing the fiber core, consistent with their involvement in inter-protomer interactions in the polymerized fiber. In addition, we show that some of these residues affect binding to fiber assembly factors in the plasma membrane, suggesting their role in early assembly steps. Identifying and characterizing these steps in dynamic terms should shed new light on substrate specificity of fiber assembly systems. The complex network of electrostatic interactions that ensures quality control of pilus assembly and correct pilin docking to the assembly site requires further structure-function analysis. In the related Klebsiella T2SS, binding of the major pseudopilin PulG to PulM has been implicated in subunit targeting to the assembly machinery (Nivaskumar et al., 2016; Santos-Moreno et al., 2017). PpdD binding to PulM probably allows for its assembly via the T2SS, whereas the PulM equivalent HofN in the EHEC T4PS might play a similar role, as suggested by the results of BACTH-based interaction studies.

EHEC pili have been implicated in colonization of mammalian host epithelia specifically under starvation conditions and there is evidence for their synthesis in vivo (Xicohtencatl-Cortes et al., 2007). Antibodies against PpdD are produced in patients and they inhibit pro-inflammatory signaling in a dose-dependent manner (Ledesma et al., 2010). Therefore, targeting T4P is a possible therapeutic strategy for EHEC infections, which are life-threatening, and where antibiotic treatment is contraindicated.

In addition, the EHEC pili share common regulatory and structural features with the Vibrio T4aP that are involved in natural competence (Matthey and Blokesch, 2016). In a
recent elegant study, Ellison and colleagues showed that Vibrio T4aP capture DNA via their tip and promote its uptake to the periplasm through pilus retraction (Ellison et al., 2018). Removing several positively charged residues of two minor pilin subunits, presumably localized at the tip of the pilus, significantly affected DNA binding and transformation efficiency (Ellison et al., 2018). Although DNA binding has been attributed to major pilins in some bacteria like P. aeruginosa (van Schaik et al., 2005) or Neisseria spp. (Craig et al., 2006; Imhaus and Duménil, 2014), direct biochemical evidence supports the role of specialized minor pilin ComP in this binding in N. meningitidis (Cehovin et al., 2013). Consistent with this model, we did not observe any interaction of PpdDp with double stranded DNA by NMR. Moreover, the highly negatively charged surface of the EHEC pilus makes its direct interaction with DNA unlikely. PpdD is highly similar to another pilin involved in natural competence, the Acinetobacter baumanii PilA, whose recent structural analysis revealed similar features including two disulfide bridges and a highly negatively charged surface (Ronish et al., 2019). Surface charge affected the capacity of PilA to form bundles and lead to microcolony formation, presumably through electrostatic repulsion (Ronish et al., 2019). In comparison, PAK, Ng and Nm pili display more mixed surface electrostatics, with almost continuous positive (PAK) and negative (Ng) patches (Figure S8). These might favor pilus bundling, but also interactions with specific surfaces and substrates.

Specific nutritional or other signals so far unknown may activate DNA uptake in vivo, as suggested by the capacity of E. coli to take up exogenous DNA (Sinha and Redfield, 2012). Given the high conservation of PpdD and T 4 aP systems in enterobacteria, this capacity might be widespread among commensal strains, and among pathogens of the ESKAPE group like Klebsiella, Salmonella or Yersinia that represent a particular threat due to their antibiotic resistance. Further studies will be required to determine whether and how T4P in enterobacteria participate in DNA uptake and contribute to exchange of genetic material in the gut. Detailed structural information will be instrumental to gain a better
understanding of the mechanisms underlying these processes in vivo, and is crucial for drug and vaccine discovery.

Data availability

The PpdDp structure and NMR restraints have been deposited in the Protein Data Bank under the accession code 6GMS. The PpdD pilus structure and cryo-EM map are available from the Protein Data Bank (accession code 6GV9) and Electron Microscopy Data Bank (accession code EMD-0070), respectively.

Acknowledgments

This work was funded by the Institut Pasteur, the Centre National de la Recherche Scientifique (CNRS), the French Agence Nationale de la Recherche (ANR-14-CE09-0004 to O.F), the Fondation pour la Recherche Médicale (Equipe FRM 2017M.DEQ20170839114 to M.N), the European Union FP7-IDEAS-ERC 294809 (to M.N) and the NIH R35GM122510 (to E.H.E.). ALR was funded by the Pasteur Paris University (PPU) international PhD program. We are grateful to Muriel Delepierre and Daniel Ladant for support and interest in this work.

Author contributions

Conceived and designed the experiments: BB, ALR, MN, EHE, NIP and OF. Performed the experiments: BB, GCA, ALR, WZ, CJ, OF. Analyzed the data: GCA, ALR, BB, WZ, MN, EHE, NIP and OF. Wrote the manuscript: BB, ALR, WZ, MN, EHE, NIP and OF.

Declaration of interest

The authors declare no competing interests.

References

Aas, F.E., Winther-Larsen, H.C., Wolfgang, M., Frye, S., Lovold, C., Roos, N., van Putten, J.P., and Koomey, M. (2007). Substitutions in the N-terminal alpha helical spine of Neisseria
gonorrhoeae pilin affect Type IV pilus assembly, dynamics and associated functions. Mol Microbiol 63, 69-85.
Adams, P.D., Afonine, P.V., Bunkóczi, G., Chen, V.B., Davis, I.W., and Echols, N., et al. (2010). PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D, Biol Crystallogr, 66, 213-221.
Bakan, A., Dutta, A., Mao, W., Liu, Y., Chennubhotla, C., Lezon, T.R., and Bahar, I. (2014). Evol and ProDy for bridging protein sequence evolution and structural dynamics. Bioinformatics 30, 2681-2683.
Baker, N., Sept, D., Joseph, S., Holst, M., and McCammon, J. (2001). Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037-10041.
Bardiaux, B., Bernard, A., Rieping, W., Habeck, M., Malliavin, T.E., and Nilges, M. (2008).
Influence of different assignment conditions on the determination of symmetric homodimeric structures with ARIA. Proteins 75, 569-585.
Bartolome, B., Y. Jubete, E. Martinez \& F. de la Cruz. (1991). Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. Gene 102, 75-78.
Bernard, A., Vranken, W.F., Bardiaux, B., Nilges, M., and Malliavin, T.E. (2011). Bayesian estimation of NMR restraint potential and weight: a validation on a representative set of protein structures. Proteins 79, 1525-1537.
Berry, J.L., and Pelicic, V. (2015). Exceptionally widespread nanomachines composed of type IV pilins: the prokaryotic Swiss Army knives. FEMS Microbiol Rev 39, 134-154.
Brunger, A.T. (2007). Version 1.2 of the Crystallography and NMR system. Nat Protoc 2, 2728-2733.
Campos, M., Nilges, M., Cisneros, D.A., and Francetic, O. (2010). Detailed structural and assembly model of the type II secretion pilus from sparse data. Proc Natl Acad Sci U S A 107, 13081-13086.
Cehovin, A., Simpson, P.J., McDowell, M.A., Brown, D.R., Noschese, R., Pallett, M., Brady, J., Baldwin, G.S., Lea, S.M., Matthews, S.J., and Pelicic, V. (2013). Specific DNA recognition mediated by a type IV pilin. Proc Natl Acad Sci U S A 110, 3065-3070.
Cehovin, A., Winterbotham, M., Lucidarme, J., Borrow, R., Tang, C.M., Exley, R.M., and Pelicic, V. (2010). Sequence conservation of pilus subunits in Neisseria meningitidis. Vaccine 28, 4817-4826.
Cisneros, D.A., Pehau-Arnaudet, G., and Francetic, O. (2012). Heterologous assembly of type IV pili by a type II secretion system reveals the role of minor pilins in assembly initiation. Mol Microbiol 86, 805-818.
Clausen, M., Koomey, M., and Maier, B. (2009). Dynamics of type IV pili is controlled by switching between multiple states. Biophys J 96, 1169-1177.
Craig, L., Volkmann, N., Arvai, A.S., Pique, M.E., Yeager, M., Egelman, E.H., and Tainer, J.A. (2006). Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol Cell 23, 651-662.
Datsenko, K.A., and Wanner, B.L. (2000). One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci U S A 97, 6640-6645.
Dautin, N., G. Karimova, A. Ullmann and D. Ladant, (2000) Sensitive genetic screen for protease activity based on a cyclic AMP signaling cascade in Escherichia coli. J Bacteriol 182, 7060-7066.
Davis, I.W., Leaver-Fay, A., Chen, V.B., Block, J.N., Kapral, G.J., Wang, X., and al., e. (2007). MolProbity: all-atom contacts and structure validation for proteins and nucleic acids. Nucl. Acids Res. 35, W375-383.
de Amorim, G.C., Cisneros, D.A., Delepierre, M., Francetic, O., and Izadi-Pruneyre, N. (2014). ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$ resonance assignments of PpdD, a type IV pilin from enterohemorrhagic Escherichia coli. Biomol NMR Assign 8, 43-46.
Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J., and Bax, A. (1995). NMRPipe: a multidimensional spectral processing system based on UNIX pipes. J Biomol NMR 6, 277293.

Egelman, E.H. (2000). A robust algorithm for the reconstruction of helical filaments using single-particle methods. Ultramicroscopy 85, 225-234.
Ellison, C.K., Dalia, T.N., Ceballos, A.V., Wang, J.C., Biais, N., Brun, Y.V., and Dalia, A.B. (2018). Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in Vibrio cholerae. Nat Microbiol 3, 773-780.
Francetić, O., Pugsley A.P. (2005). Towards the identification of type II secretion signals in a nonacylated variant of pullulanase from Klebsiella oxytoca. J Bacteriol. 187, 7045-55.
Frank, J. et al. (1996). SPIDER and WEB: Processing and visualization of images in 3D electron microscopy and related fields. J Struct Biol 116, 190-199.
Hartung, S., Arvai, A.S., Wood, T., Kolappan, S., Shin, D.S., Craig, L., and Tainer, J.A. (2011). Ultrahigh resolution and full-length pilin structures with insights for filament assembly, pathogenic functions, and vaccine potential. J Biol Chem 286, 44254-44265.
Hubbard, S.J., and Thornton, J.M. (1993). NACCESS Computer Program. Department of Biochemistry and Molecular Biology, University College London.
Imhaus, A.-F., and Duménil, G. (2014). The number of Neisseria meningitidis type IV pili determines host cell interaction. EMBO J 33, 1767-1783.
Jones, D. (1999). Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292, 195-202.
Kamisetty, H., Ovchinnikov, S., and Baker, D. (2013). Assessing the utility of coevolutionbased residue-residue contact predictions in a sequence- and structure-rich era. Proc Natl Acad Sci U S A 110, 15674-15679.
Karimova, G., Pidoux, J., Ullmann, A., and Ladant, D. (1998). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95, 57525756.

