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A few types of extreme climate events in the North Atlantic region, such as heatwaves, cold spells, or high cumulated precipitation,
are connected to the recurrence of atmospheric circulation patterns. Understanding those extreme events requires assessing long-
term trends of the atmospheric circulation. This paper presents a set of diagnostics of the intra- and interannual recurrence of
atmospheric patterns. Those diagnostics are devised to detect trends in the stability of the circulation and the return period of
atmospheric patterns. We detect significant emerging trends in the winter circulation, pointing towards a potential increased
predictability. No such signal seems to emerge in the summer. We find that the winter trends in the dominating atmospheric

patterns and their recurrences do not depend of the patterns themselves.

1. Introduction

Recent North Atlantic winter and summer extremes have
been associated with persistent patterns of atmospheric
circulation. Those patterns have been rather contrasted from
one year to another. Cold spells of January 2010, December
2010, and February 2012 in Europe resulted from persisting
blocking situations over Scandinavia [1, 2]. Warm winter
2006/2007 [3, 4] and stormy winter 2013/14 [5, 6] were dom-
inated by persistent high-pressure systems over the Azores
and the Mediterranean Sea, respectively. The warm summers
of 2003 and 2015 in Europe were associated with either a
persisting blocking pattern over Scandinavia or Atlantic low
conveying warm air into Europe from North Africa. There-
fore it is difficult to claim that a given atmospheric pattern
has dominated during recent years to create such climate
extremes. However it has been speculated that the amplitude
of atmospheric patterns is changing, in particular through a
connection between Arctic sea-ice cover and meanders of the
jet stream [7, 8]. The statistical significance of such a trend
as well as the relevance of the evoked mechanisms has been

debated [9-11].

The midlatitude atmospheric variability is characterized
by a baroclinic instability of the zonal flow [12]. This insta-
bility grows into Rossby waves. It has been argued that the
excitation conditions of those Rossby waves have increased
in the past decades [8, 13].

Faranda et al. [14] studied how unstable fixed points of the
extratropical atmospheric circulation correspond to blocking
patterns of the circulation. Faranda et al. [15] investigated the
local dimension of North Atlantic atmospheric circulation
and examined the implications for predictability in the winter
season. The local dimension is linked to the recurrence
properties of a complex system [16-18].

In this paper, we analyze recently observed trends in the
surface North Atlantic circulation in winter and summer.
We focus on recurrences of patterns of the atmospheric
circulation [16, 19]. We examine trends in the intraseasonal
recurrence of flow patterns by using the notion of recurrence
networks within a season, as introduced by Donner et al.
[20]. The trend in interannual pattern recurrence is examined
through the probability of detecting good analogues of
circulation. Those intra- and interannual diagnostics allow
detecting emerging properties of the atmospheric circulation.
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2. Data and Methods

2.1. Data. We use the reanalysis data of the National Centers
for Environmental Prediction (NCEP) [21] between January
1948 and March 2017. We consider the sea-level pressure
(SLP) over the North Atlantic (80W-30E; 30-70N). One of
the caveats of this reanalysis dataset is the lack of homogene-
ity of assimilated data, in particular before the satellite era.
This can lead to breaks in pressure related variables, although
such breaks are mostly detected in the southern hemisphere
and the Arctic regions [22]. A multiple breakpoint detection
algorithm [23] was applied to the time series we generate,
in order to determine whether our results depend on the
assimilated data of the reanalysis. No breakpoint was detected
at or near the years of introduction of satellite data in the
reanalysis (not shown).

The SLP field structure contains a seasonal cycle that
needs to be removed. We computed seasonal anomalies of
SLP. For each grid point of the reanalysis, a daily seasonal
cycle is computed with a smoothing spline of daily averages,
with a differentiability constraint at December 31 and January
1. The mean seasonal cycles obtained at each gridpoint are
subtracted to the time series of SLP in order to produce
anomalies of SLP.

