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We consider the following nonlinear heat equation

(

u

t

= �u+ juj

p�1

u

u(0) = u

0

;

(1)

where u : (x; t) 2 R

N

� [0; T )! R,

1 < p; (N � 2)p < N + 2 and either u

0

� 0 or (3N � 4)p < 3N + 8: (2)

More general vector-valued heat equations can be considered with similar

results (see [MZ99] for more details) :

(

u

t

= �u+ F (juj)u

u(0) = u

0

;

(3)

where u : 
� [0; T )! R

M

, p satis�es (2), 
 = R

N

or 
 is a smooth bounded

convex domain of R

N

, F (juj) � juj

p�1

as juj ! +1, and M 2 N.

We are interested in the blow-up phenomenon for (1). Many authors has

been interested in this topic. Let us mention for instance Friedman [Fri65],

Fujita [Fuj66], Ball [Bal77], Bricmont and Kupiainen [BKL94], Chen and

Matano [CM89], Galaktionov and V�azquez [GV95], Giga and Kohn [GK89],

[GK87], [GK85], Herrero and Vel�azquez [HV93], [HV92].

In the following, we consider u(t) a blow-up solution of (1) and denote its

blow-up time by T . We aim at �nding sharp uniform estimates at blow-up

and specifying the blow-up behavior of u(t). Such a study is done considering

equation (1) in its self-similar form : for all a 2 R

N

, we de�ne

y =

x� a

p

T � t

; s = � log(T � t); w

a;T

(y; s) = (T � t)

1

p�1

u(x; t): (4)
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Therefore, w

a;T

= w satis�es 8s � � log T , 8y 2 R

N

:

@w

@s

= �w �

1

2

y:rw �

w

p� 1

+ jwj

p�1

w: (5)

Let us introduce the following Lyapunov functional associated with (5) :

E(w) =

Z

R

N

�

1

2

jrwj

2

+

1

2(p� 1)

jwj

2

�

1

p+ 1

jwj

p+1

�

�(y)dy

where �(y) =

e

�

jyj

2

4

(4�)

N=2

.

The question is to estimate w

a;T

(s) as s! +1, uniformly with respect to

a, whether a is a blow-up point or not (a is called a blow-up point if there

exists (a

n

; t

n

)! (a; T ) such that ju(a

n

; t

n

)j ! +1).

Giga and Kohn showed that self-similar variables are convenient for de-

scribing the blow-up rate in the following sense : there exists �

0

(u

0

) > 0

such that 8s � s

�

0

(u

0

),

�

0

� jw(s)j

L

1

�

1

�

0

: (6)

We �rst aim at sharpening this result in order to obtain compactness prop-

erties in our problem.

1 A Liouville Theorem for equation (5)

We are interested in classifying all global and bounded solutions of (5), for

all subcritical p :

p > 1 and (N � 2)p < N + 2: (7)

We claim the following :

Theorem 1 (A Liouville Theorem for equation (5)) Assume (7)

and consider w a solution of (5) de�ned for all (y; s) 2 R

N

� R such that

8(y; s) 2 R

N

� R, jw(y; s)j � C. Then, either w � 0, or w � � or w(y; s) =

�'(s� s

0

) where � = (p� 1)

�

1

p�1

, s

0

2 R and '(s) = �(1 + e

s

)

�

1

p�1

.

Remark : ' is in fact an L

1

connection between two critical points of (5):

� and 0. Indeed,

_' = �

'

p� 1

+ '

p

; '(�1) = �; '(+1) = 0:

Remark : A similar classi�cation result can be obtained with a solution w

de�ned only on (�1; s

�

) (see [MZ98]).

Theorem 1 has the following corollary :
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Corollary 1 (A Liouville Theorem for equation (1)) Assume (7)

and consider u a solution of (1) de�ned for all (x; t) 2 R

N

� (�1; 0) such

that 8(x; t) 2 R

N

� (�1; 0), ju(x; t)j � C(�t)

�

1

p�1

. Then, either u � 0, or

u(x; t) = ��(T

�

� t)

�

1

p�1

for some T

�

� 0.

The proofs can be found in [MZ99] and [MZ98]. The key tools in the proof

are the following :

i) A classi�cation of all possible linear behaviors of w(s) as s! �1 in

L

2

�

(R

N

) (L

1

loc

(R

N

)),

ii) The following geometric transformations which keeps (5) invariant :

w(y; s)! w

a;b

(y; s) = w(y + ae

s

2

; s+ b);

where a 2 R

N

and b 2 R,

iii) A blow-up criterion for (5) used for solutions close to the constant

point � (This criterion is also a blow-up criterion for (1) via the transfor-

mation (4)) :

If for some s

0

2 R, I(w(s

0

)) > 0 where

I(w) = �2E(w) +

p� 1

p+ 1

�

Z

R

N

jw(y)j

2

�(y)dy

�

p+1

2

;

then w(s) blows up in �nite time.