Koczan, J.M., Lenneman, B.R., McGrath, M.J., and Sundin, G.W. (2011). Cell surface attachment structures contribute to biofilm formation and xylem colonization by Erwinia amylovora. Appl. Environ. Microbiol. 77, 7031-7039.
Kolappan, S., Coureuil, M., Yu, X., Nassif, X., Egelman, E.H., and Craig, L. (2016). Structure of the Neisseria meningitidis Type IV pilus. Nat Commun 7, 13015.
Krivov, G.G., Shapovalov, M.V., and Dunbrack, R.L. (2009). Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77, 778-795.
Laskowski, R.A., MacArthur, M.W., Moss, D.S., and Thornton, J.M. (1993). PROCHECK: a program to check the stereochemical quality of protein structures. J. Appl. Cryst. 26, 283291.

Ledesma, M.A., Ochoa, S.A., Cruz, A., Rocha-Ramírez, L.M., Mas-Oliva, J., Eslava, C.A., Girón, J.A., and Xicohtencatl-Cortes, J. (2010). The Hemorrhagic Coli Pilus (HCP) of Escherichia coli $\mathrm{O} 157: \mathrm{H} 7$ is an inducer of proinflammatory cytokine secretion in intestinal epithelial cells. PLoS One 5, e12127.
Leighton, T.L., Dayalani, N., Sampaleanu, L.M., Howell, P.L., and Burrows, L.L. (2015). Novel role for PilNO in type IV pilus retraction revealed by alignment subcomplex mutations. J. Bacteriol. 197, 2229-2238.

Linge, J.P., Williams, M.A., Spronk, C.A., Bonvin, A.M., and Nilges, M. (2003). Refinement of protein structures in explicit solvent. Proteins 50, 496-506.
Lopez-Castilla, A., Thomassin, J.-L., Bardiaux, B., Zheng, W., Nivaskumar, M., Yu, X., Nilges, M., Egelman, E.H., Izadi-Pruneyre, N., and Francetic, O. (2017). Structure of the calcium-dependent type 2 secretion pseudopilus. Nat Microbiol 2, 1686-1695.
Luna Rico, A Thomassin, J.-L. and Francetic, O. (2018). Analysis of bacterial pilus assembly by shearing and immunofluorescence microscopy. Methods Mol Biol 1764, 291-305.
Luna Rico, A., Zheng, W., Petiot, N., Egelman, E.H., and Francetic, O. (2019). Functional reconstitution of the type IVa assembly system from enterohemorrhagic Escherichia coli.
Mol. Microbiol. 2018 Dec 18. doi: 10.1111/mmi.14188. [Epub ahead of print]
Matthey, N., and Blokesch, M. (2016). The DNA-uptake process of naturally competent Vibrio cholerae. Trends Microbiol. 24, 98-110.
McCallum, M., Tammam, S., Khan, A., Burrows, L.L., and Howell, P.L. (2017). The molecular mechanism of the type IVa pilus motors. Nat Commun 8, 15091.

Mindell, J.A., and Grigorieff, N. (2003). Accurate determination of local defocus and specimen tilt in electron microscopy. J Struct Biol. 142, 334-347.
Monteiro, R., Ageorges, V., Rojas-Lopez, M., Schmidt, H., Weiss, A., Bertin, Y., Forano, E., Jubelin, G., Henderson, I.R., Livrelli, V., et al. (2016). A secretome view of colonisation factors in Shiga toxin-encoding Escherichia coli (STEC): from enterohaemorrhagic E. coli (EHEC) to related enteropathotypes. FEMS Microbiol Rev 363, pii: fnw179.
Nguyen, Y., Boulton, S., McNicholl, E.T., Akimoto, M., Harvey, H., Aidoo, F., Melacini, G., and Burrows, L.L. (2018). A highly dynamic loop of the Pseudomonas aeruginosa PA14 type IV pilin is essential for pilus assembly. ACS Infect Dis. 4, 936-943.
Nilges, M., Bernard, A., Bardiaux, B., Malliavin, T., Habeck, M., and Rieping, W. (2008). Accurate NMR structures through minimization of an extended hybrid energy. Structure 16, 1305-1312.
Nivaskumar, M., Bouvier, G., Campos, M., Nadeau, N., Yu, X., Egelman, E.H., Nilges, M., and Francetic, O. (2014). Distinct docking and stabilization steps of the pseudopilus conformational transition path suggest rotational assembly of type IV pilus-like fibers. Structure 22, 685-696.
Nivaskumar, M., Santos-Moreno, J., Malosse, C., Nadeau, N., Chamot-Rooke, J., Tran Van Nhieu, G., and Francetic, O. (2016). Pseudopilin residue E5 is essential for recruitment by the type 2 secretion system assembly platform. Mol Microbiol 101, 924-941.
Ottiger, M., Delaglio, F., and Bax, A. (1998). Measurement of J and dipolar couplings from simplified two-dimensional NMR spectra. J Magn Reson 131, 373-378.
Pelicic, V. (2008). Type IV pili: e pluribus unum? Mol Microbiol 68, 827-837.
Pettersen, E.F., Goddard, T.D., Huang, C.C., Couch, G.S., Greenblatt, D.M., Meng, E.C., and Ferrin, T.E. (2004). UCSF Chimera-a visualization system for exploratory research and analysis. J Comput Chem 25, 1605-1612.
Possot, O.M., Vignon, G., Bomchil, N., Ebel, F., Pugsley, A.P. (2000) Multiple interactions between pullulanase secreton components involved in stabilization and cytoplasmic membrane association of PulE. J Bacteriol. 182, 2142-52.
Remmert, M., Biegert, A., Hauser, A., and Söding, J. (2011). HHblits: lightning-fast iterative protein sequence searching by HMM-HMM alignment. Nat Methods 9, 173-175.
Rieping, W., Habeck, M., Bardiaux, B., Bernard, A., Malliavin, T.E., and Nilges, M. (2007). ARIA2: automated NOE assignment and data integration in NMR structure calculation. Bioinformatics 23, 381-382.
Ronish, L., Lillehoj, E., JK, F., Sundberg, E., and Piepenbrink, K. (2019). The structure of PilA from Acinetobacter baumannii AB5075 suggests a mechanism for functional specialization in Acinetobacter type IV pili J Biol Chem. 294, 218-230.
Sali, A., and Blundell, T.L. (1993). Comparative protein modelling by satisfaction of spatial restraints. J Mol Biol 234, 779-815.
Santos-Moreno, J., East, A., Bond, P.J., Tran Van Nhieu, G., and Francetic, O. (2017). Polar N-terminal residues conserved in type 2 secretion pseudopilins determine subunit targeting and membrane extraction during fibre assembly. J Mol Biol 429, 1746-1765.
Sauvonnet, N., Gounon, P., and Puglsey, A.P. (2000). PpdD Type IV Pilin of Escherichia coli K-12 Can Be Assembled into Pili in Pseudomonas aeruginosa. J Bacteriol 182, 848-854.
Schagger, H., and von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa . Anal Biochem 166, 368-379.
Schrödinger, L. (2015). The PyMOL Molecular Graphics System, Version 1.8.
Seemayer, S., Gruber, M., and Söding, J. (2014). CCMpred--fast and precise prediction of protein residue-residue contacts from correlated mutations. Bioinformatics 30, 3128-3130.
Shapovalov, M.V., and Dunbrack, R.L. (2011). A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure 19, 844-858.
Shen, Y., Delaglio, F., Cornilescu, G., and Bax, A. (2009). TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J Biomolec NMR 44, 213-223.

Sinha, S., Cameron, A.D.S., and R.J., R. (2009). Sxy induces a CRP-S regulon in Escherichia coli. J Bacteriol 191, 5180-5195.
Sinha, S., and Redfield, R.J. (2012). Natural DNA uptake by Escherichia coli. PLoS One 7, e35620.
Strom, M.S., and Lory, S. (1991). Amino acid substitutions in pilin of Pseudomonas aeruginosa. Effect on leader peptide cleavage, amino-terminal methylation, and pilus assembly. J Biol Chem 266, 1656-1664.
Suh, J.Y., Spyracopoulos, L., Keizer, D.W., Irvin, R.T., and Sykes, B.D. (2001). Backbone dynamics of receptor binding and antigenic regions of a Pseudomonas aeruginosa pilin monomer. Biochemistry 40, 3985-3995.
Tang, G. et al. (2007). EMAN2: an extensible image processing suite for electron microscopy. J Struct Biol 157, 38-46.
Toth-Petroczy, A., Palmedo, P., Ingraham, J., Hopf, T.A., Berger, B., Sander, C., and Marks, D.S. (2016). Structured states of disordered proteins from genomic sequences. Cell 167, 158-170. e112.
van Schaik, E.J., Giltner, C.L., Audette, G.F., Keizer, D.W., Bautista, D.L., Slupsky, C.M., Sykes, B.D., and Irvin, R.T. (2005). DNA binding: a novel function of Pseudomonas aeruginosa type IV pili. J. Bacteriol. 187, 1455-1464.
Toth-Petroczy, A., Palmedo, P., Ingraham, J., Hopf, T.A., Berger, B., Sander, C., and Marks, D.S. (2016). Structured states of disordered proteins from genomic sequences. Cell 167, 158-170.e112.
Vranken, W.F., Boucher, W., Stevens, T.J., Fogh, R.H., Pajon, A., Llinas, M., Ulrich, E.L., Markley, J.L., Ionides, J., and Laue, E.D. (2005). The CCPN data model for NMR spectroscopy: development of a software pipeline. Proteins 59, 687-696.
Wang, F., Coureuil, M., Osinski, T., Orlova, A., Altindal, T., Gesbert, G., Nassif, X., Egelman, E.H., and Craig, L. (2017). Cryoelectron Microscopy Reconstructions of the Pseudomonas aeruginosa and Neisseria gonorrhoeae Type IV Pili at Sub-nanometer Resolution. Structure. 25, 1423-1435.
Wishart, D.S., Bigam, C.G., Yao, J., Abildgaard, F., Dyson, H.J., Oldfield, E., Markley, J.L., and Sykes, B.D. (1995). ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{15} \mathrm{~N}$ chemical shift referencing in biomolecular NMR. J Biomol NMR 6, 135-140.
Wriggers, W. (2012). Conventions and workflows for using Situs. Acta Crystallogr D, Biol Crystallogr, 68(Pt 4), 344-351.
Xicohtencatl-Cortes, J., Monteiro-Neto, V., Ledesma, M.A., Jordan, D., Francetic, O., Kaper, J.B., Puente, J.L., and Girón, J.A. (2007). Intestinal adherence associated with type IV pili of enterohemorrhagic Escherichia coli O157:H7. J Clin. Investig. 117, 3519-3529.
Xicohtencatl-Cortes, J., Monteiro-Neto, V., Saldana, Z., Ledesma, M.A., Puente, J.L., and Giron, J.A. (2009). The type 4 pili of Enterohemorrhagic Escherichia coli O157:H7 are multipurpose Structures with pathogenic attributes. J Bacteriol 191, 411-421.
Yanisch-Perron, C., Vieira, J., and J., M. (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103-119. Zhang, Y., and Skolnick, J. (2005). TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33, 2302-2309.
Zweckstetter, M., and Bax, A. (2000). Prediction of Sterically Induced Alignment in a Dilute Liquid Crystalline Phase: Aid to Protein Structure Determination by NMR. J. Am. Chem. Soc. 122, 3791-3792.