2.2. Intraseasonal Recurrence. The first concept we develop is
the intraseasonal recurrence of atmospheric patterns for the
winter and summer seasons (December-January-February
(DJF) and June-July-August (JJA)). The temporal autocorre-
lation (number of days with an autocorrelation significantly
above 0) of SLP around the North Atlantic is close to 5 days on
average [24]. If the atmospheric circulation fluctuates around
a given state on time scales that are longer than 5 days,
this might not be reflected by the sample autocorrelation.
Beyond the persistence defined by “remaining in a pattern
during consecutive times,” we are interested in the fact that
the atmosphere could come back to a given pattern, after a
significant disturbance. This identifies a recurrent—although
unstable—state of the atmosphere, potentially corresponding
to a wave excitation. This state does not need to be the same
from one year to another. In this subsection we adopt two
ways of measuring the intraseasonal recurrence of patterns
within a season.

The first one is based on the analysis of weather regimes
of the atmospheric circulation. For each season, the SLP
anomalies (with respect to the seasonal cycle) are classified
onto four weather regimes. This number corresponds to what
is usually found in the literature [25-27]. We compute the
principal components (PCs, [28]) of the NCEP reanalysis SLP
anomaly data. SLP data is weighed by the cosine of latitude
for the computation of PCs/EOFs. The weather regimes (WR)
are determined by a k-means clustering of the first 10 PCs,
between 1970 and 2000 [27, 29].

For each year and each season (winter and summer,
between 1948 and 2017), the daily SLP anomaly patterns are
attributed to the closest WR pattern (in terms of Euclidean
distance to the cluster mean). The annual frequency of WR is
the ratio of number of occurrences of the WR to the length
of the season. For each year and each season, the dominant
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WR is the one with the highest frequency, and we report the
frequency of the dominant weather regime.

The second approach to that concept of intraseasonal
recurrence is based on the similarity of intraseasonal daily
SLP anomaly patterns. For each reference day d within a
season, we determine all the days d’ of the same season that
yield a spatial rank correlation r that exceeds a threshold
ro. Here, we take r, = 0.5, which corresponds to the 60th
percentile of all intraseasonal sample correlation values. We
construct a network of analogue days S(d, y), for all days d in

years y by
S(d,y) = {d’ €y, r(SLP,4,SLPy) > ro}. (1)

The days in S(d, y) fall in the same season (DJF or JJA).
The so-called “dominating” network S(y) is the one that
yields the largest number of analogue patterns. This network
definition is similar to the recurrence network of Donner et
al. [20]. We consider the number of days in the dominating
analogue network and the frequency (percentage of days)
within a season. We call this percentage of days the frequency
of the S(y) analogue network (or S(y) for short).

This approach is akin to the dominating WR analysis, but
it does not constrain the geographical location of the prede-
fined weather patterns. The fluctuations of the frequencies
of the dominating WR or the S(y) network help us assess
how the persistence of atmospheric patterns varies through
time. Those two intraseasonal quantities (frequencies of
dominating weather regime and dominating network) allow
investigating recurrent but potentially unstable patterns of
the atmospheric circulation. Those patterns do not need to
be visited in spates of consecutive days.

Those two approaches are meant to determine the trend
of intraseasonal pattern recurrence. The choice of r, = 0.5 is
justified a posteriori by comparing the values of the frequency
of the network S(y) and the frequency of the dominating
WR. If the threshold correlation 7, increases, the size of S(y)
decreases. A value of r, = 0.6 divides size of S(y) by 2
and gives a range of variations that is much smaller than the
average value of the dominating WR frequency, which leads
to a more difficult physical interpretation.

We emphasize that this concept of intra-annual network
recurrence is distinct from the clustering index examined by
Faranda et al. [15], which focuses on the local persistence of
the system. But the concept is complementary to the analyses
of Faranda et al. [14] because we identify regions in the phase
space of the atmospheric circulation to which trajectories
“try” to come back close to.

2.3. Interannual Recurrence. The second concept we use
is the interannual recurrence of SLP patterns. In contrast
with the previous definitions, the interannual recurrence in
atmospheric sciences [e.g., [16]] based on events that occur
in different years but the same season, in order to ensure
statistical independence. The time evolution of the (inter-
annual) recurrence properties (e.g., in terms of closeness or
return time) provides information on trends in the dynamics
of the system [18, 30]. Such trends suggest the emergence of
patterns.
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FIGURE 1: Schematic representing how the intraseasonal analogues (red lines) and the interannual analogues (blue lines) are determined from

SLP fields.