Remark : This criterion is sharp for solutions near constants. Indeed, if

w(s

0

) � C

0

, then

w blows-up in �nite time , jC

0

j > � , I(C

0

) > 0.

Remark : The proof of the Liouville Theorem strongly relies on the exis-

tence of a Lyapunov functional for equation (5) and can not be extended to

other systems where the nonlinearity is not a gradient. In [Zaa], we go be-

yond this restriction and introduce new tools to prove a Liouville Theorem

of the same type for the following system

u

t

= �u+ v

p

; v

t

= �v + u

q

:

2 Localization at blow-up

We assume again (2). The estimate (6) of Giga and Kohn gives compactness

in the problem. Using a compactness procedure in the singular zone of

R

N

(which is, say fy j jw(y; s)j �

�

2

g), we �nd a solution satisfying the

hypotheses of Theorem 1. Therefore, �w is small with respect to jwj

p

in

this singular zone (or equivalently, �u is small with respect to juj

p

). A
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subcritical localization procedure introduced by Zaag [Zaa98] (under the

level of the constant �) allows us to propagate this estimate towards the

intermediate zone between the singular and the regular one. We claim the

following :

Theorem 2 (Comparison with the associated ordinary di�erential

equation) Assume (2) and consider T � T

0

and ku

0

k

C

2

(R

N

)

� C

0

. Then,

8� > 0, there is C(�; C

0

; T

0

) such that 8(x; t) 2 R

N

� [0; T ),

ju

t

� juj

p�1

uj � �juj

p

+C:

Remark : This way, we prove that the solution of the PDE (1) can be

uniformly and globally in space-time compared to a solution of an ODE

(localized by de�nition). Note that the condition u(0) 2 C

2

(R

N

) is not

restrictive because of the regularizing e�ect of the Laplacian.

Remark : Many striking corollaries can be derived from this theorem. It

implies in particular that no oscillation is possible near a blow-up point a,

and that ju(x; t)j ! +1 as (x; t) ! (a; T ). Moreover, 8�

0

> 0, there exists

t

0

(�

0

) < T such that for all b 2 R

N

, if ju(b; t)j � (1 � �

0

)�(T � t)

�

1

p�1

for

some t 2 [t

0

; T ), then b is not a blow-up point (this speci�es more precisely

a former result by Giga and Kohn where t

0

= t

0

(�

0

; a)).

3 Optimal L

1

estimates at blow-up

We still assume (2). Using estimate (6) and the Liouville Theorem, we make

a compactness argument to get the following sharp estimates :

Theorem 3 (L

1

re�ned estimates for w(s)) Assume that (2) holds.

Then, there exist positive constants C

i

for i = 1; 2; 3 such that if u is a

solution of (1) which blows-up at time T and satis�es u(0) 2 C

3

(R

N

), then

8� > 0, there exists s

1

(�) � � log T such that 8s � s

1

, 8a 2 R

N

,

kw

a;T

(s)k

L

1

� �+ (

N�

2p

+ �)

1

s

; krw

a;T

(s)k

L

1

�

C

1

p

s

;

kr

2

w

a;T

(s)k

L

1

�

C

2

s

; kr

3

w

a;T

(s)k

L

1

�

C

3

s

3=2

:

Remark : In the case N = 1, Herrero and Vel�azquez (Filippas and Kohn

also) proved some related estimates, using a Sturm property introduced in

particular by Chen et Matano (the number of space oscillations is a decreas-

ing function of time).

Remark : The constant

N�

2p

is optimal (see Herrero and Vel�azquez, Bric-

mont and Kupiainen, Merle and Zaag).
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4 Di�erent notions of blow-up pro�les and the sta-

bility question

We assume (2). We consider a 2 R

N

, a blow-up point of u(t), solution of

(1). From translation invariance, we can assume a = 0. We would like to

know whether u(t) (or w

0;T

(s) de�ned in (4)) has a universal behavior or

not, as t! T (or s! +1).

Filippas, Kohn, Liu, Herrero et Vel�azquez prove that w behaves in two

distinct ways :

- either 8R > 0, sup

jyj�R

�

�

�

�

�

w(Qy; s)�

"

�+

�

2ps

 

l �

1

2

l

X

k=1

y

2

k

!#

�

�

�

�

�

= O

�

1

s

1+�

�

as s ! +1, for some � > 0 where l 2 f1; :::; Ng, Q is a N �N orthogonal

matrix and I

l

is the l � l identity matrix.

- or 8R > 0, sup

jyj�R

jw(y; s)� �j � C(R)e

��

0

s

for some �

0

> 0.

From a physical point of view, these results do not tell us much about the

transition between the singular zone (w � � where � > 0) and the regular

one (w ' 0). In [MZ99], we specify this transition by proving the existence

of a pro�le in the variable z =

y

p

s

.