Main figure titles and legends

Figure 1. Solution NMR structure of PpdDp.

(A) Backbone representation of the NMR ensemble of PpdDp colored by secondary structure elements. Helices $\alpha 1 \mathrm{C}, \alpha 2$ and $\alpha 3$ are shown in red and the $\beta 1-\beta 2-\beta 3-\beta 4$ sheet is shown in
cyan. Disulfide bridges are colored in yellow. (B) Ribbon representation of the lowest energy model of the PpdDp NMR ensemble. Characteristic hypervariable regions in T4a major pilins are colored in B, C and D as follows: α / β loop in green, $\beta 3 / \beta 4$ loop in cyan and D-region in magenta. Disulfide bridges C50-C60 and C118-C130 are shown as yellow sticks. (C) Superposition of the two molecules in the asymmetric unit of the Francisella tularensis PilE crystallographic structure (PDB 3SOJ). The conformationally variable $\beta 3 / \beta 4$ loop is highlighted by a dotted circle. (D) Sequence alignment of full-length PpdD from EHEC, PiIE pilins from F. tularensis (Ft) and Neisseria gonorrhoeae (Ng). Positions of helix breaking residues (G, P) in the N-terminal region are highlighted with red arrows. Cysteine residues involved in disulfide bridges are connected by blue lines. See also Figures S2, S6 and Table S2.

Figure 2. Cryo-EM reconstruction of the EHEC T4P filament at ~ 8 Å resolution and PpdD pilin structure fitting.

(A) Surface view of the EHEC T4P cryo-EM reconstruction at $\sim 4.2 \sigma$ contour level with the refined atomic model shown in ribbons (red). The diameter of the pilus is $\sim 60 \AA$. (B-C) Crosssections of the cryo-EM reconstruction at $\sim 5 \sigma(B)$ and $\sim 3.8 \sigma$ (C) contour levels and with a single PpdD subunit shown in ribbons. (D) Structure of a PpdD pilin subunit in the refined EHEC T4P structure colored by secondary structures and showing the extended region between the short $\alpha 1 \mathrm{~N}$ helix and the PpdDp domain. The positions of helix breaking between residues G11 and P22 are indicated. (E) Superposition of the lowest-energy conformer of monomeric PpdDp in solution (blue) with the refined pilus structure (red) shown in two orientations. See also Figure S3.

Figure 3. Structure of the EHEC PpdD pilus.

(A) Surface representation of the PpdD pilus structure with subunits $P, P_{+1}, P_{+2}, P_{+3}$ and P_{+4} (along the 1 -start helix) colored in orange, cyan, green, red and magenta, respectively. (B) Structure of PpdD pilus shown in ribbons where subunits are colored as in (A). The helical rise of the 1 -start helix is $11.2 \AA$ A. (C) Topological arrangement of neighboring subunits in the PpdD pilus structure, colored as in (A). The positions of charged residues involved in intersubunit interactions are labeled with colored outline. Residues making hydrophobic contacts between subunits P and P_{-3} / P_{-4} are labelled in black. (D) Close-up view of the interface between protomer P and P_{+1} showing the side-chains of D137/D138 and R74 making potential salt-bridges in the PpdD pilus structure. The cryo-EM reconstruction is shown as surface at $\sim 3.2 \sigma$ contour level. (E-F) Piliation assay with single charge inversion PpdD variants. Cells (top) and sheared pilus fractions (Pili, bottom) corresponding to $0.05 \mathrm{OD}_{600 \mathrm{~nm}}$
of bacteria were separated on SDS-PAGE and analyzed by immunoblot using anti-PpdD antibody. PpdD residue substitutions are indicated above each lane. Migration of PpdD is indicated on the right. See also Figure S4 and Table S1.

Figure 4. Mapping of residues essential for pilus assembly and hypervariable regions on the PpdD pilus surface.
(A) Surface electrostatic potential of the PpdD pilus (B) Surface representation of the PpdD pilus structure showing the distribution of charged residues essential for pilus assembly (positively charged in blue and negatively charged in red). Non-essential charged residues are colored in green. Surface of a single PpdD subunit is outlined in black. (C) Surface representation of a PpdD pilin subunit in the pilus colored as in (A). The surface-exposed side of the subunit (front view) displays predominantly residues permissive for charge inversions. The back view (180° rotation) shows the clustering of charged residues essential for pilus assembly on the buried face of the pilin. (D) Piliation assay with single charge inversion PpdD variants. Cells (top) and sheared pilus fractions (Pili, bottom) corresponding to $0.05 \mathrm{OD}_{600 \mathrm{~mm}}$ of bacteria were separated on SDS-PAGE and analyzed by immunoblot using anti-PpdD antibodies. (E) Quantification of the fraction of PpdD assembled into pili. The bars represent the mean values and error bars represent standard deviation from 4 independent experiments. Statistical analysis was performed by using ANOVA and KruskalWallis multiple comparison test to compare datasets from native PpdD and its variants: ns: non-significant difference; **: $p<0.01$; ****: $p<0.0001$. (F) Sphere representation of the PpdD pilus structure where the location of hypervariable regions is highlighted (α / β loop in green, $\beta 3 / \beta 4$ loop in cyan and D-region in magenta). A single PpdD subunit is outlined in black. (G) Schematic representation of the topological arrangement of neighboring subunits in the PpdD pilus structure. The location of hypervariable regions is indicated and colored as in (F). The size of the buried surface area in each inter-protomer interface is proportional to the width of the grey line.

Figure 5. Effect of charged residue substitutions on pilus assembly and on interactions with assembly factors in T2SS and T4PS. (A) Pilus assembly of PpdD ${ }^{W T}$ and indicated variants in the T2SS (top) and T4PS (bottom panel). Cells and sheared fractions (Pili) corresponding to $0.05 \mathrm{OD}_{600 \mathrm{~nm}}$ of bacteria were separated on SDS-PAGE and analyzed by immunoblot using anti-PpdD antibodies. (B) Bacterial two-hybrid (BACTH) analysis of interactions between PpdD ${ }^{W T}$ and PpdD mutant derivatives containing charge inversion at indicated positions. Beta-galactosidase activity of E. coli strains DHT1 (cyaA) co-transformed with plasmids pCHAP8501 encoding the T18-PpdD hybrid protein and their derivatives with
charge inversion mutations at indicated positions and pCHAP8504 encoding T25-PpdD ${ }^{W T}$ hybrid protein. (C) Interactions of PpdD and its variants with the assembly component HofN of the T4PS and PulM of the T2SS in the BACTH assay. Beta-galactosidase activity of E. coli DHT1 strain co-transformed with indicated plasmids encoding the T18- and T25- hybrid proteins and their mutant derivatives (listed in Table S3). BACTH analysis was performed as described previously (Nivaskumar et al., 2016). Bars represent mean values and error bars standard deviations from at least 5 independent clones. Comparison of mean values indicated for selected pairs was performed using ANOVA and Kruskal-Wallis multiple comparison test: **, $\mathrm{p}<0.01 ;{ }^{* * *}, \mathrm{p}<0.001 ;{ }^{* * * *}, \mathrm{p}<0.0001$.

Figure 6. Normal mode analysis of T4aP filament structures. Left: Average of the atomic mean square fluctuations per subunit (pilin head) along the pilus axis for the first 3 non-trivial slowest modes (A, mode 1; B, mode 2; C, mode 3) in the EHEC (orange), Nm (red), Ng (blue) and Pa PAK (green) T4aP structures. For each mode, the overall direction is represented by the black arrows surrounding the pilus structure. (D) Representations of the individual modes per atom (orange arrows) on the EHEC T4aP structure (top: top view, bottom: side view). See also Figure S5.

Figure 7: Comparison of T4a pili and T2SS pseudo-pilus structures.

From left to right, pilus structure of EHEC (present work), N. gonorrhoeae (Wang et al., 2017), P. aeruginosa (Wang et al., 2017), N. meningitidis (Kolappan et al., 2016) and K. oxytoca (Lopez-Castilla et al., 2017). Top row: Pilus organization with major pilin colored along the 1-start helix (subunits P in orange, P_{+1} in cyan, P_{+2} in green, P_{+3} in red and P_{+4} in magenta). Bottom row: Pilin structures in the pili. The positions of conserved Glycine residues (G11 for EHEC, G14 for others) and Proline 22 (P22) are labeled. See also Figures S7 and S8.

Table 1: PpdDp NMR structure statistics and restraints See also Figure S1.