In this paper, the long-term emergence (or disappear-
ance) of patterns is estimated from interannual analogues of
circulation [4, 16]. For each day, we determine the best 20
analogues of circulation by minimizing a Euclidean distance
to all days occurring in a different year, but at most 30
calendar days apart. Good analogues have a distance that
is smaller than a threshold d, corresponding to the 25th
percentile of distance, and a spatial correlation that is higher
than a threshold r, = 0.5 corresponding to the 75th percentile
of spatial correlations of all 20 best analogues. In practice, the
number of good analogues for a given day is always lower than
10 for such data. Therefore retaining more than the 20 best
analogues would not change the results.

The distributions of correlations for interannual ana-
logues (i.e., picked in another year) and intraseasonal ana-
logues are different, which explains that the value r, =
0.5 corresponds to different quantiles in the two cases. The
seasonal average number of good analogues is a proxy for
the probability of observing a circulation pattern and gives
access to the usual character of a season. If this number
decreases, then one can conclude that the circulation during
that season becomes less typical, leading to the appearance of
new patterns with no past analogues.

The intraseasonal and interannual analogues (or recur-
rences) are illustrated in Figure 1. They are linked through
recurrence diagrams [19]. The intraseasonal analogue net-
works are related to thickness of the diagonal lines of recur-
rence diagrams, when one considers short-term recurrences.
The interannual analogues are related to off-diagonal prop-
erties of recurrence diagrams, when one considers longer
term recurrences. The distinction we make simplifies the
visualization of the analyses, as the two timescales (intra-
annual versus interannual) refer to two timescales of a
complex system that pertain to different types of behavior.

3. Results

3.1 Intraseasonal Recurrences. The frequency of the domi-
nating S(y) network pattern yields a positive trend in winter

(1% of winter days per decade, p value < 0.05) (Figure 2,
dashed black lines) and a negative trend in summer (-1%
of summer days per decade, p value < 0.001) (Figure 3,
dashed black lines). The positive winter trend is unstable, due
to the upward fluctuation in the 1990s: the trend since 1980
(the use of satellite data in the reanalysis) is close to 0 and
not significant, and the trend since 1997 (with the optimal
number of assimilated observations) is 1.3% per decade. The
summer trend over 1950-2017 is also unstable, with negligible
and insignificant trends since 1980 and 1997. The number of
days spent in the summer dominating WR (=38 days) or
the dominating S(y) network (=20 days) is smaller than in
the winter (resp., 40 days and 30 days). From a count of
the dominant WR frequencies in Figure 2, the zonal weather
regime (ZO) has been preferred in the winter between 1948
and 2015. The ZO weather regime corresponds to what is
called NAO+ (or the positive phase of the North Atlantic
Oscillation) in many papers. Since the NAO+ terminology
has been used when referring to monthly SLP patterns, we
prefer to adopt the ZO terminology, which refers to daily
patterns [25, 31].

The ZO weather regime dominated 35% of winters (BLO:
29%; NAO—: 19%; AR: 16%). Those weather regimes have
dominated winters roughly and equiprobably since 2000.
The preferred summer weather regime (Figure 3) has been
the Scandinavian Blocking (BLO: 40% of summers) (against
NAO-: 21%; AR: 21%; AT: 18%). The summer Atlantic Ridge
(AR) has dominated only once since 2000 and the other
three weather regimes have been rather equiprobable. The AR
weather regime is unlikely during warm summers [25]. The
period since 2000 has been the longest spell with so few AR
occurrences since 1948, although it is difficult to interpret the
behavior of the last 15 years in terms of an emerging signal,
because of the large decadal variability of the dominating
regimes. A similar analysis of the 20CR reanalysis ensemble
mean [32] provides the same results on the 1948-2012 period
(not shown). The period before 1948 does not yield any
significant trend, but this could be due to the large ensemble
spread whose averaging smears out trends (not shown).
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FIGURE 2: (a) Four weather regimes of SLP anomalies in DJF (negative phase of the NAO, Atlantic Ridge, Scandinavian Blocking, zonal flow).
The isolines have increments of 2 hPa. (b) Trends in atmospheric persistence for DJFE. Vertical colored lines: frequency of dominating weather
regime. The color is associated with a weather regime (NAO-: black; AR: red; BLO: green; ZO: blue). Gray dotted line: linear trend of regime
frequencies. Continuous back lines: frequency of dominating network in the winter. Dashed black lines: linear trend of dominating network
frequency. Vertical dash-dotted lines are for the five years with the largest numbers of similar days (1969, 1989, 1990, 2010, and 2014).