Theorem 4 (Existence of a blow-up pro�le for equation (1))

Assume (2) holds. There exists l 2 f0; 1; :::; Ng and a N � N orthogonal

matrix Q such that w(Q(z)

p

s; s)! f

l

(z) uniformly on compact sets jzj � C,

where f

l

(z) = (p � 1 +

(p�1)

2

4p

l

X

i=1

jz

i

j

2

)

�

1

p�1

if l � 1 and f

0

(z) = � = (p �

1)

�

1

p�1

.

This result has been proved by Vel�azquez in [Vel92]. However, the con-

vergence speed depends on the considered blow-up point in [Vel92], whereas

they are uniform in [MZ99]. This uniformity allows us to derive the stability

of the pro�le f

N

in [FKMZ].

Using renormalization theory, Bricmont and Kupiainen prove in [BK94]

the existence of a solution of (5) such that

8s � s

0

; 8y 2 R

N

; jw(y; s) � f

N

(

y

p

s

)j �

C

p

s

:

Merle and Zaag prove the same result in [MZ97], thanks to a technique of

�nite-dimension reduction. They also prove the stability of such a behavior

with respect to initial data, in a neighborhood of the constructed solution.
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In [Zaa98] and [Vel92], it is proved that in this case, u(x; t) ! u

�

(x) as

t! T uniformly on R

N

nf0g and that u

�

(x) �

h

8pj log jxj

(p�1)

2

jxj

2

i

1

p�1

as x! 0.

One interesting problem is to relate all known blow-up pro�les' notions :

pro�les for jyj bounded,

jyj

p

s

bounded or x ' 0. We prove in the following

that all these descriptions are equivalent, in the case of single point blow-up

with a non degenerate pro�le (generic case). This answers many questions

which arose in former works.

Theorem 5 (Equivalence of blow-up behaviors at a blow-up point)

Assume (2) and consider a be an isolated blow-up point of u(t) solution

of (1). The following behaviors of u(t) and w

a;T

(s) (de�ned in (4)) are

equivalent :

i) 8R > 0, sup

jyj�R

�

�

�

�

w(y; s)�

�

�+

�

2ps

(N �

1

2

jyj

2

)

�

�

�

�

�

= o

�

1

s

�

as s! +1,

ii) 8R > 0, sup

jzj�R

�

�

w(z

p

s; s)� f

0

(z)

�

�

! 0 as s ! +1 with f

0

(z) =

(p� 1 +

(p�1)

2

4p

jzj

2

)

�

1

p�1

,

iii) 9�

0

> 0 such that for all jx� aj � �

0

, u(x; t)! u

�

(x) as t! T and

u

�

(x) �

h

8pj log jx�aj

(p�1)

2

jx�aj

2

i

1

p�1

as x! a.

A further application of the Liouville Theorem is the stability of the be-

havior described in Theorem 5, with respect to perturbations in initial data.

Using a dynamical system approach, we prove in [FKMZ], with Fermanian

the following :

Theorem 6 (Stability of the blow-up pro�le) Assume (7) and consi-

der ~u(t) a blow-up solution of (1) with initial data ~u

0

which blows-up at

t =

~

T at only one point ~a = 0 and satis�es (6). Assume that

for all jxj � R and t 2 [0;

~

T ); j~u(x; t)j �M:

and that the function ~w

0;

~

T

(y; s) de�ned in (4) satis�es uniformly on compact

sets of R

N

~w

0;

~

T

(y; s)� � �

s!+1

�

2ps

(N �

j y j

2

2

): (8)

Then, there is a neighborhood V in L

1

of ~u

0

such that for all u

0

2 V the

solution of (1) with initial data u

0

blows-up at time T = T (u

0

) at a unique

point a = a(u

0

) and the function w

a;T

(y; s) de�ned in (4) satis�es uniformly

on compact sets of R

N

w

a;T

(y; s)� � �

s!+1

�

2ps

(N �

j y j

2

2

):
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Moreover, (a(u

0

); T (u

0

)) goes to (0;

~

T ) as u

0

goes to ~u

0

.

Remark : This results generalizes the stability result of [MZ97]. Note that

unlike most applications of the Liouville Theorem, this result is valid for all

subcritical p. In [FKZ], the same result is proved (only under the condition

(2)), by a completely di�erent approach based on the Liouville Theorem and

on [MZ97].

Remark : In [FKMZ], we prove the stability with respect to initial data of

the blow-up behavior with the minimal speed

ku(t)k

L

1

� C(T � t)

�

1

p�1

(9)

for all subcritical p (that is under the condition (7)). Note that this result

is obvious under the weaker assumption (2), for Giga and Kohn proved in

[GK87] that all blow-up solutions satisfy (9). No blow-up rate estimate is

known if

u

0

has no sign and (3N � 4)p � 3N � 8:

Therefore, our result is meaningful in this last case.
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