Number of restraints
NOE Distance restraints
Intra-residue $(|i-j|=0) \quad 570$

Sequential ($|i-j|=1$) 293
Medium-range $(2 \leq|i-j|<5) \quad 363$
Long-range ($|i-j| \geq 5$) 294
Ambiguous 499
Total 2219
Dihedral angle restraints $(\varphi / \psi) \quad 216$ (108/108)
Hydrogen bonds restraints 30
RDC restraints (D^{NH}) 45

Restraints statistics ${ }^{\text {a }}$

RMS of distance violations
NOE restraints $\quad 0.15 \pm 0.05 \AA$

H -bonds restraints
RMS of dihedral violations
$0.22 \pm 0.04 \AA$
RMS of RDC violations $1.47 \pm 0.11^{\circ}$

Q-factor RDC
$1.67 \pm 0.16 \mathrm{~Hz}$
RMS from idealized covalent geometry

bonds	$0.003 \pm 0.001 \AA$
angles	$0.484 \pm 0.007^{\circ}$
impropers	$1.509 \pm 0.055^{\circ}$

Structural quality ${ }^{\text {a }}$
Ramachandran statistics ${ }^{b}$
Most favoured regions $\quad 86.1 \pm 1.7 \%$

Allowed regions
$12.9 \pm 1.6 \%$
Generously allowed regions $\quad 0.7 \pm 0.6 \%$
Disallowed regions $\quad 0.3 \pm 0.4 \%$
WHAT-IF Z-score ${ }^{\text {c }}$
Backbone conformation $\quad-0.17 \pm 0.40$
$2^{\text {nd }}$ generation packing quality $\quad-1.78 \pm 0.29$
Ramachandran plot appearance $\quad-2.46 \pm 0.28$
$\chi 1 / \chi 2$ rotamer normality -2.99 ± 0.54

Coordinates precision ${ }^{\text {d }}$

All backbone atoms (26-138) $\quad 1.51 \pm 0.35 \AA$
All heavy atoms (26-138) $\quad 1.93 \pm 0.25 \AA$
All backbone atoms (secondary structures) $\quad 0.55 \pm 0.27 \AA$
All heavy atoms (secondary structures) $\quad 1.06 \pm 0.13 \AA$
${ }^{\text {a }}$ Average values and standard deviations over the 20 conformers.
${ }^{\text {b }}$ Percentage of residues in the Ramachandran plot regions determined by PROCHECK (Laskowski et al., 1993).
c Z-scores values reported by WHAT-IF (Vriend, 1990).
${ }^{\text {d }}$ Average root mean square deviation (RMSD) over the 20 conformers' atomic coordinates with respect to the average structure.

STAR Methods

Bacterial strains and plasmids

Escherichia coli strain $\mathrm{DH} 5 \alpha\left(\mathrm{~F}^{\prime} \mathrm{lac}^{Q}\right.$, $/$ /acZM15 pro+) was used for DNA cloning purposes and strains PAP7460 (Δ (lac-argF)U169 araD139 relA1 rpsL150 1 malE444 malG501 [F' (lacl ${ }^{Q}$ slacZM15 pro+ Tn10)] and BW25113 [$\Delta(\operatorname{araD-araB)567,~\Delta lacZ4787(:~}: r r n B-3), \lambda^{-}, r p h-1$, $\Delta\left(\right.$ rhaDrhaB)568, hsdR514)] F' lacl ${ }^{Q}$ (Datsenko and Wanner, 2000) were used for functional assays. Strain PAP5171 (PAP7460 degP::Km ${ }^{R}$) was used as a host for pilus purification. Bacteria were cultured in LB or M9 0.5% glycerol plates supplemented with antibiotics as required: Ap (100 $\mu \mathrm{g} \cdot \mathrm{mL}^{-1}$), Cm (25 $\mu \mathrm{g} \cdot \mathrm{mL}^{-1}$) or $\mathrm{Km}\left(25 \mu \mathrm{~g} \cdot \mathrm{~mL}^{-1}\right)$. Maltose (0.4 \%) or isopropyl-thio- β-D galactoside (IPTG) was added to induce pul gene expression.

Purification of PpdDp

pCHAP6154 was transformed into E. coli BL21(DE3) star cells (Novagen). The transformants were grown at $37^{\circ} \mathrm{C}$ in minimal medium (M9) containing $0.1 \%{ }^{15} \mathrm{~N}$-ammonium chloride and $0.4 \%{ }^{13} \mathrm{C}$-glucose. Protein expression was induced with 1 mM IPTG (Isopropyl β-D -1thiogalactopyranoside) when the culture reached an absorbance of $0.7-0.9$ at 600 nm . After 3 h of induction at $30^{\circ} \mathrm{C}$, the cells were centrifuged and the cell pellet was resuspended in 50 mM Tris- HCl buffer, pH 8.0 and disrupted by sonication. The
clarified cell lysate was applied to HisTrap FF column (GE Healthcare Life Sciences) equilibrated with the same buffer containing 10 mM imidazole and 100 mM NaCl . Bound proteins were eluted with a linear $10-300 \mathrm{mM}$ imidazole gradient. The fractions containing PpdD were then applied to Sephacryl S-100 column (GE Healthcare Life Sciences) equilibrated with 50 mM phosphate buffer, pH $7.0,50 \mathrm{mM} \mathrm{NaCl}$. After the purification, the fractions containing PpdD were concentrated up to 0.9 mM and supplied with $12 \% \mathrm{D}_{2} \mathrm{O}$ for NMR experiments. The total protein yield was $14 \mathrm{mg} \mathrm{L}^{-1}$. The protein concentration was estimated from its absorbance at 280 nm assuming a calculated e280 of $15,720 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$. All
purification steps were performed at $4^{\circ} \mathrm{C}$ in the presence of the protease inhibitor cocktail (Roche).

Purification of pili

Bacteria of strain PAP5171 containing plasmid pCHAP8565 encoding PpdD and one of the two plasmids encoding the pilus assembly machinery, pCHAP8184 (for the T2SS) or pMS41 (for T4PS), were densely inoculated on LB Cm Ap IPTG plates and cultured at $30^{\circ} \mathrm{C}$ for 5 days. Bacteria were harvested in LB and pili were sheared by extensive vortexing and ten passages through a 26 -Gauge needle. Bacteria were pelleted for 10 min at 14000 g and the supernatant was further pelleted in the same conditions in $1.5-\mathrm{ml}$ eppendorf tubes. The collected cleared supernatant was subjected to ultracentrifugation for 1 hr in Ti60 Beckman rotor at 100000 g . Pellets were resuspended in 50 mM HEPES $\mathrm{pH} 7.2,50 \mathrm{mM} \mathrm{NaCl}$ and stored on ice.

Plasmid constructions

Plasmid pCHAP8656 contains ppdD gene, amplified from the genomic DNA of strain EDL933 using the high-fidelity Pwo DNA polymerase and placed under the control of lacZ promoter (Table S3). This plasmid, as well as the plasmid pCHAP8501 encoding the hybrid protein between the CyaA T18 fragment and PpdD, were used as templates for site-directed mutagenesis to create charged residue substitutions in PpdD listed in Table S3. For mutagenesis, five cycles of PCR amplification were performed in parallel with reverse and forward complementary oligonucleotides (custom-synthesized by Eurofins, listed in Table S4). The reaction mixtures were then combined and amplifications were continued for another 13 cycles (30 s at $96^{\circ} \mathrm{C}, 30 \mathrm{~s}$ at $50^{\circ} \mathrm{C}$ and 3 min at $72^{\circ} \mathrm{C}$). After Dpnl digestion, 10-20 $\mu \mathrm{L}$ of the reactions were introduced into ultra-competent $\mathrm{DH} 5 \alpha \mathrm{~F}^{\prime} / a c l^{Q}$ ultracompetent cells $^{\text {a }}$ and transformants were selected on LB Cm plates. The resulting plasmids were purified using the Qiagen miniprep kit and verified by DNA sequencing (GATC and Eurofins).

Piliation assays

The piliation assay was performed as described previously (Luna Rico et al., 2018). Bacteria of strain PAP7460 transformed with plasmid pCHAP8184 and either vector alone or pCHAP8565 derivatives carrying ppdD were grown 48 hours at $30^{\circ} \mathrm{C}$ on LB agar containing Ap, Cm and 0.4% maltose. Bacteria were harvested and normalized to $\mathrm{OD}_{600 \mathrm{~nm}}$ of 1 in LB. Pili were detached by a 1-min vortex treatment and bacteria were spun for 5 min at 16000 g . The bacterial pellet was resuspended in SDS sample buffer at $10 \mathrm{OD}_{600 \mathrm{~nm} .} \mathrm{mL}^{-1}$ and the supernatant was cleared from the remaining bacteria in a second 10-min centrifugation. The cleared supernatant was transferred to a new eppendorf tube and precipitated with 10% tri-chloro-acetic acid for 30 min on ice. Pellets were collected by $30-\mathrm{min}$ centrifugation at 16000 g, washed twice with acetone, air-dried and taken up in SDS sample buffer at a concentration of $10 \mathrm{OD}_{600 \mathrm{~nm}}$ equivalents per mL . Equivalent volumes of bacteria and pili fractions were analyzed by denaturing sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) with a Tris-Tricin buffer system (Schagger and von Jagow, 1987). Proteins were transferred to a nitrocellulose membrane (ECL Amersham) and probed with antisera generated against MalE-PpdD fusion protein described previously (Sauvonnet et al., 2000).

NMR experiments

NMR data were acquired at 298 K on a Varian spectrometer operating at a proton frequency of 600 MHz and equipped with a cryogenically cooled triple resonance ${ }^{1} \mathrm{H}\left\{{ }^{13} \mathrm{C} /{ }^{15} \mathrm{~N}\right\}$ PFG probe. Proton chemical shifts were referenced to 2,2-dimethyl-2-silapentane-5-sulfonate (DSS) as 0 ppm. ${ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$ chemical shifts were referenced indirectly to DSS (Wishart et al., 1995). The pulse sequences were from VnmrJ Biopack. NMR data were processed with NMRPipe/NMRDraw (Delaglio et al., 1995) and analyzed with the CcpNmr Analysis software package (Vranken et al., 2005).