We identify five winters with the largest frequencies of
S(y) networks (1969, 1989, 1990, 2010, and 2014). The SLP
patterns for those years are shown in Figure 4. The winters
that are identified yield zonal (1989, 1990, and 2014) or NAO—
(1969 and 2010) weather regimes. We also find that the winters
between 1948 and 2014 with more than 35 similar days are in
one of those two weather regimes. The extremely persistent
winter patterns are the two phases of the North Atlantic
Oscillation that generate either stormy and warm surface
conditions (ZO regime) or wet and cold conditions (NAO—
regime) over Western Europe.

The five summers for which the recurrence is highest
(larger than 25%) are mostly in the Atlantic Ridge regime (4
occurrences) and Scandinavian Blocking (1 occurrence) (Fig-
ure 3). By contrast, the five most frequent summer weather
regimes (more than 45%) are the Scandinavian Blocking (3

occurrences), Atlantic Ridge (1 occurrence), and Atlantic Low
(1 occurrence). This shows that the maximum occurrence of
a weather regime within a season is disconnected from its
interannual frequency: the summer AR regime is the most
recurrent but is not very frequent. Such high recurrence
values do not occur after 2000.

3.2. Interannual Recurrences. The average number of good
circulation analogues characterizes the recurrence of the
patterns in time. Hence, seasons with few good analogues can
be considered as rare, while those with many good analogues
are typical. A trend in the number of good analogues
indicates a shift in the atmospheric circulation patterns,
which might not be detectable in the frequency of weather
regimes. Figure 5 shows the time variations of the mean
number of good intraseasonal analogues for the summer
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FIGURE 3: (a) Four weather regimes of SLP in JJA (negative phase of the NAO, Atlantic Ridge, Scandinavian Blocking, Atlantic Low). The
isolines have increments of 2hPa. (b) Trends in atmospheric persistence for JJA. Vertical colored lines: frequency of dominating weather
regime. The color is associated with a weather regime (NAO—: black; AR: red; BLO: green; AT: blue). Gray dotted line: linear trend of regime
frequencies. Continuous back lines: frequency of dominating network in the summer. Dashed black lines: linear trend of dominating network

frequency.

and winter. The winter series yields a small but significant
positive trend (0.1 analogue day per decade, p value < 0.01,
Figure 5(a)). This means that the daily circulation patterns
tend to become more frequent during the last decades,
because the circulation analogues become increasingly
good.

The summer series yields a significant negative trend
(=0.07 analogue day per decade, p value < 0.01, Figure 5(b)).
This means that the daily patterns have become individually
more exceptional, although not necessarily extreme, from
the first part of the period to the second part. The latter
JJA decreasing trend does not hold for the last two decades
(1990-2016), which yield a slightly positive trend. Therefore,
this trend can hardly be interpreted in terms of a climate
change signal, because it is likely to be influenced by decadal
internal variability.

4. Discussion

As pointed out in the methods section, the value of the
frequency of intraseasonal S(y) analogue networks depends
on the threshold correlation size of r,,. A higher value (e.g.,
7o 0.6) divides the average length by 2 and leads to a
nonsignificant trend (p value > 0.05), especially for winter.
But such a choice makes the comparison with dominating
weather regimes harder to interpret, because the magnitudes
of the variations (in Figure 2) would be too different.