Residual dipolar couplings (RDCs) were determined by measuring the difference in $J_{N H}$ splitting between in-phase/antiphase (IPAP) NMR experiments under isotropic and
anisotropic conditions (Ottiger et al., 1998). The protein sample for RDC determination was at 1 mM in 25 mM sodium phosphate, $\mathrm{pH} 7.5,50 \mathrm{mM} \mathrm{NaCl}, 12 \% \mathrm{D}_{2} \mathrm{O}$. For protein alignment in the anisotropic sample, $10 \mathrm{mg} / \mathrm{mL}$ of the bacteriophage Pf1 (ASLA Biotech) was added and the sample was incubated 1 hour in the magnetic field prior to acquisition.

The backbone ${ }^{15} \mathrm{~N}$ dynamics experiments were performed with a 1 mM sample in 50 mM sodium phosphate, $\mathrm{pH} 7.5,50 \mathrm{mM} \mathrm{NaCl}, 12 \% \mathrm{D}_{2} \mathrm{O} .{ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ NOE values were determined as the ratio between the intensities of corresponding peaks in the spectra recorded with and without pre-saturation of ${ }^{1} \mathrm{H}$.

NMR structure determination

The structure determination strategy consisted in several rounds of automated iterative NOESY assignment and structure calculation with the ARIA 2.3 (Rieping et al., 2007); (Bardiaux et al., 2008) and CNS software packages (Brunger, 2007). Backbone dihedral angles were predicted with TALOS+ (Shen et al., 2009), and predictions classified as "good" or "dynamic" were converted into φ and ψ dihedral angle restraints. In addition, $45 \mathrm{D}_{\mathrm{NH}}$ residual dipolar coupling (RDC) were introduced as restraints in the structure calculation. Axial and rhombic components of the alignment tensor were first estimated from an intermediate structure and further refined with the software PALES (Zweckstetter and Bax, 2000). A log-harmonic potential was employed (Nilges et al., 2008) during the cooling phase of the simulated annealing, for NOE derived and hydrogen bonds distances restraints. This potential was combined with an automated estimation of the optimal weighting of the distance restraints (Bernard et al., 2011; Nilges et al., 2008). For NOE restraints, the final average weight was $14.9 \mathrm{kcal} / \mathrm{mol}$, and $11.9 \mathrm{kcal} / \mathrm{mol}$ for hydrogen bonds restraints. The disulfide bonds that had been confirmed by cysteine $\mathrm{C} \beta$ chemical shifts as reported previously (de Amorim et al., 2014), were imposed in the structure calculation. In the final ARIA iteration, 100 conformers were calculated and the 20 lowest energy structures were refined in a shell of water molecules (Linge et al., 2003). Table 1 gives a summary of NMRderived restraints and statistics on the final ensemble of NMR structure.

Cryo-electron microscopy

Three microliters PpdD pili samples were applied to plasma-cleaned lacey carbon grids and vitrified using a Vitrobot Mark IV (FEI). The grids were imaged on a Titan Krios microscope operating at 300 kV equipped with a Falcon III camera with a sampling of $1.09 \AA \AA / \mathrm{px}$. Images were collected with a defocus range of $1.0 \mu \mathrm{~m}$ to $3.0 \mu \mathrm{~m}$. Motioncor2 was used for motion correcting all the images, followed by the CTFFIND3 program (Mindell and Grigorieff, 2003) for the defocus and astigmatism estimation. Long filament boxes were extracted from the cryo-EM images (after correction of phases and amplitudes through multiplying by the CTF) using the e2helixboxer program in EMAN2 (Tang, 2007). The SPIDER software package (Frank, 1996) was used for most other image processing. 384-px long overlapping boxes were cut from the long filament boxes (with a shift of 4% of the box size, which is ~ 1.5 times the axial rise), yielding 99,678 segments in total. A reference-based classification was used to sort the segments in terms of the axial rise and azimuthal rotation. After sorting, 25,669 segments from the dominant group, which accounted for $\sim 25 \%$ of the whole dataset, were processed by IHRSR (Egelman, 2000) to produce the final reconstruction.

Model building and refinement

We first generated a full-length model of PpdD by adding the alpha-helical stem (F1-Q25) to the PpdDp structure by using the available structure of the full-length gonococcal PilE (PDB 1AY2) as template with the Modeller program version 9v8 (Sali and Blundell, 1993). Next, the full-length PpdD model was docked as a rigid-body in the cryo-EM density map with Situs version 2.7 (Wriggers, 2012). However, only the region A23-N140 (corresponding to PpdDp plus Y24 and Q25) could be fitted inside the cryo-EM density. After symmetrization by making use of the helical symmetry parameters of the PpdD pilus cryoEM map, a theoretical density map was generated from the atomic coordinates of the fitted PpdD_{23-140} model. A difference map was created by subtracting the theoretical $\operatorname{PpdD}_{23-140}$ pilus map from the cryoEM density map. Next, we rigidly docked the modelled $\operatorname{PpdD}_{1-16}$ segment in the difference
map with Situs (Wriggers, 2012). An initial real-space refinement was performed with 14 copies of the docked $\operatorname{PpdD}_{1-16}$ and $\operatorname{PpdD}_{23-140}$ segments with PHENIX version 1.11.1 (Adams et al., 2010). A full-length model of PpdD was then constructed with Modeller (Sali and Blundell, 1993) by connecting the refined PpdD_{1-16} and PpdD_{23-140} segments by an extended linker (S17-P22). Finally, full-atom real-space refinement, including morphing, minimization and simulated-annealing, was performed with PHENIX (Adams et al., 2010) to improve model geometry and the correlation with the experimental cryo-EM map. The final model of PpdD pilus was validated with Molprobity version 4.1 (Davis et al., 2007). Refinement statistics are given in Table S5. Structure figures were generated with PyMOL (Schrödinger, 2015) and UCSF Chimera (Pettersen et al., 2004).

Analysis of residue co-evolution and secondary structure propensities

Long-range contact predictions from residue co-evolution were obtained with the Gremlin tool (Kamisetty et al., 2013). Using the EHEC PpdD sequence as query, we generated a Multiple Sequence Alignment of 1473 homologous sequences with HHblits (Remmert et al., 2011), for a final ratio of ~ 11 sequences per query position. Secondary structure propensities were derived from local residue co-evolutions predicted with CCMpred (Seemayer et al., 2014), following the strategy proposed recently by Toth-Petroczy et al. (Toth-Petroczy et al., 2016). Briefly, for each position in the query sequence, a propensity score for α helix or β strand (S_{α} or S_{β}) is calculated based on the average prediction score of short-range contacts ($\mathrm{S}_{\mathrm{i}, \mathrm{i}+1}$ to $\mathrm{S}_{\mathrm{i},+4}$ for helices and $\mathrm{S}_{\mathrm{i},+1}$ to $\mathrm{S}_{\mathrm{i},+2}$ for strands) involving the given position or its flanking residues (2 for helices and 1 for strands on both sides). Then, scores were normalized with regards to their correlation with $\mathrm{S}_{\mathrm{i}, \mathrm{i}+1}$ scores. The final scores were obtained by subtracting scores of non-specific contacts from scores specific to a particular secondary structure element, i.e. $\mathrm{S}_{\alpha} \simeq \mathrm{S}_{\mathrm{i}+4}+\mathrm{S}_{\mathrm{i}+3}-\mathrm{S}_{\mathrm{i}+2}-\mathrm{S}_{\mathrm{i}+1}$ and $\mathrm{S}_{\beta} \simeq \mathrm{S}_{\mathrm{i}+2-}-\mathrm{S}_{\mathrm{i}+1}$.

Normal modes were computed with Prody (Bakan et al., 2014) with an Anisotropic Network Model on C α atoms of T4P filament structures and a cutoff of $15 \AA$ for pairwise interactions in the elastic network. The different helical pitch values of the EHEC, Nm, Ng and PAK T4P filaments lead to structures with significantly variable length for a fixed number of pilin subunits, that may influence the outcome of the normal mode analysis. Consequently, filament structures of equivalent length were generated using different number of subunits (30 for Nm and Ng , 29 for PAK and 27 for EHEC), the respective helical symmetry and the pilin structure. The following PDB entries were used: 5 KUA for $\mathrm{Nm}, 5 \mathrm{VXX}$ for Ng and 5 VXY for PAK pili. For each of the first 3 non-trivial lowest frequency modes, the average of the atomic mean square displacements was calculated for each subunit, excluding the first 24 residues.

Supplemental tables and figures

Table S1; Related to Figure 3: Agreement of high confidence (Prob >0.7) predicted contacts from residue co-evolution with PpdD pilus model.

Table S2; Related to Figure 1: Sequence and structure similarity between EHEC PpdD and other T4a pilins

Table S3; Related to STAR Methods: Plasmids used in this study.
Table S4; Related to STAR Methods: Oligonucleotides used in this study.
Table S5; Related to STAR Methods: Refinement statistics of the PpdD pilus structure
Figure S1; Related to Table 1: NOE restraints of the PpdDp NMR structure.
Figure S2; Related to Figure 1: (A) ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ heteronuclear NOE of PpdDp in solution.
Figure S3; Related to Figure 2: (A, B) Large variability in terms of the helical symmetry of PpdD pili.

Figure S4; Related to Figure 3: EHEC PpdD pilus contact map and evolutionary contact predictions.

Figure S5; Related to Figure 6: Buried surface areas of inter-subunit interfaces in T4Pa structures.

Figure S6; Related to Figure 1: Structural comparison of major T4a pilins (periplasmic domains).

Figure S7; Related to Figure 7: Secondary structure elements in T4a pilins.
Figure S8; Related to Figure 7: Surface electrostatics potential of T4P pilus structure.

	70	80	9	100	110
EHEC Ppdd	D. . GGSNGIPSP				IN
Ft Pile	Q.. QTYDTPTGV	AT		DIIR	VGS
Ng Pile	HTSAGVASPPSD				REN

A

Pili

T4PS

Cells

Piil
B

C

D

mode 1

mode 2

mode 3

TABLE FOR AUTHOR TO COMPLETE

Please upload the completed table as a separate document. Please do not add subheadings to the Key Resources Table. If you wish to make an entry that does not fall into one of the subheadings below, please contact your handling editor. (NOTE: For authors publishing in Current Biology, please note that references within the KRT should be in numbered style, rather than Harvard.)

KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Antibodies		
Anti-MalE-PpdD rabbit polyclonal antibodies	(Sauvonnet et al. 2000)	N/A
ECL ${ }^{\text {TM }}$ anti-rabbit IgG linked to horse radish peroxidase from donkey	Amersham	Cat\# NA934V
Bacterial Strains		
Escherichia coli DH5 $\mathrm{F}^{\prime} / \mathrm{lac} /{ }^{Q}$	Laboratory collection	N/A
Escherichia coli BW25113 F'lac/Q	(Datsenko and Wanner, 2000)	N/A
Escherichia coli BL21(DE3) Star	Novagen	Cat\# 69450
Escherichia coli PAP7460	(Possot et al., 2000)	N/A
Escherichia coli DHT1	(Dautin et al., 2000)	N/A
Escherichia coli PAP5171	(Francetic and Pugsley, 2005)	N/A
Biological Samples		
Sheared pilus fraction from strain PAP5171 carrying plasmids pCHAP8565 and pCHAP8184	This study	N/A
Sheared pilus fraction from strain PAP5171 carrying plasmids pCHAP8565 and pMS41	This study	N/A
Chemicals, Peptides, and Recombinant Proteins		
DNA polymerase Pwo	Roche	Cat\#11644947001
T4 DNA ligase	New England Biolabs	Cat\# M0202
PpdD(25-140)Thr-His6 purified protein	(de Amorim et al, 2014)	N/A
Q5 High Fidelity Polymerase	New England Biolabs	Cat\# M0491
Kpnl-HF restriction enzyme	New England Biolabs	Cat\# R3142L
EcoRI-HF restriction enzyme	New England Biolabs	Cat\# R3010L
Complete protease inhibitor	Roche	Cat\#11836153001
Bacteriophage Pf1	ASLA biotech	Cat\# P-50-P
$\mathrm{D}_{2} \mathrm{O}$	Eurisotop	Cat\# D214F
Critical Commercial Assays		
Qiaprep Spin plasmid purification kit	Qiagen	Cat\#: 27104
Qiaquick PCR purification kit	Qiagen	Cat\#: 28104
Pierce ${ }^{\circledR}$ ECL 2 Western Blotting Substrate	Fisher Scientific	Cat\# : 993PT
Deposited Data		
NMR resonance assignments	(de Amorim et al., 2014)	BMRB: 18823
NMR structure ensemble of truncated PpdD pilin of EHEC	This paper	PDB: 6GMS
Cryo-EM reconstruction of the EHEC type IV pilus	This paper	EMDB-0070
Atomic model of the EHEC type IV pilus	This paper	PDB: 6GV9

Oligonucleotides		
See Table S4 for list of primers used in this study	N/A	NA/
Recombinant DNA		
See Table S3 for list of plasmids used in this study	N/A	N/A
Software and Algorithms		
PRISM		
Image J		
VnmrJ Biopack	Agilent Technologies, Inc.	N/A
NMRPipe/NMRDraw	(Delaglio et al., 1995)	https://spin.niddk.nih .gov/NMRPipe/
CcpNmr Analysis 2.4	(Vranken et al., 2005)	https://www.ccpn.ac. uk/
ARIA 2.3	(Rieping et al., 2007)	http://aria.pasteur.fr
CNS 1.2	(Brunger, 2007)	http://cns-online.org
TALOS+	(Shen et al., 2009)	https://spin.niddk.nih gov/NMRPipe/talos/
PALES	(Zweckstetter and Bax, 2000)	https://spin.niddk.nih gov/bax/software/P ALES/
CTFFIND3	(Mindell and Grigorieff, 2003)	http://grigoriefflab.jan elia.org/ctf
EMAN2	(Tang, 2007)	https://blake.bcm.ed u/emanwiki/EMAN2
SPIDER	(Frank, 1996)	https://spider.wadsw orth.org/
IHRSR	(Egelman, 2000)	https://cryoem.ucsd. edu/wikis/software/st art.php?id=ihrsr
Modeller 9v8	$\begin{aligned} & \text { (Sali and Blundell, } \\ & \text { 1993) } \end{aligned}$	https://salilab.org/mo deller/
PHENIX 1.11	(Adams et al., 2010)	https://www.phenixonline.org/
Situs 2.7	(Wriggers, 2012)	https://situs.biomachi na.org/
Molprobity 4	(Davis et al., 2007)	http://molprobity.bioc hem.duke.edu/
Pymol 2	(Schrödinger, 2015)	https://pymol.org/
UCSF Chimera	(Pettersen et al., 2004)	https://www.cgl.ucsf. edu/chimera/
WHAT-IF	(Vriend, 1990)	https://swift.cmbi.um cn.n//whatif/
Procheck	$\begin{aligned} & \text { (Laskowski et al., } \\ & \text { 1993) } \end{aligned}$	https://www.ebi.ac.u k/thorntonsrv/software/PROCH ECK/
Gremlin	(Kamisetty et al., 2013)	http://gremlin.bakerla b.org/
CCMpred	(Seemayer et al., 2014)	https://github.com/so edinglab/CCMpred
Prody	(Bakan et al., 2014)	http://prody.csb.pitt.e du/

Structure and assembly of the Enterohemorrhagic Escherichia coli type 4 pilus

Benjamin Bardiaux ${ }^{1,4}$, Gisele Cardoso de Amorim ${ }^{2,4,6}$, Areli Luna Rico ${ }^{1,3,4}$, Weili Zheng ${ }^{5}$, Ingrid Guilvout ${ }^{3}$, Camille Jollivet ${ }^{3}$, Michael Nilges ${ }^{1}$, Edward H Egelman ${ }^{5}$, Nadia IzadiPruneyre ${ }^{1,2^{*}}$ and Olivera Francetic ${ }^{3^{*}}$
${ }^{1}$ Structural Bioinformatics Unit, Department of Structural Biology and Chemistry, C3BI, Institut Pasteur; CNRS UMR3528; CNRS USR3756; Paris, France,
${ }^{2}$ NMR of Biomolecules Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France
${ }^{3}$ Biochemistry of Macromolecular Interactions Unit, Department of Structural Biology and Chemistry, Institut Pasteur, CNRS UMR3528, Paris, France.
${ }^{5}$ Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA22908, USA
${ }^{4}$ Equal contribution
${ }^{6}$ Present address: Núcleo Multidisciplinar de Pesquisa em Biologia - NUMPEX-BIO, Universidade Federal do Rio de Janeiro, Estrada de Xerém, RJ, Brazil.
${ }^{4}$ Equal contribution
*corresponding authors: nadia.izadi@pasteur.fr, olivera.francetic@pasteur.fr

Supplementary Information:

Supplementary Tables 1-5.
Supplementary Figures 1-8.
Supplementary references.

Table S1; Related to Figure 3: Agreement of high confidence predicted contacts from residue co-evolution with PpdD pilus model. The accuracy (number of contacts with Prob > 0.7 consistent with the model/total number of contacts) is reported for increasing distance thresholds and for different rotameric states of the PpdD pilus model. A contact is considered as consistent with the model if the shortest distance between any non-hydrogen atoms of the two involved residues is smaller than the threshold. Optimized side-chain rotamers were built with SCWRL4.0 (Krivov et al., 2009). Alternatively, the at-most 10 best (most frequent) rotameric states from the Dunbrack library (Shapovalov and Dunbrack, 2011) were considered simultaneously to measure inter-residue distances in the PpdD pilus model.

Distance threshold (\mathbf{A})	PpdD pilus model (PDB 6GV9)	PpdD pilus model + optimized side-chain rotamers	PpdD pilus model + 10 best side-chain rotamers
5	46.8%	47.5%	60.3%
8	79.4%	79.4%	83.0%
10	88.7%	89.4%	90.1%
12	91.5%	92.9%	94.3%

Table S2; Related to Figure 1: Sequence and structure similarity between EHEC PpdD and other T4a pilins

Pilin*	PDB id	\% identity (full-length)	\% identity (from Pro 22)	RMSD (̊) $^{\boldsymbol{\#}}$
Ft PilE	3SOJ	25	16	2.7
Pa K122-4 PilA	1QVE	31	23	2.8
Pa PAK PilA	10QW	30	22	2.8
Dn FimA	3 3OK	28	20	3.0
Pa 110594 PilA	3JYZ	26	18	3.1
Ab PilA	5IHJ	30	20	3.1
Nm PilE	5JW8	32	26	3.2
Ng PilE	1AY2	32	26	3.2

* Ft: Francisella tularensis; PaK122-4: Pseudomonas aeruginosa strain K122-4; PAK:

Pseudomonas aeruginosa strain PAK; Dn: Dichelobacter nodosus; Pa110594: Pseudomonas aeruginosa strain Pa110594; Ab: Acinetobacter baumannii; Nm: Neisseria meningitidis; Ng: Neisseria gonorrhoeae.
\# Computed with TM-align (Zhang and Skolnick, 2005).

Table S3; Related to STAR Methods: Plasmids used in this study.