The linear trend analysis can be challenged due to
potential inhomogeneities in the NCEP reanalysis. As stated
in Section 2.1, a breakpoint algorithm [23] was applied to the
time series of dominating network and weather regime fre-
quencies. One breakpoint in the mean occurs in 2005, which
bears no inhomogeneity in the assimilation procedure of the
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FIGURE 5: Average daily number of good analogues for the winter (DJF: panel (a)) and summer (JJA: panel (b)). The horizontal dotted lines
indicate the mean value for all years. The red dashed line is the linear regression of the number of good analogues with time. The vertical
dashed lines for panel (a) indicate the five reference winters (1969, 1989, 1990, 2010, and 2014).

reanalysis. We also fitted those time series a stepwise function
with one break around 1979 (1975-1985), when satellite data
start to be massively used. The fit is not significant (p value >
0.6, not shown). This means that the significant linear trends
we detect are not due to an inhomogeneity in the NCEP SLP
data.

The increasing trend of similar atmospheric patterns in
winter started only recently, in the 1970s (Figure 2). This
trend means that the patterns become more frequent at
the intraseasonal scale, with a locking to the phases of
the North Atlantic Oscillation. Trends in the frequencies of
those two weather regimes bring either prolonged episodes
of snowfall to Europe (like in 2010, with an NAO- phase)
or prolonged stormy episodes and precipitation episodes
over Northern Europe (like in 2014, with zonal circula-
tion). The concomitant increasing trend of the probability
of finding a good winter circulation analogue (Figure 5)
suggests that the return periods of observed winters become

shorter, so that winters tend to be similar to already known
winters.

The decreasing trend of similar weather patterns in the
summer means that slow building extreme events, such
as droughts and heatwaves or cold summers, tend to be
less frequent in Europe. The concomitant decreasing trend
of interannual pattern recurrence suggests that summers
become less similar to already known ones, although this
trend is very small.

Those results can be interpreted in terms of an increase
of predictability of the circulation in the winter because the
size of the dominating network of weather patterns increases.
There would be no such trend of predictability in the summer.
Therefore, a prediction based on persistence would have an
increased skill in the winter.

Our analyses seem to contradict the hypothesis of
increased winter midlatitude atmospheric meandering de-
scribed by Francis and Vavrus [7] and Petoukhov et al. [8],
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because the winters with the most recurrent weather types
we detect have had rather low wave numbers at the surface
[33] while they were associated with extremely warm and
stormy conditions (1989, 1990, and 2014) or extremely snowy
conditions (1969, 2010) (Figure 4). Arctic sea-ice cover before
those winters was either lower or above normal, and the
meridional gradient of potential temperature did not show
a systematic feature for those five cases, due to the fact
that they correspond to opposite phases of the NAO. Yet,
our analysis reaches similar conclusions on the impacts on
European surface winter climate, in that more persistent
zonal flows increase the probability of observing extratropical
storms hitting Europe or extreme precipitation amounts in
Northern Europe, as in 1999/2000 and 2013/2014. Conversely,
prolonged spells of negative phase of the NAO in the winter
increase the probability of extreme precipitation (including
snow) in Southern Europe, as in 1969 and 2010. Our interpre-
tation is that the atmospheric patterns that dominate during
the winter tend to get “trapped” for longer times, although
they are not necessarily more stable. We propose a conceptual
model for this behavior, with an energy potential model in
two dimensions with four wells whose relative depth varies
randomly from one year to the next. Daily perturbations can
force the system to shift wells, but at the end of the season, the
deepest well is the most visited. We find that the deepest well
becomes deeper in the winter.

The same analyses (persistence of SLP patterns) were
performed for the North Pacific region and the whole
Northern hemisphere extratropics (not shown). No trend is
found on such regions and scales.

5. Conclusion

In this paper, we have shown significant, albeit small, emerg-
ing trends of recurrence properties of the atmosphere over the
North Atlantic. Those trends point to increased atmospheric
predictability in winter. This is coherent with the small
decrease of local dimension reported by Faranda et al. [15].
The diagnostics we proposed have an interesting potential
to assess the atmospheric temporal variability of climate
models, especially for paleoclimates or future scenarios [34].
The attribution of extreme climate events (to climate change)
requires decomposing an extreme event into its dynamical
(linked to the atmospheric circulation) and thermodynam-
ical (linked to temperature) components [35]. The dynamical
signal is generally difficult to estimate [36]. We have not
determined the cause of the winter circulation trends, which
could be tied to internal variability [33], but this observed
emerging trend helps constraining the dynamical component
in the event attribution process.
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