Plasmid name	Ori/resistance ${ }^{1}$	Relevant markers	Source/reference
pCHAP8184	ColE1/Ap ${ }^{\text {R }}$	pulS, pulAB pulCDEFHIJKLMNO	(Campos et al., 2010)
pSU18	p15A/Cm ${ }^{\text {R }}$	placZ-lacZ α	$\begin{aligned} & \begin{array}{l} \text { (Bartolome et al., } \\ \text { 1991) } \end{array} \end{aligned}$
pUC18	ColE1/Ap ${ }^{\text {R }}$	placZ-lacZ α	(Yanisch-Perron et al., 1985)
pCHAP6154	ColE1/Ap ${ }^{\text {R }}$	pT7-pelBsp-ppdD(25-140)Thr His ${ }_{6}$	(de Amorim et al., 2014)
pCHAP8565	p15A/Cm ${ }^{\text {R }}$	ppdD EHEC	(Luna Rico et al., 2019)
pCHAP6263	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {E5A }}$	This study
pCHAP6250	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {D35R }}$	This study
pCHAP6254	$\mathrm{p} 15 \mathrm{~A} / \mathrm{Cm}^{\text {R }}$	ppdD ${ }^{\text {R29E }}$	This study
pCHAP6256	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {E131K }}$	This study
pCHAP6257	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {E92K }}$	This study
pCHAP6258	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {K83E }}$	This study
pCHAP6260	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {R74D }}$	This study
pCHAP6261	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {K30E }}$	This study
pCHAP6264	$\mathrm{p} 15 \mathrm{~A} / \mathrm{Cm}^{\text {R }}$	ppdD ${ }^{\text {R44D }}$	This study
pCHAP6265	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {D106R }}$	This study
pCHAP6266	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {R116D }}$	This study
pCHAP6267	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {D132R }}$	This study
pCHAP6268	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {E48K}}$	This study
pCHAP6269	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {E53K }}$	This study
pCHAP6317	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {D58K }}$	This study
pCHAP6271	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {D61R }}$	This study
pCHAP6272	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {D123R }}$	This study
pCHAP6316	$\mathrm{p} 15 \mathrm{~A} / \mathrm{Cm}^{\text {R }}$	ppdD ${ }^{\text {D35K }}$	This study
pCHAP6320	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {K30D }}$	This study
pCHAP6333	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {R74E }}$	This study
pCHAP6319	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {D106K }}$	This study
pCHAP6321	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {R29D }}$	This study
pCHAP6253	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {D137K }}$	This study
pCHAP6262	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {D138R }}$	This study
pCHAP6280	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {D137K }}$ D138R	This study
pCHAP6259	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {R135E }}$	This study
pCHAP6327	$\mathrm{p} 15 \mathrm{~A} / \mathrm{Cm}^{\text {R }}$	ppdD ${ }^{\text {D35K R R74D }}$	This study
pCHAP6337	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {D35K R } 74 E}$	This study
pCHAP8968	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {D35R R74D }}$	This study
pCHAP8969	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {D137R D } 1386}$ R74D	This study
pCHAP8970	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {D137R D } 1386 \mathrm{R} 74 E}$	This study
pCHAP6314	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {E92R }}$	This study
pCHAP6257	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {E92K }}$	This study
pCHAP6259	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {R135E }}$	This study
pCHAP6322	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {R135D }}$	This study
pCHAP6277	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {E92K R } 135 E}$	This study
pCHAP6285	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {E92K R135D }}$	This study
pCHAP8956	p15A/Cm ${ }^{\text {R }}$	ppdD ${ }^{\text {D35K R135E }}$	This study
pUT18c	ColE1/Ap ${ }^{\text {R }}$	placUV5-cyaA T18 fragment in pUC18	$\begin{aligned} & \text { (Karimova et al., } \\ & \text { 1998) } \end{aligned}$
pKT25	p15A/Km ${ }^{\text {R }}$	placUV5-cyaA T25 fragment in pSU38	$\begin{aligned} & \text { (Karimova et al., } \\ & \text { 1998) } \end{aligned}$
pCHAP8501	ColE1/Ap ${ }^{\text {R }}$	T18-PpdD	$\begin{aligned} & \text { (Luna Rico et al., } \\ & \text { 2019) } \end{aligned}$
pCHAP8504	p15A/Km ${ }^{\text {R }}$	T25-PpdD	(Luna Rico et al., 2019)

pCHAP8973	ColE1/Ap ${ }^{\text {R }}$	T18-PpdD ${ }^{\text {E5A }}$	This study
pCHAP8768	ColE1/Ap ${ }^{\text {R }}$	T18-PpdD ${ }^{\text {R29E }}$	This study
pCHAP8770	ColE1/Ap ${ }^{R}$	T18-PpdD ${ }^{\text {K30E }}$	This study
pCHAP8772	ColE1/Ap ${ }^{R}$	T18-PpdD ${ }^{\text {D35K }}$	This study
pCHAP8774	ColE1/Ap ${ }^{\text {R }}$	T18-PpdD ${ }^{\text {R44D }}$	This study
pCHAP8776	ColE1/Ap ${ }^{R}$	T18-PpdD ${ }^{\text {E48K }}$	This study
pCHAP8916	ColE1/Ap ${ }^{R}$	T18-PpdD ${ }^{\text {D58K }}$	This study
pCHAP8780	ColE1/Ap ${ }^{R}$	T18-PpdD ${ }^{\text {D61K }}$	This study
pCHAP8782	ColE1/Ap ${ }^{R}$	T18-PpdD ${ }^{\text {R74D }}$	This study
pCHAP8784	ColE1/Ap ${ }^{R}$	T18-PpdD ${ }^{\text {116D }}$	This study
pCHAP8786	ColE1/Ap ${ }^{\text {R }}$	T18-PpdD ${ }^{\text {135E }}$	This study
pCHAP8920	ColE1/Ap ${ }^{R}$	T18-PpdD ${ }^{\text {K83E }}$	This study
pCHAP8922	ColE1/Ap ${ }^{\text {R }}$	T18-PpdD ${ }^{\text {E92K }}$	This study
pCHAP8924	ColE1/Ap ${ }^{\text {R }}$	T18-PpdD ${ }^{\text {D106R }}$	This study
pCHAP8926	ColE1/Ap ${ }^{R}$	T18-PpdD ${ }^{\text {D123R }}$	This study
pCHAP8928	ColE1/Ap ${ }^{\text {R }}$	T18-PpdD ${ }^{\text {E131R }}$	This study
pCHAP8930	ColE1/Ap ${ }^{\text {R }}$	T18-PpdD ${ }^{\text {D132R }}$	This study
pCHAP8936	ColE1/Ap ${ }^{\text {R }}$	T18-PpdD ${ }^{\text {D138R }}$	This study
pCHAP8155	p15A/Km ${ }^{\text {R }}$	T25-PulM	(Nivaskumar et al., 2016)
pCHAP8910	p15A/Km ${ }^{\text {R }}$	T25-HofN	(Luna 2019) Rico et al.,
pMS41	ColE1/Ap ${ }^{\text {R }}$	EHEC T4PS ($\Delta p p d D$,hofBC, hofMNOPQ,ppdABygdBppdC gspO)	$\begin{aligned} & \text { (Luna } \\ & \text { 2019) } \end{aligned} \text { Rico et al., }$

${ }^{1} \mathrm{Ap}^{\mathrm{R}}$, ampicillin-resistance; Cm^{R}, chloramphenicol-resistance, Km^{R}, kanamycin-resistance).

Table S4; Related to STAR Methods: Oligonucleotides used in this study.

Oligonucleotide name	Sequence (5'-3')
PpdD-SD-EcoRI	CTATTCGAATTCAAAGTAGCGCCAACCAAATC
PpdD-Hind-3	cacAAGCTTGCATGCCTGCAGGTCGACTCTAG
HofC EcoRI 5	CACGAATTCGAAGAGTTAATCCGCGTATTG
HofC Hind 3	GACTGCAAGCTTCGTTATCCCATCCCACTCATCG
HofM Pst 5	CGCCTGCAGGGTAGTATAAAGGCAAGC
HofQ Sph 3	CACGCATGCCACGTTCAGCGTAAAAAC
PpdD 5 Kpn	GCAGGTACCTATGACACTTATCGAACTGATGGTG
PpdD 3 Eco	CACGAATTCCATTTCAGTGAGCTGTGGAAT
PpdDE5A 5 Kpn	GCAGGTACCTATGACACTTATCGcACTGATGGTG
PpdD D35R 5	CAAAGCCGCACTCACCcgCATGCTACAAAC
PpdD D35R 3	GTTTGTAGCATGcgGGTGAGTGCGGCTTTG
PpdD E5A 5	GTTTTACACTTATCGcACTGATGGTGG
PpdD E5A 3	CCACCATCAGTgCGATAAGTGTAAAAC
PpdD R29E 5	CAAAACTACCTGgaaAAAGCCGCACTC
PpdD R29E 3	GAGTGCGGCTTTttcCAGGTAGTTTTG
PpdD R29D 5	TATCAAAACTACCTGgaCAAAGCCGCACTCACC
PpdD R29D 3	GGTGAGTGCGGCTTTGtcCAGGTAGTTTTGATA
PpdD K30E 5	ACTACCTGCGCgAAGCCGCACTC
PpdD K30E 3	GAGTGCGGCTTcGCGCAGGTAGT
PpdD K30D 5	CAAAACTACCTGCGCgAtGCCGCACTCACCGAC
PpdD K30D 3	GTCGGTGAGTGCGGCaTcGCGCAGGTAGTTTTG
PpdD R44D 5	CCTTTGTGCCTTACgaTACCGCCGTAGAG
PpdD R44D 3	CTCTACGGCGGTAtcGTAAGGCACAAAGG
PpdD K30D 5	CAAAACTACCTGCGCgAtGCCGCACTCACCGAC
PpdD K30D 3	GTCGGTGAGTGCGGCaTcGCGCAGGTAGTTTTG
PpdD D35K 5	AAAGCCGCACTCACCaAaATGCTACAAACCTTTG
PpdD D35K 3	CAAAGGTTTGTAGCATtTtGGTGAGTGCGGCTTT
PpdD R74D 5	CCTACCACCACCgaCTATGTTTCAGCC
PpdD R74D 3	GGCTGAAACATAGtcGGTGGTGGTAGG
PpdD R74E 5	CCCTCGCCTACCACCACCgaaTATGTTTCAGCCATGAGTG
PpdD R74E 3	CACTCATGGCTGAAACATAttcGGTGGTGGTAGGCGAGGG
PpdD D106R 5	CATGACGCCAGGTTGGcgTAACGCAAACGGCGTCAC
PpdD D106R 3	GTGACGCCGTTTGCGTTAcgCCAACCTGGCGTCATG
PpdD D106K 5	ATGACGCCAGGTTGGaAaAACGCAAACGGCGTC
PpdD D106K 3	GACGCCGTTTGCGTTtTtCCAACCTGGCGTCAT
PpdD D137K 5	GTCTTCCGCTTTaAaGACGCCAACTAAG
PpdD D137K 3	CTTAGTTGGCGTCtTtAAAGCGGAAGAC
PpdD D138R 5	GTCTTCCGCTTTGATcgCGCCAACTAAGG
PpdD D138R 3	CCTTAGTTGGCGcgATCAAAGCGGAAGAC
PpdD D137K D138R 5	AAGATGTCTTCCGCTTTaAacgcGCCAACTAAGGAGC
PpdD D137K D138R 3	GCTCCTTAGTTGGCgcgtTtAAAGCGGAAGACATCTT
PpdD E131K 5	CAGCAAGCCTGCaAAGATGTCTTCC
PpdD E131K 3	GGAAGACATCTTtGCAGGCTTGCTG
PpdD E92K 5	CTGACCGGGCAAaAgAGTCTCAATGG
PpdD E92K 3	CCATTGAGACTcTtTTGCCCGGTCAG
PpdD K83E 5	CATGAGTGTGGCAgAGGGCGTGGTG
PpdD K83E 3	CACCACGCCCTcTGCCACACTCATG

PpdD D132R 5	GCAAGCCTGCGAACGTGTCTTCCGCTTTGATGACG
PpdD D132R 3	CGTCATCAAAGCGGAAGACACGTTCGCAGGCTTGC
PpdD D123R 5	GCAATATTCAAAGTCGCAGCGCATTGCAGC
PpdD D123R 3	GCTGCAATGCGCTGCGACTTTGAATATTGC
PpdD D61R 5	GGATTAGATACCTGCCGCGGTGGCAGCAATGG
PpdD D61R 3	CCATTGCTGCCACCGCGGCAGGTATCTAATCC
PpdD R135E 5	GAAGATGTCTTCgaATTcGATGACGCCAAC
PpdD R135E 3	GTTGGCGTCATCgAATtcGAAGACATCTTC
PpdD E48K 5	CCTTACCGTACCGCCGTAAAGTTGTGCGCGCTGG
PpdD E48K 3	CCAGCGCGCACAACTTTACGGCGGTACGGTAAGG
PpdD E53K 5	GGTATCTAATCCACCATGTTTCAGCGCGCACAACTCTACG
PpdD E53K 3	GCCACCGTCGCAGGTtTtTAATCCACCATGTTC
PpdD D58K 5	GAACATGGTGGATTAaAaACCTGCGACGGTGGC
PpdD D58K 3	CCACCGTCGCAGGTACGTAATCCACCATGTTCC
PpdD R116D 5	CGTCACCGGCTGGGCGgaCAACTGCAATATTCAAAG
PpdD R116D 3	CTTTGAATATTGCAGTTGtcCGCCCAGCCGGTGACG
PpdD R44E E48K 5	CCTTACgaaACCGCCGTAaAGTTGTGCGCGCTGG
PpdD R44E E48K 3	CCAGCGCGCACAACTtTACGGCGGTttcGTAAGG
PpdD R44D E48R 5	GCCTTACgaTACCGCCGTAcgtTTGTGCGCGCTGGAACATG
PpdD R44D E48R 3	CATGTTCCAGCGCGCACAAacgTACGGCGGTAtcGTAAGGC

Table S5; Related to STAR Methods: Refinement statistics of the PpdD pilus structure

Deviation from ideal geometry	
RMS a for bond lengths	$0.02 \AA$
RMS for bond angles	2.40°
C β deviations	0%
Molprobity statistics	
Ramachandran favored	92.0%
Ramachandran allowed	6.5%
Ramachandran outliers	1.4%
Rotamer outliers	0%
Clashscore	28.7
Overall score	2.43

${ }^{a}$ RMS, root mean square

Figure S1; Related to Table 1: NOE restraints of the PpdDp NMR structure. (A) Map of inter-residue NOE restraints used to calculate the PpdDp structure. The color scale corresponds to the number of unique NOE restraints for a pair of residues. Secondary structures are shown in red (helix) and cyan (strands). (B) NOE restraints shown on the lowest energy conformer of the PpdDp NMR structure. Long range NOE restraints are shown with blue lines and other NOE restraints with yellow lines. (C) Hydrogen-bonds detected in the PpdDp structure stabilizing the α / β loop.

Figure S2; Related to Figure 1: Dynamics and flexibility of PpdDp in solution (A) ${ }^{1} \mathrm{H}-{ }^{15} \mathrm{~N}$ heteronuclear NOE of PpdDp in solution. Secondary structure elements are shown on top (helix in red, strand in blue). (B) Ensemble Root Mean Square Fluctuation (RMSF) of the NMR PpdDp bundle. (C) Number of NOE (|i-j|> 1) restraints per residue as assigned by ARIA. (D) Secondary structure (probabilities) predicted from chemical shifts using TALOS+ (red: helix, cyan: strand, grey: loop). (E) TALOS+ predicted order parameter S^{2}.

A

B

Symmetry	Twist	Rise
S1	94°	$8.8 \AA$
S2	96°	$8.8 \AA$
S3	98°	$8.8 \AA$
S4	94°	$10.8 \AA$
S5	96°	$10.8 \AA$
S6	98°	$10.8 \AA$
S7	94°	$12.8 \AA$
S8	96°	$12.8 \AA$
S9	98°	$12.8 \AA$

Figure S3; Related to Figure 2: Large variability in terms of the helical symmetry of PpdD pili. (A) Histogram showing the symmetry distribution of PpdD pili segments. Nine reconstructions were generated with symmetry parameters shown in (B). These volumes were used for classifying the PpdD pili segments into different groups using a multi-reference alignment. (C,D) Fourier Shell Correlation (FSC) curves for the PpdD pili reconstruction. (C) The FSC of two half-maps shows a resolution of $8 \AA$ at $F S C=0.143$. (D) The FSC curve for the refined PpdD pili model and the PpdD density map shows a resolution of $8.5 \AA$ at FSC=0.38 (= 0.143).

Figure S4; Related to Figure 3: EHEC PpdD pilus contact map and evolutionary contact predictions. Inter-residue contacts in PpdD pilus ($\mathrm{d}_{\mathrm{i}, \mathrm{j}}<8 \AA$) are shown in grey (intraprotomer) and pink (inter-protomer). High confidence evolutionary contact predictions from Gremlin (Kamisetty et al., 2013) are shown in green (consistent with PpdD pilus model with $\mathrm{d}_{\mathrm{i}, \mathrm{j}}<10 \AA$) and red (inconsistent).

Figure S5; Related to Figure 6: Buried surface areas of inter-subunit interfaces in T 4 Pa structures. Surface area was determined using atomic solvent accessible areas of isolated and complexed pilin subunits computed with the NACCESS program (Hubbard and Thornton, 1993).

Figure S6; Related to Figure 1: Structural comparison of major T4a pilins (periplasmic domains). α / β loop is shown in green, $\beta 3 / \beta 4$ loop in cyan and D-region in magenta.

B

C

Figure S7; Related to Figure 7: Secondary structure elements in T4a pilins. (A) Position of secondary structures elements of T4a pilin structures aligned on EHEC PpdD sequence and grouped according to the constructs and techniques used to solve the structure (Structures of full-length pilins solved by X-ray, truncated pilins missing the transmembrane segment and pilus structures solved by cryoEM). (B) Secondary structure score predicted from local evolutionary contacts within the T4a pilin family (Toth-Petroczy et al., 2016). (C) Secondary structure confidence score predicted with PSIPRED (Jones, 1999) on the EHEC PpdD pilin sequence.

N. gonorrhoeae

T4P

N. meningitidis T4P

Figure S8; Related to Figure 7; Surface electrostatics potential of T4P pilus structure. Electrostatics potential calculations were performed using APBS (Baker et al., 2001). The green lines delineate the surface of a single pilin subunit.

Supplementary references

Baker, N., Sept, D., Joseph, S., Holst, M., and McCammon, J. (2001). Electrostatics of nanosystems: application to microtubules and the ribosome. Proc. Natl. Acad. Sci. USA 98, 10037-10041.
Bartolome, B., Jubete, Y., Martinez, E., and de la Cruz, F. (1991). Construction and properties of a family of pACYC184-derived cloning vectors compatible with pBR322 and its derivatives. Gene 102, 75-78.
de Amorim, G.C., Cisneros, D.A., Delepierre, M., Francetic, O., and Izadi-Pruneyre, N. (2014). ${ }^{1} \mathrm{H},{ }^{15} \mathrm{~N}$ and ${ }^{13} \mathrm{C}$ resonance assignments of PpdD, a type IV pilin from enterohemorrhagic Escherichia coli. Biomol NMR Assign 8, 43-46.
Hubbard, S.J., and Thornton, J.M. (1993). NACCESS Computer Program. Department of Biochemistry and Molecular Biology, University College London.
Jones, D. (1999). Protein secondary structure prediction based on position-specific scoring matrices. J Mol Biol 292, 195-202.
Kamisetty, H., Ovchinnikov, S., and Baker, D. (2013). Assessing the utility of coevolutionbased residue-residue contact predictions in a sequence- and structure-rich era. Proc Natl Acad Sci U S A 110, 15674-15679.
Karimova, G., Pidoux, J., Ullmann, A., and Ladant, D. (1998). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95, 57525756.

Krivov, G.G., Shapovalov, M.V., and Dunbrack, R.L. (2009). Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77, 778-795.
Luna Rico, A., Zheng, W., Petiot, N., Egelman, E.H., and Francetic, O. (2019). Functional reconstitution of the type IVa assembly system from enterohemorrhagic Escherichia coli. Mol. Microbiol. 111, doi: $10.1111 / \mathrm{mmi}$. 14188, in press.
Nivaskumar, M., Santos-Moreno, J., Malosse, C., Nadeau, N., Chamot-Rooke, J., Tran Van Nhieu, G., and Francetic, O. (2016). Pseudopilin residue E5 is essential for recruitment by the type 2 secretion system assembly platform. Mol Microbiol 101, 924-941.
Shapovalov, M.V., and Dunbrack, R.L. (2011). A smoothed backbone-dependent rotamer library for proteins derived from adaptive kernel density estimates and regressions. Structure 19, 844-858.
Toth-Petroczy, A., Palmedo, P., Ingraham, J., Hopf, T.A., Berger, B., Sander, C., and Marks, D.S. (2016). Structured states of disordered proteins from genomic sequences. Cell 167, 158-170.e112.
Yanisch-Perron, C., Vieira, J., and J., M. (1985). Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33, 103-119. Zhang, Y., and Skolnick, J. (2005). TM-align: a protein structure alignment algorithm based on the TM-score. Nucleic Acids Res 33, 2302-2309.

